xref: /dragonfly/sys/kern/kern_time.c (revision fc7075bb)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/sysproto.h>
37 #include <sys/resourcevar.h>
38 #include <sys/signalvar.h>
39 #include <sys/kernel.h>
40 #include <sys/sysent.h>
41 #include <sys/sysunion.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/time.h>
45 #include <sys/vnode.h>
46 #include <sys/sysctl.h>
47 #include <sys/kern_syscall.h>
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
50 
51 #include <sys/msgport2.h>
52 #include <sys/spinlock2.h>
53 #include <sys/thread2.h>
54 
55 extern struct spinlock ntp_spin;
56 
57 struct timezone tz;
58 
59 /*
60  * Time of day and interval timer support.
61  *
62  * These routines provide the kernel entry points to get and set
63  * the time-of-day and per-process interval timers.  Subroutines
64  * here provide support for adding and subtracting timeval structures
65  * and decrementing interval timers, optionally reloading the interval
66  * timers when they expire.
67  */
68 
69 static int	settime(struct timeval *);
70 static void	timevalfix(struct timeval *);
71 static void	realitexpire(void *arg);
72 
73 /*
74  * Nanosleep tries very hard to sleep for a precisely requested time
75  * interval, down to 1uS.  The administrator can impose a minimum delay
76  * and a delay below which we hard-loop instead of initiate a timer
77  * interrupt and sleep.
78  *
79  * For machines under high loads it might be beneficial to increase min_us
80  * to e.g. 1000uS (1ms) so spining processes sleep meaningfully.
81  */
82 static int     nanosleep_min_us = 10;
83 static int     nanosleep_hard_us = 100;
84 static int     gettimeofday_quick = 0;
85 SYSCTL_INT(_kern, OID_AUTO, nanosleep_min_us, CTLFLAG_RW,
86 	   &nanosleep_min_us, 0, "");
87 SYSCTL_INT(_kern, OID_AUTO, nanosleep_hard_us, CTLFLAG_RW,
88 	   &nanosleep_hard_us, 0, "");
89 SYSCTL_INT(_kern, OID_AUTO, gettimeofday_quick, CTLFLAG_RW,
90 	   &gettimeofday_quick, 0, "");
91 
92 static struct lock masterclock_lock = LOCK_INITIALIZER("mstrclk", 0, 0);
93 
94 static int
95 settime(struct timeval *tv)
96 {
97 	struct timeval delta, tv1, tv2;
98 	static struct timeval maxtime, laststep;
99 	struct timespec ts;
100 	int origcpu;
101 
102 	if ((origcpu = mycpu->gd_cpuid) != 0)
103 		lwkt_setcpu_self(globaldata_find(0));
104 
105 	crit_enter();
106 	microtime(&tv1);
107 	delta = *tv;
108 	timevalsub(&delta, &tv1);
109 
110 	/*
111 	 * If the system is secure, we do not allow the time to be
112 	 * set to a value earlier than 1 second less than the highest
113 	 * time we have yet seen. The worst a miscreant can do in
114 	 * this circumstance is "freeze" time. He couldn't go
115 	 * back to the past.
116 	 *
117 	 * We similarly do not allow the clock to be stepped more
118 	 * than one second, nor more than once per second. This allows
119 	 * a miscreant to make the clock march double-time, but no worse.
120 	 */
121 	if (securelevel > 1) {
122 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
123 			/*
124 			 * Update maxtime to latest time we've seen.
125 			 */
126 			if (tv1.tv_sec > maxtime.tv_sec)
127 				maxtime = tv1;
128 			tv2 = *tv;
129 			timevalsub(&tv2, &maxtime);
130 			if (tv2.tv_sec < -1) {
131 				tv->tv_sec = maxtime.tv_sec - 1;
132 				kprintf("Time adjustment clamped to -1 second\n");
133 			}
134 		} else {
135 			if (tv1.tv_sec == laststep.tv_sec) {
136 				crit_exit();
137 				return (EPERM);
138 			}
139 			if (delta.tv_sec > 1) {
140 				tv->tv_sec = tv1.tv_sec + 1;
141 				kprintf("Time adjustment clamped to +1 second\n");
142 			}
143 			laststep = *tv;
144 		}
145 	}
146 
147 	ts.tv_sec = tv->tv_sec;
148 	ts.tv_nsec = tv->tv_usec * 1000;
149 	set_timeofday(&ts);
150 	crit_exit();
151 
152 	if (origcpu != 0)
153 		lwkt_setcpu_self(globaldata_find(origcpu));
154 
155 	resettodr();
156 	return (0);
157 }
158 
159 static void
160 get_process_cputime(struct proc *p, struct timespec *ats)
161 {
162 	struct rusage ru;
163 
164 	lwkt_gettoken(&p->p_token);
165 	calcru_proc(p, &ru);
166 	lwkt_reltoken(&p->p_token);
167 	timevaladd(&ru.ru_utime, &ru.ru_stime);
168 	TIMEVAL_TO_TIMESPEC(&ru.ru_utime, ats);
169 }
170 
171 static void
172 get_process_usertime(struct proc *p, struct timespec *ats)
173 {
174 	struct rusage ru;
175 
176 	lwkt_gettoken(&p->p_token);
177 	calcru_proc(p, &ru);
178 	lwkt_reltoken(&p->p_token);
179 	TIMEVAL_TO_TIMESPEC(&ru.ru_utime, ats);
180 }
181 
182 static void
183 get_curthread_cputime(struct timespec *ats)
184 {
185 	struct thread *td = curthread;
186 	struct timeval sys, user;
187 
188 	calcru(td->td_lwp, &user, &sys);
189 	timevaladd(&user, &sys);
190 	TIMEVAL_TO_TIMESPEC(&user, ats);
191 }
192 
193 /*
194  * MPSAFE
195  */
196 int
197 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
198 {
199 	struct proc *p;
200 
201 	p = curproc;
202 	switch(clock_id) {
203 	case CLOCK_REALTIME:
204 	case CLOCK_REALTIME_PRECISE:
205 		nanotime(ats);
206 		break;
207 	case CLOCK_REALTIME_FAST:
208 		getnanotime(ats);
209 		break;
210 	case CLOCK_MONOTONIC:
211 	case CLOCK_MONOTONIC_PRECISE:
212 	case CLOCK_UPTIME:
213 	case CLOCK_UPTIME_PRECISE:
214 		nanouptime(ats);
215 		break;
216 	case CLOCK_MONOTONIC_FAST:
217 	case CLOCK_UPTIME_FAST:
218 		getnanouptime(ats);
219 		break;
220 	case CLOCK_VIRTUAL:
221 		get_process_usertime(p, ats);
222 		break;
223 	case CLOCK_PROF:
224 	case CLOCK_PROCESS_CPUTIME_ID:
225 		get_process_cputime(p, ats);
226 		break;
227 	case CLOCK_SECOND:
228 		ats->tv_sec = time_second;
229 		ats->tv_nsec = 0;
230 		break;
231 	case CLOCK_THREAD_CPUTIME_ID:
232 		get_curthread_cputime(ats);
233 		break;
234 	default:
235 		return (EINVAL);
236 	}
237 	return (0);
238 }
239 
240 /*
241  * MPSAFE
242  */
243 int
244 sys_clock_gettime(struct clock_gettime_args *uap)
245 {
246 	struct timespec ats;
247 	int error;
248 
249 	error = kern_clock_gettime(uap->clock_id, &ats);
250 	if (error == 0)
251 		error = copyout(&ats, uap->tp, sizeof(ats));
252 
253 	return (error);
254 }
255 
256 int
257 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
258 {
259 	struct thread *td = curthread;
260 	struct timeval atv;
261 	int error;
262 
263 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
264 		return (error);
265 	if (clock_id != CLOCK_REALTIME)
266 		return (EINVAL);
267 	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
268 		return (EINVAL);
269 
270 	lockmgr(&masterclock_lock, LK_EXCLUSIVE);
271 	TIMESPEC_TO_TIMEVAL(&atv, ats);
272 	error = settime(&atv);
273 	lockmgr(&masterclock_lock, LK_RELEASE);
274 
275 	return (error);
276 }
277 
278 /*
279  * MPALMOSTSAFE
280  */
281 int
282 sys_clock_settime(struct clock_settime_args *uap)
283 {
284 	struct timespec ats;
285 	int error;
286 
287 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
288 		return (error);
289 
290 	error = kern_clock_settime(uap->clock_id, &ats);
291 
292 	return (error);
293 }
294 
295 /*
296  * MPSAFE
297  */
298 int
299 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
300 {
301 	ts->tv_sec = 0;
302 	switch(clock_id) {
303 	case CLOCK_REALTIME:
304 	case CLOCK_REALTIME_FAST:
305 	case CLOCK_REALTIME_PRECISE:
306 	case CLOCK_MONOTONIC:
307 	case CLOCK_MONOTONIC_FAST:
308 	case CLOCK_MONOTONIC_PRECISE:
309 	case CLOCK_UPTIME:
310 	case CLOCK_UPTIME_FAST:
311 	case CLOCK_UPTIME_PRECISE:
312 		/*
313 		 * Round up the result of the division cheaply
314 		 * by adding 1.  Rounding up is especially important
315 		 * if rounding down would give 0.  Perfect rounding
316 		 * is unimportant.
317 		 */
318 		ts->tv_nsec = 1000000000 / sys_cputimer->freq + 1;
319 		break;
320 	case CLOCK_VIRTUAL:
321 	case CLOCK_PROF:
322 		/* Accurately round up here because we can do so cheaply. */
323 		ts->tv_nsec = (1000000000 + hz - 1) / hz;
324 		break;
325 	case CLOCK_SECOND:
326 		ts->tv_sec = 1;
327 		ts->tv_nsec = 0;
328 		break;
329 	case CLOCK_THREAD_CPUTIME_ID:
330 	case CLOCK_PROCESS_CPUTIME_ID:
331 		ts->tv_nsec = 1000;
332 		break;
333 	default:
334 		return (EINVAL);
335 	}
336 
337 	return (0);
338 }
339 
340 /*
341  * MPSAFE
342  */
343 int
344 sys_clock_getres(struct clock_getres_args *uap)
345 {
346 	int error;
347 	struct timespec ts;
348 
349 	error = kern_clock_getres(uap->clock_id, &ts);
350 	if (error == 0)
351 		error = copyout(&ts, uap->tp, sizeof(ts));
352 
353 	return (error);
354 }
355 
356 /*
357  * nanosleep1()
358  *
359  *	This is a general helper function for nanosleep() (aka sleep() aka
360  *	usleep()).
361  *
362  *	If there is less then one tick's worth of time left and
363  *	we haven't done a yield, or the remaining microseconds is
364  *	ridiculously low, do a yield.  This avoids having
365  *	to deal with systimer overheads when the system is under
366  *	heavy loads.  If we have done a yield already then use
367  *	a systimer and an uninterruptable thread wait.
368  *
369  *	If there is more then a tick's worth of time left,
370  *	calculate the baseline ticks and use an interruptable
371  *	tsleep, then handle the fine-grained delay on the next
372  *	loop.  This usually results in two sleeps occuring, a long one
373  *	and a short one.
374  *
375  * MPSAFE
376  */
377 static void
378 ns1_systimer(systimer_t info, int in_ipi __unused,
379     struct intrframe *frame __unused)
380 {
381 	lwkt_schedule(info->data);
382 }
383 
384 int
385 nanosleep1(struct timespec *rqt, struct timespec *rmt)
386 {
387 	static int nanowait;
388 	struct timespec ts, ts2, ts3;
389 	struct timeval tv;
390 	int error;
391 
392 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
393 		return (EINVAL);
394 	/* XXX: imho this should return EINVAL at least for tv_sec < 0 */
395 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
396 		return (0);
397 	nanouptime(&ts);
398 	timespecadd(&ts, rqt);		/* ts = target timestamp compare */
399 	TIMESPEC_TO_TIMEVAL(&tv, rqt);	/* tv = sleep interval */
400 
401 	for (;;) {
402 		int ticks;
403 		struct systimer info;
404 
405 		ticks = tv.tv_usec / ustick;	/* approximate */
406 
407 		if (tv.tv_sec == 0 && ticks == 0) {
408 			thread_t td = curthread;
409 			if (tv.tv_usec > 0 && tv.tv_usec < nanosleep_min_us)
410 				tv.tv_usec = nanosleep_min_us;
411 			if (tv.tv_usec < nanosleep_hard_us) {
412 				lwkt_user_yield();
413 				cpu_pause();
414 			} else {
415 				crit_enter_quick(td);
416 				systimer_init_oneshot(&info, ns1_systimer,
417 						td, tv.tv_usec);
418 				lwkt_deschedule_self(td);
419 				crit_exit_quick(td);
420 				lwkt_switch();
421 				systimer_del(&info); /* make sure it's gone */
422 			}
423 			error = iscaught(td->td_lwp);
424 		} else if (tv.tv_sec == 0) {
425 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
426 		} else {
427 			ticks = tvtohz_low(&tv); /* also handles overflow */
428 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
429 		}
430 		nanouptime(&ts2);
431 		if (error && error != EWOULDBLOCK) {
432 			if (error == ERESTART)
433 				error = EINTR;
434 			if (rmt != NULL) {
435 				timespecsub(&ts, &ts2);
436 				if (ts.tv_sec < 0)
437 					timespecclear(&ts);
438 				*rmt = ts;
439 			}
440 			return (error);
441 		}
442 		if (timespeccmp(&ts2, &ts, >=))
443 			return (0);
444 		ts3 = ts;
445 		timespecsub(&ts3, &ts2);
446 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
447 	}
448 }
449 
450 /*
451  * MPSAFE
452  */
453 int
454 sys_nanosleep(struct nanosleep_args *uap)
455 {
456 	int error;
457 	struct timespec rqt;
458 	struct timespec rmt;
459 
460 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
461 	if (error)
462 		return (error);
463 
464 	error = nanosleep1(&rqt, &rmt);
465 
466 	/*
467 	 * copyout the residual if nanosleep was interrupted.
468 	 */
469 	if (error && uap->rmtp) {
470 		int error2;
471 
472 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
473 		if (error2)
474 			error = error2;
475 	}
476 	return (error);
477 }
478 
479 /*
480  * The gettimeofday() system call is supposed to return a fine-grained
481  * realtime stamp.  However, acquiring a fine-grained stamp can create a
482  * bottleneck when multiple cpu cores are trying to accessing e.g. the
483  * HPET hardware timer all at the same time, so we have a sysctl that
484  * allows its behavior to be changed to a more coarse-grained timestamp
485  * which does not have to access a hardware timer.
486  */
487 int
488 sys_gettimeofday(struct gettimeofday_args *uap)
489 {
490 	struct timeval atv;
491 	int error = 0;
492 
493 	if (uap->tp) {
494 		if (gettimeofday_quick)
495 			getmicrotime(&atv);
496 		else
497 			microtime(&atv);
498 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
499 		    sizeof (atv))))
500 			return (error);
501 	}
502 	if (uap->tzp)
503 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
504 		    sizeof (tz));
505 	return (error);
506 }
507 
508 /*
509  * MPALMOSTSAFE
510  */
511 int
512 sys_settimeofday(struct settimeofday_args *uap)
513 {
514 	struct thread *td = curthread;
515 	struct timeval atv;
516 	struct timezone atz;
517 	int error;
518 
519 	if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
520 		return (error);
521 	/*
522 	 * Verify all parameters before changing time.
523 	 *
524 	 * XXX: We do not allow the time to be set to 0.0, which also by
525 	 *	happy coincidence works around a pkgsrc bulk build bug.
526 	 */
527 	if (uap->tv) {
528 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
529 		    sizeof(atv))))
530 			return (error);
531 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
532 			return (EINVAL);
533 		if (atv.tv_sec == 0 && atv.tv_usec == 0)
534 			return (EINVAL);
535 	}
536 	if (uap->tzp &&
537 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
538 		return (error);
539 
540 	lockmgr(&masterclock_lock, LK_EXCLUSIVE);
541 	if (uap->tv && (error = settime(&atv))) {
542 		lockmgr(&masterclock_lock, LK_RELEASE);
543 		return (error);
544 	}
545 	lockmgr(&masterclock_lock, LK_RELEASE);
546 
547 	if (uap->tzp)
548 		tz = atz;
549 	return (0);
550 }
551 
552 /*
553  * WARNING! Run with ntp_spin held
554  */
555 static void
556 kern_adjtime_common(void)
557 {
558 	if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
559 	    (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
560 		ntp_tick_delta = ntp_delta;
561 	else if (ntp_delta > ntp_big_delta)
562 		ntp_tick_delta = 10 * ntp_default_tick_delta;
563 	else if (ntp_delta < -ntp_big_delta)
564 		ntp_tick_delta = -10 * ntp_default_tick_delta;
565 	else if (ntp_delta > 0)
566 		ntp_tick_delta = ntp_default_tick_delta;
567 	else
568 		ntp_tick_delta = -ntp_default_tick_delta;
569 }
570 
571 void
572 kern_adjtime(int64_t delta, int64_t *odelta)
573 {
574 	spin_lock(&ntp_spin);
575 	*odelta = ntp_delta;
576 	ntp_delta = delta;
577 	kern_adjtime_common();
578 	spin_unlock(&ntp_spin);
579 }
580 
581 static void
582 kern_get_ntp_delta(int64_t *delta)
583 {
584 	*delta = ntp_delta;
585 }
586 
587 void
588 kern_reladjtime(int64_t delta)
589 {
590 	spin_lock(&ntp_spin);
591 	ntp_delta += delta;
592 	kern_adjtime_common();
593 	spin_unlock(&ntp_spin);
594 }
595 
596 static void
597 kern_adjfreq(int64_t rate)
598 {
599 	spin_lock(&ntp_spin);
600 	ntp_tick_permanent = rate;
601 	spin_unlock(&ntp_spin);
602 }
603 
604 /*
605  * MPALMOSTSAFE
606  */
607 int
608 sys_adjtime(struct adjtime_args *uap)
609 {
610 	struct thread *td = curthread;
611 	struct timeval atv;
612 	int64_t ndelta, odelta;
613 	int error;
614 
615 	if ((error = priv_check(td, PRIV_ADJTIME)))
616 		return (error);
617 	error = copyin(uap->delta, &atv, sizeof(struct timeval));
618 	if (error)
619 		return (error);
620 
621 	/*
622 	 * Compute the total correction and the rate at which to apply it.
623 	 * Round the adjustment down to a whole multiple of the per-tick
624 	 * delta, so that after some number of incremental changes in
625 	 * hardclock(), tickdelta will become zero, lest the correction
626 	 * overshoot and start taking us away from the desired final time.
627 	 */
628 	ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
629 	kern_adjtime(ndelta, &odelta);
630 
631 	if (uap->olddelta) {
632 		atv.tv_sec = odelta / 1000000000;
633 		atv.tv_usec = odelta % 1000000000 / 1000;
634 		copyout(&atv, uap->olddelta, sizeof(struct timeval));
635 	}
636 	return (0);
637 }
638 
639 static int
640 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
641 {
642 	int64_t delta;
643 	int error;
644 
645 	if (req->newptr != NULL) {
646 		if (priv_check(curthread, PRIV_ROOT))
647 			return (EPERM);
648 		error = SYSCTL_IN(req, &delta, sizeof(delta));
649 		if (error)
650 			return (error);
651 		kern_reladjtime(delta);
652 	}
653 
654 	if (req->oldptr)
655 		kern_get_ntp_delta(&delta);
656 	error = SYSCTL_OUT(req, &delta, sizeof(delta));
657 	return (error);
658 }
659 
660 /*
661  * delta is in nanoseconds.
662  */
663 static int
664 sysctl_delta(SYSCTL_HANDLER_ARGS)
665 {
666 	int64_t delta, old_delta;
667 	int error;
668 
669 	if (req->newptr != NULL) {
670 		if (priv_check(curthread, PRIV_ROOT))
671 			return (EPERM);
672 		error = SYSCTL_IN(req, &delta, sizeof(delta));
673 		if (error)
674 			return (error);
675 		kern_adjtime(delta, &old_delta);
676 	}
677 
678 	if (req->oldptr != NULL)
679 		kern_get_ntp_delta(&old_delta);
680 	error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
681 	return (error);
682 }
683 
684 /*
685  * frequency is in nanoseconds per second shifted left 32.
686  * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
687  */
688 static int
689 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
690 {
691 	int64_t freqdelta;
692 	int error;
693 
694 	if (req->newptr != NULL) {
695 		if (priv_check(curthread, PRIV_ROOT))
696 			return (EPERM);
697 		error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
698 		if (error)
699 			return (error);
700 
701 		freqdelta /= hz;
702 		kern_adjfreq(freqdelta);
703 	}
704 
705 	if (req->oldptr != NULL)
706 		freqdelta = ntp_tick_permanent * hz;
707 	error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
708 	if (error)
709 		return (error);
710 
711 	return (0);
712 }
713 
714 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
715 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
716     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
717     sysctl_adjfreq, "Q", "permanent correction per second");
718 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
719     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
720     sysctl_delta, "Q", "one-time delta");
721 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
722     &ntp_big_delta, sizeof(ntp_big_delta), "Q",
723     "threshold for fast adjustment");
724 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
725     &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
726     "per-tick adjustment");
727 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
728     &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
729     "default per-tick adjustment");
730 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
731     &ntp_leap_second, sizeof(ntp_leap_second), "LU",
732     "next leap second");
733 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
734     &ntp_leap_insert, 0, "insert or remove leap second");
735 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
736     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
737     sysctl_adjtime, "Q", "relative adjust for delta");
738 
739 /*
740  * Get value of an interval timer.  The process virtual and
741  * profiling virtual time timers are kept in the p_stats area, since
742  * they can be swapped out.  These are kept internally in the
743  * way they are specified externally: in time until they expire.
744  *
745  * The real time interval timer is kept in the process table slot
746  * for the process, and its value (it_value) is kept as an
747  * absolute time rather than as a delta, so that it is easy to keep
748  * periodic real-time signals from drifting.
749  *
750  * Virtual time timers are processed in the hardclock() routine of
751  * kern_clock.c.  The real time timer is processed by a timeout
752  * routine, called from the softclock() routine.  Since a callout
753  * may be delayed in real time due to interrupt processing in the system,
754  * it is possible for the real time timeout routine (realitexpire, given below),
755  * to be delayed in real time past when it is supposed to occur.  It
756  * does not suffice, therefore, to reload the real timer .it_value from the
757  * real time timers .it_interval.  Rather, we compute the next time in
758  * absolute time the timer should go off.
759  *
760  * MPALMOSTSAFE
761  */
762 int
763 sys_getitimer(struct getitimer_args *uap)
764 {
765 	struct proc *p = curproc;
766 	struct timeval ctv;
767 	struct itimerval aitv;
768 
769 	if (uap->which > ITIMER_PROF)
770 		return (EINVAL);
771 	lwkt_gettoken(&p->p_token);
772 	if (uap->which == ITIMER_REAL) {
773 		/*
774 		 * Convert from absolute to relative time in .it_value
775 		 * part of real time timer.  If time for real time timer
776 		 * has passed return 0, else return difference between
777 		 * current time and time for the timer to go off.
778 		 */
779 		aitv = p->p_realtimer;
780 		if (timevalisset(&aitv.it_value)) {
781 			getmicrouptime(&ctv);
782 			if (timevalcmp(&aitv.it_value, &ctv, <))
783 				timevalclear(&aitv.it_value);
784 			else
785 				timevalsub(&aitv.it_value, &ctv);
786 		}
787 	} else {
788 		aitv = p->p_timer[uap->which];
789 	}
790 	lwkt_reltoken(&p->p_token);
791 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
792 }
793 
794 /*
795  * MPALMOSTSAFE
796  */
797 int
798 sys_setitimer(struct setitimer_args *uap)
799 {
800 	struct itimerval aitv;
801 	struct timeval ctv;
802 	struct itimerval *itvp;
803 	struct proc *p = curproc;
804 	int error;
805 
806 	if (uap->which > ITIMER_PROF)
807 		return (EINVAL);
808 	itvp = uap->itv;
809 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
810 	    sizeof(struct itimerval))))
811 		return (error);
812 	if ((uap->itv = uap->oitv) &&
813 	    (error = sys_getitimer((struct getitimer_args *)uap)))
814 		return (error);
815 	if (itvp == NULL)
816 		return (0);
817 	if (itimerfix(&aitv.it_value))
818 		return (EINVAL);
819 	if (!timevalisset(&aitv.it_value))
820 		timevalclear(&aitv.it_interval);
821 	else if (itimerfix(&aitv.it_interval))
822 		return (EINVAL);
823 	lwkt_gettoken(&p->p_token);
824 	if (uap->which == ITIMER_REAL) {
825 		if (timevalisset(&p->p_realtimer.it_value))
826 			callout_stop_sync(&p->p_ithandle);
827 		if (timevalisset(&aitv.it_value))
828 			callout_reset(&p->p_ithandle,
829 			    tvtohz_high(&aitv.it_value), realitexpire, p);
830 		getmicrouptime(&ctv);
831 		timevaladd(&aitv.it_value, &ctv);
832 		p->p_realtimer = aitv;
833 	} else {
834 		p->p_timer[uap->which] = aitv;
835 		switch(uap->which) {
836 		case ITIMER_VIRTUAL:
837 			p->p_flags &= ~P_SIGVTALRM;
838 			break;
839 		case ITIMER_PROF:
840 			p->p_flags &= ~P_SIGPROF;
841 			break;
842 		}
843 	}
844 	lwkt_reltoken(&p->p_token);
845 	return (0);
846 }
847 
848 /*
849  * Real interval timer expired:
850  * send process whose timer expired an alarm signal.
851  * If time is not set up to reload, then just return.
852  * Else compute next time timer should go off which is > current time.
853  * This is where delay in processing this timeout causes multiple
854  * SIGALRM calls to be compressed into one.
855  * tvtohz_high() always adds 1 to allow for the time until the next clock
856  * interrupt being strictly less than 1 clock tick, but we don't want
857  * that here since we want to appear to be in sync with the clock
858  * interrupt even when we're delayed.
859  */
860 static
861 void
862 realitexpire(void *arg)
863 {
864 	struct proc *p;
865 	struct timeval ctv, ntv;
866 
867 	p = (struct proc *)arg;
868 	PHOLD(p);
869 	lwkt_gettoken(&p->p_token);
870 	ksignal(p, SIGALRM);
871 	if (!timevalisset(&p->p_realtimer.it_interval)) {
872 		timevalclear(&p->p_realtimer.it_value);
873 		goto done;
874 	}
875 	for (;;) {
876 		timevaladd(&p->p_realtimer.it_value,
877 			   &p->p_realtimer.it_interval);
878 		getmicrouptime(&ctv);
879 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
880 			ntv = p->p_realtimer.it_value;
881 			timevalsub(&ntv, &ctv);
882 			callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
883 				      realitexpire, p);
884 			goto done;
885 		}
886 	}
887 done:
888 	lwkt_reltoken(&p->p_token);
889 	PRELE(p);
890 }
891 
892 /*
893  * Used to validate itimer timeouts and utimes*() timespecs.
894  */
895 int
896 itimerfix(struct timeval *tv)
897 {
898 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
899 		return (EINVAL);
900 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < ustick)
901 		tv->tv_usec = ustick;
902 	return (0);
903 }
904 
905 /*
906  * Used to validate timeouts and utimes*() timespecs.
907  */
908 int
909 itimespecfix(struct timespec *ts)
910 {
911 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000ULL)
912 		return (EINVAL);
913 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < nstick)
914 		ts->tv_nsec = nstick;
915 	return (0);
916 }
917 
918 /*
919  * Decrement an interval timer by a specified number
920  * of microseconds, which must be less than a second,
921  * i.e. < 1000000.  If the timer expires, then reload
922  * it.  In this case, carry over (usec - old value) to
923  * reduce the value reloaded into the timer so that
924  * the timer does not drift.  This routine assumes
925  * that it is called in a context where the timers
926  * on which it is operating cannot change in value.
927  */
928 int
929 itimerdecr(struct itimerval *itp, int usec)
930 {
931 
932 	if (itp->it_value.tv_usec < usec) {
933 		if (itp->it_value.tv_sec == 0) {
934 			/* expired, and already in next interval */
935 			usec -= itp->it_value.tv_usec;
936 			goto expire;
937 		}
938 		itp->it_value.tv_usec += 1000000;
939 		itp->it_value.tv_sec--;
940 	}
941 	itp->it_value.tv_usec -= usec;
942 	usec = 0;
943 	if (timevalisset(&itp->it_value))
944 		return (1);
945 	/* expired, exactly at end of interval */
946 expire:
947 	if (timevalisset(&itp->it_interval)) {
948 		itp->it_value = itp->it_interval;
949 		itp->it_value.tv_usec -= usec;
950 		if (itp->it_value.tv_usec < 0) {
951 			itp->it_value.tv_usec += 1000000;
952 			itp->it_value.tv_sec--;
953 		}
954 	} else
955 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
956 	return (0);
957 }
958 
959 /*
960  * Add and subtract routines for timevals.
961  * N.B.: subtract routine doesn't deal with
962  * results which are before the beginning,
963  * it just gets very confused in this case.
964  * Caveat emptor.
965  */
966 void
967 timevaladd(struct timeval *t1, const struct timeval *t2)
968 {
969 
970 	t1->tv_sec += t2->tv_sec;
971 	t1->tv_usec += t2->tv_usec;
972 	timevalfix(t1);
973 }
974 
975 void
976 timevalsub(struct timeval *t1, const struct timeval *t2)
977 {
978 
979 	t1->tv_sec -= t2->tv_sec;
980 	t1->tv_usec -= t2->tv_usec;
981 	timevalfix(t1);
982 }
983 
984 static void
985 timevalfix(struct timeval *t1)
986 {
987 
988 	if (t1->tv_usec < 0) {
989 		t1->tv_sec--;
990 		t1->tv_usec += 1000000;
991 	}
992 	if (t1->tv_usec >= 1000000) {
993 		t1->tv_sec++;
994 		t1->tv_usec -= 1000000;
995 	}
996 }
997 
998 /*
999  * ratecheck(): simple time-based rate-limit checking.
1000  */
1001 int
1002 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1003 {
1004 	struct timeval tv, delta;
1005 	int rv = 0;
1006 
1007 	getmicrouptime(&tv);		/* NB: 10ms precision */
1008 	delta = tv;
1009 	timevalsub(&delta, lasttime);
1010 
1011 	/*
1012 	 * check for 0,0 is so that the message will be seen at least once,
1013 	 * even if interval is huge.
1014 	 */
1015 	if (timevalcmp(&delta, mininterval, >=) ||
1016 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1017 		*lasttime = tv;
1018 		rv = 1;
1019 	}
1020 
1021 	return (rv);
1022 }
1023 
1024 /*
1025  * ppsratecheck(): packets (or events) per second limitation.
1026  *
1027  * Return 0 if the limit is to be enforced (e.g. the caller
1028  * should drop a packet because of the rate limitation).
1029  *
1030  * maxpps of 0 always causes zero to be returned.  maxpps of -1
1031  * always causes 1 to be returned; this effectively defeats rate
1032  * limiting.
1033  *
1034  * Note that we maintain the struct timeval for compatibility
1035  * with other bsd systems.  We reuse the storage and just monitor
1036  * clock ticks for minimal overhead.
1037  */
1038 int
1039 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1040 {
1041 	int now;
1042 
1043 	/*
1044 	 * Reset the last time and counter if this is the first call
1045 	 * or more than a second has passed since the last update of
1046 	 * lasttime.
1047 	 */
1048 	now = ticks;
1049 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
1050 		lasttime->tv_sec = now;
1051 		*curpps = 1;
1052 		return (maxpps != 0);
1053 	} else {
1054 		(*curpps)++;		/* NB: ignore potential overflow */
1055 		return (maxpps < 0 || *curpps < maxpps);
1056 	}
1057 }
1058