xref: /dragonfly/sys/kern/kern_time.c (revision 9317c2d0)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/sysproto.h>
37 #include <sys/resourcevar.h>
38 #include <sys/signalvar.h>
39 #include <sys/kernel.h>
40 #include <sys/sysent.h>
41 #include <sys/sysunion.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/time.h>
45 #include <sys/vnode.h>
46 #include <sys/sysctl.h>
47 #include <sys/kern_syscall.h>
48 #include <sys/upmap.h>
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 
52 #include <sys/msgport2.h>
53 #include <sys/spinlock2.h>
54 #include <sys/thread2.h>
55 
56 extern struct spinlock ntp_spin;
57 
58 #define CPUCLOCK_BIT			0x80000000
59 #define	CPUCLOCK_ID_MASK		~CPUCLOCK_BIT
60 #define	CPUCLOCK2LWPID(clock_id)	(((clockid_t)(clock_id) >> 32) & CPUCLOCK_ID_MASK)
61 #define	CPUCLOCK2PID(clock_id)		((clock_id) & CPUCLOCK_ID_MASK)
62 #define MAKE_CPUCLOCK(pid, lwp_id)	((clockid_t)(lwp_id) << 32 | (pid) | CPUCLOCK_BIT)
63 
64 struct timezone tz;
65 
66 /*
67  * Time of day and interval timer support.
68  *
69  * These routines provide the kernel entry points to get and set
70  * the time-of-day and per-process interval timers.  Subroutines
71  * here provide support for adding and subtracting timeval structures
72  * and decrementing interval timers, optionally reloading the interval
73  * timers when they expire.
74  */
75 
76 static int	settime(struct timeval *);
77 static void	timevalfix(struct timeval *);
78 static void	realitexpire(void *arg);
79 
80 static int sysctl_gettimeofday_quick(SYSCTL_HANDLER_ARGS);
81 
82 
83 /*
84  * Nanosleep tries very hard to sleep for a precisely requested time
85  * interval, down to 1uS.  The administrator can impose a minimum delay
86  * and a delay below which we hard-loop instead of initiate a timer
87  * interrupt and sleep.
88  *
89  * For machines under high loads it might be beneficial to increase min_us
90  * to e.g. 1000uS (1ms) so spining processes sleep meaningfully.
91  */
92 static int     nanosleep_min_us = 10;
93 static int     nanosleep_hard_us = 100;
94 static int     gettimeofday_quick = 0;
95 SYSCTL_INT(_kern, OID_AUTO, nanosleep_min_us, CTLFLAG_RW,
96 	   &nanosleep_min_us, 0, "");
97 SYSCTL_INT(_kern, OID_AUTO, nanosleep_hard_us, CTLFLAG_RW,
98 	   &nanosleep_hard_us, 0, "");
99 SYSCTL_PROC(_kern, OID_AUTO, gettimeofday_quick, CTLTYPE_INT | CTLFLAG_RW,
100 	   0, 0, sysctl_gettimeofday_quick, "I", "Quick mode gettimeofday");
101 
102 static struct lock masterclock_lock = LOCK_INITIALIZER("mstrclk", 0, 0);
103 
104 static int
105 settime(struct timeval *tv)
106 {
107 	struct timeval delta, tv1, tv2;
108 	static struct timeval maxtime, laststep;
109 	struct timespec ts;
110 	int origcpu;
111 
112 	if ((origcpu = mycpu->gd_cpuid) != 0)
113 		lwkt_setcpu_self(globaldata_find(0));
114 
115 	crit_enter();
116 	microtime(&tv1);
117 	delta = *tv;
118 	timevalsub(&delta, &tv1);
119 
120 	/*
121 	 * If the system is secure, we do not allow the time to be
122 	 * set to a value earlier than 1 second less than the highest
123 	 * time we have yet seen. The worst a miscreant can do in
124 	 * this circumstance is "freeze" time. He couldn't go
125 	 * back to the past.
126 	 *
127 	 * We similarly do not allow the clock to be stepped more
128 	 * than one second, nor more than once per second. This allows
129 	 * a miscreant to make the clock march double-time, but no worse.
130 	 */
131 	if (securelevel > 1) {
132 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
133 			/*
134 			 * Update maxtime to latest time we've seen.
135 			 */
136 			if (tv1.tv_sec > maxtime.tv_sec)
137 				maxtime = tv1;
138 			tv2 = *tv;
139 			timevalsub(&tv2, &maxtime);
140 			if (tv2.tv_sec < -1) {
141 				tv->tv_sec = maxtime.tv_sec - 1;
142 				kprintf("Time adjustment clamped to -1 second\n");
143 			}
144 		} else {
145 			if (tv1.tv_sec == laststep.tv_sec) {
146 				crit_exit();
147 				return (EPERM);
148 			}
149 			if (delta.tv_sec > 1) {
150 				tv->tv_sec = tv1.tv_sec + 1;
151 				kprintf("Time adjustment clamped to +1 second\n");
152 			}
153 			laststep = *tv;
154 		}
155 	}
156 
157 	ts.tv_sec = tv->tv_sec;
158 	ts.tv_nsec = tv->tv_usec * 1000;
159 	set_timeofday(&ts);
160 	crit_exit();
161 
162 	if (origcpu != 0)
163 		lwkt_setcpu_self(globaldata_find(origcpu));
164 
165 	resettodr();
166 	return (0);
167 }
168 
169 static void
170 get_process_cputime(struct proc *p, struct timespec *ats)
171 {
172 	struct rusage ru;
173 
174 	lwkt_gettoken(&p->p_token);
175 	calcru_proc(p, &ru);
176 	lwkt_reltoken(&p->p_token);
177 	timevaladd(&ru.ru_utime, &ru.ru_stime);
178 	TIMEVAL_TO_TIMESPEC(&ru.ru_utime, ats);
179 }
180 
181 static void
182 get_process_usertime(struct proc *p, struct timespec *ats)
183 {
184 	struct rusage ru;
185 
186 	lwkt_gettoken(&p->p_token);
187 	calcru_proc(p, &ru);
188 	lwkt_reltoken(&p->p_token);
189 	TIMEVAL_TO_TIMESPEC(&ru.ru_utime, ats);
190 }
191 
192 static void
193 get_thread_cputime(struct thread *td, struct timespec *ats)
194 {
195 	struct timeval sys, user;
196 
197 	calcru(td->td_lwp, &user, &sys);
198 	timevaladd(&user, &sys);
199 	TIMEVAL_TO_TIMESPEC(&user, ats);
200 }
201 
202 /*
203  * MPSAFE
204  */
205 int
206 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
207 {
208 	struct proc *p;
209 	struct lwp *lp;
210 	lwpid_t lwp_id;
211 
212 	p = curproc;
213 	switch(clock_id) {
214 	case CLOCK_REALTIME:
215 	case CLOCK_REALTIME_PRECISE:
216 		nanotime(ats);
217 		break;
218 	case CLOCK_REALTIME_FAST:
219 		getnanotime(ats);
220 		break;
221 	case CLOCK_MONOTONIC:
222 	case CLOCK_MONOTONIC_PRECISE:
223 	case CLOCK_UPTIME:
224 	case CLOCK_UPTIME_PRECISE:
225 		nanouptime(ats);
226 		break;
227 	case CLOCK_MONOTONIC_FAST:
228 	case CLOCK_UPTIME_FAST:
229 		getnanouptime(ats);
230 		break;
231 	case CLOCK_VIRTUAL:
232 		get_process_usertime(p, ats);
233 		break;
234 	case CLOCK_PROF:
235 	case CLOCK_PROCESS_CPUTIME_ID:
236 		get_process_cputime(p, ats);
237 		break;
238 	case CLOCK_SECOND:
239 		ats->tv_sec = time_second;
240 		ats->tv_nsec = 0;
241 		break;
242 	case CLOCK_THREAD_CPUTIME_ID:
243 		get_thread_cputime(curthread, ats);
244 		break;
245 	default:
246 		if ((clock_id & CPUCLOCK_BIT) == 0)
247 			return (EINVAL);
248 		if ((p = pfind(CPUCLOCK2PID(clock_id))) == NULL)
249 			return (EINVAL);
250 		lwp_id = CPUCLOCK2LWPID(clock_id);
251 		if (lwp_id == 0) {
252 			get_process_cputime(p, ats);
253 		} else {
254 			lwkt_gettoken(&p->p_token);
255 			lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, lwp_id);
256 			if (lp == NULL) {
257 				lwkt_reltoken(&p->p_token);
258 				PRELE(p);
259 				return (EINVAL);
260 			}
261 			get_thread_cputime(lp->lwp_thread, ats);
262 			lwkt_reltoken(&p->p_token);
263 		}
264 		PRELE(p);
265 	}
266 	return (0);
267 }
268 
269 /*
270  * MPSAFE
271  */
272 int
273 sys_clock_gettime(struct clock_gettime_args *uap)
274 {
275 	struct timespec ats;
276 	int error;
277 
278 	error = kern_clock_gettime(uap->clock_id, &ats);
279 	if (error == 0)
280 		error = copyout(&ats, uap->tp, sizeof(ats));
281 
282 	return (error);
283 }
284 
285 int
286 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
287 {
288 	struct thread *td = curthread;
289 	struct timeval atv;
290 	int error;
291 
292 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
293 		return (error);
294 	if (clock_id != CLOCK_REALTIME)
295 		return (EINVAL);
296 	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
297 		return (EINVAL);
298 
299 	lockmgr(&masterclock_lock, LK_EXCLUSIVE);
300 	TIMESPEC_TO_TIMEVAL(&atv, ats);
301 	error = settime(&atv);
302 	lockmgr(&masterclock_lock, LK_RELEASE);
303 
304 	return (error);
305 }
306 
307 /*
308  * MPALMOSTSAFE
309  */
310 int
311 sys_clock_settime(struct clock_settime_args *uap)
312 {
313 	struct timespec ats;
314 	int error;
315 
316 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
317 		return (error);
318 
319 	error = kern_clock_settime(uap->clock_id, &ats);
320 
321 	return (error);
322 }
323 
324 /*
325  * MPSAFE
326  */
327 int
328 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
329 {
330 	ts->tv_sec = 0;
331 
332 	switch(clock_id) {
333 	case CLOCK_REALTIME:
334 	case CLOCK_REALTIME_FAST:
335 	case CLOCK_REALTIME_PRECISE:
336 	case CLOCK_MONOTONIC:
337 	case CLOCK_MONOTONIC_FAST:
338 	case CLOCK_MONOTONIC_PRECISE:
339 	case CLOCK_UPTIME:
340 	case CLOCK_UPTIME_FAST:
341 	case CLOCK_UPTIME_PRECISE:
342 		/*
343 		 * Minimum reportable resolution is 1ns.  Rounding is
344 		 * otherwise unimportant.
345 		 */
346 		ts->tv_nsec = 999999999 / sys_cputimer->freq + 1;
347 		break;
348 	case CLOCK_VIRTUAL:
349 	case CLOCK_PROF:
350 		/* Accurately round up here because we can do so cheaply. */
351 		ts->tv_nsec = (1000000000 + hz - 1) / hz;
352 		break;
353 	case CLOCK_SECOND:
354 		ts->tv_sec = 1;
355 		ts->tv_nsec = 0;
356 		break;
357 	case CLOCK_THREAD_CPUTIME_ID:
358 	case CLOCK_PROCESS_CPUTIME_ID:
359 		ts->tv_nsec = 1000;
360 		break;
361 	default:
362 		if ((clock_id & CPUCLOCK_BIT) != 0)
363 			ts->tv_nsec = 1000;
364 		else
365 			return (EINVAL);
366 	}
367 
368 	return (0);
369 }
370 
371 /*
372  * MPSAFE
373  */
374 int
375 sys_clock_getres(struct clock_getres_args *uap)
376 {
377 	int error;
378 	struct timespec ts;
379 
380 	error = kern_clock_getres(uap->clock_id, &ts);
381 	if (error == 0)
382 		error = copyout(&ts, uap->tp, sizeof(ts));
383 
384 	return (error);
385 }
386 
387 static int
388 kern_getcpuclockid(pid_t pid, lwpid_t lwp_id, clockid_t *clock_id)
389 {
390 	struct proc *p;
391 	int error = 0;
392 
393 	if (pid == 0) {
394 		p = curproc;
395 		pid = p->p_pid;
396 		PHOLD(p);
397 	} else {
398 		p = pfind(pid);
399 		if (p == NULL)
400 			return (ESRCH);
401 	}
402 	/* lwp_id can be 0 when called by clock_getcpuclockid() */
403 	if (lwp_id < 0) {
404 		error = EINVAL;
405 		goto out;
406 	}
407 	lwkt_gettoken(&p->p_token);
408 	if (lwp_id > 0 &&
409 	    lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, lwp_id) == NULL) {
410 		lwkt_reltoken(&p->p_token);
411 		error = ESRCH;
412 		goto out;
413 	}
414 	*clock_id = MAKE_CPUCLOCK(pid, lwp_id);
415 	lwkt_reltoken(&p->p_token);
416 out:
417 	PRELE(p);
418 	return (error);
419 }
420 
421 int
422 sys_getcpuclockid(struct getcpuclockid_args *uap)
423 {
424 	clockid_t clk_id;
425 	int error;
426 
427 	error = kern_getcpuclockid(uap->pid, uap->lwp_id, &clk_id);
428 	if (error == 0)
429 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
430 
431 	return (error);
432 }
433 
434 /*
435  * nanosleep1()
436  *
437  *	This is a general helper function for nanosleep() (aka sleep() aka
438  *	usleep()).
439  *
440  *	If there is less then one tick's worth of time left and
441  *	we haven't done a yield, or the remaining microseconds is
442  *	ridiculously low, do a yield.  This avoids having
443  *	to deal with systimer overheads when the system is under
444  *	heavy loads.  If we have done a yield already then use
445  *	a systimer and an uninterruptable thread wait.
446  *
447  *	If there is more then a tick's worth of time left,
448  *	calculate the baseline ticks and use an interruptable
449  *	tsleep, then handle the fine-grained delay on the next
450  *	loop.  This usually results in two sleeps occuring, a long one
451  *	and a short one.
452  *
453  * MPSAFE
454  */
455 static void
456 ns1_systimer(systimer_t info, int in_ipi __unused,
457     struct intrframe *frame __unused)
458 {
459 	lwkt_schedule(info->data);
460 }
461 
462 int
463 nanosleep1(struct timespec *rqt, struct timespec *rmt)
464 {
465 	static int nanowait;
466 	struct timespec ts, ts2, ts3;
467 	struct timeval tv;
468 	int error;
469 
470 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
471 		return (EINVAL);
472 	/* XXX: imho this should return EINVAL at least for tv_sec < 0 */
473 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
474 		return (0);
475 	nanouptime(&ts);
476 	timespecadd(&ts, rqt, &ts);	/* ts = target timestamp compare */
477 	TIMESPEC_TO_TIMEVAL(&tv, rqt);	/* tv = sleep interval */
478 
479 	for (;;) {
480 		int ticks;
481 		struct systimer info;
482 
483 		ticks = tv.tv_usec / ustick;	/* approximate */
484 
485 		if (tv.tv_sec == 0 && ticks == 0) {
486 			thread_t td = curthread;
487 			if (tv.tv_usec > 0 && tv.tv_usec < nanosleep_min_us)
488 				tv.tv_usec = nanosleep_min_us;
489 			if (tv.tv_usec < nanosleep_hard_us) {
490 				lwkt_user_yield();
491 				cpu_pause();
492 			} else {
493 				crit_enter_quick(td);
494 				systimer_init_oneshot(&info, ns1_systimer,
495 						td, tv.tv_usec);
496 				lwkt_deschedule_self(td);
497 				crit_exit_quick(td);
498 				lwkt_switch();
499 				systimer_del(&info); /* make sure it's gone */
500 			}
501 			error = iscaught(td->td_lwp);
502 		} else if (tv.tv_sec == 0) {
503 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
504 		} else {
505 			ticks = tvtohz_low(&tv); /* also handles overflow */
506 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
507 		}
508 		nanouptime(&ts2);
509 		if (error && error != EWOULDBLOCK) {
510 			if (error == ERESTART)
511 				error = EINTR;
512 			if (rmt != NULL) {
513 				timespecsub(&ts, &ts2, &ts);
514 				if (ts.tv_sec < 0)
515 					timespecclear(&ts);
516 				*rmt = ts;
517 			}
518 			return (error);
519 		}
520 		if (timespeccmp(&ts2, &ts, >=))
521 			return (0);
522 		timespecsub(&ts, &ts2, &ts3);
523 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
524 	}
525 }
526 
527 /*
528  * MPSAFE
529  */
530 int
531 sys_nanosleep(struct nanosleep_args *uap)
532 {
533 	int error;
534 	struct timespec rqt;
535 	struct timespec rmt;
536 
537 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
538 	if (error)
539 		return (error);
540 
541 	error = nanosleep1(&rqt, &rmt);
542 
543 	/*
544 	 * copyout the residual if nanosleep was interrupted.
545 	 */
546 	if (error && uap->rmtp) {
547 		int error2;
548 
549 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
550 		if (error2)
551 			error = error2;
552 	}
553 	return (error);
554 }
555 
556 /*
557  * The gettimeofday() system call is supposed to return a fine-grained
558  * realtime stamp.  However, acquiring a fine-grained stamp can create a
559  * bottleneck when multiple cpu cores are trying to accessing e.g. the
560  * HPET hardware timer all at the same time, so we have a sysctl that
561  * allows its behavior to be changed to a more coarse-grained timestamp
562  * which does not have to access a hardware timer.
563  */
564 int
565 sys_gettimeofday(struct gettimeofday_args *uap)
566 {
567 	struct timeval atv;
568 	int error = 0;
569 
570 	if (uap->tp) {
571 		if (gettimeofday_quick)
572 			getmicrotime(&atv);
573 		else
574 			microtime(&atv);
575 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
576 		    sizeof (atv))))
577 			return (error);
578 	}
579 	if (uap->tzp)
580 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
581 		    sizeof (tz));
582 	return (error);
583 }
584 
585 /*
586  * MPALMOSTSAFE
587  */
588 int
589 sys_settimeofday(struct settimeofday_args *uap)
590 {
591 	struct thread *td = curthread;
592 	struct timeval atv;
593 	struct timezone atz;
594 	int error;
595 
596 	if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
597 		return (error);
598 	/*
599 	 * Verify all parameters before changing time.
600 	 *
601 	 * XXX: We do not allow the time to be set to 0.0, which also by
602 	 *	happy coincidence works around a pkgsrc bulk build bug.
603 	 */
604 	if (uap->tv) {
605 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
606 		    sizeof(atv))))
607 			return (error);
608 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
609 			return (EINVAL);
610 		if (atv.tv_sec == 0 && atv.tv_usec == 0)
611 			return (EINVAL);
612 	}
613 	if (uap->tzp &&
614 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
615 		return (error);
616 
617 	lockmgr(&masterclock_lock, LK_EXCLUSIVE);
618 	if (uap->tv && (error = settime(&atv))) {
619 		lockmgr(&masterclock_lock, LK_RELEASE);
620 		return (error);
621 	}
622 	lockmgr(&masterclock_lock, LK_RELEASE);
623 
624 	if (uap->tzp)
625 		tz = atz;
626 	return (0);
627 }
628 
629 /*
630  * WARNING! Run with ntp_spin held
631  */
632 static void
633 kern_adjtime_common(void)
634 {
635 	if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
636 	    (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
637 		ntp_tick_delta = ntp_delta;
638 	else if (ntp_delta > ntp_big_delta)
639 		ntp_tick_delta = 10 * ntp_default_tick_delta;
640 	else if (ntp_delta < -ntp_big_delta)
641 		ntp_tick_delta = -10 * ntp_default_tick_delta;
642 	else if (ntp_delta > 0)
643 		ntp_tick_delta = ntp_default_tick_delta;
644 	else
645 		ntp_tick_delta = -ntp_default_tick_delta;
646 }
647 
648 void
649 kern_adjtime(int64_t delta, int64_t *odelta)
650 {
651 	spin_lock(&ntp_spin);
652 	*odelta = ntp_delta;
653 	ntp_delta = delta;
654 	kern_adjtime_common();
655 	spin_unlock(&ntp_spin);
656 }
657 
658 static void
659 kern_get_ntp_delta(int64_t *delta)
660 {
661 	*delta = ntp_delta;
662 }
663 
664 void
665 kern_reladjtime(int64_t delta)
666 {
667 	spin_lock(&ntp_spin);
668 	ntp_delta += delta;
669 	kern_adjtime_common();
670 	spin_unlock(&ntp_spin);
671 }
672 
673 static void
674 kern_adjfreq(int64_t rate)
675 {
676 	spin_lock(&ntp_spin);
677 	ntp_tick_permanent = rate;
678 	spin_unlock(&ntp_spin);
679 }
680 
681 /*
682  * MPALMOSTSAFE
683  */
684 int
685 sys_adjtime(struct adjtime_args *uap)
686 {
687 	struct thread *td = curthread;
688 	struct timeval atv;
689 	int64_t ndelta, odelta;
690 	int error;
691 
692 	if ((error = priv_check(td, PRIV_ADJTIME)))
693 		return (error);
694 	error = copyin(uap->delta, &atv, sizeof(struct timeval));
695 	if (error)
696 		return (error);
697 
698 	/*
699 	 * Compute the total correction and the rate at which to apply it.
700 	 * Round the adjustment down to a whole multiple of the per-tick
701 	 * delta, so that after some number of incremental changes in
702 	 * hardclock(), tickdelta will become zero, lest the correction
703 	 * overshoot and start taking us away from the desired final time.
704 	 */
705 	ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
706 	kern_adjtime(ndelta, &odelta);
707 
708 	if (uap->olddelta) {
709 		atv.tv_sec = odelta / 1000000000;
710 		atv.tv_usec = odelta % 1000000000 / 1000;
711 		copyout(&atv, uap->olddelta, sizeof(struct timeval));
712 	}
713 	return (0);
714 }
715 
716 static int
717 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
718 {
719 	int64_t delta;
720 	int error;
721 
722 	if (req->newptr != NULL) {
723 		if (priv_check(curthread, PRIV_ROOT))
724 			return (EPERM);
725 		error = SYSCTL_IN(req, &delta, sizeof(delta));
726 		if (error)
727 			return (error);
728 		kern_reladjtime(delta);
729 	}
730 
731 	if (req->oldptr)
732 		kern_get_ntp_delta(&delta);
733 	error = SYSCTL_OUT(req, &delta, sizeof(delta));
734 	return (error);
735 }
736 
737 /*
738  * delta is in nanoseconds.
739  */
740 static int
741 sysctl_delta(SYSCTL_HANDLER_ARGS)
742 {
743 	int64_t delta, old_delta;
744 	int error;
745 
746 	if (req->newptr != NULL) {
747 		if (priv_check(curthread, PRIV_ROOT))
748 			return (EPERM);
749 		error = SYSCTL_IN(req, &delta, sizeof(delta));
750 		if (error)
751 			return (error);
752 		kern_adjtime(delta, &old_delta);
753 	}
754 
755 	if (req->oldptr != NULL)
756 		kern_get_ntp_delta(&old_delta);
757 	error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
758 	return (error);
759 }
760 
761 /*
762  * frequency is in nanoseconds per second shifted left 32.
763  * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
764  */
765 static int
766 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
767 {
768 	int64_t freqdelta;
769 	int error;
770 
771 	if (req->newptr != NULL) {
772 		if (priv_check(curthread, PRIV_ROOT))
773 			return (EPERM);
774 		error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
775 		if (error)
776 			return (error);
777 
778 		freqdelta /= hz;
779 		kern_adjfreq(freqdelta);
780 	}
781 
782 	if (req->oldptr != NULL)
783 		freqdelta = ntp_tick_permanent * hz;
784 	error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
785 	if (error)
786 		return (error);
787 
788 	return (0);
789 }
790 
791 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
792 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
793     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
794     sysctl_adjfreq, "Q", "permanent correction per second");
795 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
796     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
797     sysctl_delta, "Q", "one-time delta");
798 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
799     &ntp_big_delta, sizeof(ntp_big_delta), "Q",
800     "threshold for fast adjustment");
801 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
802     &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
803     "per-tick adjustment");
804 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
805     &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
806     "default per-tick adjustment");
807 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
808     &ntp_leap_second, sizeof(ntp_leap_second), "LU",
809     "next leap second");
810 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
811     &ntp_leap_insert, 0, "insert or remove leap second");
812 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
813     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
814     sysctl_adjtime, "Q", "relative adjust for delta");
815 
816 /*
817  * Get value of an interval timer.  The process virtual and
818  * profiling virtual time timers are kept in the p_stats area, since
819  * they can be swapped out.  These are kept internally in the
820  * way they are specified externally: in time until they expire.
821  *
822  * The real time interval timer is kept in the process table slot
823  * for the process, and its value (it_value) is kept as an
824  * absolute time rather than as a delta, so that it is easy to keep
825  * periodic real-time signals from drifting.
826  *
827  * Virtual time timers are processed in the hardclock() routine of
828  * kern_clock.c.  The real time timer is processed by a timeout
829  * routine, called from the softclock() routine.  Since a callout
830  * may be delayed in real time due to interrupt processing in the system,
831  * it is possible for the real time timeout routine (realitexpire, given below),
832  * to be delayed in real time past when it is supposed to occur.  It
833  * does not suffice, therefore, to reload the real timer .it_value from the
834  * real time timers .it_interval.  Rather, we compute the next time in
835  * absolute time the timer should go off.
836  *
837  * MPALMOSTSAFE
838  */
839 int
840 sys_getitimer(struct getitimer_args *uap)
841 {
842 	struct proc *p = curproc;
843 	struct timeval ctv;
844 	struct itimerval aitv;
845 
846 	if (uap->which > ITIMER_PROF)
847 		return (EINVAL);
848 	lwkt_gettoken(&p->p_token);
849 	if (uap->which == ITIMER_REAL) {
850 		/*
851 		 * Convert from absolute to relative time in .it_value
852 		 * part of real time timer.  If time for real time timer
853 		 * has passed return 0, else return difference between
854 		 * current time and time for the timer to go off.
855 		 */
856 		aitv = p->p_realtimer;
857 		if (timevalisset(&aitv.it_value)) {
858 			getmicrouptime(&ctv);
859 			if (timevalcmp(&aitv.it_value, &ctv, <))
860 				timevalclear(&aitv.it_value);
861 			else
862 				timevalsub(&aitv.it_value, &ctv);
863 		}
864 	} else {
865 		aitv = p->p_timer[uap->which];
866 	}
867 	lwkt_reltoken(&p->p_token);
868 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
869 }
870 
871 /*
872  * MPALMOSTSAFE
873  */
874 int
875 sys_setitimer(struct setitimer_args *uap)
876 {
877 	struct itimerval aitv;
878 	struct timeval ctv;
879 	struct itimerval *itvp;
880 	struct proc *p = curproc;
881 	int error;
882 
883 	if (uap->which > ITIMER_PROF)
884 		return (EINVAL);
885 	itvp = uap->itv;
886 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
887 	    sizeof(struct itimerval))))
888 		return (error);
889 	if ((uap->itv = uap->oitv) &&
890 	    (error = sys_getitimer((struct getitimer_args *)uap)))
891 		return (error);
892 	if (itvp == NULL)
893 		return (0);
894 	if (itimerfix(&aitv.it_value))
895 		return (EINVAL);
896 	if (!timevalisset(&aitv.it_value))
897 		timevalclear(&aitv.it_interval);
898 	else if (itimerfix(&aitv.it_interval))
899 		return (EINVAL);
900 	lwkt_gettoken(&p->p_token);
901 	if (uap->which == ITIMER_REAL) {
902 		if (timevalisset(&p->p_realtimer.it_value))
903 			callout_cancel(&p->p_ithandle);
904 		if (timevalisset(&aitv.it_value))
905 			callout_reset(&p->p_ithandle,
906 			    tvtohz_high(&aitv.it_value), realitexpire, p);
907 		getmicrouptime(&ctv);
908 		timevaladd(&aitv.it_value, &ctv);
909 		p->p_realtimer = aitv;
910 	} else {
911 		p->p_timer[uap->which] = aitv;
912 		switch(uap->which) {
913 		case ITIMER_VIRTUAL:
914 			p->p_flags &= ~P_SIGVTALRM;
915 			break;
916 		case ITIMER_PROF:
917 			p->p_flags &= ~P_SIGPROF;
918 			break;
919 		}
920 	}
921 	lwkt_reltoken(&p->p_token);
922 	return (0);
923 }
924 
925 /*
926  * Real interval timer expired:
927  * send process whose timer expired an alarm signal.
928  * If time is not set up to reload, then just return.
929  * Else compute next time timer should go off which is > current time.
930  * This is where delay in processing this timeout causes multiple
931  * SIGALRM calls to be compressed into one.
932  * tvtohz_high() always adds 1 to allow for the time until the next clock
933  * interrupt being strictly less than 1 clock tick, but we don't want
934  * that here since we want to appear to be in sync with the clock
935  * interrupt even when we're delayed.
936  */
937 static
938 void
939 realitexpire(void *arg)
940 {
941 	struct proc *p;
942 	struct timeval ctv, ntv;
943 
944 	p = (struct proc *)arg;
945 	PHOLD(p);
946 	lwkt_gettoken(&p->p_token);
947 	ksignal(p, SIGALRM);
948 	if (!timevalisset(&p->p_realtimer.it_interval)) {
949 		timevalclear(&p->p_realtimer.it_value);
950 		goto done;
951 	}
952 	for (;;) {
953 		timevaladd(&p->p_realtimer.it_value,
954 			   &p->p_realtimer.it_interval);
955 		getmicrouptime(&ctv);
956 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
957 			ntv = p->p_realtimer.it_value;
958 			timevalsub(&ntv, &ctv);
959 			callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
960 				      realitexpire, p);
961 			goto done;
962 		}
963 	}
964 done:
965 	lwkt_reltoken(&p->p_token);
966 	PRELE(p);
967 }
968 
969 /*
970  * Used to validate itimer timeouts and utimes*() timespecs.
971  */
972 int
973 itimerfix(struct timeval *tv)
974 {
975 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
976 		return (EINVAL);
977 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < ustick)
978 		tv->tv_usec = ustick;
979 	return (0);
980 }
981 
982 /*
983  * Used to validate timeouts and utimes*() timespecs.
984  */
985 int
986 itimespecfix(struct timespec *ts)
987 {
988 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000ULL)
989 		return (EINVAL);
990 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < nstick)
991 		ts->tv_nsec = nstick;
992 	return (0);
993 }
994 
995 /*
996  * Decrement an interval timer by a specified number
997  * of microseconds, which must be less than a second,
998  * i.e. < 1000000.  If the timer expires, then reload
999  * it.  In this case, carry over (usec - old value) to
1000  * reduce the value reloaded into the timer so that
1001  * the timer does not drift.  This routine assumes
1002  * that it is called in a context where the timers
1003  * on which it is operating cannot change in value.
1004  */
1005 int
1006 itimerdecr(struct itimerval *itp, int usec)
1007 {
1008 
1009 	if (itp->it_value.tv_usec < usec) {
1010 		if (itp->it_value.tv_sec == 0) {
1011 			/* expired, and already in next interval */
1012 			usec -= itp->it_value.tv_usec;
1013 			goto expire;
1014 		}
1015 		itp->it_value.tv_usec += 1000000;
1016 		itp->it_value.tv_sec--;
1017 	}
1018 	itp->it_value.tv_usec -= usec;
1019 	usec = 0;
1020 	if (timevalisset(&itp->it_value))
1021 		return (1);
1022 	/* expired, exactly at end of interval */
1023 expire:
1024 	if (timevalisset(&itp->it_interval)) {
1025 		itp->it_value = itp->it_interval;
1026 		itp->it_value.tv_usec -= usec;
1027 		if (itp->it_value.tv_usec < 0) {
1028 			itp->it_value.tv_usec += 1000000;
1029 			itp->it_value.tv_sec--;
1030 		}
1031 	} else
1032 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1033 	return (0);
1034 }
1035 
1036 /*
1037  * Add and subtract routines for timevals.
1038  * N.B.: subtract routine doesn't deal with
1039  * results which are before the beginning,
1040  * it just gets very confused in this case.
1041  * Caveat emptor.
1042  */
1043 void
1044 timevaladd(struct timeval *t1, const struct timeval *t2)
1045 {
1046 
1047 	t1->tv_sec += t2->tv_sec;
1048 	t1->tv_usec += t2->tv_usec;
1049 	timevalfix(t1);
1050 }
1051 
1052 void
1053 timevalsub(struct timeval *t1, const struct timeval *t2)
1054 {
1055 
1056 	t1->tv_sec -= t2->tv_sec;
1057 	t1->tv_usec -= t2->tv_usec;
1058 	timevalfix(t1);
1059 }
1060 
1061 static void
1062 timevalfix(struct timeval *t1)
1063 {
1064 
1065 	if (t1->tv_usec < 0) {
1066 		t1->tv_sec--;
1067 		t1->tv_usec += 1000000;
1068 	}
1069 	if (t1->tv_usec >= 1000000) {
1070 		t1->tv_sec++;
1071 		t1->tv_usec -= 1000000;
1072 	}
1073 }
1074 
1075 /*
1076  * ratecheck(): simple time-based rate-limit checking.
1077  */
1078 int
1079 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1080 {
1081 	struct timeval tv, delta;
1082 	int rv = 0;
1083 
1084 	getmicrouptime(&tv);		/* NB: 10ms precision */
1085 	delta = tv;
1086 	timevalsub(&delta, lasttime);
1087 
1088 	/*
1089 	 * check for 0,0 is so that the message will be seen at least once,
1090 	 * even if interval is huge.
1091 	 */
1092 	if (timevalcmp(&delta, mininterval, >=) ||
1093 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1094 		*lasttime = tv;
1095 		rv = 1;
1096 	}
1097 
1098 	return (rv);
1099 }
1100 
1101 /*
1102  * ppsratecheck(): packets (or events) per second limitation.
1103  *
1104  * Return 0 if the limit is to be enforced (e.g. the caller
1105  * should drop a packet because of the rate limitation).
1106  *
1107  * maxpps of 0 always causes zero to be returned.  maxpps of -1
1108  * always causes 1 to be returned; this effectively defeats rate
1109  * limiting.
1110  *
1111  * Note that we maintain the struct timeval for compatibility
1112  * with other bsd systems.  We reuse the storage and just monitor
1113  * clock ticks for minimal overhead.
1114  */
1115 int
1116 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1117 {
1118 	int now;
1119 
1120 	/*
1121 	 * Reset the last time and counter if this is the first call
1122 	 * or more than a second has passed since the last update of
1123 	 * lasttime.
1124 	 */
1125 	now = ticks;
1126 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
1127 		lasttime->tv_sec = now;
1128 		*curpps = 1;
1129 		return (maxpps != 0);
1130 	} else {
1131 		(*curpps)++;		/* NB: ignore potential overflow */
1132 		return (maxpps < 0 || *curpps < maxpps);
1133 	}
1134 }
1135 
1136 static int
1137 sysctl_gettimeofday_quick(SYSCTL_HANDLER_ARGS)
1138 {
1139 	int error;
1140 	int gtod;
1141 
1142 	gtod = gettimeofday_quick;
1143 	error = sysctl_handle_int(oidp, &gtod, 0, req);
1144 	if (error || req->newptr == NULL)
1145 		return error;
1146 	gettimeofday_quick = gtod;
1147 	if (kpmap)
1148 		kpmap->fast_gtod = gtod;
1149 	return 0;
1150 }
1151