xref: /dragonfly/sys/kern/kern_time.c (revision d5f516c3)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35  * $DragonFly: src/sys/kern/kern_time.c,v 1.17 2004/09/17 01:29:45 joerg Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/sysunion.h>
48 #include <sys/proc.h>
49 #include <sys/time.h>
50 #include <sys/vnode.h>
51 #include <sys/sysctl.h>
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 #include <sys/msgport2.h>
55 #include <sys/thread2.h>
56 
57 struct timezone tz;
58 
59 /*
60  * Time of day and interval timer support.
61  *
62  * These routines provide the kernel entry points to get and set
63  * the time-of-day and per-process interval timers.  Subroutines
64  * here provide support for adding and subtracting timeval structures
65  * and decrementing interval timers, optionally reloading the interval
66  * timers when they expire.
67  */
68 
69 static int	nanosleep1 (struct timespec *rqt,
70 		    struct timespec *rmt);
71 static int	settime (struct timeval *);
72 static void	timevalfix (struct timeval *);
73 static void	no_lease_updatetime (int);
74 
75 static int     sleep_hard_us = 100;
76 SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
77 
78 static void
79 no_lease_updatetime(deltat)
80 	int deltat;
81 {
82 }
83 
84 void (*lease_updatetime) (int)  = no_lease_updatetime;
85 
86 static int
87 settime(tv)
88 	struct timeval *tv;
89 {
90 	struct timeval delta, tv1, tv2;
91 	static struct timeval maxtime, laststep;
92 	struct timespec ts;
93 
94 	crit_enter();
95 	microtime(&tv1);
96 	delta = *tv;
97 	timevalsub(&delta, &tv1);
98 
99 	/*
100 	 * If the system is secure, we do not allow the time to be
101 	 * set to a value earlier than 1 second less than the highest
102 	 * time we have yet seen. The worst a miscreant can do in
103 	 * this circumstance is "freeze" time. He couldn't go
104 	 * back to the past.
105 	 *
106 	 * We similarly do not allow the clock to be stepped more
107 	 * than one second, nor more than once per second. This allows
108 	 * a miscreant to make the clock march double-time, but no worse.
109 	 */
110 	if (securelevel > 1) {
111 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
112 			/*
113 			 * Update maxtime to latest time we've seen.
114 			 */
115 			if (tv1.tv_sec > maxtime.tv_sec)
116 				maxtime = tv1;
117 			tv2 = *tv;
118 			timevalsub(&tv2, &maxtime);
119 			if (tv2.tv_sec < -1) {
120 				tv->tv_sec = maxtime.tv_sec - 1;
121 				printf("Time adjustment clamped to -1 second\n");
122 			}
123 		} else {
124 			if (tv1.tv_sec == laststep.tv_sec) {
125 				crit_exit();
126 				return (EPERM);
127 			}
128 			if (delta.tv_sec > 1) {
129 				tv->tv_sec = tv1.tv_sec + 1;
130 				printf("Time adjustment clamped to +1 second\n");
131 			}
132 			laststep = *tv;
133 		}
134 	}
135 
136 	ts.tv_sec = tv->tv_sec;
137 	ts.tv_nsec = tv->tv_usec * 1000;
138 	set_timeofday(&ts);
139 	lease_updatetime(delta.tv_sec);
140 	crit_exit();
141 	resettodr();
142 	return (0);
143 }
144 
145 /* ARGSUSED */
146 int
147 clock_gettime(struct clock_gettime_args *uap)
148 {
149 	struct timespec ats;
150 
151 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
152 		return (EINVAL);
153 	nanotime(&ats);
154 	return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
155 }
156 
157 /* ARGSUSED */
158 int
159 clock_settime(struct clock_settime_args *uap)
160 {
161 	struct thread *td = curthread;
162 	struct timeval atv;
163 	struct timespec ats;
164 	int error;
165 
166 	if ((error = suser(td)) != 0)
167 		return (error);
168 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
169 		return (EINVAL);
170 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
171 		return (error);
172 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
173 		return (EINVAL);
174 	/* XXX Don't convert nsec->usec and back */
175 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
176 	if ((error = settime(&atv)))
177 		return (error);
178 	return (0);
179 }
180 
181 int
182 clock_getres(struct clock_getres_args *uap)
183 {
184 	struct timespec ts;
185 	int error;
186 
187 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
188 		return (EINVAL);
189 	error = 0;
190 	if (SCARG(uap, tp)) {
191 		ts.tv_sec = 0;
192 		/*
193 		 * Round up the result of the division cheaply by adding 1.
194 		 * Rounding up is especially important if rounding down
195 		 * would give 0.  Perfect rounding is unimportant.
196 		 */
197 		ts.tv_nsec = 1000000000 / cputimer_freq + 1;
198 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
199 	}
200 	return (error);
201 }
202 
203 /*
204  * nanosleep1()
205  *
206  *	This is a general helper function for nanosleep() (aka sleep() aka
207  *	usleep()).
208  *
209  *	If there is less then one tick's worth of time left and
210  *	we haven't done a yield, or the remaining microseconds is
211  *	ridiculously low, do a yield.  This avoids having
212  *	to deal with systimer overheads when the system is under
213  *	heavy loads.  If we have done a yield already then use
214  *	a systimer and an uninterruptable thread wait.
215  *
216  *	If there is more then a tick's worth of time left,
217  *	calculate the baseline ticks and use an interruptable
218  *	tsleep, then handle the fine-grained delay on the next
219  *	loop.  This usually results in two sleeps occuring, a long one
220  *	and a short one.
221  */
222 static void
223 ns1_systimer(systimer_t info)
224 {
225 	lwkt_schedule(info->data);
226 }
227 
228 static int
229 nanosleep1(struct timespec *rqt, struct timespec *rmt)
230 {
231 	static int nanowait;
232 	struct timespec ts, ts2, ts3;
233 	struct timeval tv;
234 	int error;
235 	int tried_yield;
236 
237 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
238 		return (EINVAL);
239 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
240 		return (0);
241 	nanouptime(&ts);
242 	timespecadd(&ts, rqt);		/* ts = target timestamp compare */
243 	TIMESPEC_TO_TIMEVAL(&tv, rqt);	/* tv = sleep interval */
244 	tried_yield = 0;
245 
246 	for (;;) {
247 		int ticks;
248 		struct systimer info;
249 
250 		ticks = tv.tv_usec / tick;	/* approximate */
251 
252 		if (tv.tv_sec == 0 && ticks == 0) {
253 			thread_t td = curthread;
254 			if (tried_yield || tv.tv_usec < sleep_hard_us) {
255 				tried_yield = 0;
256 				uio_yield();
257 			} else {
258 				crit_enter_quick(td);
259 				systimer_init_oneshot(&info, ns1_systimer,
260 						td, tv.tv_usec);
261 				lwkt_deschedule_self(td);
262 				crit_exit_quick(td);
263 				lwkt_switch();
264 				systimer_del(&info); /* make sure it's gone */
265 			}
266 			error = iscaught(td->td_proc);
267 		} else if (tv.tv_sec == 0) {
268 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
269 		} else {
270 			ticks = tvtohz_low(&tv); /* also handles overflow */
271 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
272 		}
273 		nanouptime(&ts2);
274 		if (error && error != EWOULDBLOCK) {
275 			if (error == ERESTART)
276 				error = EINTR;
277 			if (rmt != NULL) {
278 				timespecsub(&ts, &ts2);
279 				if (ts.tv_sec < 0)
280 					timespecclear(&ts);
281 				*rmt = ts;
282 			}
283 			return (error);
284 		}
285 		if (timespeccmp(&ts2, &ts, >=))
286 			return (0);
287 		ts3 = ts;
288 		timespecsub(&ts3, &ts2);
289 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
290 	}
291 }
292 
293 static void nanosleep_done(void *arg);
294 static void nanosleep_copyout(union sysunion *sysun);
295 
296 /* ARGSUSED */
297 int
298 nanosleep(struct nanosleep_args *uap)
299 {
300 	int error;
301 	struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
302 
303 	error = copyin(uap->rqtp, &smsleep->rqt, sizeof(smsleep->rqt));
304 	if (error)
305 		return (error);
306 	/*
307 	 * YYY clean this up to always use the callout, note that an abort
308 	 * implementation should record the residual in the async case.
309 	 */
310 	if (uap->sysmsg.lmsg.ms_flags & MSGF_ASYNC) {
311 		quad_t ticks;
312 
313 		ticks = (quad_t)smsleep->rqt.tv_nsec * hz / 1000000000LL;
314 		if (smsleep->rqt.tv_sec)
315 			ticks += (quad_t)smsleep->rqt.tv_sec * hz;
316 		if (ticks <= 0) {
317 			if (ticks == 0)
318 				error = 0;
319 			else
320 				error = EINVAL;
321 		} else {
322 			uap->sysmsg.copyout = nanosleep_copyout;
323 			uap->sysmsg.lmsg.ms_flags &= ~MSGF_DONE;
324 			callout_init(&smsleep->timer);
325 			callout_reset(&smsleep->timer, ticks, nanosleep_done, uap);
326 			error = EASYNC;
327 		}
328 	} else {
329 		/*
330 		 * Old synchronous sleep code, copyout the residual if
331 		 * nanosleep was interrupted.
332 		 */
333 		error = nanosleep1(&smsleep->rqt, &smsleep->rmt);
334 		if (error && SCARG(uap, rmtp))
335 			error = copyout(&smsleep->rmt, SCARG(uap, rmtp), sizeof(smsleep->rmt));
336 	}
337 	return (error);
338 }
339 
340 /*
341  * Asynch completion for the nanosleep() syscall.  This function may be
342  * called from any context and cannot legally access the originating
343  * thread, proc, or its user space.
344  *
345  * YYY change the callout interface API so we can simply assign the replymsg
346  * function to it directly.
347  */
348 static void
349 nanosleep_done(void *arg)
350 {
351 	struct nanosleep_args *uap = arg;
352 	lwkt_msg_t msg = &uap->sysmsg.lmsg;
353 
354 	lwkt_replymsg(msg, 0);
355 }
356 
357 /*
358  * Asynch return for the nanosleep() syscall, called in the context of the
359  * originating thread when it pulls the message off the reply port.  This
360  * function is responsible for any copyouts to userland.  Kernel threads
361  * which do their own internal system calls will not usually call the return
362  * function.
363  */
364 static void
365 nanosleep_copyout(union sysunion *sysun)
366 {
367 	struct nanosleep_args *uap = &sysun->nanosleep;
368 	struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
369 
370 	if (sysun->lmsg.ms_error && uap->rmtp) {
371 		sysun->lmsg.ms_error =
372 		    copyout(&smsleep->rmt, uap->rmtp, sizeof(smsleep->rmt));
373 	}
374 }
375 
376 /* ARGSUSED */
377 int
378 gettimeofday(struct gettimeofday_args *uap)
379 {
380 	struct timeval atv;
381 	int error = 0;
382 
383 	if (uap->tp) {
384 		microtime(&atv);
385 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
386 		    sizeof (atv))))
387 			return (error);
388 	}
389 	if (uap->tzp)
390 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
391 		    sizeof (tz));
392 	return (error);
393 }
394 
395 /* ARGSUSED */
396 int
397 settimeofday(struct settimeofday_args *uap)
398 {
399 	struct thread *td = curthread;
400 	struct timeval atv;
401 	struct timezone atz;
402 	int error;
403 
404 	if ((error = suser(td)))
405 		return (error);
406 	/* Verify all parameters before changing time. */
407 	if (uap->tv) {
408 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
409 		    sizeof(atv))))
410 			return (error);
411 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
412 			return (EINVAL);
413 	}
414 	if (uap->tzp &&
415 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
416 		return (error);
417 	if (uap->tv && (error = settime(&atv)))
418 		return (error);
419 	if (uap->tzp)
420 		tz = atz;
421 	return (0);
422 }
423 
424 int	tickdelta;			/* current clock skew, us. per tick */
425 long	timedelta;			/* unapplied time correction, us. */
426 static long	bigadj = 1000000;	/* use 10x skew above bigadj us. */
427 
428 /* ARGSUSED */
429 int
430 adjtime(struct adjtime_args *uap)
431 {
432 	struct thread *td = curthread;
433 	struct timeval atv;
434 	long ndelta, ntickdelta, odelta;
435 	int error;
436 
437 	if ((error = suser(td)))
438 		return (error);
439 	if ((error =
440 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
441 		return (error);
442 
443 	/*
444 	 * Compute the total correction and the rate at which to apply it.
445 	 * Round the adjustment down to a whole multiple of the per-tick
446 	 * delta, so that after some number of incremental changes in
447 	 * hardclock(), tickdelta will become zero, lest the correction
448 	 * overshoot and start taking us away from the desired final time.
449 	 */
450 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
451 	if (ndelta > bigadj || ndelta < -bigadj)
452 		ntickdelta = 10 * tickadj;
453 	else
454 		ntickdelta = tickadj;
455 	if (ndelta % ntickdelta)
456 		ndelta = ndelta / ntickdelta * ntickdelta;
457 
458 	/*
459 	 * To make hardclock()'s job easier, make the per-tick delta negative
460 	 * if we want time to run slower; then hardclock can simply compute
461 	 * tick + tickdelta, and subtract tickdelta from timedelta.
462 	 */
463 	if (ndelta < 0)
464 		ntickdelta = -ntickdelta;
465 	/*
466 	 * XXX not MP safe , but will probably work anyway.
467 	 */
468 	crit_enter();
469 	odelta = timedelta;
470 	timedelta = ndelta;
471 	tickdelta = ntickdelta;
472 	crit_exit();
473 
474 	if (uap->olddelta) {
475 		atv.tv_sec = odelta / 1000000;
476 		atv.tv_usec = odelta % 1000000;
477 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
478 		    sizeof(struct timeval));
479 	}
480 	return (0);
481 }
482 
483 /*
484  * Get value of an interval timer.  The process virtual and
485  * profiling virtual time timers are kept in the p_stats area, since
486  * they can be swapped out.  These are kept internally in the
487  * way they are specified externally: in time until they expire.
488  *
489  * The real time interval timer is kept in the process table slot
490  * for the process, and its value (it_value) is kept as an
491  * absolute time rather than as a delta, so that it is easy to keep
492  * periodic real-time signals from drifting.
493  *
494  * Virtual time timers are processed in the hardclock() routine of
495  * kern_clock.c.  The real time timer is processed by a timeout
496  * routine, called from the softclock() routine.  Since a callout
497  * may be delayed in real time due to interrupt processing in the system,
498  * it is possible for the real time timeout routine (realitexpire, given below),
499  * to be delayed in real time past when it is supposed to occur.  It
500  * does not suffice, therefore, to reload the real timer .it_value from the
501  * real time timers .it_interval.  Rather, we compute the next time in
502  * absolute time the timer should go off.
503  */
504 /* ARGSUSED */
505 int
506 getitimer(struct getitimer_args *uap)
507 {
508 	struct proc *p = curproc;
509 	struct timeval ctv;
510 	struct itimerval aitv;
511 
512 	if (uap->which > ITIMER_PROF)
513 		return (EINVAL);
514 	crit_enter();
515 	if (uap->which == ITIMER_REAL) {
516 		/*
517 		 * Convert from absolute to relative time in .it_value
518 		 * part of real time timer.  If time for real time timer
519 		 * has passed return 0, else return difference between
520 		 * current time and time for the timer to go off.
521 		 */
522 		aitv = p->p_realtimer;
523 		if (timevalisset(&aitv.it_value)) {
524 			getmicrouptime(&ctv);
525 			if (timevalcmp(&aitv.it_value, &ctv, <))
526 				timevalclear(&aitv.it_value);
527 			else
528 				timevalsub(&aitv.it_value, &ctv);
529 		}
530 	} else {
531 		aitv = p->p_stats->p_timer[uap->which];
532 	}
533 	crit_exit();
534 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
535 	    sizeof (struct itimerval)));
536 }
537 
538 /* ARGSUSED */
539 int
540 setitimer(struct setitimer_args *uap)
541 {
542 	struct itimerval aitv;
543 	struct timeval ctv;
544 	struct itimerval *itvp;
545 	struct proc *p = curproc;
546 	int error;
547 
548 	if (uap->which > ITIMER_PROF)
549 		return (EINVAL);
550 	itvp = uap->itv;
551 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
552 	    sizeof(struct itimerval))))
553 		return (error);
554 	if ((uap->itv = uap->oitv) &&
555 	    (error = getitimer((struct getitimer_args *)uap)))
556 		return (error);
557 	if (itvp == 0)
558 		return (0);
559 	if (itimerfix(&aitv.it_value))
560 		return (EINVAL);
561 	if (!timevalisset(&aitv.it_value))
562 		timevalclear(&aitv.it_interval);
563 	else if (itimerfix(&aitv.it_interval))
564 		return (EINVAL);
565 	crit_enter();
566 	if (uap->which == ITIMER_REAL) {
567 		if (timevalisset(&p->p_realtimer.it_value))
568 			callout_stop(&p->p_ithandle);
569 		if (timevalisset(&aitv.it_value))
570 			callout_reset(&p->p_ithandle,
571 			    tvtohz_high(&aitv.it_value), realitexpire, p);
572 		getmicrouptime(&ctv);
573 		timevaladd(&aitv.it_value, &ctv);
574 		p->p_realtimer = aitv;
575 	} else {
576 		p->p_stats->p_timer[uap->which] = aitv;
577 	}
578 	crit_exit();
579 	return (0);
580 }
581 
582 /*
583  * Real interval timer expired:
584  * send process whose timer expired an alarm signal.
585  * If time is not set up to reload, then just return.
586  * Else compute next time timer should go off which is > current time.
587  * This is where delay in processing this timeout causes multiple
588  * SIGALRM calls to be compressed into one.
589  * tvtohz_high() always adds 1 to allow for the time until the next clock
590  * interrupt being strictly less than 1 clock tick, but we don't want
591  * that here since we want to appear to be in sync with the clock
592  * interrupt even when we're delayed.
593  */
594 void
595 realitexpire(arg)
596 	void *arg;
597 {
598 	struct proc *p;
599 	struct timeval ctv, ntv;
600 
601 	p = (struct proc *)arg;
602 	psignal(p, SIGALRM);
603 	if (!timevalisset(&p->p_realtimer.it_interval)) {
604 		timevalclear(&p->p_realtimer.it_value);
605 		return;
606 	}
607 	for (;;) {
608 		crit_enter();
609 		timevaladd(&p->p_realtimer.it_value,
610 		    &p->p_realtimer.it_interval);
611 		getmicrouptime(&ctv);
612 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
613 			ntv = p->p_realtimer.it_value;
614 			timevalsub(&ntv, &ctv);
615 			callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
616 				      realitexpire, p);
617 			crit_exit();
618 			return;
619 		}
620 		crit_exit();
621 	}
622 }
623 
624 /*
625  * Check that a proposed value to load into the .it_value or
626  * .it_interval part of an interval timer is acceptable, and
627  * fix it to have at least minimal value (i.e. if it is less
628  * than the resolution of the clock, round it up.)
629  */
630 int
631 itimerfix(tv)
632 	struct timeval *tv;
633 {
634 
635 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
636 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
637 		return (EINVAL);
638 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
639 		tv->tv_usec = tick;
640 	return (0);
641 }
642 
643 /*
644  * Decrement an interval timer by a specified number
645  * of microseconds, which must be less than a second,
646  * i.e. < 1000000.  If the timer expires, then reload
647  * it.  In this case, carry over (usec - old value) to
648  * reduce the value reloaded into the timer so that
649  * the timer does not drift.  This routine assumes
650  * that it is called in a context where the timers
651  * on which it is operating cannot change in value.
652  */
653 int
654 itimerdecr(itp, usec)
655 	struct itimerval *itp;
656 	int usec;
657 {
658 
659 	if (itp->it_value.tv_usec < usec) {
660 		if (itp->it_value.tv_sec == 0) {
661 			/* expired, and already in next interval */
662 			usec -= itp->it_value.tv_usec;
663 			goto expire;
664 		}
665 		itp->it_value.tv_usec += 1000000;
666 		itp->it_value.tv_sec--;
667 	}
668 	itp->it_value.tv_usec -= usec;
669 	usec = 0;
670 	if (timevalisset(&itp->it_value))
671 		return (1);
672 	/* expired, exactly at end of interval */
673 expire:
674 	if (timevalisset(&itp->it_interval)) {
675 		itp->it_value = itp->it_interval;
676 		itp->it_value.tv_usec -= usec;
677 		if (itp->it_value.tv_usec < 0) {
678 			itp->it_value.tv_usec += 1000000;
679 			itp->it_value.tv_sec--;
680 		}
681 	} else
682 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
683 	return (0);
684 }
685 
686 /*
687  * Add and subtract routines for timevals.
688  * N.B.: subtract routine doesn't deal with
689  * results which are before the beginning,
690  * it just gets very confused in this case.
691  * Caveat emptor.
692  */
693 void
694 timevaladd(t1, t2)
695 	struct timeval *t1, *t2;
696 {
697 
698 	t1->tv_sec += t2->tv_sec;
699 	t1->tv_usec += t2->tv_usec;
700 	timevalfix(t1);
701 }
702 
703 void
704 timevalsub(t1, t2)
705 	struct timeval *t1, *t2;
706 {
707 
708 	t1->tv_sec -= t2->tv_sec;
709 	t1->tv_usec -= t2->tv_usec;
710 	timevalfix(t1);
711 }
712 
713 static void
714 timevalfix(t1)
715 	struct timeval *t1;
716 {
717 
718 	if (t1->tv_usec < 0) {
719 		t1->tv_sec--;
720 		t1->tv_usec += 1000000;
721 	}
722 	if (t1->tv_usec >= 1000000) {
723 		t1->tv_sec++;
724 		t1->tv_usec -= 1000000;
725 	}
726 }
727 
728 /*
729  * ratecheck(): simple time-based rate-limit checking.
730  */
731 int
732 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
733 {
734 	struct timeval tv, delta;
735 	int rv = 0;
736 
737 	getmicrouptime(&tv);		/* NB: 10ms precision */
738 	delta = tv;
739 	timevalsub(&delta, lasttime);
740 
741 	/*
742 	 * check for 0,0 is so that the message will be seen at least once,
743 	 * even if interval is huge.
744 	 */
745 	if (timevalcmp(&delta, mininterval, >=) ||
746 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
747 		*lasttime = tv;
748 		rv = 1;
749 	}
750 
751 	return (rv);
752 }
753 
754 /*
755  * ppsratecheck(): packets (or events) per second limitation.
756  *
757  * Return 0 if the limit is to be enforced (e.g. the caller
758  * should drop a packet because of the rate limitation).
759  *
760  * maxpps of 0 always causes zero to be returned.  maxpps of -1
761  * always causes 1 to be returned; this effectively defeats rate
762  * limiting.
763  *
764  * Note that we maintain the struct timeval for compatibility
765  * with other bsd systems.  We reuse the storage and just monitor
766  * clock ticks for minimal overhead.
767  */
768 int
769 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
770 {
771 	int now;
772 
773 	/*
774 	 * Reset the last time and counter if this is the first call
775 	 * or more than a second has passed since the last update of
776 	 * lasttime.
777 	 */
778 	now = ticks;
779 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
780 		lasttime->tv_sec = now;
781 		*curpps = 1;
782 		return (maxpps != 0);
783 	} else {
784 		(*curpps)++;		/* NB: ignore potential overflow */
785 		return (maxpps < 0 || *curpps < maxpps);
786 	}
787 }
788 
789