xref: /dragonfly/sys/kern/lwkt_ipiq.c (revision 07a2f99c)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * This module implements IPI message queueing and the MI portion of IPI
37  * message processing.
38  */
39 
40 #include "opt_ddb.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/thread2.h>
49 #include <sys/sysctl.h>
50 #include <sys/ktr.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 
55 #include <vm/vm.h>
56 #include <vm/vm_param.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_pager.h>
62 #include <vm/vm_extern.h>
63 #include <vm/vm_zone.h>
64 
65 #include <machine/stdarg.h>
66 #include <machine/smp.h>
67 #include <machine/atomic.h>
68 
69 static __int64_t ipiq_count;	/* total calls to lwkt_send_ipiq*() */
70 static __int64_t ipiq_fifofull;	/* number of fifo full conditions detected */
71 static __int64_t ipiq_avoided;	/* interlock with target avoids cpu ipi */
72 static __int64_t ipiq_passive;	/* passive IPI messages */
73 static __int64_t ipiq_cscount;	/* number of cpu synchronizations */
74 static int ipiq_debug;		/* set to 1 for debug */
75 #ifdef PANIC_DEBUG
76 static int	panic_ipiq_cpu = -1;
77 static int	panic_ipiq_count = 100;
78 #endif
79 
80 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_count, CTLFLAG_RW, &ipiq_count, 0,
81     "Number of IPI's sent");
82 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_fifofull, CTLFLAG_RW, &ipiq_fifofull, 0,
83     "Number of fifo full conditions detected");
84 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_avoided, CTLFLAG_RW, &ipiq_avoided, 0,
85     "Number of IPI's avoided by interlock with target cpu");
86 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_passive, CTLFLAG_RW, &ipiq_passive, 0,
87     "Number of passive IPI messages sent");
88 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_cscount, CTLFLAG_RW, &ipiq_cscount, 0,
89     "Number of cpu synchronizations");
90 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_debug, CTLFLAG_RW, &ipiq_debug, 0,
91     "");
92 #ifdef PANIC_DEBUG
93 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_cpu, CTLFLAG_RW, &panic_ipiq_cpu, 0, "");
94 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_count, CTLFLAG_RW, &panic_ipiq_count, 0, "");
95 #endif
96 
97 #define IPIQ_STRING	"func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
98 #define IPIQ_ARGS	void *func, void *arg1, int arg2, int scpu, int dcpu
99 
100 #if !defined(KTR_IPIQ)
101 #define KTR_IPIQ	KTR_ALL
102 #endif
103 KTR_INFO_MASTER(ipiq);
104 KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARGS);
105 KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARGS);
106 KTR_INFO(KTR_IPIQ, ipiq, send_nbio, 2, IPIQ_STRING, IPIQ_ARGS);
107 KTR_INFO(KTR_IPIQ, ipiq, send_fail, 3, IPIQ_STRING, IPIQ_ARGS);
108 KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARGS);
109 KTR_INFO(KTR_IPIQ, ipiq, sync_start, 5, "cpumask=%08lx", unsigned long mask);
110 KTR_INFO(KTR_IPIQ, ipiq, sync_end, 6, "cpumask=%08lx", unsigned long mask);
111 KTR_INFO(KTR_IPIQ, ipiq, cpu_send, 7, IPIQ_STRING, IPIQ_ARGS);
112 KTR_INFO(KTR_IPIQ, ipiq, send_end, 8, IPIQ_STRING, IPIQ_ARGS);
113 
114 #define logipiq(name, func, arg1, arg2, sgd, dgd)	\
115 	KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
116 #define logipiq2(name, arg)	\
117 	KTR_LOG(ipiq_ ## name, arg)
118 
119 static int lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
120 				  struct intrframe *frame);
121 static void lwkt_cpusync_remote1(lwkt_cpusync_t cs);
122 static void lwkt_cpusync_remote2(lwkt_cpusync_t cs);
123 
124 /*
125  * Send a function execution request to another cpu.  The request is queued
126  * on the cpu<->cpu ipiq matrix.  Each cpu owns a unique ipiq FIFO for every
127  * possible target cpu.  The FIFO can be written.
128  *
129  * If the FIFO fills up we have to enable interrupts to avoid an APIC
130  * deadlock and process pending IPIQs while waiting for it to empty.
131  * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
132  *
133  * We can safely bump gd_intr_nesting_level because our crit_exit() at the
134  * end will take care of any pending interrupts.
135  *
136  * The actual hardware IPI is avoided if the target cpu is already processing
137  * the queue from a prior IPI.  It is possible to pipeline IPI messages
138  * very quickly between cpus due to the FIFO hysteresis.
139  *
140  * Need not be called from a critical section.
141  */
142 int
143 lwkt_send_ipiq3(globaldata_t target, ipifunc3_t func, void *arg1, int arg2)
144 {
145     lwkt_ipiq_t ip;
146     int windex;
147     struct globaldata *gd = mycpu;
148 
149     logipiq(send_norm, func, arg1, arg2, gd, target);
150 
151     if (target == gd) {
152 	func(arg1, arg2, NULL);
153 	logipiq(send_end, func, arg1, arg2, gd, target);
154 	return(0);
155     }
156     crit_enter();
157     ++gd->gd_intr_nesting_level;
158 #ifdef INVARIANTS
159     if (gd->gd_intr_nesting_level > 20)
160 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
161 #endif
162     KKASSERT(curthread->td_critcount);
163     ++ipiq_count;
164     ip = &gd->gd_ipiq[target->gd_cpuid];
165 
166     /*
167      * Do not allow the FIFO to become full.  Interrupts must be physically
168      * enabled while we liveloop to avoid deadlocking the APIC.
169      *
170      * The target ipiq may have gotten filled up due to passive IPIs and thus
171      * not be aware that its queue is too full, so be sure to issue an
172      * ipiq interrupt to the target cpu.
173      */
174     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
175 #if defined(__i386__)
176 	unsigned int eflags = read_eflags();
177 #elif defined(__x86_64__)
178 	unsigned long rflags = read_rflags();
179 #endif
180 
181 	cpu_enable_intr();
182 	++ipiq_fifofull;
183 	DEBUG_PUSH_INFO("send_ipiq3");
184 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
185 	    if (atomic_poll_acquire_int(&target->gd_npoll)) {
186 		logipiq(cpu_send, func, arg1, arg2, gd, target);
187 		cpu_send_ipiq(target->gd_cpuid);
188 	    }
189 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
190 	    lwkt_process_ipiq();
191 	    cpu_pause();
192 	}
193 	DEBUG_POP_INFO();
194 #if defined(__i386__)
195 	write_eflags(eflags);
196 #elif defined(__x86_64__)
197 	write_rflags(rflags);
198 #endif
199     }
200 
201     /*
202      * Queue the new message
203      */
204     windex = ip->ip_windex & MAXCPUFIFO_MASK;
205     ip->ip_info[windex].func = func;
206     ip->ip_info[windex].arg1 = arg1;
207     ip->ip_info[windex].arg2 = arg2;
208     cpu_sfence();
209     ++ip->ip_windex;
210     atomic_set_cpumask(&target->gd_ipimask, gd->gd_cpumask);
211 
212     /*
213      * signal the target cpu that there is work pending.
214      */
215     if (atomic_poll_acquire_int(&target->gd_npoll)) {
216 	logipiq(cpu_send, func, arg1, arg2, gd, target);
217 	cpu_send_ipiq(target->gd_cpuid);
218     } else {
219 	++ipiq_avoided;
220     }
221     --gd->gd_intr_nesting_level;
222     crit_exit();
223     logipiq(send_end, func, arg1, arg2, gd, target);
224 
225     return(ip->ip_windex);
226 }
227 
228 /*
229  * Similar to lwkt_send_ipiq() but this function does not actually initiate
230  * the IPI to the target cpu unless the FIFO has become too full, so it is
231  * very fast.
232  *
233  * This function is used for non-critical IPI messages, such as memory
234  * deallocations.  The queue will typically be flushed by the target cpu at
235  * the next clock interrupt.
236  *
237  * Need not be called from a critical section.
238  */
239 int
240 lwkt_send_ipiq3_passive(globaldata_t target, ipifunc3_t func,
241 			void *arg1, int arg2)
242 {
243     lwkt_ipiq_t ip;
244     int windex;
245     struct globaldata *gd = mycpu;
246 
247     KKASSERT(target != gd);
248     crit_enter();
249     ++gd->gd_intr_nesting_level;
250     logipiq(send_pasv, func, arg1, arg2, gd, target);
251 #ifdef INVARIANTS
252     if (gd->gd_intr_nesting_level > 20)
253 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
254 #endif
255     KKASSERT(curthread->td_critcount);
256     ++ipiq_count;
257     ++ipiq_passive;
258     ip = &gd->gd_ipiq[target->gd_cpuid];
259 
260     /*
261      * Do not allow the FIFO to become full.  Interrupts must be physically
262      * enabled while we liveloop to avoid deadlocking the APIC.
263      */
264     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
265 #if defined(__i386__)
266 	unsigned int eflags = read_eflags();
267 #elif defined(__x86_64__)
268 	unsigned long rflags = read_rflags();
269 #endif
270 
271 	cpu_enable_intr();
272 	++ipiq_fifofull;
273 	DEBUG_PUSH_INFO("send_ipiq3_passive");
274 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
275 	    if (atomic_poll_acquire_int(&target->gd_npoll)) {
276 		logipiq(cpu_send, func, arg1, arg2, gd, target);
277 		cpu_send_ipiq(target->gd_cpuid);
278 	    }
279 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
280 	    lwkt_process_ipiq();
281 	    cpu_pause();
282 	}
283 	DEBUG_POP_INFO();
284 #if defined(__i386__)
285 	write_eflags(eflags);
286 #elif defined(__x86_64__)
287 	write_rflags(rflags);
288 #endif
289     }
290 
291     /*
292      * Queue the new message
293      */
294     windex = ip->ip_windex & MAXCPUFIFO_MASK;
295     ip->ip_info[windex].func = func;
296     ip->ip_info[windex].arg1 = arg1;
297     ip->ip_info[windex].arg2 = arg2;
298     cpu_sfence();
299     ++ip->ip_windex;
300     atomic_set_cpumask(&target->gd_ipimask, gd->gd_cpumask);
301     --gd->gd_intr_nesting_level;
302 
303     /*
304      * Do not signal the target cpu, it will pick up the IPI when it next
305      * polls (typically on the next tick).
306      */
307     crit_exit();
308     logipiq(send_end, func, arg1, arg2, gd, target);
309 
310     return(ip->ip_windex);
311 }
312 
313 /*
314  * Send an IPI request without blocking, return 0 on success, ENOENT on
315  * failure.  The actual queueing of the hardware IPI may still force us
316  * to spin and process incoming IPIs but that will eventually go away
317  * when we've gotten rid of the other general IPIs.
318  */
319 int
320 lwkt_send_ipiq3_nowait(globaldata_t target, ipifunc3_t func,
321 		       void *arg1, int arg2)
322 {
323     lwkt_ipiq_t ip;
324     int windex;
325     struct globaldata *gd = mycpu;
326 
327     logipiq(send_nbio, func, arg1, arg2, gd, target);
328     KKASSERT(curthread->td_critcount);
329     if (target == gd) {
330 	func(arg1, arg2, NULL);
331 	logipiq(send_end, func, arg1, arg2, gd, target);
332 	return(0);
333     }
334     crit_enter();
335     ++gd->gd_intr_nesting_level;
336     ++ipiq_count;
337     ip = &gd->gd_ipiq[target->gd_cpuid];
338 
339     if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO * 2 / 3) {
340 	logipiq(send_fail, func, arg1, arg2, gd, target);
341 	--gd->gd_intr_nesting_level;
342 	crit_exit();
343 	return(ENOENT);
344     }
345     windex = ip->ip_windex & MAXCPUFIFO_MASK;
346     ip->ip_info[windex].func = func;
347     ip->ip_info[windex].arg1 = arg1;
348     ip->ip_info[windex].arg2 = arg2;
349     cpu_sfence();
350     ++ip->ip_windex;
351     atomic_set_cpumask(&target->gd_ipimask, gd->gd_cpumask);
352 
353     /*
354      * This isn't a passive IPI, we still have to signal the target cpu.
355      */
356     if (atomic_poll_acquire_int(&target->gd_npoll)) {
357 	logipiq(cpu_send, func, arg1, arg2, gd, target);
358 	cpu_send_ipiq(target->gd_cpuid);
359     } else {
360 	++ipiq_avoided;
361     }
362     --gd->gd_intr_nesting_level;
363     crit_exit();
364 
365     logipiq(send_end, func, arg1, arg2, gd, target);
366     return(0);
367 }
368 
369 /*
370  * deprecated, used only by fast int forwarding.
371  */
372 int
373 lwkt_send_ipiq3_bycpu(int dcpu, ipifunc3_t func, void *arg1, int arg2)
374 {
375     return(lwkt_send_ipiq3(globaldata_find(dcpu), func, arg1, arg2));
376 }
377 
378 /*
379  * Send a message to several target cpus.  Typically used for scheduling.
380  * The message will not be sent to stopped cpus.
381  */
382 int
383 lwkt_send_ipiq3_mask(cpumask_t mask, ipifunc3_t func, void *arg1, int arg2)
384 {
385     int cpuid;
386     int count = 0;
387 
388     mask &= ~stopped_cpus;
389     while (mask) {
390 	cpuid = BSFCPUMASK(mask);
391 	lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
392 	mask &= ~CPUMASK(cpuid);
393 	++count;
394     }
395     return(count);
396 }
397 
398 /*
399  * Wait for the remote cpu to finish processing a function.
400  *
401  * YYY we have to enable interrupts and process the IPIQ while waiting
402  * for it to empty or we may deadlock with another cpu.  Create a CPU_*()
403  * function to do this!  YYY we really should 'block' here.
404  *
405  * MUST be called from a critical section.  This routine may be called
406  * from an interrupt (for example, if an interrupt wakes a foreign thread
407  * up).
408  */
409 void
410 lwkt_wait_ipiq(globaldata_t target, int seq)
411 {
412     lwkt_ipiq_t ip;
413     int maxc = 100000000;
414 
415     if (target != mycpu) {
416 	ip = &mycpu->gd_ipiq[target->gd_cpuid];
417 	if ((int)(ip->ip_xindex - seq) < 0) {
418 #if defined(__i386__)
419 	    unsigned int eflags = read_eflags();
420 #elif defined(__x86_64__)
421 	    unsigned long rflags = read_rflags();
422 #endif
423 	    cpu_enable_intr();
424 	    DEBUG_PUSH_INFO("wait_ipiq");
425 	    while ((int)(ip->ip_xindex - seq) < 0) {
426 		crit_enter();
427 		lwkt_process_ipiq();
428 		crit_exit();
429 		if (--maxc == 0)
430 			kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n", mycpu->gd_cpuid, target->gd_cpuid, ip->ip_xindex - seq);
431 		if (maxc < -1000000)
432 			panic("LWKT_WAIT_IPIQ");
433 		/*
434 		 * xindex may be modified by another cpu, use a load fence
435 		 * to ensure that the loop does not use a speculative value
436 		 * (which may improve performance).
437 		 */
438 		cpu_lfence();
439 	    }
440 	    DEBUG_POP_INFO();
441 #if defined(__i386__)
442 	    write_eflags(eflags);
443 #elif defined(__x86_64__)
444 	    write_rflags(rflags);
445 #endif
446 	}
447     }
448 }
449 
450 int
451 lwkt_seq_ipiq(globaldata_t target)
452 {
453     lwkt_ipiq_t ip;
454 
455     ip = &mycpu->gd_ipiq[target->gd_cpuid];
456     return(ip->ip_windex);
457 }
458 
459 /*
460  * Called from IPI interrupt (like a fast interrupt), which has placed
461  * us in a critical section.  The MP lock may or may not be held.
462  * May also be called from doreti or splz, or be reentrantly called
463  * indirectly through the ip_info[].func we run.
464  *
465  * There are two versions, one where no interrupt frame is available (when
466  * called from the send code and from splz, and one where an interrupt
467  * frame is available.
468  *
469  * When the current cpu is mastering a cpusync we do NOT internally loop
470  * on the cpusyncq poll.  We also do not re-flag a pending ipi due to
471  * the cpusyncq poll because this can cause doreti/splz to loop internally.
472  * The cpusync master's own loop must be allowed to run to avoid a deadlock.
473  */
474 void
475 lwkt_process_ipiq(void)
476 {
477     globaldata_t gd = mycpu;
478     globaldata_t sgd;
479     lwkt_ipiq_t ip;
480     cpumask_t mask;
481     int n;
482 
483     ++gd->gd_processing_ipiq;
484 again:
485     cpu_lfence();
486     mask = gd->gd_ipimask;
487     atomic_clear_cpumask(&gd->gd_ipimask, mask);
488     while (mask) {
489 	n = BSFCPUMASK(mask);
490 	if (n != gd->gd_cpuid) {
491 	    sgd = globaldata_find(n);
492 	    ip = sgd->gd_ipiq;
493 	    if (ip != NULL) {
494 		while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], NULL))
495 		    ;
496 	    }
497 	}
498 	mask &= ~CPUMASK(n);
499     }
500 
501     /*
502      * Process pending cpusyncs.  If the current thread has a cpusync
503      * active cpusync we only run the list once and do not re-flag
504      * as the thread itself is processing its interlock.
505      */
506     if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL)) {
507 	if (gd->gd_curthread->td_cscount == 0)
508 	    goto again;
509 	/* need_ipiq(); do not reflag */
510     }
511 
512     /*
513      * Interlock to allow more IPI interrupts.  Recheck ipimask after
514      * releasing gd_npoll.
515      */
516     if (gd->gd_ipimask)
517 	goto again;
518     atomic_poll_release_int(&gd->gd_npoll);
519     cpu_mfence();
520     if (gd->gd_ipimask)
521 	goto again;
522     --gd->gd_processing_ipiq;
523 }
524 
525 void
526 lwkt_process_ipiq_frame(struct intrframe *frame)
527 {
528     globaldata_t gd = mycpu;
529     globaldata_t sgd;
530     lwkt_ipiq_t ip;
531     cpumask_t mask;
532     int n;
533 
534 again:
535     cpu_lfence();
536     mask = gd->gd_ipimask;
537     atomic_clear_cpumask(&gd->gd_ipimask, mask);
538     while (mask) {
539 	n = BSFCPUMASK(mask);
540 	if (n != gd->gd_cpuid) {
541 	    sgd = globaldata_find(n);
542 	    ip = sgd->gd_ipiq;
543 	    if (ip != NULL) {
544 		while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], frame))
545 		    ;
546 	    }
547 	}
548 	mask &= ~CPUMASK(n);
549     }
550     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
551 	if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, frame)) {
552 	    if (gd->gd_curthread->td_cscount == 0)
553 		goto again;
554 	    /* need_ipiq(); do not reflag */
555 	}
556     }
557 
558     /*
559      * Interlock to allow more IPI interrupts.  Recheck ipimask after
560      * releasing gd_npoll.
561      */
562     if (gd->gd_ipimask)
563 	goto again;
564     atomic_poll_release_int(&gd->gd_npoll);
565     cpu_mfence();
566     if (gd->gd_ipimask)
567 	goto again;
568 }
569 
570 #if 0
571 static int iqticks[SMP_MAXCPU];
572 static int iqcount[SMP_MAXCPU];
573 #endif
574 #if 0
575 static int iqterm[SMP_MAXCPU];
576 #endif
577 
578 static int
579 lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
580 		       struct intrframe *frame)
581 {
582     globaldata_t mygd = mycpu;
583     int ri;
584     int wi;
585     ipifunc3_t copy_func;
586     void *copy_arg1;
587     int copy_arg2;
588 
589 #if 0
590     if (iqticks[mygd->gd_cpuid] != ticks) {
591 	    iqticks[mygd->gd_cpuid] = ticks;
592 	    iqcount[mygd->gd_cpuid] = 0;
593     }
594     if (++iqcount[mygd->gd_cpuid] > 3000000) {
595 	kprintf("cpu %d ipiq maxed cscount %d spin %d\n",
596 		mygd->gd_cpuid,
597 		mygd->gd_curthread->td_cscount,
598 		mygd->gd_spinlocks);
599 	iqcount[mygd->gd_cpuid] = 0;
600 #if 0
601 	if (++iqterm[mygd->gd_cpuid] > 10)
602 		panic("cpu %d ipiq maxed", mygd->gd_cpuid);
603 #endif
604 	int i;
605 	for (i = 0; i < ncpus; ++i) {
606 		if (globaldata_find(i)->gd_infomsg)
607 			kprintf(" %s", globaldata_find(i)->gd_infomsg);
608 	}
609 	kprintf("\n");
610     }
611 #endif
612 
613     /*
614      * Clear the originating core from our ipimask, we will process all
615      * incoming messages.
616      *
617      * Obtain the current write index, which is modified by a remote cpu.
618      * Issue a load fence to prevent speculative reads of e.g. data written
619      * by the other cpu prior to it updating the index.
620      */
621     KKASSERT(curthread->td_critcount);
622     wi = ip->ip_windex;
623     cpu_lfence();
624     ++mygd->gd_intr_nesting_level;
625 
626     /*
627      * NOTE: xindex is only updated after we are sure the function has
628      *	     finished execution.  Beware lwkt_process_ipiq() reentrancy!
629      *	     The function may send an IPI which may block/drain.
630      *
631      * NOTE: Due to additional IPI operations that the callback function
632      *	     may make, it is possible for both rindex and windex to advance and
633      *	     thus for rindex to advance passed our cached windex.
634      *
635      * NOTE: A load fence is required to prevent speculative loads prior
636      *	     to the loading of ip_rindex.  Even though stores might be
637      *	     ordered, loads are probably not.  A memory fence is required
638      *	     to prevent reordering of the loads after the ip_rindex update.
639      *
640      * NOTE: Single pass only.  Returns non-zero if the queue is not empty
641      *	     on return.
642      */
643     while (wi - (ri = ip->ip_rindex) > 0) {
644 	ri &= MAXCPUFIFO_MASK;
645 	cpu_lfence();
646 	copy_func = ip->ip_info[ri].func;
647 	copy_arg1 = ip->ip_info[ri].arg1;
648 	copy_arg2 = ip->ip_info[ri].arg2;
649 	cpu_mfence();
650 	++ip->ip_rindex;
651 	KKASSERT((ip->ip_rindex & MAXCPUFIFO_MASK) ==
652 		 ((ri + 1) & MAXCPUFIFO_MASK));
653 	logipiq(receive, copy_func, copy_arg1, copy_arg2, sgd, mycpu);
654 #ifdef INVARIANTS
655 	if (ipiq_debug && (ip->ip_rindex & 0xFFFFFF) == 0) {
656 		kprintf("cpu %d ipifunc %p %p %d (frame %p)\n",
657 			mycpu->gd_cpuid,
658 			copy_func, copy_arg1, copy_arg2,
659 #if defined(__i386__)
660 			(frame ? (void *)frame->if_eip : NULL));
661 #elif defined(__amd64__)
662 			(frame ? (void *)frame->if_rip : NULL));
663 #else
664 			NULL);
665 #endif
666 	}
667 #endif
668 	copy_func(copy_arg1, copy_arg2, frame);
669 	cpu_sfence();
670 	ip->ip_xindex = ip->ip_rindex;
671 
672 #ifdef PANIC_DEBUG
673 	/*
674 	 * Simulate panics during the processing of an IPI
675 	 */
676 	if (mycpu->gd_cpuid == panic_ipiq_cpu && panic_ipiq_count) {
677 		if (--panic_ipiq_count == 0) {
678 #ifdef DDB
679 			Debugger("PANIC_DEBUG");
680 #else
681 			panic("PANIC_DEBUG");
682 #endif
683 		}
684 	}
685 #endif
686     }
687     --mygd->gd_intr_nesting_level;
688 
689     /*
690      * Return non-zero if there is still more in the queue.
691      */
692     cpu_lfence();
693     return (ip->ip_rindex != ip->ip_windex);
694 }
695 
696 static void
697 lwkt_sync_ipiq(void *arg)
698 {
699     volatile cpumask_t *cpumask = arg;
700 
701     atomic_clear_cpumask(cpumask, mycpu->gd_cpumask);
702     if (*cpumask == 0)
703 	wakeup(cpumask);
704 }
705 
706 void
707 lwkt_synchronize_ipiqs(const char *wmesg)
708 {
709     volatile cpumask_t other_cpumask;
710 
711     other_cpumask = mycpu->gd_other_cpus & smp_active_mask;
712     lwkt_send_ipiq_mask(other_cpumask, lwkt_sync_ipiq,
713     	__DEVOLATILE(void *, &other_cpumask));
714 
715     while (other_cpumask != 0) {
716 	tsleep_interlock(&other_cpumask, 0);
717 	if (other_cpumask != 0)
718 	    tsleep(&other_cpumask, PINTERLOCKED, wmesg, 0);
719     }
720 }
721 
722 /*
723  * CPU Synchronization Support
724  *
725  * lwkt_cpusync_interlock()	- Place specified cpus in a quiescent state.
726  *				  The current cpu is placed in a hard critical
727  *				  section.
728  *
729  * lwkt_cpusync_deinterlock()	- Execute cs_func on specified cpus, including
730  *				  current cpu if specified, then return.
731  */
732 void
733 lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *arg)
734 {
735     struct lwkt_cpusync cs;
736 
737     lwkt_cpusync_init(&cs, mask, func, arg);
738     lwkt_cpusync_interlock(&cs);
739     lwkt_cpusync_deinterlock(&cs);
740 }
741 
742 
743 void
744 lwkt_cpusync_interlock(lwkt_cpusync_t cs)
745 {
746 #if 0
747     const char *smsg = "SMPSYNL";
748 #endif
749     globaldata_t gd = mycpu;
750     cpumask_t mask;
751 
752     /*
753      * mask acknowledge (cs_mack):  0->mask for stage 1
754      *
755      * mack does not include the current cpu.
756      */
757     mask = cs->cs_mask & gd->gd_other_cpus & smp_active_mask;
758     cs->cs_mack = 0;
759     crit_enter_id("cpusync");
760     if (mask) {
761 	DEBUG_PUSH_INFO("cpusync_interlock");
762 	++ipiq_cscount;
763 	++gd->gd_curthread->td_cscount;
764 	lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote1, cs);
765 	logipiq2(sync_start, (long)mask);
766 #if 0
767 	if (gd->gd_curthread->td_wmesg == NULL)
768 		gd->gd_curthread->td_wmesg = smsg;
769 #endif
770 	while (cs->cs_mack != mask) {
771 	    lwkt_process_ipiq();
772 	    cpu_pause();
773 	}
774 #if 0
775 	if (gd->gd_curthread->td_wmesg == smsg)
776 		gd->gd_curthread->td_wmesg = NULL;
777 #endif
778 	DEBUG_POP_INFO();
779     }
780 }
781 
782 /*
783  * Interlocked cpus have executed remote1 and are polling in remote2.
784  * To deinterlock we clear cs_mack and wait for the cpus to execute
785  * the func and set their bit in cs_mack again.
786  *
787  */
788 void
789 lwkt_cpusync_deinterlock(lwkt_cpusync_t cs)
790 {
791     globaldata_t gd = mycpu;
792 #if 0
793     const char *smsg = "SMPSYNU";
794 #endif
795     cpumask_t mask;
796 
797     /*
798      * mask acknowledge (cs_mack):  mack->0->mack for stage 2
799      *
800      * Clearing cpu bits for polling cpus in cs_mack will cause them to
801      * execute stage 2, which executes the cs_func(cs_data) and then sets
802      * their bit in cs_mack again.
803      *
804      * mack does not include the current cpu.
805      */
806     mask = cs->cs_mack;
807     cpu_ccfence();
808     cs->cs_mack = 0;
809     cpu_ccfence();
810     if (cs->cs_func && (cs->cs_mask & gd->gd_cpumask))
811 	    cs->cs_func(cs->cs_data);
812     if (mask) {
813 	DEBUG_PUSH_INFO("cpusync_deinterlock");
814 #if 0
815 	if (gd->gd_curthread->td_wmesg == NULL)
816 		gd->gd_curthread->td_wmesg = smsg;
817 #endif
818 	while (cs->cs_mack != mask) {
819 	    lwkt_process_ipiq();
820 	    cpu_pause();
821 	}
822 #if 0
823 	if (gd->gd_curthread->td_wmesg == smsg)
824 		gd->gd_curthread->td_wmesg = NULL;
825 #endif
826 	DEBUG_POP_INFO();
827 	/*
828 	 * cpusyncq ipis may be left queued without the RQF flag set due to
829 	 * a non-zero td_cscount, so be sure to process any laggards after
830 	 * decrementing td_cscount.
831 	 */
832 	--gd->gd_curthread->td_cscount;
833 	lwkt_process_ipiq();
834 	logipiq2(sync_end, (long)mask);
835     }
836     crit_exit_id("cpusync");
837 }
838 
839 /*
840  * helper IPI remote messaging function.
841  *
842  * Called on remote cpu when a new cpu synchronization request has been
843  * sent to us.  Execute the run function and adjust cs_count, then requeue
844  * the request so we spin on it.
845  */
846 static void
847 lwkt_cpusync_remote1(lwkt_cpusync_t cs)
848 {
849     globaldata_t gd = mycpu;
850 
851     atomic_set_cpumask(&cs->cs_mack, gd->gd_cpumask);
852     lwkt_cpusync_remote2(cs);
853 }
854 
855 /*
856  * helper IPI remote messaging function.
857  *
858  * Poll for the originator telling us to finish.  If it hasn't, requeue
859  * our request so we spin on it.
860  */
861 static void
862 lwkt_cpusync_remote2(lwkt_cpusync_t cs)
863 {
864     globaldata_t gd = mycpu;
865 
866     if ((cs->cs_mack & gd->gd_cpumask) == 0) {
867 	if (cs->cs_func)
868 		cs->cs_func(cs->cs_data);
869 	atomic_set_cpumask(&cs->cs_mack, gd->gd_cpumask);
870 	/* cs can be ripped out at this point */
871     } else {
872 	lwkt_ipiq_t ip;
873 	int wi;
874 
875 	ip = &gd->gd_cpusyncq;
876 	wi = ip->ip_windex & MAXCPUFIFO_MASK;
877 	ip->ip_info[wi].func = (ipifunc3_t)(ipifunc1_t)lwkt_cpusync_remote2;
878 	ip->ip_info[wi].arg1 = cs;
879 	ip->ip_info[wi].arg2 = 0;
880 	cpu_sfence();
881 	KKASSERT(ip->ip_windex - ip->ip_rindex < MAXCPUFIFO);
882 	++ip->ip_windex;
883 	if (ipiq_debug && (ip->ip_windex & 0xFFFFFF) == 0) {
884 		kprintf("cpu %d cm=%016jx %016jx f=%p\n",
885 			gd->gd_cpuid,
886 			(intmax_t)cs->cs_mask, (intmax_t)cs->cs_mack,
887 			cs->cs_func);
888 	}
889     }
890 }
891