xref: /dragonfly/sys/kern/kern_time.c (revision 92fc8b5c)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35  * $DragonFly: src/sys/kern/kern_time.c,v 1.40 2008/04/02 14:16:16 sephe Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/sysunion.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/time.h>
51 #include <sys/vnode.h>
52 #include <sys/sysctl.h>
53 #include <sys/kern_syscall.h>
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 
57 #include <sys/msgport2.h>
58 #include <sys/thread2.h>
59 #include <sys/mplock2.h>
60 
61 struct timezone tz;
62 
63 /*
64  * Time of day and interval timer support.
65  *
66  * These routines provide the kernel entry points to get and set
67  * the time-of-day and per-process interval timers.  Subroutines
68  * here provide support for adding and subtracting timeval structures
69  * and decrementing interval timers, optionally reloading the interval
70  * timers when they expire.
71  */
72 
73 int	nanosleep1(struct timespec *rqt, struct timespec *rmt);
74 static int	settime(struct timeval *);
75 static void	timevalfix(struct timeval *);
76 
77 static int     sleep_hard_us = 100;
78 SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
79 
80 static int
81 settime(struct timeval *tv)
82 {
83 	struct timeval delta, tv1, tv2;
84 	static struct timeval maxtime, laststep;
85 	struct timespec ts;
86 	int origcpu;
87 
88 	if ((origcpu = mycpu->gd_cpuid) != 0)
89 		lwkt_setcpu_self(globaldata_find(0));
90 
91 	crit_enter();
92 	microtime(&tv1);
93 	delta = *tv;
94 	timevalsub(&delta, &tv1);
95 
96 	/*
97 	 * If the system is secure, we do not allow the time to be
98 	 * set to a value earlier than 1 second less than the highest
99 	 * time we have yet seen. The worst a miscreant can do in
100 	 * this circumstance is "freeze" time. He couldn't go
101 	 * back to the past.
102 	 *
103 	 * We similarly do not allow the clock to be stepped more
104 	 * than one second, nor more than once per second. This allows
105 	 * a miscreant to make the clock march double-time, but no worse.
106 	 */
107 	if (securelevel > 1) {
108 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
109 			/*
110 			 * Update maxtime to latest time we've seen.
111 			 */
112 			if (tv1.tv_sec > maxtime.tv_sec)
113 				maxtime = tv1;
114 			tv2 = *tv;
115 			timevalsub(&tv2, &maxtime);
116 			if (tv2.tv_sec < -1) {
117 				tv->tv_sec = maxtime.tv_sec - 1;
118 				kprintf("Time adjustment clamped to -1 second\n");
119 			}
120 		} else {
121 			if (tv1.tv_sec == laststep.tv_sec) {
122 				crit_exit();
123 				return (EPERM);
124 			}
125 			if (delta.tv_sec > 1) {
126 				tv->tv_sec = tv1.tv_sec + 1;
127 				kprintf("Time adjustment clamped to +1 second\n");
128 			}
129 			laststep = *tv;
130 		}
131 	}
132 
133 	ts.tv_sec = tv->tv_sec;
134 	ts.tv_nsec = tv->tv_usec * 1000;
135 	set_timeofday(&ts);
136 	crit_exit();
137 
138 	if (origcpu != 0)
139 		lwkt_setcpu_self(globaldata_find(origcpu));
140 
141 	resettodr();
142 	return (0);
143 }
144 
145 /*
146  * MPSAFE
147  */
148 int
149 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
150 {
151 	int error = 0;
152 
153 	switch(clock_id) {
154 	case CLOCK_REALTIME:
155 		nanotime(ats);
156 		break;
157 	case CLOCK_MONOTONIC:
158 		nanouptime(ats);
159 		break;
160 	default:
161 		error = EINVAL;
162 		break;
163 	}
164 	return (error);
165 }
166 
167 /*
168  * MPSAFE
169  */
170 int
171 sys_clock_gettime(struct clock_gettime_args *uap)
172 {
173 	struct timespec ats;
174 	int error;
175 
176 	error = kern_clock_gettime(uap->clock_id, &ats);
177 	if (error == 0)
178 		error = copyout(&ats, uap->tp, sizeof(ats));
179 
180 	return (error);
181 }
182 
183 int
184 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
185 {
186 	struct thread *td = curthread;
187 	struct timeval atv;
188 	int error;
189 
190 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
191 		return (error);
192 	if (clock_id != CLOCK_REALTIME)
193 		return (EINVAL);
194 	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
195 		return (EINVAL);
196 
197 	TIMESPEC_TO_TIMEVAL(&atv, ats);
198 	error = settime(&atv);
199 	return (error);
200 }
201 
202 /*
203  * MPALMOSTSAFE
204  */
205 int
206 sys_clock_settime(struct clock_settime_args *uap)
207 {
208 	struct timespec ats;
209 	int error;
210 
211 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
212 		return (error);
213 
214 	get_mplock();
215 	error = kern_clock_settime(uap->clock_id, &ats);
216 	rel_mplock();
217 	return (error);
218 }
219 
220 /*
221  * MPSAFE
222  */
223 int
224 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
225 {
226 	int error;
227 
228 	switch(clock_id) {
229 	case CLOCK_REALTIME:
230 	case CLOCK_MONOTONIC:
231 		/*
232 		 * Round up the result of the division cheaply
233 		 * by adding 1.  Rounding up is especially important
234 		 * if rounding down would give 0.  Perfect rounding
235 		 * is unimportant.
236 		 */
237 		ts->tv_sec = 0;
238 		ts->tv_nsec = 1000000000 / sys_cputimer->freq + 1;
239 		error = 0;
240 		break;
241 	default:
242 		error = EINVAL;
243 		break;
244 	}
245 
246 	return(error);
247 }
248 
249 /*
250  * MPSAFE
251  */
252 int
253 sys_clock_getres(struct clock_getres_args *uap)
254 {
255 	int error;
256 	struct timespec ts;
257 
258 	error = kern_clock_getres(uap->clock_id, &ts);
259 	if (error == 0)
260 		error = copyout(&ts, uap->tp, sizeof(ts));
261 
262 	return (error);
263 }
264 
265 /*
266  * nanosleep1()
267  *
268  *	This is a general helper function for nanosleep() (aka sleep() aka
269  *	usleep()).
270  *
271  *	If there is less then one tick's worth of time left and
272  *	we haven't done a yield, or the remaining microseconds is
273  *	ridiculously low, do a yield.  This avoids having
274  *	to deal with systimer overheads when the system is under
275  *	heavy loads.  If we have done a yield already then use
276  *	a systimer and an uninterruptable thread wait.
277  *
278  *	If there is more then a tick's worth of time left,
279  *	calculate the baseline ticks and use an interruptable
280  *	tsleep, then handle the fine-grained delay on the next
281  *	loop.  This usually results in two sleeps occuring, a long one
282  *	and a short one.
283  *
284  * MPSAFE
285  */
286 static void
287 ns1_systimer(systimer_t info, int in_ipi __unused,
288     struct intrframe *frame __unused)
289 {
290 	lwkt_schedule(info->data);
291 }
292 
293 int
294 nanosleep1(struct timespec *rqt, struct timespec *rmt)
295 {
296 	static int nanowait;
297 	struct timespec ts, ts2, ts3;
298 	struct timeval tv;
299 	int error;
300 
301 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
302 		return (EINVAL);
303 	/* XXX: imho this should return EINVAL at least for tv_sec < 0 */
304 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
305 		return (0);
306 	nanouptime(&ts);
307 	timespecadd(&ts, rqt);		/* ts = target timestamp compare */
308 	TIMESPEC_TO_TIMEVAL(&tv, rqt);	/* tv = sleep interval */
309 
310 	for (;;) {
311 		int ticks;
312 		struct systimer info;
313 
314 		ticks = tv.tv_usec / ustick;	/* approximate */
315 
316 		if (tv.tv_sec == 0 && ticks == 0) {
317 			thread_t td = curthread;
318 			if (tv.tv_usec < sleep_hard_us) {
319 				lwkt_user_yield();
320 			} else {
321 				crit_enter_quick(td);
322 				systimer_init_oneshot(&info, ns1_systimer,
323 						td, tv.tv_usec);
324 				lwkt_deschedule_self(td);
325 				crit_exit_quick(td);
326 				lwkt_switch();
327 				systimer_del(&info); /* make sure it's gone */
328 			}
329 			error = iscaught(td->td_lwp);
330 		} else if (tv.tv_sec == 0) {
331 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
332 		} else {
333 			ticks = tvtohz_low(&tv); /* also handles overflow */
334 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
335 		}
336 		nanouptime(&ts2);
337 		if (error && error != EWOULDBLOCK) {
338 			if (error == ERESTART)
339 				error = EINTR;
340 			if (rmt != NULL) {
341 				timespecsub(&ts, &ts2);
342 				if (ts.tv_sec < 0)
343 					timespecclear(&ts);
344 				*rmt = ts;
345 			}
346 			return (error);
347 		}
348 		if (timespeccmp(&ts2, &ts, >=))
349 			return (0);
350 		ts3 = ts;
351 		timespecsub(&ts3, &ts2);
352 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
353 	}
354 }
355 
356 /*
357  * MPSAFE
358  */
359 int
360 sys_nanosleep(struct nanosleep_args *uap)
361 {
362 	int error;
363 	struct timespec rqt;
364 	struct timespec rmt;
365 
366 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
367 	if (error)
368 		return (error);
369 
370 	error = nanosleep1(&rqt, &rmt);
371 
372 	/*
373 	 * copyout the residual if nanosleep was interrupted.
374 	 */
375 	if (error && uap->rmtp) {
376 		int error2;
377 
378 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
379 		if (error2)
380 			error = error2;
381 	}
382 	return (error);
383 }
384 
385 /*
386  * MPSAFE
387  */
388 int
389 sys_gettimeofday(struct gettimeofday_args *uap)
390 {
391 	struct timeval atv;
392 	int error = 0;
393 
394 	if (uap->tp) {
395 		microtime(&atv);
396 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
397 		    sizeof (atv))))
398 			return (error);
399 	}
400 	if (uap->tzp)
401 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
402 		    sizeof (tz));
403 	return (error);
404 }
405 
406 /*
407  * MPALMOSTSAFE
408  */
409 int
410 sys_settimeofday(struct settimeofday_args *uap)
411 {
412 	struct thread *td = curthread;
413 	struct timeval atv;
414 	struct timezone atz;
415 	int error;
416 
417 	if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
418 		return (error);
419 	/* Verify all parameters before changing time. */
420 	if (uap->tv) {
421 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
422 		    sizeof(atv))))
423 			return (error);
424 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
425 			return (EINVAL);
426 	}
427 	if (uap->tzp &&
428 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
429 		return (error);
430 
431 	get_mplock();
432 	if (uap->tv && (error = settime(&atv))) {
433 		rel_mplock();
434 		return (error);
435 	}
436 	rel_mplock();
437 	if (uap->tzp)
438 		tz = atz;
439 	return (0);
440 }
441 
442 static void
443 kern_adjtime_common(void)
444 {
445 	if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
446 	    (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
447 		ntp_tick_delta = ntp_delta;
448 	else if (ntp_delta > ntp_big_delta)
449 		ntp_tick_delta = 10 * ntp_default_tick_delta;
450 	else if (ntp_delta < -ntp_big_delta)
451 		ntp_tick_delta = -10 * ntp_default_tick_delta;
452 	else if (ntp_delta > 0)
453 		ntp_tick_delta = ntp_default_tick_delta;
454 	else
455 		ntp_tick_delta = -ntp_default_tick_delta;
456 }
457 
458 void
459 kern_adjtime(int64_t delta, int64_t *odelta)
460 {
461 	int origcpu;
462 
463 	if ((origcpu = mycpu->gd_cpuid) != 0)
464 		lwkt_setcpu_self(globaldata_find(0));
465 
466 	crit_enter();
467 	*odelta = ntp_delta;
468 	ntp_delta = delta;
469 	kern_adjtime_common();
470 	crit_exit();
471 
472 	if (origcpu != 0)
473 		lwkt_setcpu_self(globaldata_find(origcpu));
474 }
475 
476 static void
477 kern_get_ntp_delta(int64_t *delta)
478 {
479 	int origcpu;
480 
481 	if ((origcpu = mycpu->gd_cpuid) != 0)
482 		lwkt_setcpu_self(globaldata_find(0));
483 
484 	crit_enter();
485 	*delta = ntp_delta;
486 	crit_exit();
487 
488 	if (origcpu != 0)
489 		lwkt_setcpu_self(globaldata_find(origcpu));
490 }
491 
492 void
493 kern_reladjtime(int64_t delta)
494 {
495 	int origcpu;
496 
497 	if ((origcpu = mycpu->gd_cpuid) != 0)
498 		lwkt_setcpu_self(globaldata_find(0));
499 
500 	crit_enter();
501 	ntp_delta += delta;
502 	kern_adjtime_common();
503 	crit_exit();
504 
505 	if (origcpu != 0)
506 		lwkt_setcpu_self(globaldata_find(origcpu));
507 }
508 
509 static void
510 kern_adjfreq(int64_t rate)
511 {
512 	int origcpu;
513 
514 	if ((origcpu = mycpu->gd_cpuid) != 0)
515 		lwkt_setcpu_self(globaldata_find(0));
516 
517 	crit_enter();
518 	ntp_tick_permanent = rate;
519 	crit_exit();
520 
521 	if (origcpu != 0)
522 		lwkt_setcpu_self(globaldata_find(origcpu));
523 }
524 
525 /*
526  * MPALMOSTSAFE
527  */
528 int
529 sys_adjtime(struct adjtime_args *uap)
530 {
531 	struct thread *td = curthread;
532 	struct timeval atv;
533 	int64_t ndelta, odelta;
534 	int error;
535 
536 	if ((error = priv_check(td, PRIV_ADJTIME)))
537 		return (error);
538 	error = copyin(uap->delta, &atv, sizeof(struct timeval));
539 	if (error)
540 		return (error);
541 
542 	/*
543 	 * Compute the total correction and the rate at which to apply it.
544 	 * Round the adjustment down to a whole multiple of the per-tick
545 	 * delta, so that after some number of incremental changes in
546 	 * hardclock(), tickdelta will become zero, lest the correction
547 	 * overshoot and start taking us away from the desired final time.
548 	 */
549 	ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
550 	get_mplock();
551 	kern_adjtime(ndelta, &odelta);
552 	rel_mplock();
553 
554 	if (uap->olddelta) {
555 		atv.tv_sec = odelta / 1000000000;
556 		atv.tv_usec = odelta % 1000000000 / 1000;
557 		copyout(&atv, uap->olddelta, sizeof(struct timeval));
558 	}
559 	return (0);
560 }
561 
562 static int
563 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
564 {
565 	int64_t delta;
566 	int error;
567 
568 	if (req->newptr != NULL) {
569 		if (priv_check(curthread, PRIV_ROOT))
570 			return (EPERM);
571 		error = SYSCTL_IN(req, &delta, sizeof(delta));
572 		if (error)
573 			return (error);
574 		kern_reladjtime(delta);
575 	}
576 
577 	if (req->oldptr)
578 		kern_get_ntp_delta(&delta);
579 	error = SYSCTL_OUT(req, &delta, sizeof(delta));
580 	return (error);
581 }
582 
583 /*
584  * delta is in nanoseconds.
585  */
586 static int
587 sysctl_delta(SYSCTL_HANDLER_ARGS)
588 {
589 	int64_t delta, old_delta;
590 	int error;
591 
592 	if (req->newptr != NULL) {
593 		if (priv_check(curthread, PRIV_ROOT))
594 			return (EPERM);
595 		error = SYSCTL_IN(req, &delta, sizeof(delta));
596 		if (error)
597 			return (error);
598 		kern_adjtime(delta, &old_delta);
599 	}
600 
601 	if (req->oldptr != NULL)
602 		kern_get_ntp_delta(&old_delta);
603 	error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
604 	return (error);
605 }
606 
607 /*
608  * frequency is in nanoseconds per second shifted left 32.
609  * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
610  */
611 static int
612 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
613 {
614 	int64_t freqdelta;
615 	int error;
616 
617 	if (req->newptr != NULL) {
618 		if (priv_check(curthread, PRIV_ROOT))
619 			return (EPERM);
620 		error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
621 		if (error)
622 			return (error);
623 
624 		freqdelta /= hz;
625 		kern_adjfreq(freqdelta);
626 	}
627 
628 	if (req->oldptr != NULL)
629 		freqdelta = ntp_tick_permanent * hz;
630 	error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
631 	if (error)
632 		return (error);
633 
634 	return (0);
635 }
636 
637 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
638 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
639     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
640     sysctl_adjfreq, "Q", "permanent correction per second");
641 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
642     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
643     sysctl_delta, "Q", "one-time delta");
644 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
645     &ntp_big_delta, sizeof(ntp_big_delta), "Q",
646     "threshold for fast adjustment");
647 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
648     &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
649     "per-tick adjustment");
650 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
651     &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
652     "default per-tick adjustment");
653 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
654     &ntp_leap_second, sizeof(ntp_leap_second), "LU",
655     "next leap second");
656 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
657     &ntp_leap_insert, 0, "insert or remove leap second");
658 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
659     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
660     sysctl_adjtime, "Q", "relative adjust for delta");
661 
662 /*
663  * Get value of an interval timer.  The process virtual and
664  * profiling virtual time timers are kept in the p_stats area, since
665  * they can be swapped out.  These are kept internally in the
666  * way they are specified externally: in time until they expire.
667  *
668  * The real time interval timer is kept in the process table slot
669  * for the process, and its value (it_value) is kept as an
670  * absolute time rather than as a delta, so that it is easy to keep
671  * periodic real-time signals from drifting.
672  *
673  * Virtual time timers are processed in the hardclock() routine of
674  * kern_clock.c.  The real time timer is processed by a timeout
675  * routine, called from the softclock() routine.  Since a callout
676  * may be delayed in real time due to interrupt processing in the system,
677  * it is possible for the real time timeout routine (realitexpire, given below),
678  * to be delayed in real time past when it is supposed to occur.  It
679  * does not suffice, therefore, to reload the real timer .it_value from the
680  * real time timers .it_interval.  Rather, we compute the next time in
681  * absolute time the timer should go off.
682  *
683  * MPALMOSTSAFE
684  */
685 int
686 sys_getitimer(struct getitimer_args *uap)
687 {
688 	struct proc *p = curproc;
689 	struct timeval ctv;
690 	struct itimerval aitv;
691 
692 	if (uap->which > ITIMER_PROF)
693 		return (EINVAL);
694 	get_mplock();
695 	crit_enter();
696 	if (uap->which == ITIMER_REAL) {
697 		/*
698 		 * Convert from absolute to relative time in .it_value
699 		 * part of real time timer.  If time for real time timer
700 		 * has passed return 0, else return difference between
701 		 * current time and time for the timer to go off.
702 		 */
703 		aitv = p->p_realtimer;
704 		if (timevalisset(&aitv.it_value)) {
705 			getmicrouptime(&ctv);
706 			if (timevalcmp(&aitv.it_value, &ctv, <))
707 				timevalclear(&aitv.it_value);
708 			else
709 				timevalsub(&aitv.it_value, &ctv);
710 		}
711 	} else {
712 		aitv = p->p_timer[uap->which];
713 	}
714 	crit_exit();
715 	rel_mplock();
716 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
717 }
718 
719 /*
720  * MPALMOSTSAFE
721  */
722 int
723 sys_setitimer(struct setitimer_args *uap)
724 {
725 	struct itimerval aitv;
726 	struct timeval ctv;
727 	struct itimerval *itvp;
728 	struct proc *p = curproc;
729 	int error;
730 
731 	if (uap->which > ITIMER_PROF)
732 		return (EINVAL);
733 	itvp = uap->itv;
734 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
735 	    sizeof(struct itimerval))))
736 		return (error);
737 	if ((uap->itv = uap->oitv) &&
738 	    (error = sys_getitimer((struct getitimer_args *)uap)))
739 		return (error);
740 	if (itvp == 0)
741 		return (0);
742 	if (itimerfix(&aitv.it_value))
743 		return (EINVAL);
744 	if (!timevalisset(&aitv.it_value))
745 		timevalclear(&aitv.it_interval);
746 	else if (itimerfix(&aitv.it_interval))
747 		return (EINVAL);
748 	get_mplock();
749 	crit_enter();
750 	if (uap->which == ITIMER_REAL) {
751 		if (timevalisset(&p->p_realtimer.it_value))
752 			callout_stop(&p->p_ithandle);
753 		if (timevalisset(&aitv.it_value))
754 			callout_reset(&p->p_ithandle,
755 			    tvtohz_high(&aitv.it_value), realitexpire, p);
756 		getmicrouptime(&ctv);
757 		timevaladd(&aitv.it_value, &ctv);
758 		p->p_realtimer = aitv;
759 	} else {
760 		p->p_timer[uap->which] = aitv;
761 	}
762 	crit_exit();
763 	rel_mplock();
764 	return (0);
765 }
766 
767 /*
768  * Real interval timer expired:
769  * send process whose timer expired an alarm signal.
770  * If time is not set up to reload, then just return.
771  * Else compute next time timer should go off which is > current time.
772  * This is where delay in processing this timeout causes multiple
773  * SIGALRM calls to be compressed into one.
774  * tvtohz_high() always adds 1 to allow for the time until the next clock
775  * interrupt being strictly less than 1 clock tick, but we don't want
776  * that here since we want to appear to be in sync with the clock
777  * interrupt even when we're delayed.
778  */
779 void
780 realitexpire(void *arg)
781 {
782 	struct proc *p;
783 	struct timeval ctv, ntv;
784 
785 	p = (struct proc *)arg;
786 	ksignal(p, SIGALRM);
787 	if (!timevalisset(&p->p_realtimer.it_interval)) {
788 		timevalclear(&p->p_realtimer.it_value);
789 		return;
790 	}
791 	for (;;) {
792 		crit_enter();
793 		timevaladd(&p->p_realtimer.it_value,
794 		    &p->p_realtimer.it_interval);
795 		getmicrouptime(&ctv);
796 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
797 			ntv = p->p_realtimer.it_value;
798 			timevalsub(&ntv, &ctv);
799 			callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
800 				      realitexpire, p);
801 			crit_exit();
802 			return;
803 		}
804 		crit_exit();
805 	}
806 }
807 
808 /*
809  * Check that a proposed value to load into the .it_value or
810  * .it_interval part of an interval timer is acceptable, and
811  * fix it to have at least minimal value (i.e. if it is less
812  * than the resolution of the clock, round it up.)
813  *
814  * MPSAFE
815  */
816 int
817 itimerfix(struct timeval *tv)
818 {
819 
820 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
821 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
822 		return (EINVAL);
823 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < ustick)
824 		tv->tv_usec = ustick;
825 	return (0);
826 }
827 
828 /*
829  * Decrement an interval timer by a specified number
830  * of microseconds, which must be less than a second,
831  * i.e. < 1000000.  If the timer expires, then reload
832  * it.  In this case, carry over (usec - old value) to
833  * reduce the value reloaded into the timer so that
834  * the timer does not drift.  This routine assumes
835  * that it is called in a context where the timers
836  * on which it is operating cannot change in value.
837  */
838 int
839 itimerdecr(struct itimerval *itp, int usec)
840 {
841 
842 	if (itp->it_value.tv_usec < usec) {
843 		if (itp->it_value.tv_sec == 0) {
844 			/* expired, and already in next interval */
845 			usec -= itp->it_value.tv_usec;
846 			goto expire;
847 		}
848 		itp->it_value.tv_usec += 1000000;
849 		itp->it_value.tv_sec--;
850 	}
851 	itp->it_value.tv_usec -= usec;
852 	usec = 0;
853 	if (timevalisset(&itp->it_value))
854 		return (1);
855 	/* expired, exactly at end of interval */
856 expire:
857 	if (timevalisset(&itp->it_interval)) {
858 		itp->it_value = itp->it_interval;
859 		itp->it_value.tv_usec -= usec;
860 		if (itp->it_value.tv_usec < 0) {
861 			itp->it_value.tv_usec += 1000000;
862 			itp->it_value.tv_sec--;
863 		}
864 	} else
865 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
866 	return (0);
867 }
868 
869 /*
870  * Add and subtract routines for timevals.
871  * N.B.: subtract routine doesn't deal with
872  * results which are before the beginning,
873  * it just gets very confused in this case.
874  * Caveat emptor.
875  */
876 void
877 timevaladd(struct timeval *t1, const struct timeval *t2)
878 {
879 
880 	t1->tv_sec += t2->tv_sec;
881 	t1->tv_usec += t2->tv_usec;
882 	timevalfix(t1);
883 }
884 
885 void
886 timevalsub(struct timeval *t1, const struct timeval *t2)
887 {
888 
889 	t1->tv_sec -= t2->tv_sec;
890 	t1->tv_usec -= t2->tv_usec;
891 	timevalfix(t1);
892 }
893 
894 static void
895 timevalfix(struct timeval *t1)
896 {
897 
898 	if (t1->tv_usec < 0) {
899 		t1->tv_sec--;
900 		t1->tv_usec += 1000000;
901 	}
902 	if (t1->tv_usec >= 1000000) {
903 		t1->tv_sec++;
904 		t1->tv_usec -= 1000000;
905 	}
906 }
907 
908 /*
909  * ratecheck(): simple time-based rate-limit checking.
910  */
911 int
912 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
913 {
914 	struct timeval tv, delta;
915 	int rv = 0;
916 
917 	getmicrouptime(&tv);		/* NB: 10ms precision */
918 	delta = tv;
919 	timevalsub(&delta, lasttime);
920 
921 	/*
922 	 * check for 0,0 is so that the message will be seen at least once,
923 	 * even if interval is huge.
924 	 */
925 	if (timevalcmp(&delta, mininterval, >=) ||
926 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
927 		*lasttime = tv;
928 		rv = 1;
929 	}
930 
931 	return (rv);
932 }
933 
934 /*
935  * ppsratecheck(): packets (or events) per second limitation.
936  *
937  * Return 0 if the limit is to be enforced (e.g. the caller
938  * should drop a packet because of the rate limitation).
939  *
940  * maxpps of 0 always causes zero to be returned.  maxpps of -1
941  * always causes 1 to be returned; this effectively defeats rate
942  * limiting.
943  *
944  * Note that we maintain the struct timeval for compatibility
945  * with other bsd systems.  We reuse the storage and just monitor
946  * clock ticks for minimal overhead.
947  */
948 int
949 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
950 {
951 	int now;
952 
953 	/*
954 	 * Reset the last time and counter if this is the first call
955 	 * or more than a second has passed since the last update of
956 	 * lasttime.
957 	 */
958 	now = ticks;
959 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
960 		lasttime->tv_sec = now;
961 		*curpps = 1;
962 		return (maxpps != 0);
963 	} else {
964 		(*curpps)++;		/* NB: ignore potential overflow */
965 		return (maxpps < 0 || *curpps < maxpps);
966 	}
967 }
968 
969