xref: /dragonfly/sys/kern/kern_time.c (revision 8accc937)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/buf.h>
40 #include <sys/sysproto.h>
41 #include <sys/resourcevar.h>
42 #include <sys/signalvar.h>
43 #include <sys/kernel.h>
44 #include <sys/sysent.h>
45 #include <sys/sysunion.h>
46 #include <sys/proc.h>
47 #include <sys/priv.h>
48 #include <sys/time.h>
49 #include <sys/vnode.h>
50 #include <sys/sysctl.h>
51 #include <sys/kern_syscall.h>
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 
55 #include <sys/msgport2.h>
56 #include <sys/thread2.h>
57 #include <sys/mplock2.h>
58 
59 struct timezone tz;
60 
61 /*
62  * Time of day and interval timer support.
63  *
64  * These routines provide the kernel entry points to get and set
65  * the time-of-day and per-process interval timers.  Subroutines
66  * here provide support for adding and subtracting timeval structures
67  * and decrementing interval timers, optionally reloading the interval
68  * timers when they expire.
69  */
70 
71 static int	settime(struct timeval *);
72 static void	timevalfix(struct timeval *);
73 
74 /*
75  * Nanosleep tries very hard to sleep for a precisely requested time
76  * interval, down to 1uS.  The administrator can impose a minimum delay
77  * and a delay below which we hard-loop instead of initiate a timer
78  * interrupt and sleep.
79  *
80  * For machines under high loads it might be beneficial to increase min_us
81  * to e.g. 1000uS (1ms) so spining processes sleep meaningfully.
82  */
83 static int     nanosleep_min_us = 10;
84 static int     nanosleep_hard_us = 100;
85 static int     gettimeofday_quick = 0;
86 SYSCTL_INT(_kern, OID_AUTO, nanosleep_min_us, CTLFLAG_RW,
87 	   &nanosleep_min_us, 0, "")
88 SYSCTL_INT(_kern, OID_AUTO, nanosleep_hard_us, CTLFLAG_RW,
89 	   &nanosleep_hard_us, 0, "")
90 SYSCTL_INT(_kern, OID_AUTO, gettimeofday_quick, CTLFLAG_RW,
91 	   &gettimeofday_quick, 0, "")
92 
93 static int
94 settime(struct timeval *tv)
95 {
96 	struct timeval delta, tv1, tv2;
97 	static struct timeval maxtime, laststep;
98 	struct timespec ts;
99 	int origcpu;
100 
101 	if ((origcpu = mycpu->gd_cpuid) != 0)
102 		lwkt_setcpu_self(globaldata_find(0));
103 
104 	crit_enter();
105 	microtime(&tv1);
106 	delta = *tv;
107 	timevalsub(&delta, &tv1);
108 
109 	/*
110 	 * If the system is secure, we do not allow the time to be
111 	 * set to a value earlier than 1 second less than the highest
112 	 * time we have yet seen. The worst a miscreant can do in
113 	 * this circumstance is "freeze" time. He couldn't go
114 	 * back to the past.
115 	 *
116 	 * We similarly do not allow the clock to be stepped more
117 	 * than one second, nor more than once per second. This allows
118 	 * a miscreant to make the clock march double-time, but no worse.
119 	 */
120 	if (securelevel > 1) {
121 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
122 			/*
123 			 * Update maxtime to latest time we've seen.
124 			 */
125 			if (tv1.tv_sec > maxtime.tv_sec)
126 				maxtime = tv1;
127 			tv2 = *tv;
128 			timevalsub(&tv2, &maxtime);
129 			if (tv2.tv_sec < -1) {
130 				tv->tv_sec = maxtime.tv_sec - 1;
131 				kprintf("Time adjustment clamped to -1 second\n");
132 			}
133 		} else {
134 			if (tv1.tv_sec == laststep.tv_sec) {
135 				crit_exit();
136 				return (EPERM);
137 			}
138 			if (delta.tv_sec > 1) {
139 				tv->tv_sec = tv1.tv_sec + 1;
140 				kprintf("Time adjustment clamped to +1 second\n");
141 			}
142 			laststep = *tv;
143 		}
144 	}
145 
146 	ts.tv_sec = tv->tv_sec;
147 	ts.tv_nsec = tv->tv_usec * 1000;
148 	set_timeofday(&ts);
149 	crit_exit();
150 
151 	if (origcpu != 0)
152 		lwkt_setcpu_self(globaldata_find(origcpu));
153 
154 	resettodr();
155 	return (0);
156 }
157 
158 /*
159  * MPSAFE
160  */
161 int
162 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
163 {
164 	int error = 0;
165 	struct proc *p;
166 
167 	switch(clock_id) {
168 	case CLOCK_REALTIME:
169 	case CLOCK_REALTIME_PRECISE:
170 		nanotime(ats);
171 		break;
172 	case CLOCK_REALTIME_FAST:
173 		getnanotime(ats);
174 		break;
175 	case CLOCK_MONOTONIC:
176 	case CLOCK_MONOTONIC_PRECISE:
177 	case CLOCK_UPTIME:
178 	case CLOCK_UPTIME_PRECISE:
179 		nanouptime(ats);
180 		break;
181 	case CLOCK_MONOTONIC_FAST:
182 	case CLOCK_UPTIME_FAST:
183 		getnanouptime(ats);
184 		break;
185 	case CLOCK_VIRTUAL:
186 		p = curproc;
187 		ats->tv_sec = p->p_timer[ITIMER_VIRTUAL].it_value.tv_sec;
188 		ats->tv_nsec = p->p_timer[ITIMER_VIRTUAL].it_value.tv_usec *
189 			       1000;
190 		break;
191 	case CLOCK_PROF:
192 		p = curproc;
193 		ats->tv_sec = p->p_timer[ITIMER_PROF].it_value.tv_sec;
194 		ats->tv_nsec = p->p_timer[ITIMER_PROF].it_value.tv_usec *
195 			       1000;
196 		break;
197 	case CLOCK_SECOND:
198 		ats->tv_sec = time_second;
199 		ats->tv_nsec = 0;
200 		break;
201 	default:
202 		error = EINVAL;
203 		break;
204 	}
205 	return (error);
206 }
207 
208 /*
209  * MPSAFE
210  */
211 int
212 sys_clock_gettime(struct clock_gettime_args *uap)
213 {
214 	struct timespec ats;
215 	int error;
216 
217 	error = kern_clock_gettime(uap->clock_id, &ats);
218 	if (error == 0)
219 		error = copyout(&ats, uap->tp, sizeof(ats));
220 
221 	return (error);
222 }
223 
224 int
225 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
226 {
227 	struct thread *td = curthread;
228 	struct timeval atv;
229 	int error;
230 
231 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
232 		return (error);
233 	if (clock_id != CLOCK_REALTIME)
234 		return (EINVAL);
235 	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
236 		return (EINVAL);
237 
238 	TIMESPEC_TO_TIMEVAL(&atv, ats);
239 	error = settime(&atv);
240 	return (error);
241 }
242 
243 /*
244  * MPALMOSTSAFE
245  */
246 int
247 sys_clock_settime(struct clock_settime_args *uap)
248 {
249 	struct timespec ats;
250 	int error;
251 
252 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
253 		return (error);
254 
255 	get_mplock();
256 	error = kern_clock_settime(uap->clock_id, &ats);
257 	rel_mplock();
258 	return (error);
259 }
260 
261 /*
262  * MPSAFE
263  */
264 int
265 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
266 {
267 	int error;
268 
269 	switch(clock_id) {
270 	case CLOCK_REALTIME:
271 	case CLOCK_REALTIME_FAST:
272 	case CLOCK_REALTIME_PRECISE:
273 	case CLOCK_MONOTONIC:
274 	case CLOCK_MONOTONIC_FAST:
275 	case CLOCK_MONOTONIC_PRECISE:
276 	case CLOCK_UPTIME:
277 	case CLOCK_UPTIME_FAST:
278 	case CLOCK_UPTIME_PRECISE:
279 		/*
280 		 * Round up the result of the division cheaply
281 		 * by adding 1.  Rounding up is especially important
282 		 * if rounding down would give 0.  Perfect rounding
283 		 * is unimportant.
284 		 */
285 		ts->tv_sec = 0;
286 		ts->tv_nsec = 1000000000 / sys_cputimer->freq + 1;
287 		error = 0;
288 		break;
289 	case CLOCK_VIRTUAL:
290 	case CLOCK_PROF:
291 		/* Accurately round up here because we can do so cheaply. */
292 		ts->tv_sec = 0;
293 		ts->tv_nsec = (1000000000 + hz - 1) / hz;
294 		error = 0;
295 		break;
296 	case CLOCK_SECOND:
297 		ts->tv_sec = 1;
298 		ts->tv_nsec = 0;
299 		error = 0;
300 		break;
301 	default:
302 		error = EINVAL;
303 		break;
304 	}
305 
306 	return(error);
307 }
308 
309 /*
310  * MPSAFE
311  */
312 int
313 sys_clock_getres(struct clock_getres_args *uap)
314 {
315 	int error;
316 	struct timespec ts;
317 
318 	error = kern_clock_getres(uap->clock_id, &ts);
319 	if (error == 0)
320 		error = copyout(&ts, uap->tp, sizeof(ts));
321 
322 	return (error);
323 }
324 
325 /*
326  * nanosleep1()
327  *
328  *	This is a general helper function for nanosleep() (aka sleep() aka
329  *	usleep()).
330  *
331  *	If there is less then one tick's worth of time left and
332  *	we haven't done a yield, or the remaining microseconds is
333  *	ridiculously low, do a yield.  This avoids having
334  *	to deal with systimer overheads when the system is under
335  *	heavy loads.  If we have done a yield already then use
336  *	a systimer and an uninterruptable thread wait.
337  *
338  *	If there is more then a tick's worth of time left,
339  *	calculate the baseline ticks and use an interruptable
340  *	tsleep, then handle the fine-grained delay on the next
341  *	loop.  This usually results in two sleeps occuring, a long one
342  *	and a short one.
343  *
344  * MPSAFE
345  */
346 static void
347 ns1_systimer(systimer_t info, int in_ipi __unused,
348     struct intrframe *frame __unused)
349 {
350 	lwkt_schedule(info->data);
351 }
352 
353 int
354 nanosleep1(struct timespec *rqt, struct timespec *rmt)
355 {
356 	static int nanowait;
357 	struct timespec ts, ts2, ts3;
358 	struct timeval tv;
359 	int error;
360 
361 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
362 		return (EINVAL);
363 	/* XXX: imho this should return EINVAL at least for tv_sec < 0 */
364 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
365 		return (0);
366 	nanouptime(&ts);
367 	timespecadd(&ts, rqt);		/* ts = target timestamp compare */
368 	TIMESPEC_TO_TIMEVAL(&tv, rqt);	/* tv = sleep interval */
369 
370 	for (;;) {
371 		int ticks;
372 		struct systimer info;
373 
374 		ticks = tv.tv_usec / ustick;	/* approximate */
375 
376 		if (tv.tv_sec == 0 && ticks == 0) {
377 			thread_t td = curthread;
378 			if (tv.tv_usec > 0 && tv.tv_usec < nanosleep_min_us)
379 				tv.tv_usec = nanosleep_min_us;
380 			if (tv.tv_usec < nanosleep_hard_us) {
381 				lwkt_user_yield();
382 				cpu_pause();
383 			} else {
384 				crit_enter_quick(td);
385 				systimer_init_oneshot(&info, ns1_systimer,
386 						td, tv.tv_usec);
387 				lwkt_deschedule_self(td);
388 				crit_exit_quick(td);
389 				lwkt_switch();
390 				systimer_del(&info); /* make sure it's gone */
391 			}
392 			error = iscaught(td->td_lwp);
393 		} else if (tv.tv_sec == 0) {
394 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
395 		} else {
396 			ticks = tvtohz_low(&tv); /* also handles overflow */
397 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
398 		}
399 		nanouptime(&ts2);
400 		if (error && error != EWOULDBLOCK) {
401 			if (error == ERESTART)
402 				error = EINTR;
403 			if (rmt != NULL) {
404 				timespecsub(&ts, &ts2);
405 				if (ts.tv_sec < 0)
406 					timespecclear(&ts);
407 				*rmt = ts;
408 			}
409 			return (error);
410 		}
411 		if (timespeccmp(&ts2, &ts, >=))
412 			return (0);
413 		ts3 = ts;
414 		timespecsub(&ts3, &ts2);
415 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
416 	}
417 }
418 
419 /*
420  * MPSAFE
421  */
422 int
423 sys_nanosleep(struct nanosleep_args *uap)
424 {
425 	int error;
426 	struct timespec rqt;
427 	struct timespec rmt;
428 
429 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
430 	if (error)
431 		return (error);
432 
433 	error = nanosleep1(&rqt, &rmt);
434 
435 	/*
436 	 * copyout the residual if nanosleep was interrupted.
437 	 */
438 	if (error && uap->rmtp) {
439 		int error2;
440 
441 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
442 		if (error2)
443 			error = error2;
444 	}
445 	return (error);
446 }
447 
448 /*
449  * The gettimeofday() system call is supposed to return a fine-grained
450  * realtime stamp.  However, acquiring a fine-grained stamp can create a
451  * bottleneck when multiple cpu cores are trying to accessing e.g. the
452  * HPET hardware timer all at the same time, so we have a sysctl that
453  * allows its behavior to be changed to a more coarse-grained timestamp
454  * which does not have to access a hardware timer.
455  */
456 int
457 sys_gettimeofday(struct gettimeofday_args *uap)
458 {
459 	struct timeval atv;
460 	int error = 0;
461 
462 	if (uap->tp) {
463 		if (gettimeofday_quick)
464 			getmicrotime(&atv);
465 		else
466 			microtime(&atv);
467 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
468 		    sizeof (atv))))
469 			return (error);
470 	}
471 	if (uap->tzp)
472 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
473 		    sizeof (tz));
474 	return (error);
475 }
476 
477 /*
478  * MPALMOSTSAFE
479  */
480 int
481 sys_settimeofday(struct settimeofday_args *uap)
482 {
483 	struct thread *td = curthread;
484 	struct timeval atv;
485 	struct timezone atz;
486 	int error;
487 
488 	if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
489 		return (error);
490 	/*
491 	 * Verify all parameters before changing time.
492 	 *
493 	 * NOTE: We do not allow the time to be set to 0.0, which also by
494 	 *	 happy coincidence works around a pkgsrc bulk build bug.
495 	 */
496 	if (uap->tv) {
497 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
498 		    sizeof(atv))))
499 			return (error);
500 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
501 			return (EINVAL);
502 		if (atv.tv_sec == 0 && atv.tv_usec == 0)
503 			return (EINVAL);
504 	}
505 	if (uap->tzp &&
506 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
507 		return (error);
508 
509 	get_mplock();
510 	if (uap->tv && (error = settime(&atv))) {
511 		rel_mplock();
512 		return (error);
513 	}
514 	rel_mplock();
515 	if (uap->tzp)
516 		tz = atz;
517 	return (0);
518 }
519 
520 static void
521 kern_adjtime_common(void)
522 {
523 	if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
524 	    (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
525 		ntp_tick_delta = ntp_delta;
526 	else if (ntp_delta > ntp_big_delta)
527 		ntp_tick_delta = 10 * ntp_default_tick_delta;
528 	else if (ntp_delta < -ntp_big_delta)
529 		ntp_tick_delta = -10 * ntp_default_tick_delta;
530 	else if (ntp_delta > 0)
531 		ntp_tick_delta = ntp_default_tick_delta;
532 	else
533 		ntp_tick_delta = -ntp_default_tick_delta;
534 }
535 
536 void
537 kern_adjtime(int64_t delta, int64_t *odelta)
538 {
539 	int origcpu;
540 
541 	if ((origcpu = mycpu->gd_cpuid) != 0)
542 		lwkt_setcpu_self(globaldata_find(0));
543 
544 	crit_enter();
545 	*odelta = ntp_delta;
546 	ntp_delta = delta;
547 	kern_adjtime_common();
548 	crit_exit();
549 
550 	if (origcpu != 0)
551 		lwkt_setcpu_self(globaldata_find(origcpu));
552 }
553 
554 static void
555 kern_get_ntp_delta(int64_t *delta)
556 {
557 	int origcpu;
558 
559 	if ((origcpu = mycpu->gd_cpuid) != 0)
560 		lwkt_setcpu_self(globaldata_find(0));
561 
562 	crit_enter();
563 	*delta = ntp_delta;
564 	crit_exit();
565 
566 	if (origcpu != 0)
567 		lwkt_setcpu_self(globaldata_find(origcpu));
568 }
569 
570 void
571 kern_reladjtime(int64_t delta)
572 {
573 	int origcpu;
574 
575 	if ((origcpu = mycpu->gd_cpuid) != 0)
576 		lwkt_setcpu_self(globaldata_find(0));
577 
578 	crit_enter();
579 	ntp_delta += delta;
580 	kern_adjtime_common();
581 	crit_exit();
582 
583 	if (origcpu != 0)
584 		lwkt_setcpu_self(globaldata_find(origcpu));
585 }
586 
587 static void
588 kern_adjfreq(int64_t rate)
589 {
590 	int origcpu;
591 
592 	if ((origcpu = mycpu->gd_cpuid) != 0)
593 		lwkt_setcpu_self(globaldata_find(0));
594 
595 	crit_enter();
596 	ntp_tick_permanent = rate;
597 	crit_exit();
598 
599 	if (origcpu != 0)
600 		lwkt_setcpu_self(globaldata_find(origcpu));
601 }
602 
603 /*
604  * MPALMOSTSAFE
605  */
606 int
607 sys_adjtime(struct adjtime_args *uap)
608 {
609 	struct thread *td = curthread;
610 	struct timeval atv;
611 	int64_t ndelta, odelta;
612 	int error;
613 
614 	if ((error = priv_check(td, PRIV_ADJTIME)))
615 		return (error);
616 	error = copyin(uap->delta, &atv, sizeof(struct timeval));
617 	if (error)
618 		return (error);
619 
620 	/*
621 	 * Compute the total correction and the rate at which to apply it.
622 	 * Round the adjustment down to a whole multiple of the per-tick
623 	 * delta, so that after some number of incremental changes in
624 	 * hardclock(), tickdelta will become zero, lest the correction
625 	 * overshoot and start taking us away from the desired final time.
626 	 */
627 	ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
628 	get_mplock();
629 	kern_adjtime(ndelta, &odelta);
630 	rel_mplock();
631 
632 	if (uap->olddelta) {
633 		atv.tv_sec = odelta / 1000000000;
634 		atv.tv_usec = odelta % 1000000000 / 1000;
635 		copyout(&atv, uap->olddelta, sizeof(struct timeval));
636 	}
637 	return (0);
638 }
639 
640 static int
641 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
642 {
643 	int64_t delta;
644 	int error;
645 
646 	if (req->newptr != NULL) {
647 		if (priv_check(curthread, PRIV_ROOT))
648 			return (EPERM);
649 		error = SYSCTL_IN(req, &delta, sizeof(delta));
650 		if (error)
651 			return (error);
652 		kern_reladjtime(delta);
653 	}
654 
655 	if (req->oldptr)
656 		kern_get_ntp_delta(&delta);
657 	error = SYSCTL_OUT(req, &delta, sizeof(delta));
658 	return (error);
659 }
660 
661 /*
662  * delta is in nanoseconds.
663  */
664 static int
665 sysctl_delta(SYSCTL_HANDLER_ARGS)
666 {
667 	int64_t delta, old_delta;
668 	int error;
669 
670 	if (req->newptr != NULL) {
671 		if (priv_check(curthread, PRIV_ROOT))
672 			return (EPERM);
673 		error = SYSCTL_IN(req, &delta, sizeof(delta));
674 		if (error)
675 			return (error);
676 		kern_adjtime(delta, &old_delta);
677 	}
678 
679 	if (req->oldptr != NULL)
680 		kern_get_ntp_delta(&old_delta);
681 	error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
682 	return (error);
683 }
684 
685 /*
686  * frequency is in nanoseconds per second shifted left 32.
687  * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
688  */
689 static int
690 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
691 {
692 	int64_t freqdelta;
693 	int error;
694 
695 	if (req->newptr != NULL) {
696 		if (priv_check(curthread, PRIV_ROOT))
697 			return (EPERM);
698 		error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
699 		if (error)
700 			return (error);
701 
702 		freqdelta /= hz;
703 		kern_adjfreq(freqdelta);
704 	}
705 
706 	if (req->oldptr != NULL)
707 		freqdelta = ntp_tick_permanent * hz;
708 	error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
709 	if (error)
710 		return (error);
711 
712 	return (0);
713 }
714 
715 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
716 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
717     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
718     sysctl_adjfreq, "Q", "permanent correction per second");
719 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
720     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
721     sysctl_delta, "Q", "one-time delta");
722 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
723     &ntp_big_delta, sizeof(ntp_big_delta), "Q",
724     "threshold for fast adjustment");
725 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
726     &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
727     "per-tick adjustment");
728 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
729     &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
730     "default per-tick adjustment");
731 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
732     &ntp_leap_second, sizeof(ntp_leap_second), "LU",
733     "next leap second");
734 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
735     &ntp_leap_insert, 0, "insert or remove leap second");
736 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
737     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
738     sysctl_adjtime, "Q", "relative adjust for delta");
739 
740 /*
741  * Get value of an interval timer.  The process virtual and
742  * profiling virtual time timers are kept in the p_stats area, since
743  * they can be swapped out.  These are kept internally in the
744  * way they are specified externally: in time until they expire.
745  *
746  * The real time interval timer is kept in the process table slot
747  * for the process, and its value (it_value) is kept as an
748  * absolute time rather than as a delta, so that it is easy to keep
749  * periodic real-time signals from drifting.
750  *
751  * Virtual time timers are processed in the hardclock() routine of
752  * kern_clock.c.  The real time timer is processed by a timeout
753  * routine, called from the softclock() routine.  Since a callout
754  * may be delayed in real time due to interrupt processing in the system,
755  * it is possible for the real time timeout routine (realitexpire, given below),
756  * to be delayed in real time past when it is supposed to occur.  It
757  * does not suffice, therefore, to reload the real timer .it_value from the
758  * real time timers .it_interval.  Rather, we compute the next time in
759  * absolute time the timer should go off.
760  *
761  * MPALMOSTSAFE
762  */
763 int
764 sys_getitimer(struct getitimer_args *uap)
765 {
766 	struct proc *p = curproc;
767 	struct timeval ctv;
768 	struct itimerval aitv;
769 
770 	if (uap->which > ITIMER_PROF)
771 		return (EINVAL);
772 	lwkt_gettoken(&p->p_token);
773 	if (uap->which == ITIMER_REAL) {
774 		/*
775 		 * Convert from absolute to relative time in .it_value
776 		 * part of real time timer.  If time for real time timer
777 		 * has passed return 0, else return difference between
778 		 * current time and time for the timer to go off.
779 		 */
780 		aitv = p->p_realtimer;
781 		if (timevalisset(&aitv.it_value)) {
782 			getmicrouptime(&ctv);
783 			if (timevalcmp(&aitv.it_value, &ctv, <))
784 				timevalclear(&aitv.it_value);
785 			else
786 				timevalsub(&aitv.it_value, &ctv);
787 		}
788 	} else {
789 		aitv = p->p_timer[uap->which];
790 	}
791 	lwkt_reltoken(&p->p_token);
792 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
793 }
794 
795 /*
796  * MPALMOSTSAFE
797  */
798 int
799 sys_setitimer(struct setitimer_args *uap)
800 {
801 	struct itimerval aitv;
802 	struct timeval ctv;
803 	struct itimerval *itvp;
804 	struct proc *p = curproc;
805 	int error;
806 
807 	if (uap->which > ITIMER_PROF)
808 		return (EINVAL);
809 	itvp = uap->itv;
810 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
811 	    sizeof(struct itimerval))))
812 		return (error);
813 	if ((uap->itv = uap->oitv) &&
814 	    (error = sys_getitimer((struct getitimer_args *)uap)))
815 		return (error);
816 	if (itvp == NULL)
817 		return (0);
818 	if (itimerfix(&aitv.it_value))
819 		return (EINVAL);
820 	if (!timevalisset(&aitv.it_value))
821 		timevalclear(&aitv.it_interval);
822 	else if (itimerfix(&aitv.it_interval))
823 		return (EINVAL);
824 	lwkt_gettoken(&p->p_token);
825 	if (uap->which == ITIMER_REAL) {
826 		if (timevalisset(&p->p_realtimer.it_value))
827 			callout_stop_sync(&p->p_ithandle);
828 		if (timevalisset(&aitv.it_value))
829 			callout_reset(&p->p_ithandle,
830 			    tvtohz_high(&aitv.it_value), realitexpire, p);
831 		getmicrouptime(&ctv);
832 		timevaladd(&aitv.it_value, &ctv);
833 		p->p_realtimer = aitv;
834 	} else {
835 		p->p_timer[uap->which] = aitv;
836 		switch(uap->which) {
837 		case ITIMER_VIRTUAL:
838 			p->p_flags &= ~P_SIGVTALRM;
839 			break;
840 		case ITIMER_PROF:
841 			p->p_flags &= ~P_SIGPROF;
842 			break;
843 		}
844 	}
845 	lwkt_reltoken(&p->p_token);
846 	return (0);
847 }
848 
849 /*
850  * Real interval timer expired:
851  * send process whose timer expired an alarm signal.
852  * If time is not set up to reload, then just return.
853  * Else compute next time timer should go off which is > current time.
854  * This is where delay in processing this timeout causes multiple
855  * SIGALRM calls to be compressed into one.
856  * tvtohz_high() always adds 1 to allow for the time until the next clock
857  * interrupt being strictly less than 1 clock tick, but we don't want
858  * that here since we want to appear to be in sync with the clock
859  * interrupt even when we're delayed.
860  */
861 void
862 realitexpire(void *arg)
863 {
864 	struct proc *p;
865 	struct timeval ctv, ntv;
866 
867 	p = (struct proc *)arg;
868 	PHOLD(p);
869 	lwkt_gettoken(&p->p_token);
870 	ksignal(p, SIGALRM);
871 	if (!timevalisset(&p->p_realtimer.it_interval)) {
872 		timevalclear(&p->p_realtimer.it_value);
873 		goto done;
874 	}
875 	for (;;) {
876 		timevaladd(&p->p_realtimer.it_value,
877 			   &p->p_realtimer.it_interval);
878 		getmicrouptime(&ctv);
879 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
880 			ntv = p->p_realtimer.it_value;
881 			timevalsub(&ntv, &ctv);
882 			callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
883 				      realitexpire, p);
884 			goto done;
885 		}
886 	}
887 done:
888 	lwkt_reltoken(&p->p_token);
889 	PRELE(p);
890 }
891 
892 /*
893  * Check that a proposed value to load into the .it_value or
894  * .it_interval part of an interval timer is acceptable, and
895  * fix it to have at least minimal value (i.e. if it is less
896  * than the resolution of the clock, round it up.)
897  *
898  * MPSAFE
899  */
900 int
901 itimerfix(struct timeval *tv)
902 {
903 
904 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
905 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
906 		return (EINVAL);
907 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < ustick)
908 		tv->tv_usec = ustick;
909 	return (0);
910 }
911 
912 /*
913  * Decrement an interval timer by a specified number
914  * of microseconds, which must be less than a second,
915  * i.e. < 1000000.  If the timer expires, then reload
916  * it.  In this case, carry over (usec - old value) to
917  * reduce the value reloaded into the timer so that
918  * the timer does not drift.  This routine assumes
919  * that it is called in a context where the timers
920  * on which it is operating cannot change in value.
921  */
922 int
923 itimerdecr(struct itimerval *itp, int usec)
924 {
925 
926 	if (itp->it_value.tv_usec < usec) {
927 		if (itp->it_value.tv_sec == 0) {
928 			/* expired, and already in next interval */
929 			usec -= itp->it_value.tv_usec;
930 			goto expire;
931 		}
932 		itp->it_value.tv_usec += 1000000;
933 		itp->it_value.tv_sec--;
934 	}
935 	itp->it_value.tv_usec -= usec;
936 	usec = 0;
937 	if (timevalisset(&itp->it_value))
938 		return (1);
939 	/* expired, exactly at end of interval */
940 expire:
941 	if (timevalisset(&itp->it_interval)) {
942 		itp->it_value = itp->it_interval;
943 		itp->it_value.tv_usec -= usec;
944 		if (itp->it_value.tv_usec < 0) {
945 			itp->it_value.tv_usec += 1000000;
946 			itp->it_value.tv_sec--;
947 		}
948 	} else
949 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
950 	return (0);
951 }
952 
953 /*
954  * Add and subtract routines for timevals.
955  * N.B.: subtract routine doesn't deal with
956  * results which are before the beginning,
957  * it just gets very confused in this case.
958  * Caveat emptor.
959  */
960 void
961 timevaladd(struct timeval *t1, const struct timeval *t2)
962 {
963 
964 	t1->tv_sec += t2->tv_sec;
965 	t1->tv_usec += t2->tv_usec;
966 	timevalfix(t1);
967 }
968 
969 void
970 timevalsub(struct timeval *t1, const struct timeval *t2)
971 {
972 
973 	t1->tv_sec -= t2->tv_sec;
974 	t1->tv_usec -= t2->tv_usec;
975 	timevalfix(t1);
976 }
977 
978 static void
979 timevalfix(struct timeval *t1)
980 {
981 
982 	if (t1->tv_usec < 0) {
983 		t1->tv_sec--;
984 		t1->tv_usec += 1000000;
985 	}
986 	if (t1->tv_usec >= 1000000) {
987 		t1->tv_sec++;
988 		t1->tv_usec -= 1000000;
989 	}
990 }
991 
992 /*
993  * ratecheck(): simple time-based rate-limit checking.
994  */
995 int
996 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
997 {
998 	struct timeval tv, delta;
999 	int rv = 0;
1000 
1001 	getmicrouptime(&tv);		/* NB: 10ms precision */
1002 	delta = tv;
1003 	timevalsub(&delta, lasttime);
1004 
1005 	/*
1006 	 * check for 0,0 is so that the message will be seen at least once,
1007 	 * even if interval is huge.
1008 	 */
1009 	if (timevalcmp(&delta, mininterval, >=) ||
1010 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1011 		*lasttime = tv;
1012 		rv = 1;
1013 	}
1014 
1015 	return (rv);
1016 }
1017 
1018 /*
1019  * ppsratecheck(): packets (or events) per second limitation.
1020  *
1021  * Return 0 if the limit is to be enforced (e.g. the caller
1022  * should drop a packet because of the rate limitation).
1023  *
1024  * maxpps of 0 always causes zero to be returned.  maxpps of -1
1025  * always causes 1 to be returned; this effectively defeats rate
1026  * limiting.
1027  *
1028  * Note that we maintain the struct timeval for compatibility
1029  * with other bsd systems.  We reuse the storage and just monitor
1030  * clock ticks for minimal overhead.
1031  */
1032 int
1033 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1034 {
1035 	int now;
1036 
1037 	/*
1038 	 * Reset the last time and counter if this is the first call
1039 	 * or more than a second has passed since the last update of
1040 	 * lasttime.
1041 	 */
1042 	now = ticks;
1043 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
1044 		lasttime->tv_sec = now;
1045 		*curpps = 1;
1046 		return (maxpps != 0);
1047 	} else {
1048 		(*curpps)++;		/* NB: ignore potential overflow */
1049 		return (maxpps < 0 || *curpps < maxpps);
1050 	}
1051 }
1052 
1053