xref: /dragonfly/sys/kern/kern_time.c (revision dcd37f7d)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35  * $DragonFly: src/sys/kern/kern_time.c,v 1.40 2008/04/02 14:16:16 sephe Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/sysunion.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/time.h>
51 #include <sys/vnode.h>
52 #include <sys/sysctl.h>
53 #include <sys/kern_syscall.h>
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 
57 #include <sys/msgport2.h>
58 #include <sys/thread2.h>
59 #include <sys/mplock2.h>
60 
61 struct timezone tz;
62 
63 /*
64  * Time of day and interval timer support.
65  *
66  * These routines provide the kernel entry points to get and set
67  * the time-of-day and per-process interval timers.  Subroutines
68  * here provide support for adding and subtracting timeval structures
69  * and decrementing interval timers, optionally reloading the interval
70  * timers when they expire.
71  */
72 
73 int	nanosleep1(struct timespec *rqt, struct timespec *rmt);
74 static int	settime(struct timeval *);
75 static void	timevalfix(struct timeval *);
76 
77 static int     sleep_hard_us = 100;
78 SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
79 
80 static int
81 settime(struct timeval *tv)
82 {
83 	struct timeval delta, tv1, tv2;
84 	static struct timeval maxtime, laststep;
85 	struct timespec ts;
86 	int origcpu;
87 
88 	if ((origcpu = mycpu->gd_cpuid) != 0)
89 		lwkt_setcpu_self(globaldata_find(0));
90 
91 	crit_enter();
92 	microtime(&tv1);
93 	delta = *tv;
94 	timevalsub(&delta, &tv1);
95 
96 	/*
97 	 * If the system is secure, we do not allow the time to be
98 	 * set to a value earlier than 1 second less than the highest
99 	 * time we have yet seen. The worst a miscreant can do in
100 	 * this circumstance is "freeze" time. He couldn't go
101 	 * back to the past.
102 	 *
103 	 * We similarly do not allow the clock to be stepped more
104 	 * than one second, nor more than once per second. This allows
105 	 * a miscreant to make the clock march double-time, but no worse.
106 	 */
107 	if (securelevel > 1) {
108 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
109 			/*
110 			 * Update maxtime to latest time we've seen.
111 			 */
112 			if (tv1.tv_sec > maxtime.tv_sec)
113 				maxtime = tv1;
114 			tv2 = *tv;
115 			timevalsub(&tv2, &maxtime);
116 			if (tv2.tv_sec < -1) {
117 				tv->tv_sec = maxtime.tv_sec - 1;
118 				kprintf("Time adjustment clamped to -1 second\n");
119 			}
120 		} else {
121 			if (tv1.tv_sec == laststep.tv_sec) {
122 				crit_exit();
123 				return (EPERM);
124 			}
125 			if (delta.tv_sec > 1) {
126 				tv->tv_sec = tv1.tv_sec + 1;
127 				kprintf("Time adjustment clamped to +1 second\n");
128 			}
129 			laststep = *tv;
130 		}
131 	}
132 
133 	ts.tv_sec = tv->tv_sec;
134 	ts.tv_nsec = tv->tv_usec * 1000;
135 	set_timeofday(&ts);
136 	crit_exit();
137 
138 	if (origcpu != 0)
139 		lwkt_setcpu_self(globaldata_find(origcpu));
140 
141 	resettodr();
142 	return (0);
143 }
144 
145 /*
146  * MPSAFE
147  */
148 int
149 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
150 {
151 	int error = 0;
152 
153 	switch(clock_id) {
154 	case CLOCK_REALTIME:
155 		nanotime(ats);
156 		break;
157 	case CLOCK_MONOTONIC:
158 		nanouptime(ats);
159 		break;
160 	default:
161 		error = EINVAL;
162 		break;
163 	}
164 	return (error);
165 }
166 
167 /*
168  * MPSAFE
169  */
170 int
171 sys_clock_gettime(struct clock_gettime_args *uap)
172 {
173 	struct timespec ats;
174 	int error;
175 
176 	error = kern_clock_gettime(uap->clock_id, &ats);
177 	if (error == 0)
178 		error = copyout(&ats, uap->tp, sizeof(ats));
179 
180 	return (error);
181 }
182 
183 int
184 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
185 {
186 	struct thread *td = curthread;
187 	struct timeval atv;
188 	int error;
189 
190 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
191 		return (error);
192 	if (clock_id != CLOCK_REALTIME)
193 		return (EINVAL);
194 	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
195 		return (EINVAL);
196 
197 	TIMESPEC_TO_TIMEVAL(&atv, ats);
198 	error = settime(&atv);
199 	return (error);
200 }
201 
202 /*
203  * MPALMOSTSAFE
204  */
205 int
206 sys_clock_settime(struct clock_settime_args *uap)
207 {
208 	struct timespec ats;
209 	int error;
210 
211 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
212 		return (error);
213 
214 	get_mplock();
215 	error = kern_clock_settime(uap->clock_id, &ats);
216 	rel_mplock();
217 	return (error);
218 }
219 
220 /*
221  * MPSAFE
222  */
223 int
224 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
225 {
226 	int error;
227 
228 	switch(clock_id) {
229 	case CLOCK_REALTIME:
230 	case CLOCK_MONOTONIC:
231 		/*
232 		 * Round up the result of the division cheaply
233 		 * by adding 1.  Rounding up is especially important
234 		 * if rounding down would give 0.  Perfect rounding
235 		 * is unimportant.
236 		 */
237 		ts->tv_sec = 0;
238 		ts->tv_nsec = 1000000000 / sys_cputimer->freq + 1;
239 		error = 0;
240 		break;
241 	default:
242 		error = EINVAL;
243 		break;
244 	}
245 
246 	return(error);
247 }
248 
249 /*
250  * MPSAFE
251  */
252 int
253 sys_clock_getres(struct clock_getres_args *uap)
254 {
255 	int error;
256 	struct timespec ts;
257 
258 	error = kern_clock_getres(uap->clock_id, &ts);
259 	if (error == 0)
260 		error = copyout(&ts, uap->tp, sizeof(ts));
261 
262 	return (error);
263 }
264 
265 /*
266  * nanosleep1()
267  *
268  *	This is a general helper function for nanosleep() (aka sleep() aka
269  *	usleep()).
270  *
271  *	If there is less then one tick's worth of time left and
272  *	we haven't done a yield, or the remaining microseconds is
273  *	ridiculously low, do a yield.  This avoids having
274  *	to deal with systimer overheads when the system is under
275  *	heavy loads.  If we have done a yield already then use
276  *	a systimer and an uninterruptable thread wait.
277  *
278  *	If there is more then a tick's worth of time left,
279  *	calculate the baseline ticks and use an interruptable
280  *	tsleep, then handle the fine-grained delay on the next
281  *	loop.  This usually results in two sleeps occuring, a long one
282  *	and a short one.
283  *
284  * MPSAFE
285  */
286 static void
287 ns1_systimer(systimer_t info)
288 {
289 	lwkt_schedule(info->data);
290 }
291 
292 int
293 nanosleep1(struct timespec *rqt, struct timespec *rmt)
294 {
295 	static int nanowait;
296 	struct timespec ts, ts2, ts3;
297 	struct timeval tv;
298 	int error;
299 	int tried_yield;
300 
301 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
302 		return (EINVAL);
303 	/* XXX: imho this should return EINVAL at least for tv_sec < 0 */
304 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
305 		return (0);
306 	nanouptime(&ts);
307 	timespecadd(&ts, rqt);		/* ts = target timestamp compare */
308 	TIMESPEC_TO_TIMEVAL(&tv, rqt);	/* tv = sleep interval */
309 	tried_yield = 0;
310 
311 	for (;;) {
312 		int ticks;
313 		struct systimer info;
314 
315 		ticks = tv.tv_usec / ustick;	/* approximate */
316 
317 		if (tv.tv_sec == 0 && ticks == 0) {
318 			thread_t td = curthread;
319 			if (tried_yield || tv.tv_usec < sleep_hard_us) {
320 				tried_yield = 0;
321 				uio_yield();
322 			} else {
323 				crit_enter_quick(td);
324 				systimer_init_oneshot(&info, ns1_systimer,
325 						td, tv.tv_usec);
326 				lwkt_deschedule_self(td);
327 				crit_exit_quick(td);
328 				lwkt_switch();
329 				systimer_del(&info); /* make sure it's gone */
330 			}
331 			error = iscaught(td->td_lwp);
332 		} else if (tv.tv_sec == 0) {
333 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
334 		} else {
335 			ticks = tvtohz_low(&tv); /* also handles overflow */
336 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
337 		}
338 		nanouptime(&ts2);
339 		if (error && error != EWOULDBLOCK) {
340 			if (error == ERESTART)
341 				error = EINTR;
342 			if (rmt != NULL) {
343 				timespecsub(&ts, &ts2);
344 				if (ts.tv_sec < 0)
345 					timespecclear(&ts);
346 				*rmt = ts;
347 			}
348 			return (error);
349 		}
350 		if (timespeccmp(&ts2, &ts, >=))
351 			return (0);
352 		ts3 = ts;
353 		timespecsub(&ts3, &ts2);
354 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
355 	}
356 }
357 
358 /*
359  * MPSAFE
360  */
361 int
362 sys_nanosleep(struct nanosleep_args *uap)
363 {
364 	int error;
365 	struct timespec rqt;
366 	struct timespec rmt;
367 
368 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
369 	if (error)
370 		return (error);
371 
372 	error = nanosleep1(&rqt, &rmt);
373 
374 	/*
375 	 * copyout the residual if nanosleep was interrupted.
376 	 */
377 	if (error && uap->rmtp) {
378 		int error2;
379 
380 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
381 		if (error2)
382 			error = error2;
383 	}
384 	return (error);
385 }
386 
387 /*
388  * MPSAFE
389  */
390 int
391 sys_gettimeofday(struct gettimeofday_args *uap)
392 {
393 	struct timeval atv;
394 	int error = 0;
395 
396 	if (uap->tp) {
397 		microtime(&atv);
398 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
399 		    sizeof (atv))))
400 			return (error);
401 	}
402 	if (uap->tzp)
403 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
404 		    sizeof (tz));
405 	return (error);
406 }
407 
408 /*
409  * MPALMOSTSAFE
410  */
411 int
412 sys_settimeofday(struct settimeofday_args *uap)
413 {
414 	struct thread *td = curthread;
415 	struct timeval atv;
416 	struct timezone atz;
417 	int error;
418 
419 	if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
420 		return (error);
421 	/* Verify all parameters before changing time. */
422 	if (uap->tv) {
423 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
424 		    sizeof(atv))))
425 			return (error);
426 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
427 			return (EINVAL);
428 	}
429 	if (uap->tzp &&
430 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
431 		return (error);
432 
433 	get_mplock();
434 	if (uap->tv && (error = settime(&atv))) {
435 		rel_mplock();
436 		return (error);
437 	}
438 	rel_mplock();
439 	if (uap->tzp)
440 		tz = atz;
441 	return (0);
442 }
443 
444 static void
445 kern_adjtime_common(void)
446 {
447 	if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
448 	    (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
449 		ntp_tick_delta = ntp_delta;
450 	else if (ntp_delta > ntp_big_delta)
451 		ntp_tick_delta = 10 * ntp_default_tick_delta;
452 	else if (ntp_delta < -ntp_big_delta)
453 		ntp_tick_delta = -10 * ntp_default_tick_delta;
454 	else if (ntp_delta > 0)
455 		ntp_tick_delta = ntp_default_tick_delta;
456 	else
457 		ntp_tick_delta = -ntp_default_tick_delta;
458 }
459 
460 void
461 kern_adjtime(int64_t delta, int64_t *odelta)
462 {
463 	int origcpu;
464 
465 	if ((origcpu = mycpu->gd_cpuid) != 0)
466 		lwkt_setcpu_self(globaldata_find(0));
467 
468 	crit_enter();
469 	*odelta = ntp_delta;
470 	ntp_delta = delta;
471 	kern_adjtime_common();
472 	crit_exit();
473 
474 	if (origcpu != 0)
475 		lwkt_setcpu_self(globaldata_find(origcpu));
476 }
477 
478 static void
479 kern_get_ntp_delta(int64_t *delta)
480 {
481 	int origcpu;
482 
483 	if ((origcpu = mycpu->gd_cpuid) != 0)
484 		lwkt_setcpu_self(globaldata_find(0));
485 
486 	crit_enter();
487 	*delta = ntp_delta;
488 	crit_exit();
489 
490 	if (origcpu != 0)
491 		lwkt_setcpu_self(globaldata_find(origcpu));
492 }
493 
494 void
495 kern_reladjtime(int64_t delta)
496 {
497 	int origcpu;
498 
499 	if ((origcpu = mycpu->gd_cpuid) != 0)
500 		lwkt_setcpu_self(globaldata_find(0));
501 
502 	crit_enter();
503 	ntp_delta += delta;
504 	kern_adjtime_common();
505 	crit_exit();
506 
507 	if (origcpu != 0)
508 		lwkt_setcpu_self(globaldata_find(origcpu));
509 }
510 
511 static void
512 kern_adjfreq(int64_t rate)
513 {
514 	int origcpu;
515 
516 	if ((origcpu = mycpu->gd_cpuid) != 0)
517 		lwkt_setcpu_self(globaldata_find(0));
518 
519 	crit_enter();
520 	ntp_tick_permanent = rate;
521 	crit_exit();
522 
523 	if (origcpu != 0)
524 		lwkt_setcpu_self(globaldata_find(origcpu));
525 }
526 
527 /*
528  * MPALMOSTSAFE
529  */
530 int
531 sys_adjtime(struct adjtime_args *uap)
532 {
533 	struct thread *td = curthread;
534 	struct timeval atv;
535 	int64_t ndelta, odelta;
536 	int error;
537 
538 	if ((error = priv_check(td, PRIV_ADJTIME)))
539 		return (error);
540 	error = copyin(uap->delta, &atv, sizeof(struct timeval));
541 	if (error)
542 		return (error);
543 
544 	/*
545 	 * Compute the total correction and the rate at which to apply it.
546 	 * Round the adjustment down to a whole multiple of the per-tick
547 	 * delta, so that after some number of incremental changes in
548 	 * hardclock(), tickdelta will become zero, lest the correction
549 	 * overshoot and start taking us away from the desired final time.
550 	 */
551 	ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
552 	get_mplock();
553 	kern_adjtime(ndelta, &odelta);
554 	rel_mplock();
555 
556 	if (uap->olddelta) {
557 		atv.tv_sec = odelta / 1000000000;
558 		atv.tv_usec = odelta % 1000000000 / 1000;
559 		copyout(&atv, uap->olddelta, sizeof(struct timeval));
560 	}
561 	return (0);
562 }
563 
564 static int
565 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
566 {
567 	int64_t delta;
568 	int error;
569 
570 	if (req->newptr != NULL) {
571 		if (priv_check(curthread, PRIV_ROOT))
572 			return (EPERM);
573 		error = SYSCTL_IN(req, &delta, sizeof(delta));
574 		if (error)
575 			return (error);
576 		kern_reladjtime(delta);
577 	}
578 
579 	if (req->oldptr)
580 		kern_get_ntp_delta(&delta);
581 	error = SYSCTL_OUT(req, &delta, sizeof(delta));
582 	return (error);
583 }
584 
585 /*
586  * delta is in nanoseconds.
587  */
588 static int
589 sysctl_delta(SYSCTL_HANDLER_ARGS)
590 {
591 	int64_t delta, old_delta;
592 	int error;
593 
594 	if (req->newptr != NULL) {
595 		if (priv_check(curthread, PRIV_ROOT))
596 			return (EPERM);
597 		error = SYSCTL_IN(req, &delta, sizeof(delta));
598 		if (error)
599 			return (error);
600 		kern_adjtime(delta, &old_delta);
601 	}
602 
603 	if (req->oldptr != NULL)
604 		kern_get_ntp_delta(&old_delta);
605 	error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
606 	return (error);
607 }
608 
609 /*
610  * frequency is in nanoseconds per second shifted left 32.
611  * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
612  */
613 static int
614 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
615 {
616 	int64_t freqdelta;
617 	int error;
618 
619 	if (req->newptr != NULL) {
620 		if (priv_check(curthread, PRIV_ROOT))
621 			return (EPERM);
622 		error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
623 		if (error)
624 			return (error);
625 
626 		freqdelta /= hz;
627 		kern_adjfreq(freqdelta);
628 	}
629 
630 	if (req->oldptr != NULL)
631 		freqdelta = ntp_tick_permanent * hz;
632 	error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
633 	if (error)
634 		return (error);
635 
636 	return (0);
637 }
638 
639 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
640 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
641     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
642     sysctl_adjfreq, "Q", "permanent correction per second");
643 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
644     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
645     sysctl_delta, "Q", "one-time delta");
646 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
647     &ntp_big_delta, sizeof(ntp_big_delta), "Q",
648     "threshold for fast adjustment");
649 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
650     &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
651     "per-tick adjustment");
652 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
653     &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
654     "default per-tick adjustment");
655 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
656     &ntp_leap_second, sizeof(ntp_leap_second), "LU",
657     "next leap second");
658 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
659     &ntp_leap_insert, 0, "insert or remove leap second");
660 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
661     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
662     sysctl_adjtime, "Q", "relative adjust for delta");
663 
664 /*
665  * Get value of an interval timer.  The process virtual and
666  * profiling virtual time timers are kept in the p_stats area, since
667  * they can be swapped out.  These are kept internally in the
668  * way they are specified externally: in time until they expire.
669  *
670  * The real time interval timer is kept in the process table slot
671  * for the process, and its value (it_value) is kept as an
672  * absolute time rather than as a delta, so that it is easy to keep
673  * periodic real-time signals from drifting.
674  *
675  * Virtual time timers are processed in the hardclock() routine of
676  * kern_clock.c.  The real time timer is processed by a timeout
677  * routine, called from the softclock() routine.  Since a callout
678  * may be delayed in real time due to interrupt processing in the system,
679  * it is possible for the real time timeout routine (realitexpire, given below),
680  * to be delayed in real time past when it is supposed to occur.  It
681  * does not suffice, therefore, to reload the real timer .it_value from the
682  * real time timers .it_interval.  Rather, we compute the next time in
683  * absolute time the timer should go off.
684  *
685  * MPALMOSTSAFE
686  */
687 int
688 sys_getitimer(struct getitimer_args *uap)
689 {
690 	struct proc *p = curproc;
691 	struct timeval ctv;
692 	struct itimerval aitv;
693 
694 	if (uap->which > ITIMER_PROF)
695 		return (EINVAL);
696 	get_mplock();
697 	crit_enter();
698 	if (uap->which == ITIMER_REAL) {
699 		/*
700 		 * Convert from absolute to relative time in .it_value
701 		 * part of real time timer.  If time for real time timer
702 		 * has passed return 0, else return difference between
703 		 * current time and time for the timer to go off.
704 		 */
705 		aitv = p->p_realtimer;
706 		if (timevalisset(&aitv.it_value)) {
707 			getmicrouptime(&ctv);
708 			if (timevalcmp(&aitv.it_value, &ctv, <))
709 				timevalclear(&aitv.it_value);
710 			else
711 				timevalsub(&aitv.it_value, &ctv);
712 		}
713 	} else {
714 		aitv = p->p_timer[uap->which];
715 	}
716 	crit_exit();
717 	rel_mplock();
718 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
719 }
720 
721 /*
722  * MPALMOSTSAFE
723  */
724 int
725 sys_setitimer(struct setitimer_args *uap)
726 {
727 	struct itimerval aitv;
728 	struct timeval ctv;
729 	struct itimerval *itvp;
730 	struct proc *p = curproc;
731 	int error;
732 
733 	if (uap->which > ITIMER_PROF)
734 		return (EINVAL);
735 	itvp = uap->itv;
736 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
737 	    sizeof(struct itimerval))))
738 		return (error);
739 	if ((uap->itv = uap->oitv) &&
740 	    (error = sys_getitimer((struct getitimer_args *)uap)))
741 		return (error);
742 	if (itvp == 0)
743 		return (0);
744 	if (itimerfix(&aitv.it_value))
745 		return (EINVAL);
746 	if (!timevalisset(&aitv.it_value))
747 		timevalclear(&aitv.it_interval);
748 	else if (itimerfix(&aitv.it_interval))
749 		return (EINVAL);
750 	get_mplock();
751 	crit_enter();
752 	if (uap->which == ITIMER_REAL) {
753 		if (timevalisset(&p->p_realtimer.it_value))
754 			callout_stop(&p->p_ithandle);
755 		if (timevalisset(&aitv.it_value))
756 			callout_reset(&p->p_ithandle,
757 			    tvtohz_high(&aitv.it_value), realitexpire, p);
758 		getmicrouptime(&ctv);
759 		timevaladd(&aitv.it_value, &ctv);
760 		p->p_realtimer = aitv;
761 	} else {
762 		p->p_timer[uap->which] = aitv;
763 	}
764 	crit_exit();
765 	rel_mplock();
766 	return (0);
767 }
768 
769 /*
770  * Real interval timer expired:
771  * send process whose timer expired an alarm signal.
772  * If time is not set up to reload, then just return.
773  * Else compute next time timer should go off which is > current time.
774  * This is where delay in processing this timeout causes multiple
775  * SIGALRM calls to be compressed into one.
776  * tvtohz_high() always adds 1 to allow for the time until the next clock
777  * interrupt being strictly less than 1 clock tick, but we don't want
778  * that here since we want to appear to be in sync with the clock
779  * interrupt even when we're delayed.
780  */
781 void
782 realitexpire(void *arg)
783 {
784 	struct proc *p;
785 	struct timeval ctv, ntv;
786 
787 	p = (struct proc *)arg;
788 	ksignal(p, SIGALRM);
789 	if (!timevalisset(&p->p_realtimer.it_interval)) {
790 		timevalclear(&p->p_realtimer.it_value);
791 		return;
792 	}
793 	for (;;) {
794 		crit_enter();
795 		timevaladd(&p->p_realtimer.it_value,
796 		    &p->p_realtimer.it_interval);
797 		getmicrouptime(&ctv);
798 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
799 			ntv = p->p_realtimer.it_value;
800 			timevalsub(&ntv, &ctv);
801 			callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
802 				      realitexpire, p);
803 			crit_exit();
804 			return;
805 		}
806 		crit_exit();
807 	}
808 }
809 
810 /*
811  * Check that a proposed value to load into the .it_value or
812  * .it_interval part of an interval timer is acceptable, and
813  * fix it to have at least minimal value (i.e. if it is less
814  * than the resolution of the clock, round it up.)
815  *
816  * MPSAFE
817  */
818 int
819 itimerfix(struct timeval *tv)
820 {
821 
822 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
823 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
824 		return (EINVAL);
825 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < ustick)
826 		tv->tv_usec = ustick;
827 	return (0);
828 }
829 
830 /*
831  * Decrement an interval timer by a specified number
832  * of microseconds, which must be less than a second,
833  * i.e. < 1000000.  If the timer expires, then reload
834  * it.  In this case, carry over (usec - old value) to
835  * reduce the value reloaded into the timer so that
836  * the timer does not drift.  This routine assumes
837  * that it is called in a context where the timers
838  * on which it is operating cannot change in value.
839  */
840 int
841 itimerdecr(struct itimerval *itp, int usec)
842 {
843 
844 	if (itp->it_value.tv_usec < usec) {
845 		if (itp->it_value.tv_sec == 0) {
846 			/* expired, and already in next interval */
847 			usec -= itp->it_value.tv_usec;
848 			goto expire;
849 		}
850 		itp->it_value.tv_usec += 1000000;
851 		itp->it_value.tv_sec--;
852 	}
853 	itp->it_value.tv_usec -= usec;
854 	usec = 0;
855 	if (timevalisset(&itp->it_value))
856 		return (1);
857 	/* expired, exactly at end of interval */
858 expire:
859 	if (timevalisset(&itp->it_interval)) {
860 		itp->it_value = itp->it_interval;
861 		itp->it_value.tv_usec -= usec;
862 		if (itp->it_value.tv_usec < 0) {
863 			itp->it_value.tv_usec += 1000000;
864 			itp->it_value.tv_sec--;
865 		}
866 	} else
867 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
868 	return (0);
869 }
870 
871 /*
872  * Add and subtract routines for timevals.
873  * N.B.: subtract routine doesn't deal with
874  * results which are before the beginning,
875  * it just gets very confused in this case.
876  * Caveat emptor.
877  */
878 void
879 timevaladd(struct timeval *t1, const struct timeval *t2)
880 {
881 
882 	t1->tv_sec += t2->tv_sec;
883 	t1->tv_usec += t2->tv_usec;
884 	timevalfix(t1);
885 }
886 
887 void
888 timevalsub(struct timeval *t1, const struct timeval *t2)
889 {
890 
891 	t1->tv_sec -= t2->tv_sec;
892 	t1->tv_usec -= t2->tv_usec;
893 	timevalfix(t1);
894 }
895 
896 static void
897 timevalfix(struct timeval *t1)
898 {
899 
900 	if (t1->tv_usec < 0) {
901 		t1->tv_sec--;
902 		t1->tv_usec += 1000000;
903 	}
904 	if (t1->tv_usec >= 1000000) {
905 		t1->tv_sec++;
906 		t1->tv_usec -= 1000000;
907 	}
908 }
909 
910 /*
911  * ratecheck(): simple time-based rate-limit checking.
912  */
913 int
914 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
915 {
916 	struct timeval tv, delta;
917 	int rv = 0;
918 
919 	getmicrouptime(&tv);		/* NB: 10ms precision */
920 	delta = tv;
921 	timevalsub(&delta, lasttime);
922 
923 	/*
924 	 * check for 0,0 is so that the message will be seen at least once,
925 	 * even if interval is huge.
926 	 */
927 	if (timevalcmp(&delta, mininterval, >=) ||
928 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
929 		*lasttime = tv;
930 		rv = 1;
931 	}
932 
933 	return (rv);
934 }
935 
936 /*
937  * ppsratecheck(): packets (or events) per second limitation.
938  *
939  * Return 0 if the limit is to be enforced (e.g. the caller
940  * should drop a packet because of the rate limitation).
941  *
942  * maxpps of 0 always causes zero to be returned.  maxpps of -1
943  * always causes 1 to be returned; this effectively defeats rate
944  * limiting.
945  *
946  * Note that we maintain the struct timeval for compatibility
947  * with other bsd systems.  We reuse the storage and just monitor
948  * clock ticks for minimal overhead.
949  */
950 int
951 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
952 {
953 	int now;
954 
955 	/*
956 	 * Reset the last time and counter if this is the first call
957 	 * or more than a second has passed since the last update of
958 	 * lasttime.
959 	 */
960 	now = ticks;
961 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
962 		lasttime->tv_sec = now;
963 		*curpps = 1;
964 		return (maxpps != 0);
965 	} else {
966 		(*curpps)++;		/* NB: ignore potential overflow */
967 		return (maxpps < 0 || *curpps < maxpps);
968 	}
969 }
970 
971