xref: /dragonfly/sys/kern/kern_time.c (revision 678e8cc6)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/buf.h>
40 #include <sys/sysproto.h>
41 #include <sys/resourcevar.h>
42 #include <sys/signalvar.h>
43 #include <sys/kernel.h>
44 #include <sys/sysent.h>
45 #include <sys/sysunion.h>
46 #include <sys/proc.h>
47 #include <sys/priv.h>
48 #include <sys/time.h>
49 #include <sys/vnode.h>
50 #include <sys/sysctl.h>
51 #include <sys/kern_syscall.h>
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 
55 #include <sys/msgport2.h>
56 #include <sys/thread2.h>
57 #include <sys/mplock2.h>
58 
59 struct timezone tz;
60 
61 /*
62  * Time of day and interval timer support.
63  *
64  * These routines provide the kernel entry points to get and set
65  * the time-of-day and per-process interval timers.  Subroutines
66  * here provide support for adding and subtracting timeval structures
67  * and decrementing interval timers, optionally reloading the interval
68  * timers when they expire.
69  */
70 
71 static int	settime(struct timeval *);
72 static void	timevalfix(struct timeval *);
73 
74 /*
75  * Nanosleep tries very hard to sleep for a precisely requested time
76  * interval, down to 1uS.  The administrator can impose a minimum delay
77  * and a delay below which we hard-loop instead of initiate a timer
78  * interrupt and sleep.
79  *
80  * For machines under high loads it might be beneficial to increase min_us
81  * to e.g. 1000uS (1ms) so spining processes sleep meaningfully.
82  */
83 static int     nanosleep_min_us = 10;
84 static int     nanosleep_hard_us = 100;
85 SYSCTL_INT(_kern, OID_AUTO, nanosleep_min_us, CTLFLAG_RW,
86 	   &nanosleep_min_us, 0, "")
87 SYSCTL_INT(_kern, OID_AUTO, nanosleep_hard_us, CTLFLAG_RW,
88 	   &nanosleep_hard_us, 0, "")
89 
90 static int
91 settime(struct timeval *tv)
92 {
93 	struct timeval delta, tv1, tv2;
94 	static struct timeval maxtime, laststep;
95 	struct timespec ts;
96 	int origcpu;
97 
98 	if ((origcpu = mycpu->gd_cpuid) != 0)
99 		lwkt_setcpu_self(globaldata_find(0));
100 
101 	crit_enter();
102 	microtime(&tv1);
103 	delta = *tv;
104 	timevalsub(&delta, &tv1);
105 
106 	/*
107 	 * If the system is secure, we do not allow the time to be
108 	 * set to a value earlier than 1 second less than the highest
109 	 * time we have yet seen. The worst a miscreant can do in
110 	 * this circumstance is "freeze" time. He couldn't go
111 	 * back to the past.
112 	 *
113 	 * We similarly do not allow the clock to be stepped more
114 	 * than one second, nor more than once per second. This allows
115 	 * a miscreant to make the clock march double-time, but no worse.
116 	 */
117 	if (securelevel > 1) {
118 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
119 			/*
120 			 * Update maxtime to latest time we've seen.
121 			 */
122 			if (tv1.tv_sec > maxtime.tv_sec)
123 				maxtime = tv1;
124 			tv2 = *tv;
125 			timevalsub(&tv2, &maxtime);
126 			if (tv2.tv_sec < -1) {
127 				tv->tv_sec = maxtime.tv_sec - 1;
128 				kprintf("Time adjustment clamped to -1 second\n");
129 			}
130 		} else {
131 			if (tv1.tv_sec == laststep.tv_sec) {
132 				crit_exit();
133 				return (EPERM);
134 			}
135 			if (delta.tv_sec > 1) {
136 				tv->tv_sec = tv1.tv_sec + 1;
137 				kprintf("Time adjustment clamped to +1 second\n");
138 			}
139 			laststep = *tv;
140 		}
141 	}
142 
143 	ts.tv_sec = tv->tv_sec;
144 	ts.tv_nsec = tv->tv_usec * 1000;
145 	set_timeofday(&ts);
146 	crit_exit();
147 
148 	if (origcpu != 0)
149 		lwkt_setcpu_self(globaldata_find(origcpu));
150 
151 	resettodr();
152 	return (0);
153 }
154 
155 /*
156  * MPSAFE
157  */
158 int
159 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
160 {
161 	int error = 0;
162 
163 	switch(clock_id) {
164 	case CLOCK_REALTIME:
165 		nanotime(ats);
166 		break;
167 	case CLOCK_MONOTONIC:
168 		nanouptime(ats);
169 		break;
170 	default:
171 		error = EINVAL;
172 		break;
173 	}
174 	return (error);
175 }
176 
177 /*
178  * MPSAFE
179  */
180 int
181 sys_clock_gettime(struct clock_gettime_args *uap)
182 {
183 	struct timespec ats;
184 	int error;
185 
186 	error = kern_clock_gettime(uap->clock_id, &ats);
187 	if (error == 0)
188 		error = copyout(&ats, uap->tp, sizeof(ats));
189 
190 	return (error);
191 }
192 
193 int
194 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
195 {
196 	struct thread *td = curthread;
197 	struct timeval atv;
198 	int error;
199 
200 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
201 		return (error);
202 	if (clock_id != CLOCK_REALTIME)
203 		return (EINVAL);
204 	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
205 		return (EINVAL);
206 
207 	TIMESPEC_TO_TIMEVAL(&atv, ats);
208 	error = settime(&atv);
209 	return (error);
210 }
211 
212 /*
213  * MPALMOSTSAFE
214  */
215 int
216 sys_clock_settime(struct clock_settime_args *uap)
217 {
218 	struct timespec ats;
219 	int error;
220 
221 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
222 		return (error);
223 
224 	get_mplock();
225 	error = kern_clock_settime(uap->clock_id, &ats);
226 	rel_mplock();
227 	return (error);
228 }
229 
230 /*
231  * MPSAFE
232  */
233 int
234 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
235 {
236 	int error;
237 
238 	switch(clock_id) {
239 	case CLOCK_REALTIME:
240 	case CLOCK_MONOTONIC:
241 		/*
242 		 * Round up the result of the division cheaply
243 		 * by adding 1.  Rounding up is especially important
244 		 * if rounding down would give 0.  Perfect rounding
245 		 * is unimportant.
246 		 */
247 		ts->tv_sec = 0;
248 		ts->tv_nsec = 1000000000 / sys_cputimer->freq + 1;
249 		error = 0;
250 		break;
251 	default:
252 		error = EINVAL;
253 		break;
254 	}
255 
256 	return(error);
257 }
258 
259 /*
260  * MPSAFE
261  */
262 int
263 sys_clock_getres(struct clock_getres_args *uap)
264 {
265 	int error;
266 	struct timespec ts;
267 
268 	error = kern_clock_getres(uap->clock_id, &ts);
269 	if (error == 0)
270 		error = copyout(&ts, uap->tp, sizeof(ts));
271 
272 	return (error);
273 }
274 
275 /*
276  * nanosleep1()
277  *
278  *	This is a general helper function for nanosleep() (aka sleep() aka
279  *	usleep()).
280  *
281  *	If there is less then one tick's worth of time left and
282  *	we haven't done a yield, or the remaining microseconds is
283  *	ridiculously low, do a yield.  This avoids having
284  *	to deal with systimer overheads when the system is under
285  *	heavy loads.  If we have done a yield already then use
286  *	a systimer and an uninterruptable thread wait.
287  *
288  *	If there is more then a tick's worth of time left,
289  *	calculate the baseline ticks and use an interruptable
290  *	tsleep, then handle the fine-grained delay on the next
291  *	loop.  This usually results in two sleeps occuring, a long one
292  *	and a short one.
293  *
294  * MPSAFE
295  */
296 static void
297 ns1_systimer(systimer_t info, int in_ipi __unused,
298     struct intrframe *frame __unused)
299 {
300 	lwkt_schedule(info->data);
301 }
302 
303 int
304 nanosleep1(struct timespec *rqt, struct timespec *rmt)
305 {
306 	static int nanowait;
307 	struct timespec ts, ts2, ts3;
308 	struct timeval tv;
309 	int error;
310 
311 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
312 		return (EINVAL);
313 	/* XXX: imho this should return EINVAL at least for tv_sec < 0 */
314 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
315 		return (0);
316 	nanouptime(&ts);
317 	timespecadd(&ts, rqt);		/* ts = target timestamp compare */
318 	TIMESPEC_TO_TIMEVAL(&tv, rqt);	/* tv = sleep interval */
319 
320 	for (;;) {
321 		int ticks;
322 		struct systimer info;
323 
324 		ticks = tv.tv_usec / ustick;	/* approximate */
325 
326 		if (tv.tv_sec == 0 && ticks == 0) {
327 			thread_t td = curthread;
328 			if (tv.tv_usec > 0 && tv.tv_usec < nanosleep_min_us)
329 				tv.tv_usec = nanosleep_min_us;
330 			if (tv.tv_usec < nanosleep_hard_us) {
331 				lwkt_user_yield();
332 				cpu_pause();
333 			} else {
334 				crit_enter_quick(td);
335 				systimer_init_oneshot(&info, ns1_systimer,
336 						td, tv.tv_usec);
337 				lwkt_deschedule_self(td);
338 				crit_exit_quick(td);
339 				lwkt_switch();
340 				systimer_del(&info); /* make sure it's gone */
341 			}
342 			error = iscaught(td->td_lwp);
343 		} else if (tv.tv_sec == 0) {
344 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
345 		} else {
346 			ticks = tvtohz_low(&tv); /* also handles overflow */
347 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
348 		}
349 		nanouptime(&ts2);
350 		if (error && error != EWOULDBLOCK) {
351 			if (error == ERESTART)
352 				error = EINTR;
353 			if (rmt != NULL) {
354 				timespecsub(&ts, &ts2);
355 				if (ts.tv_sec < 0)
356 					timespecclear(&ts);
357 				*rmt = ts;
358 			}
359 			return (error);
360 		}
361 		if (timespeccmp(&ts2, &ts, >=))
362 			return (0);
363 		ts3 = ts;
364 		timespecsub(&ts3, &ts2);
365 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
366 	}
367 }
368 
369 /*
370  * MPSAFE
371  */
372 int
373 sys_nanosleep(struct nanosleep_args *uap)
374 {
375 	int error;
376 	struct timespec rqt;
377 	struct timespec rmt;
378 
379 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
380 	if (error)
381 		return (error);
382 
383 	error = nanosleep1(&rqt, &rmt);
384 
385 	/*
386 	 * copyout the residual if nanosleep was interrupted.
387 	 */
388 	if (error && uap->rmtp) {
389 		int error2;
390 
391 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
392 		if (error2)
393 			error = error2;
394 	}
395 	return (error);
396 }
397 
398 /*
399  * MPSAFE
400  */
401 int
402 sys_gettimeofday(struct gettimeofday_args *uap)
403 {
404 	struct timeval atv;
405 	int error = 0;
406 
407 	if (uap->tp) {
408 		microtime(&atv);
409 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
410 		    sizeof (atv))))
411 			return (error);
412 	}
413 	if (uap->tzp)
414 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
415 		    sizeof (tz));
416 	return (error);
417 }
418 
419 /*
420  * MPALMOSTSAFE
421  */
422 int
423 sys_settimeofday(struct settimeofday_args *uap)
424 {
425 	struct thread *td = curthread;
426 	struct timeval atv;
427 	struct timezone atz;
428 	int error;
429 
430 	if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
431 		return (error);
432 	/* Verify all parameters before changing time. */
433 	if (uap->tv) {
434 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
435 		    sizeof(atv))))
436 			return (error);
437 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
438 			return (EINVAL);
439 	}
440 	if (uap->tzp &&
441 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
442 		return (error);
443 
444 	get_mplock();
445 	if (uap->tv && (error = settime(&atv))) {
446 		rel_mplock();
447 		return (error);
448 	}
449 	rel_mplock();
450 	if (uap->tzp)
451 		tz = atz;
452 	return (0);
453 }
454 
455 static void
456 kern_adjtime_common(void)
457 {
458 	if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
459 	    (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
460 		ntp_tick_delta = ntp_delta;
461 	else if (ntp_delta > ntp_big_delta)
462 		ntp_tick_delta = 10 * ntp_default_tick_delta;
463 	else if (ntp_delta < -ntp_big_delta)
464 		ntp_tick_delta = -10 * ntp_default_tick_delta;
465 	else if (ntp_delta > 0)
466 		ntp_tick_delta = ntp_default_tick_delta;
467 	else
468 		ntp_tick_delta = -ntp_default_tick_delta;
469 }
470 
471 void
472 kern_adjtime(int64_t delta, int64_t *odelta)
473 {
474 	int origcpu;
475 
476 	if ((origcpu = mycpu->gd_cpuid) != 0)
477 		lwkt_setcpu_self(globaldata_find(0));
478 
479 	crit_enter();
480 	*odelta = ntp_delta;
481 	ntp_delta = delta;
482 	kern_adjtime_common();
483 	crit_exit();
484 
485 	if (origcpu != 0)
486 		lwkt_setcpu_self(globaldata_find(origcpu));
487 }
488 
489 static void
490 kern_get_ntp_delta(int64_t *delta)
491 {
492 	int origcpu;
493 
494 	if ((origcpu = mycpu->gd_cpuid) != 0)
495 		lwkt_setcpu_self(globaldata_find(0));
496 
497 	crit_enter();
498 	*delta = ntp_delta;
499 	crit_exit();
500 
501 	if (origcpu != 0)
502 		lwkt_setcpu_self(globaldata_find(origcpu));
503 }
504 
505 void
506 kern_reladjtime(int64_t delta)
507 {
508 	int origcpu;
509 
510 	if ((origcpu = mycpu->gd_cpuid) != 0)
511 		lwkt_setcpu_self(globaldata_find(0));
512 
513 	crit_enter();
514 	ntp_delta += delta;
515 	kern_adjtime_common();
516 	crit_exit();
517 
518 	if (origcpu != 0)
519 		lwkt_setcpu_self(globaldata_find(origcpu));
520 }
521 
522 static void
523 kern_adjfreq(int64_t rate)
524 {
525 	int origcpu;
526 
527 	if ((origcpu = mycpu->gd_cpuid) != 0)
528 		lwkt_setcpu_self(globaldata_find(0));
529 
530 	crit_enter();
531 	ntp_tick_permanent = rate;
532 	crit_exit();
533 
534 	if (origcpu != 0)
535 		lwkt_setcpu_self(globaldata_find(origcpu));
536 }
537 
538 /*
539  * MPALMOSTSAFE
540  */
541 int
542 sys_adjtime(struct adjtime_args *uap)
543 {
544 	struct thread *td = curthread;
545 	struct timeval atv;
546 	int64_t ndelta, odelta;
547 	int error;
548 
549 	if ((error = priv_check(td, PRIV_ADJTIME)))
550 		return (error);
551 	error = copyin(uap->delta, &atv, sizeof(struct timeval));
552 	if (error)
553 		return (error);
554 
555 	/*
556 	 * Compute the total correction and the rate at which to apply it.
557 	 * Round the adjustment down to a whole multiple of the per-tick
558 	 * delta, so that after some number of incremental changes in
559 	 * hardclock(), tickdelta will become zero, lest the correction
560 	 * overshoot and start taking us away from the desired final time.
561 	 */
562 	ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
563 	get_mplock();
564 	kern_adjtime(ndelta, &odelta);
565 	rel_mplock();
566 
567 	if (uap->olddelta) {
568 		atv.tv_sec = odelta / 1000000000;
569 		atv.tv_usec = odelta % 1000000000 / 1000;
570 		copyout(&atv, uap->olddelta, sizeof(struct timeval));
571 	}
572 	return (0);
573 }
574 
575 static int
576 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
577 {
578 	int64_t delta;
579 	int error;
580 
581 	if (req->newptr != NULL) {
582 		if (priv_check(curthread, PRIV_ROOT))
583 			return (EPERM);
584 		error = SYSCTL_IN(req, &delta, sizeof(delta));
585 		if (error)
586 			return (error);
587 		kern_reladjtime(delta);
588 	}
589 
590 	if (req->oldptr)
591 		kern_get_ntp_delta(&delta);
592 	error = SYSCTL_OUT(req, &delta, sizeof(delta));
593 	return (error);
594 }
595 
596 /*
597  * delta is in nanoseconds.
598  */
599 static int
600 sysctl_delta(SYSCTL_HANDLER_ARGS)
601 {
602 	int64_t delta, old_delta;
603 	int error;
604 
605 	if (req->newptr != NULL) {
606 		if (priv_check(curthread, PRIV_ROOT))
607 			return (EPERM);
608 		error = SYSCTL_IN(req, &delta, sizeof(delta));
609 		if (error)
610 			return (error);
611 		kern_adjtime(delta, &old_delta);
612 	}
613 
614 	if (req->oldptr != NULL)
615 		kern_get_ntp_delta(&old_delta);
616 	error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
617 	return (error);
618 }
619 
620 /*
621  * frequency is in nanoseconds per second shifted left 32.
622  * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
623  */
624 static int
625 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
626 {
627 	int64_t freqdelta;
628 	int error;
629 
630 	if (req->newptr != NULL) {
631 		if (priv_check(curthread, PRIV_ROOT))
632 			return (EPERM);
633 		error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
634 		if (error)
635 			return (error);
636 
637 		freqdelta /= hz;
638 		kern_adjfreq(freqdelta);
639 	}
640 
641 	if (req->oldptr != NULL)
642 		freqdelta = ntp_tick_permanent * hz;
643 	error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
644 	if (error)
645 		return (error);
646 
647 	return (0);
648 }
649 
650 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
651 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
652     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
653     sysctl_adjfreq, "Q", "permanent correction per second");
654 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
655     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
656     sysctl_delta, "Q", "one-time delta");
657 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
658     &ntp_big_delta, sizeof(ntp_big_delta), "Q",
659     "threshold for fast adjustment");
660 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
661     &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
662     "per-tick adjustment");
663 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
664     &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
665     "default per-tick adjustment");
666 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
667     &ntp_leap_second, sizeof(ntp_leap_second), "LU",
668     "next leap second");
669 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
670     &ntp_leap_insert, 0, "insert or remove leap second");
671 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
672     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
673     sysctl_adjtime, "Q", "relative adjust for delta");
674 
675 /*
676  * Get value of an interval timer.  The process virtual and
677  * profiling virtual time timers are kept in the p_stats area, since
678  * they can be swapped out.  These are kept internally in the
679  * way they are specified externally: in time until they expire.
680  *
681  * The real time interval timer is kept in the process table slot
682  * for the process, and its value (it_value) is kept as an
683  * absolute time rather than as a delta, so that it is easy to keep
684  * periodic real-time signals from drifting.
685  *
686  * Virtual time timers are processed in the hardclock() routine of
687  * kern_clock.c.  The real time timer is processed by a timeout
688  * routine, called from the softclock() routine.  Since a callout
689  * may be delayed in real time due to interrupt processing in the system,
690  * it is possible for the real time timeout routine (realitexpire, given below),
691  * to be delayed in real time past when it is supposed to occur.  It
692  * does not suffice, therefore, to reload the real timer .it_value from the
693  * real time timers .it_interval.  Rather, we compute the next time in
694  * absolute time the timer should go off.
695  *
696  * MPALMOSTSAFE
697  */
698 int
699 sys_getitimer(struct getitimer_args *uap)
700 {
701 	struct proc *p = curproc;
702 	struct timeval ctv;
703 	struct itimerval aitv;
704 
705 	if (uap->which > ITIMER_PROF)
706 		return (EINVAL);
707 	lwkt_gettoken(&p->p_token);
708 	if (uap->which == ITIMER_REAL) {
709 		/*
710 		 * Convert from absolute to relative time in .it_value
711 		 * part of real time timer.  If time for real time timer
712 		 * has passed return 0, else return difference between
713 		 * current time and time for the timer to go off.
714 		 */
715 		aitv = p->p_realtimer;
716 		if (timevalisset(&aitv.it_value)) {
717 			getmicrouptime(&ctv);
718 			if (timevalcmp(&aitv.it_value, &ctv, <))
719 				timevalclear(&aitv.it_value);
720 			else
721 				timevalsub(&aitv.it_value, &ctv);
722 		}
723 	} else {
724 		aitv = p->p_timer[uap->which];
725 	}
726 	lwkt_reltoken(&p->p_token);
727 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
728 }
729 
730 /*
731  * MPALMOSTSAFE
732  */
733 int
734 sys_setitimer(struct setitimer_args *uap)
735 {
736 	struct itimerval aitv;
737 	struct timeval ctv;
738 	struct itimerval *itvp;
739 	struct proc *p = curproc;
740 	int error;
741 
742 	if (uap->which > ITIMER_PROF)
743 		return (EINVAL);
744 	itvp = uap->itv;
745 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
746 	    sizeof(struct itimerval))))
747 		return (error);
748 	if ((uap->itv = uap->oitv) &&
749 	    (error = sys_getitimer((struct getitimer_args *)uap)))
750 		return (error);
751 	if (itvp == NULL)
752 		return (0);
753 	if (itimerfix(&aitv.it_value))
754 		return (EINVAL);
755 	if (!timevalisset(&aitv.it_value))
756 		timevalclear(&aitv.it_interval);
757 	else if (itimerfix(&aitv.it_interval))
758 		return (EINVAL);
759 	lwkt_gettoken(&p->p_token);
760 	if (uap->which == ITIMER_REAL) {
761 		if (timevalisset(&p->p_realtimer.it_value))
762 			callout_stop_sync(&p->p_ithandle);
763 		if (timevalisset(&aitv.it_value))
764 			callout_reset(&p->p_ithandle,
765 			    tvtohz_high(&aitv.it_value), realitexpire, p);
766 		getmicrouptime(&ctv);
767 		timevaladd(&aitv.it_value, &ctv);
768 		p->p_realtimer = aitv;
769 	} else {
770 		p->p_timer[uap->which] = aitv;
771 		switch(uap->which) {
772 		case ITIMER_VIRTUAL:
773 			p->p_flags &= ~P_SIGVTALRM;
774 			break;
775 		case ITIMER_PROF:
776 			p->p_flags &= ~P_SIGPROF;
777 			break;
778 		}
779 	}
780 	lwkt_reltoken(&p->p_token);
781 	return (0);
782 }
783 
784 /*
785  * Real interval timer expired:
786  * send process whose timer expired an alarm signal.
787  * If time is not set up to reload, then just return.
788  * Else compute next time timer should go off which is > current time.
789  * This is where delay in processing this timeout causes multiple
790  * SIGALRM calls to be compressed into one.
791  * tvtohz_high() always adds 1 to allow for the time until the next clock
792  * interrupt being strictly less than 1 clock tick, but we don't want
793  * that here since we want to appear to be in sync with the clock
794  * interrupt even when we're delayed.
795  */
796 void
797 realitexpire(void *arg)
798 {
799 	struct proc *p;
800 	struct timeval ctv, ntv;
801 
802 	p = (struct proc *)arg;
803 	PHOLD(p);
804 	lwkt_gettoken(&p->p_token);
805 	ksignal(p, SIGALRM);
806 	if (!timevalisset(&p->p_realtimer.it_interval)) {
807 		timevalclear(&p->p_realtimer.it_value);
808 		goto done;
809 	}
810 	for (;;) {
811 		timevaladd(&p->p_realtimer.it_value,
812 			   &p->p_realtimer.it_interval);
813 		getmicrouptime(&ctv);
814 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
815 			ntv = p->p_realtimer.it_value;
816 			timevalsub(&ntv, &ctv);
817 			callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
818 				      realitexpire, p);
819 			goto done;
820 		}
821 	}
822 done:
823 	lwkt_reltoken(&p->p_token);
824 	PRELE(p);
825 }
826 
827 /*
828  * Check that a proposed value to load into the .it_value or
829  * .it_interval part of an interval timer is acceptable, and
830  * fix it to have at least minimal value (i.e. if it is less
831  * than the resolution of the clock, round it up.)
832  *
833  * MPSAFE
834  */
835 int
836 itimerfix(struct timeval *tv)
837 {
838 
839 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
840 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
841 		return (EINVAL);
842 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < ustick)
843 		tv->tv_usec = ustick;
844 	return (0);
845 }
846 
847 /*
848  * Decrement an interval timer by a specified number
849  * of microseconds, which must be less than a second,
850  * i.e. < 1000000.  If the timer expires, then reload
851  * it.  In this case, carry over (usec - old value) to
852  * reduce the value reloaded into the timer so that
853  * the timer does not drift.  This routine assumes
854  * that it is called in a context where the timers
855  * on which it is operating cannot change in value.
856  */
857 int
858 itimerdecr(struct itimerval *itp, int usec)
859 {
860 
861 	if (itp->it_value.tv_usec < usec) {
862 		if (itp->it_value.tv_sec == 0) {
863 			/* expired, and already in next interval */
864 			usec -= itp->it_value.tv_usec;
865 			goto expire;
866 		}
867 		itp->it_value.tv_usec += 1000000;
868 		itp->it_value.tv_sec--;
869 	}
870 	itp->it_value.tv_usec -= usec;
871 	usec = 0;
872 	if (timevalisset(&itp->it_value))
873 		return (1);
874 	/* expired, exactly at end of interval */
875 expire:
876 	if (timevalisset(&itp->it_interval)) {
877 		itp->it_value = itp->it_interval;
878 		itp->it_value.tv_usec -= usec;
879 		if (itp->it_value.tv_usec < 0) {
880 			itp->it_value.tv_usec += 1000000;
881 			itp->it_value.tv_sec--;
882 		}
883 	} else
884 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
885 	return (0);
886 }
887 
888 /*
889  * Add and subtract routines for timevals.
890  * N.B.: subtract routine doesn't deal with
891  * results which are before the beginning,
892  * it just gets very confused in this case.
893  * Caveat emptor.
894  */
895 void
896 timevaladd(struct timeval *t1, const struct timeval *t2)
897 {
898 
899 	t1->tv_sec += t2->tv_sec;
900 	t1->tv_usec += t2->tv_usec;
901 	timevalfix(t1);
902 }
903 
904 void
905 timevalsub(struct timeval *t1, const struct timeval *t2)
906 {
907 
908 	t1->tv_sec -= t2->tv_sec;
909 	t1->tv_usec -= t2->tv_usec;
910 	timevalfix(t1);
911 }
912 
913 static void
914 timevalfix(struct timeval *t1)
915 {
916 
917 	if (t1->tv_usec < 0) {
918 		t1->tv_sec--;
919 		t1->tv_usec += 1000000;
920 	}
921 	if (t1->tv_usec >= 1000000) {
922 		t1->tv_sec++;
923 		t1->tv_usec -= 1000000;
924 	}
925 }
926 
927 /*
928  * ratecheck(): simple time-based rate-limit checking.
929  */
930 int
931 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
932 {
933 	struct timeval tv, delta;
934 	int rv = 0;
935 
936 	getmicrouptime(&tv);		/* NB: 10ms precision */
937 	delta = tv;
938 	timevalsub(&delta, lasttime);
939 
940 	/*
941 	 * check for 0,0 is so that the message will be seen at least once,
942 	 * even if interval is huge.
943 	 */
944 	if (timevalcmp(&delta, mininterval, >=) ||
945 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
946 		*lasttime = tv;
947 		rv = 1;
948 	}
949 
950 	return (rv);
951 }
952 
953 /*
954  * ppsratecheck(): packets (or events) per second limitation.
955  *
956  * Return 0 if the limit is to be enforced (e.g. the caller
957  * should drop a packet because of the rate limitation).
958  *
959  * maxpps of 0 always causes zero to be returned.  maxpps of -1
960  * always causes 1 to be returned; this effectively defeats rate
961  * limiting.
962  *
963  * Note that we maintain the struct timeval for compatibility
964  * with other bsd systems.  We reuse the storage and just monitor
965  * clock ticks for minimal overhead.
966  */
967 int
968 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
969 {
970 	int now;
971 
972 	/*
973 	 * Reset the last time and counter if this is the first call
974 	 * or more than a second has passed since the last update of
975 	 * lasttime.
976 	 */
977 	now = ticks;
978 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
979 		lasttime->tv_sec = now;
980 		*curpps = 1;
981 		return (maxpps != 0);
982 	} else {
983 		(*curpps)++;		/* NB: ignore potential overflow */
984 		return (maxpps < 0 || *curpps < maxpps);
985 	}
986 }
987 
988