xref: /dragonfly/sys/kern/lwkt_ipiq.c (revision 03be034e)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_ipiq.c,v 1.15 2005/07/23 07:17:42 dillon Exp $
35  */
36 
37 /*
38  * This module implements IPI message queueing and the MI portion of IPI
39  * message processing.
40  */
41 
42 #ifdef _KERNEL
43 
44 #include "opt_ddb.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/thread2.h>
53 #include <sys/sysctl.h>
54 #include <sys/ktr.h>
55 #include <sys/kthread.h>
56 #include <machine/cpu.h>
57 #include <sys/lock.h>
58 #include <sys/caps.h>
59 
60 #include <vm/vm.h>
61 #include <vm/vm_param.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_map.h>
66 #include <vm/vm_pager.h>
67 #include <vm/vm_extern.h>
68 #include <vm/vm_zone.h>
69 
70 #include <machine/stdarg.h>
71 #include <machine/ipl.h>
72 #include <machine/smp.h>
73 #include <machine/atomic.h>
74 
75 #define THREAD_STACK	(UPAGES * PAGE_SIZE)
76 
77 #else
78 
79 #include <sys/stdint.h>
80 #include <libcaps/thread.h>
81 #include <sys/thread.h>
82 #include <sys/msgport.h>
83 #include <sys/errno.h>
84 #include <libcaps/globaldata.h>
85 #include <machine/cpufunc.h>
86 #include <sys/thread2.h>
87 #include <sys/msgport2.h>
88 #include <stdio.h>
89 #include <stdlib.h>
90 #include <string.h>
91 #include <machine/lock.h>
92 #include <machine/cpu.h>
93 #include <machine/atomic.h>
94 
95 #endif
96 
97 #ifdef SMP
98 static __int64_t ipiq_count;	/* total calls to lwkt_send_ipiq*() */
99 static __int64_t ipiq_fifofull;	/* number of fifo full conditions detected */
100 static __int64_t ipiq_avoided;	/* interlock with target avoids cpu ipi */
101 static __int64_t ipiq_passive;	/* passive IPI messages */
102 static __int64_t ipiq_cscount;	/* number of cpu synchronizations */
103 static int ipiq_optimized = 1;	/* XXX temporary sysctl */
104 #ifdef PANIC_DEBUG
105 static int	panic_ipiq_cpu = -1;
106 static int	panic_ipiq_count = 100;
107 #endif
108 #endif
109 
110 #ifdef _KERNEL
111 
112 #ifdef SMP
113 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_count, CTLFLAG_RW, &ipiq_count, 0, "");
114 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_fifofull, CTLFLAG_RW, &ipiq_fifofull, 0, "");
115 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_avoided, CTLFLAG_RW, &ipiq_avoided, 0, "");
116 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_passive, CTLFLAG_RW, &ipiq_passive, 0, "");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_cscount, CTLFLAG_RW, &ipiq_cscount, 0, "");
118 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_optimized, CTLFLAG_RW, &ipiq_optimized, 0, "");
119 #ifdef PANIC_DEBUG
120 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_cpu, CTLFLAG_RW, &panic_ipiq_cpu, 0, "");
121 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_count, CTLFLAG_RW, &panic_ipiq_count, 0, "");
122 #endif
123 
124 #define IPIQ_STRING	"func=%p arg=%p scpu=%d dcpu=%d"
125 #define IPIQ_ARG_SIZE	(sizeof(void *) * 2 + sizeof(int) * 2)
126 
127 #if !defined(KTR_IPIQ)
128 #define KTR_IPIQ	KTR_ALL
129 #endif
130 KTR_INFO_MASTER(ipiq);
131 KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARG_SIZE);
132 KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARG_SIZE);
133 KTR_INFO(KTR_IPIQ, ipiq, send_nbio, 2, IPIQ_STRING, IPIQ_ARG_SIZE);
134 KTR_INFO(KTR_IPIQ, ipiq, send_fail, 3, IPIQ_STRING, IPIQ_ARG_SIZE);
135 KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARG_SIZE);
136 
137 #define logipiq(name, func, arg, sgd, dgd)	\
138 	KTR_LOG(ipiq_ ## name, func, arg, sgd->gd_cpuid, dgd->gd_cpuid)
139 
140 #endif	/* SMP */
141 #endif	/* KERNEL */
142 
143 #ifdef SMP
144 
145 static int lwkt_process_ipiq1(globaldata_t sgd, lwkt_ipiq_t ip, struct intrframe *frame);
146 static void lwkt_cpusync_remote1(lwkt_cpusync_t poll);
147 static void lwkt_cpusync_remote2(lwkt_cpusync_t poll);
148 
149 /*
150  * Send a function execution request to another cpu.  The request is queued
151  * on the cpu<->cpu ipiq matrix.  Each cpu owns a unique ipiq FIFO for every
152  * possible target cpu.  The FIFO can be written.
153  *
154  * If the FIFO fills up we have to enable interrupts to avoid an APIC
155  * deadlock and process pending IPIQs while waiting for it to empty.
156  * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
157  *
158  * We can safely bump gd_intr_nesting_level because our crit_exit() at the
159  * end will take care of any pending interrupts.
160  *
161  * The actual hardware IPI is avoided if the target cpu is already processing
162  * the queue from a prior IPI.  It is possible to pipeline IPI messages
163  * very quickly between cpus due to the FIFO hysteresis.
164  *
165  * Need not be called from a critical section.
166  */
167 int
168 lwkt_send_ipiq(globaldata_t target, ipifunc_t func, void *arg)
169 {
170     lwkt_ipiq_t ip;
171     int windex;
172     struct globaldata *gd = mycpu;
173 
174     logipiq(send_norm, func, arg, gd, target);
175 
176     if (target == gd) {
177 	func(arg);
178 	return(0);
179     }
180     crit_enter();
181     ++gd->gd_intr_nesting_level;
182 #ifdef INVARIANTS
183     if (gd->gd_intr_nesting_level > 20)
184 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
185 #endif
186     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
187     ++ipiq_count;
188     ip = &gd->gd_ipiq[target->gd_cpuid];
189 
190     /*
191      * Do not allow the FIFO to become full.  Interrupts must be physically
192      * enabled while we liveloop to avoid deadlocking the APIC.
193      */
194     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
195 	unsigned int eflags = read_eflags();
196 
197 	if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0)
198 	    cpu_send_ipiq(target->gd_cpuid);
199 	cpu_enable_intr();
200 	++ipiq_fifofull;
201 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
202 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
203 	    lwkt_process_ipiq();
204 	}
205 	write_eflags(eflags);
206     }
207 
208     /*
209      * Queue the new message
210      */
211     windex = ip->ip_windex & MAXCPUFIFO_MASK;
212     ip->ip_func[windex] = (ipifunc2_t)func;
213     ip->ip_arg[windex] = arg;
214     cpu_sfence();
215     ++ip->ip_windex;
216     --gd->gd_intr_nesting_level;
217 
218     /*
219      * signal the target cpu that there is work pending.
220      */
221     if (atomic_poll_acquire_int(&ip->ip_npoll)) {
222 	cpu_send_ipiq(target->gd_cpuid);
223     } else {
224 	if (ipiq_optimized == 0)
225 	    cpu_send_ipiq(target->gd_cpuid);
226 	++ipiq_avoided;
227     }
228     crit_exit();
229     return(ip->ip_windex);
230 }
231 
232 /*
233  * Similar to lwkt_send_ipiq() but this function does not actually initiate
234  * the IPI to the target cpu unless the FIFO has become too full, so it is
235  * very fast.
236  *
237  * This function is used for non-critical IPI messages, such as memory
238  * deallocations.  The queue will typically be flushed by the target cpu at
239  * the next clock interrupt.
240  *
241  * Need not be called from a critical section.
242  */
243 int
244 lwkt_send_ipiq_passive(globaldata_t target, ipifunc_t func, void *arg)
245 {
246     lwkt_ipiq_t ip;
247     int windex;
248     struct globaldata *gd = mycpu;
249 
250     KKASSERT(target != gd);
251     crit_enter();
252     logipiq(send_pasv, func, arg, gd, target);
253     ++gd->gd_intr_nesting_level;
254 #ifdef INVARIANTS
255     if (gd->gd_intr_nesting_level > 20)
256 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
257 #endif
258     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
259     ++ipiq_count;
260     ++ipiq_passive;
261     ip = &gd->gd_ipiq[target->gd_cpuid];
262 
263     /*
264      * Do not allow the FIFO to become full.  Interrupts must be physically
265      * enabled while we liveloop to avoid deadlocking the APIC.
266      */
267     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
268 	unsigned int eflags = read_eflags();
269 
270 	if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0)
271 	    cpu_send_ipiq(target->gd_cpuid);
272 	cpu_enable_intr();
273 	++ipiq_fifofull;
274 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
275 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
276 	    lwkt_process_ipiq();
277 	}
278 	write_eflags(eflags);
279     }
280 
281     /*
282      * Queue the new message
283      */
284     windex = ip->ip_windex & MAXCPUFIFO_MASK;
285     ip->ip_func[windex] = (ipifunc2_t)func;
286     ip->ip_arg[windex] = arg;
287     cpu_sfence();
288     ++ip->ip_windex;
289     --gd->gd_intr_nesting_level;
290 
291     /*
292      * Do not signal the target cpu, it will pick up the IPI when it next
293      * polls (typically on the next tick).
294      */
295     crit_exit();
296     return(ip->ip_windex);
297 }
298 
299 /*
300  * Send an IPI request without blocking, return 0 on success, ENOENT on
301  * failure.  The actual queueing of the hardware IPI may still force us
302  * to spin and process incoming IPIs but that will eventually go away
303  * when we've gotten rid of the other general IPIs.
304  */
305 int
306 lwkt_send_ipiq_nowait(globaldata_t target, ipifunc_t func, void *arg)
307 {
308     lwkt_ipiq_t ip;
309     int windex;
310     struct globaldata *gd = mycpu;
311 
312     logipiq(send_nbio, func, arg, gd, target);
313     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
314     if (target == gd) {
315 	func(arg);
316 	return(0);
317     }
318     ++ipiq_count;
319     ip = &gd->gd_ipiq[target->gd_cpuid];
320 
321     if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO * 2 / 3) {
322 	logipiq(send_fail, func, arg, gd, target);
323 	return(ENOENT);
324     }
325     windex = ip->ip_windex & MAXCPUFIFO_MASK;
326     ip->ip_func[windex] = (ipifunc2_t)func;
327     ip->ip_arg[windex] = arg;
328     cpu_sfence();
329     ++ip->ip_windex;
330 
331     /*
332      * This isn't a passive IPI, we still have to signal the target cpu.
333      */
334     if (atomic_poll_acquire_int(&ip->ip_npoll)) {
335 	cpu_send_ipiq(target->gd_cpuid);
336     } else {
337 	if (ipiq_optimized == 0)
338 	    cpu_send_ipiq(target->gd_cpuid);
339 	else
340 	    ++ipiq_avoided;
341     }
342     return(0);
343 }
344 
345 /*
346  * deprecated, used only by fast int forwarding.
347  */
348 int
349 lwkt_send_ipiq_bycpu(int dcpu, ipifunc_t func, void *arg)
350 {
351     return(lwkt_send_ipiq(globaldata_find(dcpu), func, arg));
352 }
353 
354 /*
355  * Send a message to several target cpus.  Typically used for scheduling.
356  * The message will not be sent to stopped cpus.
357  */
358 int
359 lwkt_send_ipiq_mask(u_int32_t mask, ipifunc_t func, void *arg)
360 {
361     int cpuid;
362     int count = 0;
363 
364     mask &= ~stopped_cpus;
365     while (mask) {
366 	cpuid = bsfl(mask);
367 	lwkt_send_ipiq(globaldata_find(cpuid), func, arg);
368 	mask &= ~(1 << cpuid);
369 	++count;
370     }
371     return(count);
372 }
373 
374 /*
375  * Wait for the remote cpu to finish processing a function.
376  *
377  * YYY we have to enable interrupts and process the IPIQ while waiting
378  * for it to empty or we may deadlock with another cpu.  Create a CPU_*()
379  * function to do this!  YYY we really should 'block' here.
380  *
381  * MUST be called from a critical section.  This routine may be called
382  * from an interrupt (for example, if an interrupt wakes a foreign thread
383  * up).
384  */
385 void
386 lwkt_wait_ipiq(globaldata_t target, int seq)
387 {
388     lwkt_ipiq_t ip;
389     int maxc = 100000000;
390 
391     if (target != mycpu) {
392 	ip = &mycpu->gd_ipiq[target->gd_cpuid];
393 	if ((int)(ip->ip_xindex - seq) < 0) {
394 	    unsigned int eflags = read_eflags();
395 	    cpu_enable_intr();
396 	    while ((int)(ip->ip_xindex - seq) < 0) {
397 		crit_enter();
398 		lwkt_process_ipiq();
399 		crit_exit();
400 		if (--maxc == 0)
401 			printf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n", mycpu->gd_cpuid, target->gd_cpuid, ip->ip_xindex - seq);
402 		if (maxc < -1000000)
403 			panic("LWKT_WAIT_IPIQ");
404 		/*
405 		 * xindex may be modified by another cpu, use a load fence
406 		 * to ensure that the loop does not use a speculative value
407 		 * (which may improve performance).
408 		 */
409 		cpu_lfence();
410 	    }
411 	    write_eflags(eflags);
412 	}
413     }
414 }
415 
416 int
417 lwkt_seq_ipiq(globaldata_t target)
418 {
419     lwkt_ipiq_t ip;
420 
421     ip = &mycpu->gd_ipiq[target->gd_cpuid];
422     return(ip->ip_windex);
423 }
424 
425 /*
426  * Called from IPI interrupt (like a fast interrupt), which has placed
427  * us in a critical section.  The MP lock may or may not be held.
428  * May also be called from doreti or splz, or be reentrantly called
429  * indirectly through the ip_func[] we run.
430  *
431  * There are two versions, one where no interrupt frame is available (when
432  * called from the send code and from splz, and one where an interrupt
433  * frame is available.
434  */
435 void
436 lwkt_process_ipiq(void)
437 {
438     globaldata_t gd = mycpu;
439     globaldata_t sgd;
440     lwkt_ipiq_t ip;
441     int n;
442 
443 again:
444     for (n = 0; n < ncpus; ++n) {
445 	if (n != gd->gd_cpuid) {
446 	    sgd = globaldata_find(n);
447 	    ip = sgd->gd_ipiq;
448 	    if (ip != NULL) {
449 		while (lwkt_process_ipiq1(sgd, &ip[gd->gd_cpuid], NULL))
450 		    ;
451 	    }
452 	}
453     }
454     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
455 	if (lwkt_process_ipiq1(gd, &gd->gd_cpusyncq, NULL)) {
456 	    if (gd->gd_curthread->td_cscount == 0)
457 		goto again;
458 	    need_ipiq();
459 	}
460     }
461 }
462 
463 #ifdef _KERNEL
464 void
465 lwkt_process_ipiq_frame(struct intrframe frame)
466 {
467     globaldata_t gd = mycpu;
468     globaldata_t sgd;
469     lwkt_ipiq_t ip;
470     int n;
471 
472 again:
473     for (n = 0; n < ncpus; ++n) {
474 	if (n != gd->gd_cpuid) {
475 	    sgd = globaldata_find(n);
476 	    ip = sgd->gd_ipiq;
477 	    if (ip != NULL) {
478 		while (lwkt_process_ipiq1(sgd, &ip[gd->gd_cpuid], &frame))
479 		    ;
480 	    }
481 	}
482     }
483     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
484 	if (lwkt_process_ipiq1(gd, &gd->gd_cpusyncq, &frame)) {
485 	    if (gd->gd_curthread->td_cscount == 0)
486 		goto again;
487 	    need_ipiq();
488 	}
489     }
490 }
491 #endif
492 
493 static int
494 lwkt_process_ipiq1(globaldata_t sgd, lwkt_ipiq_t ip, struct intrframe *frame)
495 {
496     int ri;
497     int wi;
498     void (*copy_func)(void *data, struct intrframe *frame);
499     void *copy_arg;
500 
501     /*
502      * Obtain the current write index, which is modified by a remote cpu.
503      * Issue a load fence to prevent speculative reads of e.g. data written
504      * by the other cpu prior to it updating the index.
505      */
506     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
507     wi = ip->ip_windex;
508     cpu_lfence();
509 
510     /*
511      * Note: xindex is only updated after we are sure the function has
512      * finished execution.  Beware lwkt_process_ipiq() reentrancy!  The
513      * function may send an IPI which may block/drain.
514      *
515      * Note: due to additional IPI operations that the callback function
516      * may make, it is possible for both rindex and windex to advance and
517      * thus for rindex to advance passed our cached windex.
518      */
519     while (wi - (ri = ip->ip_rindex) > 0) {
520 	ri &= MAXCPUFIFO_MASK;
521 	copy_func = ip->ip_func[ri];
522 	copy_arg = ip->ip_arg[ri];
523 	cpu_mfence();
524 	++ip->ip_rindex;
525 	KKASSERT((ip->ip_rindex & MAXCPUFIFO_MASK) == ((ri + 1) & MAXCPUFIFO_MASK));
526 	logipiq(receive, copy_func, copy_arg, sgd, mycpu);
527 	copy_func(copy_arg, frame);
528 	cpu_sfence();
529 	ip->ip_xindex = ip->ip_rindex;
530 
531 #ifdef PANIC_DEBUG
532 	/*
533 	 * Simulate panics during the processing of an IPI
534 	 */
535 	if (mycpu->gd_cpuid == panic_ipiq_cpu && panic_ipiq_count) {
536 		if (--panic_ipiq_count == 0) {
537 #ifdef DDB
538 			Debugger("PANIC_DEBUG");
539 #else
540 			panic("PANIC_DEBUG");
541 #endif
542 		}
543 	}
544 #endif
545     }
546 
547     /*
548      * Return non-zero if there are more IPI messages pending on this
549      * ipiq.  ip_npoll is left set as long as possible to reduce the
550      * number of IPIs queued by the originating cpu, but must be cleared
551      * *BEFORE* checking windex.
552      */
553     atomic_poll_release_int(&ip->ip_npoll);
554     return(wi != ip->ip_windex);
555 }
556 
557 #else
558 
559 /*
560  * !SMP dummy routines
561  */
562 
563 int
564 lwkt_send_ipiq(globaldata_t target, ipifunc_t func, void *arg)
565 {
566     panic("lwkt_send_ipiq: UP box! (%d,%p,%p)", target->gd_cpuid, func, arg);
567     return(0); /* NOT REACHED */
568 }
569 
570 void
571 lwkt_wait_ipiq(globaldata_t target, int seq)
572 {
573     panic("lwkt_wait_ipiq: UP box! (%d,%d)", target->gd_cpuid, seq);
574 }
575 
576 #endif
577 
578 /*
579  * CPU Synchronization Support
580  *
581  * lwkt_cpusync_simple()
582  *
583  *	The function is executed synchronously before return on remote cpus.
584  *	A lwkt_cpusync_t pointer is passed as an argument.  The data can
585  *	be accessed via arg->cs_data.
586  *
587  *	XXX should I just pass the data as an argument to be consistent?
588  */
589 
590 void
591 lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *data)
592 {
593     struct lwkt_cpusync cmd;
594 
595     cmd.cs_run_func = NULL;
596     cmd.cs_fin1_func = func;
597     cmd.cs_fin2_func = NULL;
598     cmd.cs_data = data;
599     lwkt_cpusync_start(mask & mycpu->gd_other_cpus, &cmd);
600     if (mask & (1 << mycpu->gd_cpuid))
601 	func(&cmd);
602     lwkt_cpusync_finish(&cmd);
603 }
604 
605 /*
606  * lwkt_cpusync_fastdata()
607  *
608  *	The function is executed in tandem with return on remote cpus.
609  *	The data is directly passed as an argument.  Do not pass pointers to
610  *	temporary storage as the storage might have
611  *	gone poof by the time the target cpu executes
612  *	the function.
613  *
614  *	At the moment lwkt_cpusync is declared on the stack and we must wait
615  *	for all remote cpus to ack in lwkt_cpusync_finish(), but as a future
616  *	optimization we should be able to put a counter in the globaldata
617  *	structure (if it is not otherwise being used) and just poke it and
618  *	return without waiting. XXX
619  */
620 void
621 lwkt_cpusync_fastdata(cpumask_t mask, cpusync_func2_t func, void *data)
622 {
623     struct lwkt_cpusync cmd;
624 
625     cmd.cs_run_func = NULL;
626     cmd.cs_fin1_func = NULL;
627     cmd.cs_fin2_func = func;
628     cmd.cs_data = NULL;
629     lwkt_cpusync_start(mask & mycpu->gd_other_cpus, &cmd);
630     if (mask & (1 << mycpu->gd_cpuid))
631 	func(data);
632     lwkt_cpusync_finish(&cmd);
633 }
634 
635 /*
636  * lwkt_cpusync_start()
637  *
638  *	Start synchronization with a set of target cpus, return once they are
639  *	known to be in a synchronization loop.  The target cpus will execute
640  *	poll->cs_run_func() IN TANDEM WITH THE RETURN.
641  *
642  *	XXX future: add lwkt_cpusync_start_quick() and require a call to
643  *	lwkt_cpusync_add() or lwkt_cpusync_wait(), allowing the caller to
644  *	potentially absorb the IPI latency doing something useful.
645  */
646 void
647 lwkt_cpusync_start(cpumask_t mask, lwkt_cpusync_t poll)
648 {
649     globaldata_t gd = mycpu;
650 
651     poll->cs_count = 0;
652     poll->cs_mask = mask;
653 #ifdef SMP
654     poll->cs_maxcount = lwkt_send_ipiq_mask(
655 		mask & gd->gd_other_cpus & smp_active_mask,
656 		(ipifunc_t)lwkt_cpusync_remote1, poll);
657 #endif
658     if (mask & gd->gd_cpumask) {
659 	if (poll->cs_run_func)
660 	    poll->cs_run_func(poll);
661     }
662 #ifdef SMP
663     if (poll->cs_maxcount) {
664 	++ipiq_cscount;
665 	++gd->gd_curthread->td_cscount;
666 	while (poll->cs_count != poll->cs_maxcount) {
667 	    crit_enter();
668 	    lwkt_process_ipiq();
669 	    crit_exit();
670 	}
671     }
672 #endif
673 }
674 
675 void
676 lwkt_cpusync_add(cpumask_t mask, lwkt_cpusync_t poll)
677 {
678     globaldata_t gd = mycpu;
679 #ifdef SMP
680     int count;
681 #endif
682 
683     mask &= ~poll->cs_mask;
684     poll->cs_mask |= mask;
685 #ifdef SMP
686     count = lwkt_send_ipiq_mask(
687 		mask & gd->gd_other_cpus & smp_active_mask,
688 		(ipifunc_t)lwkt_cpusync_remote1, poll);
689 #endif
690     if (mask & gd->gd_cpumask) {
691 	if (poll->cs_run_func)
692 	    poll->cs_run_func(poll);
693     }
694 #ifdef SMP
695     poll->cs_maxcount += count;
696     if (poll->cs_maxcount) {
697 	if (poll->cs_maxcount == count)
698 	    ++gd->gd_curthread->td_cscount;
699 	while (poll->cs_count != poll->cs_maxcount) {
700 	    crit_enter();
701 	    lwkt_process_ipiq();
702 	    crit_exit();
703 	}
704     }
705 #endif
706 }
707 
708 /*
709  * Finish synchronization with a set of target cpus.  The target cpus will
710  * execute cs_fin1_func(poll) prior to this function returning, and will
711  * execute cs_fin2_func(data) IN TANDEM WITH THIS FUNCTION'S RETURN.
712  *
713  * If cs_maxcount is non-zero then we are mastering a cpusync with one or
714  * more remote cpus and must account for it in our thread structure.
715  */
716 void
717 lwkt_cpusync_finish(lwkt_cpusync_t poll)
718 {
719     globaldata_t gd = mycpu;
720 
721     poll->cs_count = -1;
722     if (poll->cs_mask & gd->gd_cpumask) {
723 	if (poll->cs_fin1_func)
724 	    poll->cs_fin1_func(poll);
725 	if (poll->cs_fin2_func)
726 	    poll->cs_fin2_func(poll->cs_data);
727     }
728 #ifdef SMP
729     if (poll->cs_maxcount) {
730 	while (poll->cs_count != -(poll->cs_maxcount + 1)) {
731 	    crit_enter();
732 	    lwkt_process_ipiq();
733 	    crit_exit();
734 	}
735 	--gd->gd_curthread->td_cscount;
736     }
737 #endif
738 }
739 
740 #ifdef SMP
741 
742 /*
743  * helper IPI remote messaging function.
744  *
745  * Called on remote cpu when a new cpu synchronization request has been
746  * sent to us.  Execute the run function and adjust cs_count, then requeue
747  * the request so we spin on it.
748  */
749 static void
750 lwkt_cpusync_remote1(lwkt_cpusync_t poll)
751 {
752     atomic_add_int(&poll->cs_count, 1);
753     if (poll->cs_run_func)
754 	poll->cs_run_func(poll);
755     lwkt_cpusync_remote2(poll);
756 }
757 
758 /*
759  * helper IPI remote messaging function.
760  *
761  * Poll for the originator telling us to finish.  If it hasn't, requeue
762  * our request so we spin on it.  When the originator requests that we
763  * finish we execute cs_fin1_func(poll) synchronously and cs_fin2_func(data)
764  * in tandem with the release.
765  */
766 static void
767 lwkt_cpusync_remote2(lwkt_cpusync_t poll)
768 {
769     if (poll->cs_count < 0) {
770 	cpusync_func2_t savef;
771 	void *saved;
772 
773 	if (poll->cs_fin1_func)
774 	    poll->cs_fin1_func(poll);
775 	if (poll->cs_fin2_func) {
776 	    savef = poll->cs_fin2_func;
777 	    saved = poll->cs_data;
778 	    atomic_add_int(&poll->cs_count, -1);
779 	    savef(saved);
780 	} else {
781 	    atomic_add_int(&poll->cs_count, -1);
782 	}
783     } else {
784 	globaldata_t gd = mycpu;
785 	lwkt_ipiq_t ip;
786 	int wi;
787 
788 	ip = &gd->gd_cpusyncq;
789 	wi = ip->ip_windex & MAXCPUFIFO_MASK;
790 	ip->ip_func[wi] = (ipifunc2_t)lwkt_cpusync_remote2;
791 	ip->ip_arg[wi] = poll;
792 	cpu_sfence();
793 	++ip->ip_windex;
794     }
795 }
796 
797 #endif
798