xref: /dragonfly/sys/kern/lwkt_ipiq.c (revision 1f2824e8)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * This module implements IPI message queueing and the MI portion of IPI
37  * message processing.
38  */
39 
40 #include "opt_ddb.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/thread2.h>
49 #include <sys/sysctl.h>
50 #include <sys/ktr.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 
55 #include <vm/vm.h>
56 #include <vm/vm_param.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_pager.h>
62 #include <vm/vm_extern.h>
63 #include <vm/vm_zone.h>
64 
65 #include <machine/stdarg.h>
66 #include <machine/smp.h>
67 #include <machine/atomic.h>
68 
69 struct ipiq_stats {
70     __int64_t ipiq_count;	/* total calls to lwkt_send_ipiq*() */
71     __int64_t ipiq_fifofull;	/* number of fifo full conditions detected */
72     __int64_t ipiq_avoided;	/* interlock with target avoids cpu ipi */
73     __int64_t ipiq_passive;	/* passive IPI messages */
74     __int64_t ipiq_cscount;	/* number of cpu synchronizations */
75 } __cachealign;
76 
77 static struct ipiq_stats ipiq_stats_percpu[MAXCPU];
78 #define ipiq_stat(gd)	ipiq_stats_percpu[(gd)->gd_cpuid]
79 
80 static int ipiq_debug;		/* set to 1 for debug */
81 #ifdef PANIC_DEBUG
82 static int	panic_ipiq_cpu = -1;
83 static int	panic_ipiq_count = 100;
84 #endif
85 
86 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_debug, CTLFLAG_RW, &ipiq_debug, 0,
87     "");
88 #ifdef PANIC_DEBUG
89 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_cpu, CTLFLAG_RW, &panic_ipiq_cpu, 0, "");
90 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_count, CTLFLAG_RW, &panic_ipiq_count, 0, "");
91 #endif
92 
93 #define IPIQ_STRING	"func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
94 #define IPIQ_ARGS	void *func, void *arg1, int arg2, int scpu, int dcpu
95 
96 #if !defined(KTR_IPIQ)
97 #define KTR_IPIQ	KTR_ALL
98 #endif
99 KTR_INFO_MASTER(ipiq);
100 KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARGS);
101 KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARGS);
102 KTR_INFO(KTR_IPIQ, ipiq, send_nbio, 2, IPIQ_STRING, IPIQ_ARGS);
103 KTR_INFO(KTR_IPIQ, ipiq, send_fail, 3, IPIQ_STRING, IPIQ_ARGS);
104 KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARGS);
105 KTR_INFO(KTR_IPIQ, ipiq, sync_start, 5, "cpumask=%08lx", unsigned long mask);
106 KTR_INFO(KTR_IPIQ, ipiq, sync_end, 6, "cpumask=%08lx", unsigned long mask);
107 KTR_INFO(KTR_IPIQ, ipiq, cpu_send, 7, IPIQ_STRING, IPIQ_ARGS);
108 KTR_INFO(KTR_IPIQ, ipiq, send_end, 8, IPIQ_STRING, IPIQ_ARGS);
109 
110 #define logipiq(name, func, arg1, arg2, sgd, dgd)	\
111 	KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
112 #define logipiq2(name, arg)	\
113 	KTR_LOG(ipiq_ ## name, arg)
114 
115 static int lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
116 				  struct intrframe *frame);
117 static void lwkt_cpusync_remote1(lwkt_cpusync_t cs);
118 static void lwkt_cpusync_remote2(lwkt_cpusync_t cs);
119 
120 #define IPIQ_SYSCTL(name) \
121 static int \
122 sysctl_##name(SYSCTL_HANDLER_ARGS) \
123 { \
124     __int64_t val = 0; \
125     int cpu, error; \
126  \
127     for (cpu = 0; cpu < ncpus; ++cpu) \
128 	val += ipiq_stats_percpu[cpu].name; \
129  \
130     error = sysctl_handle_quad(oidp, &val, 0, req); \
131     if (error || req->newptr == NULL) \
132 	return error; \
133  \
134     for (cpu = 0; cpu < ncpus; ++cpu) \
135     	ipiq_stats_percpu[cpu].name = val; \
136  \
137     return 0; \
138 }
139 
140 IPIQ_SYSCTL(ipiq_count);
141 IPIQ_SYSCTL(ipiq_fifofull);
142 IPIQ_SYSCTL(ipiq_avoided);
143 IPIQ_SYSCTL(ipiq_passive);
144 IPIQ_SYSCTL(ipiq_cscount);
145 
146 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_count, (CTLTYPE_QUAD | CTLFLAG_RW),
147     0, 0, sysctl_ipiq_count, "Q", "Number of IPI's sent");
148 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_fifofull, (CTLTYPE_QUAD | CTLFLAG_RW),
149     0, 0, sysctl_ipiq_fifofull, "Q",
150     "Number of fifo full conditions detected");
151 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_avoided, (CTLTYPE_QUAD | CTLFLAG_RW),
152     0, 0, sysctl_ipiq_avoided, "Q",
153     "Number of IPI's avoided by interlock with target cpu");
154 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_passive, (CTLTYPE_QUAD | CTLFLAG_RW),
155     0, 0, sysctl_ipiq_passive, "Q",
156     "Number of passive IPI messages sent");
157 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_cscount, (CTLTYPE_QUAD | CTLFLAG_RW),
158     0, 0, sysctl_ipiq_cscount, "Q",
159     "Number of cpu synchronizations");
160 
161 /*
162  * Send a function execution request to another cpu.  The request is queued
163  * on the cpu<->cpu ipiq matrix.  Each cpu owns a unique ipiq FIFO for every
164  * possible target cpu.  The FIFO can be written.
165  *
166  * If the FIFO fills up we have to enable interrupts to avoid an APIC
167  * deadlock and process pending IPIQs while waiting for it to empty.
168  * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
169  *
170  * We can safely bump gd_intr_nesting_level because our crit_exit() at the
171  * end will take care of any pending interrupts.
172  *
173  * The actual hardware IPI is avoided if the target cpu is already processing
174  * the queue from a prior IPI.  It is possible to pipeline IPI messages
175  * very quickly between cpus due to the FIFO hysteresis.
176  *
177  * Need not be called from a critical section.
178  */
179 int
180 lwkt_send_ipiq3(globaldata_t target, ipifunc3_t func, void *arg1, int arg2)
181 {
182     lwkt_ipiq_t ip;
183     int windex;
184     struct globaldata *gd = mycpu;
185 
186     logipiq(send_norm, func, arg1, arg2, gd, target);
187 
188     if (target == gd) {
189 	func(arg1, arg2, NULL);
190 	logipiq(send_end, func, arg1, arg2, gd, target);
191 	return(0);
192     }
193     crit_enter();
194     ++gd->gd_intr_nesting_level;
195 #ifdef INVARIANTS
196     if (gd->gd_intr_nesting_level > 20)
197 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
198 #endif
199     KKASSERT(curthread->td_critcount);
200     ++ipiq_stat(gd).ipiq_count;
201     ip = &gd->gd_ipiq[target->gd_cpuid];
202 
203     /*
204      * Do not allow the FIFO to become full.  Interrupts must be physically
205      * enabled while we liveloop to avoid deadlocking the APIC.
206      *
207      * The target ipiq may have gotten filled up due to passive IPIs and thus
208      * not be aware that its queue is too full, so be sure to issue an
209      * ipiq interrupt to the target cpu.
210      */
211     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
212 #if defined(__i386__)
213 	unsigned int eflags = read_eflags();
214 #elif defined(__x86_64__)
215 	unsigned long rflags = read_rflags();
216 #endif
217 
218 	cpu_enable_intr();
219 	++ipiq_stat(gd).ipiq_fifofull;
220 	DEBUG_PUSH_INFO("send_ipiq3");
221 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
222 	    if (atomic_poll_acquire_int(&target->gd_npoll)) {
223 		logipiq(cpu_send, func, arg1, arg2, gd, target);
224 		cpu_send_ipiq(target->gd_cpuid);
225 	    }
226 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
227 	    lwkt_process_ipiq();
228 	    cpu_pause();
229 	}
230 	DEBUG_POP_INFO();
231 #if defined(__i386__)
232 	write_eflags(eflags);
233 #elif defined(__x86_64__)
234 	write_rflags(rflags);
235 #endif
236     }
237 
238     /*
239      * Queue the new message
240      */
241     windex = ip->ip_windex & MAXCPUFIFO_MASK;
242     ip->ip_info[windex].func = func;
243     ip->ip_info[windex].arg1 = arg1;
244     ip->ip_info[windex].arg2 = arg2;
245     cpu_sfence();
246     ++ip->ip_windex;
247     atomic_set_cpumask(&target->gd_ipimask, gd->gd_cpumask);
248 
249     /*
250      * signal the target cpu that there is work pending.
251      */
252     if (atomic_poll_acquire_int(&target->gd_npoll)) {
253 	logipiq(cpu_send, func, arg1, arg2, gd, target);
254 	cpu_send_ipiq(target->gd_cpuid);
255     } else {
256 	++ipiq_stat(gd).ipiq_avoided;
257     }
258     --gd->gd_intr_nesting_level;
259     crit_exit();
260     logipiq(send_end, func, arg1, arg2, gd, target);
261 
262     return(ip->ip_windex);
263 }
264 
265 /*
266  * Similar to lwkt_send_ipiq() but this function does not actually initiate
267  * the IPI to the target cpu unless the FIFO has become too full, so it is
268  * very fast.
269  *
270  * This function is used for non-critical IPI messages, such as memory
271  * deallocations.  The queue will typically be flushed by the target cpu at
272  * the next clock interrupt.
273  *
274  * Need not be called from a critical section.
275  */
276 int
277 lwkt_send_ipiq3_passive(globaldata_t target, ipifunc3_t func,
278 			void *arg1, int arg2)
279 {
280     lwkt_ipiq_t ip;
281     int windex;
282     struct globaldata *gd = mycpu;
283 
284     KKASSERT(target != gd);
285     crit_enter();
286     ++gd->gd_intr_nesting_level;
287     logipiq(send_pasv, func, arg1, arg2, gd, target);
288 #ifdef INVARIANTS
289     if (gd->gd_intr_nesting_level > 20)
290 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
291 #endif
292     KKASSERT(curthread->td_critcount);
293     ++ipiq_stat(gd).ipiq_count;
294     ++ipiq_stat(gd).ipiq_passive;
295     ip = &gd->gd_ipiq[target->gd_cpuid];
296 
297     /*
298      * Do not allow the FIFO to become full.  Interrupts must be physically
299      * enabled while we liveloop to avoid deadlocking the APIC.
300      */
301     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
302 #if defined(__i386__)
303 	unsigned int eflags = read_eflags();
304 #elif defined(__x86_64__)
305 	unsigned long rflags = read_rflags();
306 #endif
307 
308 	cpu_enable_intr();
309 	++ipiq_stat(gd).ipiq_fifofull;
310 	DEBUG_PUSH_INFO("send_ipiq3_passive");
311 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
312 	    if (atomic_poll_acquire_int(&target->gd_npoll)) {
313 		logipiq(cpu_send, func, arg1, arg2, gd, target);
314 		cpu_send_ipiq(target->gd_cpuid);
315 	    }
316 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
317 	    lwkt_process_ipiq();
318 	    cpu_pause();
319 	}
320 	DEBUG_POP_INFO();
321 #if defined(__i386__)
322 	write_eflags(eflags);
323 #elif defined(__x86_64__)
324 	write_rflags(rflags);
325 #endif
326     }
327 
328     /*
329      * Queue the new message
330      */
331     windex = ip->ip_windex & MAXCPUFIFO_MASK;
332     ip->ip_info[windex].func = func;
333     ip->ip_info[windex].arg1 = arg1;
334     ip->ip_info[windex].arg2 = arg2;
335     cpu_sfence();
336     ++ip->ip_windex;
337     atomic_set_cpumask(&target->gd_ipimask, gd->gd_cpumask);
338     --gd->gd_intr_nesting_level;
339 
340     /*
341      * Do not signal the target cpu, it will pick up the IPI when it next
342      * polls (typically on the next tick).
343      */
344     crit_exit();
345     logipiq(send_end, func, arg1, arg2, gd, target);
346 
347     return(ip->ip_windex);
348 }
349 
350 /*
351  * Send an IPI request without blocking, return 0 on success, ENOENT on
352  * failure.  The actual queueing of the hardware IPI may still force us
353  * to spin and process incoming IPIs but that will eventually go away
354  * when we've gotten rid of the other general IPIs.
355  */
356 int
357 lwkt_send_ipiq3_nowait(globaldata_t target, ipifunc3_t func,
358 		       void *arg1, int arg2)
359 {
360     lwkt_ipiq_t ip;
361     int windex;
362     struct globaldata *gd = mycpu;
363 
364     logipiq(send_nbio, func, arg1, arg2, gd, target);
365     KKASSERT(curthread->td_critcount);
366     if (target == gd) {
367 	func(arg1, arg2, NULL);
368 	logipiq(send_end, func, arg1, arg2, gd, target);
369 	return(0);
370     }
371     crit_enter();
372     ++gd->gd_intr_nesting_level;
373     ++ipiq_stat(gd).ipiq_count;
374     ip = &gd->gd_ipiq[target->gd_cpuid];
375 
376     if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO * 2 / 3) {
377 	logipiq(send_fail, func, arg1, arg2, gd, target);
378 	--gd->gd_intr_nesting_level;
379 	crit_exit();
380 	return(ENOENT);
381     }
382     windex = ip->ip_windex & MAXCPUFIFO_MASK;
383     ip->ip_info[windex].func = func;
384     ip->ip_info[windex].arg1 = arg1;
385     ip->ip_info[windex].arg2 = arg2;
386     cpu_sfence();
387     ++ip->ip_windex;
388     atomic_set_cpumask(&target->gd_ipimask, gd->gd_cpumask);
389 
390     /*
391      * This isn't a passive IPI, we still have to signal the target cpu.
392      */
393     if (atomic_poll_acquire_int(&target->gd_npoll)) {
394 	logipiq(cpu_send, func, arg1, arg2, gd, target);
395 	cpu_send_ipiq(target->gd_cpuid);
396     } else {
397 	++ipiq_stat(gd).ipiq_avoided;
398     }
399     --gd->gd_intr_nesting_level;
400     crit_exit();
401 
402     logipiq(send_end, func, arg1, arg2, gd, target);
403     return(0);
404 }
405 
406 /*
407  * deprecated, used only by fast int forwarding.
408  */
409 int
410 lwkt_send_ipiq3_bycpu(int dcpu, ipifunc3_t func, void *arg1, int arg2)
411 {
412     return(lwkt_send_ipiq3(globaldata_find(dcpu), func, arg1, arg2));
413 }
414 
415 /*
416  * Send a message to several target cpus.  Typically used for scheduling.
417  * The message will not be sent to stopped cpus.
418  */
419 int
420 lwkt_send_ipiq3_mask(cpumask_t mask, ipifunc3_t func, void *arg1, int arg2)
421 {
422     int cpuid;
423     int count = 0;
424 
425     mask &= ~stopped_cpus;
426     while (mask) {
427 	cpuid = BSFCPUMASK(mask);
428 	lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
429 	mask &= ~CPUMASK(cpuid);
430 	++count;
431     }
432     return(count);
433 }
434 
435 /*
436  * Wait for the remote cpu to finish processing a function.
437  *
438  * YYY we have to enable interrupts and process the IPIQ while waiting
439  * for it to empty or we may deadlock with another cpu.  Create a CPU_*()
440  * function to do this!  YYY we really should 'block' here.
441  *
442  * MUST be called from a critical section.  This routine may be called
443  * from an interrupt (for example, if an interrupt wakes a foreign thread
444  * up).
445  */
446 void
447 lwkt_wait_ipiq(globaldata_t target, int seq)
448 {
449     lwkt_ipiq_t ip;
450 
451     if (target != mycpu) {
452 	ip = &mycpu->gd_ipiq[target->gd_cpuid];
453 	if ((int)(ip->ip_xindex - seq) < 0) {
454 #if defined(__i386__)
455 	    unsigned int eflags = read_eflags();
456 #elif defined(__x86_64__)
457 	    unsigned long rflags = read_rflags();
458 #endif
459 	    int64_t time_tgt = tsc_get_target(1000000000LL);
460 	    int time_loops = 10;
461 	    int benice = 0;
462 
463 	    cpu_enable_intr();
464 	    DEBUG_PUSH_INFO("wait_ipiq");
465 	    while ((int)(ip->ip_xindex - seq) < 0) {
466 		crit_enter();
467 		lwkt_process_ipiq();
468 		crit_exit();
469 
470 		/*
471 		 * IPIQs must be handled within 10 seconds and this code
472 		 * will warn after one second.
473 		 */
474 		if ((benice & 255) == 0 && tsc_test_target(time_tgt) > 0) {
475 			kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n",
476 				mycpu->gd_cpuid, target->gd_cpuid,
477 				ip->ip_xindex - seq);
478 			if (--time_loops == 0)
479 				panic("LWKT_WAIT_IPIQ");
480 			time_tgt = tsc_get_target(1000000000LL);
481 		}
482 		++benice;
483 
484 		/*
485 		 * xindex may be modified by another cpu, use a load fence
486 		 * to ensure that the loop does not use a speculative value
487 		 * (which may improve performance).
488 		 */
489 		cpu_lfence();
490 	    }
491 	    DEBUG_POP_INFO();
492 #if defined(__i386__)
493 	    write_eflags(eflags);
494 #elif defined(__x86_64__)
495 	    write_rflags(rflags);
496 #endif
497 	}
498     }
499 }
500 
501 int
502 lwkt_seq_ipiq(globaldata_t target)
503 {
504     lwkt_ipiq_t ip;
505 
506     ip = &mycpu->gd_ipiq[target->gd_cpuid];
507     return(ip->ip_windex);
508 }
509 
510 /*
511  * Called from IPI interrupt (like a fast interrupt), which has placed
512  * us in a critical section.  The MP lock may or may not be held.
513  * May also be called from doreti or splz, or be reentrantly called
514  * indirectly through the ip_info[].func we run.
515  *
516  * There are two versions, one where no interrupt frame is available (when
517  * called from the send code and from splz, and one where an interrupt
518  * frame is available.
519  *
520  * When the current cpu is mastering a cpusync we do NOT internally loop
521  * on the cpusyncq poll.  We also do not re-flag a pending ipi due to
522  * the cpusyncq poll because this can cause doreti/splz to loop internally.
523  * The cpusync master's own loop must be allowed to run to avoid a deadlock.
524  */
525 void
526 lwkt_process_ipiq(void)
527 {
528     globaldata_t gd = mycpu;
529     globaldata_t sgd;
530     lwkt_ipiq_t ip;
531     cpumask_t mask;
532     int n;
533 
534     ++gd->gd_processing_ipiq;
535 again:
536     cpu_lfence();
537     mask = gd->gd_ipimask;
538     atomic_clear_cpumask(&gd->gd_ipimask, mask);
539     while (mask) {
540 	n = BSFCPUMASK(mask);
541 	if (n != gd->gd_cpuid) {
542 	    sgd = globaldata_find(n);
543 	    ip = sgd->gd_ipiq;
544 	    if (ip != NULL) {
545 		while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], NULL))
546 		    ;
547 	    }
548 	}
549 	mask &= ~CPUMASK(n);
550     }
551 
552     /*
553      * Process pending cpusyncs.  If the current thread has a cpusync
554      * active cpusync we only run the list once and do not re-flag
555      * as the thread itself is processing its interlock.
556      */
557     if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL)) {
558 	if (gd->gd_curthread->td_cscount == 0)
559 	    goto again;
560 	/* need_ipiq(); do not reflag */
561     }
562 
563     /*
564      * Interlock to allow more IPI interrupts.  Recheck ipimask after
565      * releasing gd_npoll.
566      */
567     if (gd->gd_ipimask)
568 	goto again;
569     atomic_poll_release_int(&gd->gd_npoll);
570     cpu_mfence();
571     if (gd->gd_ipimask)
572 	goto again;
573     --gd->gd_processing_ipiq;
574 }
575 
576 void
577 lwkt_process_ipiq_frame(struct intrframe *frame)
578 {
579     globaldata_t gd = mycpu;
580     globaldata_t sgd;
581     lwkt_ipiq_t ip;
582     cpumask_t mask;
583     int n;
584 
585 again:
586     cpu_lfence();
587     mask = gd->gd_ipimask;
588     atomic_clear_cpumask(&gd->gd_ipimask, mask);
589     while (mask) {
590 	n = BSFCPUMASK(mask);
591 	if (n != gd->gd_cpuid) {
592 	    sgd = globaldata_find(n);
593 	    ip = sgd->gd_ipiq;
594 	    if (ip != NULL) {
595 		while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], frame))
596 		    ;
597 	    }
598 	}
599 	mask &= ~CPUMASK(n);
600     }
601     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
602 	if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, frame)) {
603 	    if (gd->gd_curthread->td_cscount == 0)
604 		goto again;
605 	    /* need_ipiq(); do not reflag */
606 	}
607     }
608 
609     /*
610      * Interlock to allow more IPI interrupts.  Recheck ipimask after
611      * releasing gd_npoll.
612      */
613     if (gd->gd_ipimask)
614 	goto again;
615     atomic_poll_release_int(&gd->gd_npoll);
616     cpu_mfence();
617     if (gd->gd_ipimask)
618 	goto again;
619 }
620 
621 #if 0
622 static int iqticks[SMP_MAXCPU];
623 static int iqcount[SMP_MAXCPU];
624 #endif
625 #if 0
626 static int iqterm[SMP_MAXCPU];
627 #endif
628 
629 static int
630 lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
631 		       struct intrframe *frame)
632 {
633     globaldata_t mygd = mycpu;
634     int ri;
635     int wi;
636     ipifunc3_t copy_func;
637     void *copy_arg1;
638     int copy_arg2;
639 
640 #if 0
641     if (iqticks[mygd->gd_cpuid] != ticks) {
642 	    iqticks[mygd->gd_cpuid] = ticks;
643 	    iqcount[mygd->gd_cpuid] = 0;
644     }
645     if (++iqcount[mygd->gd_cpuid] > 3000000) {
646 	kprintf("cpu %d ipiq maxed cscount %d spin %d\n",
647 		mygd->gd_cpuid,
648 		mygd->gd_curthread->td_cscount,
649 		mygd->gd_spinlocks);
650 	iqcount[mygd->gd_cpuid] = 0;
651 #if 0
652 	if (++iqterm[mygd->gd_cpuid] > 10)
653 		panic("cpu %d ipiq maxed", mygd->gd_cpuid);
654 #endif
655 	int i;
656 	for (i = 0; i < ncpus; ++i) {
657 		if (globaldata_find(i)->gd_infomsg)
658 			kprintf(" %s", globaldata_find(i)->gd_infomsg);
659 	}
660 	kprintf("\n");
661     }
662 #endif
663 
664     /*
665      * Clear the originating core from our ipimask, we will process all
666      * incoming messages.
667      *
668      * Obtain the current write index, which is modified by a remote cpu.
669      * Issue a load fence to prevent speculative reads of e.g. data written
670      * by the other cpu prior to it updating the index.
671      */
672     KKASSERT(curthread->td_critcount);
673     wi = ip->ip_windex;
674     cpu_lfence();
675     ++mygd->gd_intr_nesting_level;
676 
677     /*
678      * NOTE: xindex is only updated after we are sure the function has
679      *	     finished execution.  Beware lwkt_process_ipiq() reentrancy!
680      *	     The function may send an IPI which may block/drain.
681      *
682      * NOTE: Due to additional IPI operations that the callback function
683      *	     may make, it is possible for both rindex and windex to advance and
684      *	     thus for rindex to advance passed our cached windex.
685      *
686      * NOTE: A load fence is required to prevent speculative loads prior
687      *	     to the loading of ip_rindex.  Even though stores might be
688      *	     ordered, loads are probably not.  A memory fence is required
689      *	     to prevent reordering of the loads after the ip_rindex update.
690      *
691      * NOTE: Single pass only.  Returns non-zero if the queue is not empty
692      *	     on return.
693      */
694     while (wi - (ri = ip->ip_rindex) > 0) {
695 	ri &= MAXCPUFIFO_MASK;
696 	cpu_lfence();
697 	copy_func = ip->ip_info[ri].func;
698 	copy_arg1 = ip->ip_info[ri].arg1;
699 	copy_arg2 = ip->ip_info[ri].arg2;
700 	cpu_mfence();
701 	++ip->ip_rindex;
702 	KKASSERT((ip->ip_rindex & MAXCPUFIFO_MASK) ==
703 		 ((ri + 1) & MAXCPUFIFO_MASK));
704 	logipiq(receive, copy_func, copy_arg1, copy_arg2, sgd, mycpu);
705 #ifdef INVARIANTS
706 	if (ipiq_debug && (ip->ip_rindex & 0xFFFFFF) == 0) {
707 		kprintf("cpu %d ipifunc %p %p %d (frame %p)\n",
708 			mycpu->gd_cpuid,
709 			copy_func, copy_arg1, copy_arg2,
710 #if defined(__i386__)
711 			(frame ? (void *)frame->if_eip : NULL));
712 #elif defined(__x86_64__)
713 			(frame ? (void *)frame->if_rip : NULL));
714 #else
715 			NULL);
716 #endif
717 	}
718 #endif
719 	copy_func(copy_arg1, copy_arg2, frame);
720 	cpu_sfence();
721 	ip->ip_xindex = ip->ip_rindex;
722 
723 #ifdef PANIC_DEBUG
724 	/*
725 	 * Simulate panics during the processing of an IPI
726 	 */
727 	if (mycpu->gd_cpuid == panic_ipiq_cpu && panic_ipiq_count) {
728 		if (--panic_ipiq_count == 0) {
729 #ifdef DDB
730 			Debugger("PANIC_DEBUG");
731 #else
732 			panic("PANIC_DEBUG");
733 #endif
734 		}
735 	}
736 #endif
737     }
738     --mygd->gd_intr_nesting_level;
739 
740     /*
741      * Return non-zero if there is still more in the queue.
742      */
743     cpu_lfence();
744     return (ip->ip_rindex != ip->ip_windex);
745 }
746 
747 static void
748 lwkt_sync_ipiq(void *arg)
749 {
750     volatile cpumask_t *cpumask = arg;
751 
752     atomic_clear_cpumask(cpumask, mycpu->gd_cpumask);
753     if (*cpumask == 0)
754 	wakeup(cpumask);
755 }
756 
757 void
758 lwkt_synchronize_ipiqs(const char *wmesg)
759 {
760     volatile cpumask_t other_cpumask;
761 
762     other_cpumask = mycpu->gd_other_cpus & smp_active_mask;
763     lwkt_send_ipiq_mask(other_cpumask, lwkt_sync_ipiq,
764     	__DEVOLATILE(void *, &other_cpumask));
765 
766     while (other_cpumask != 0) {
767 	tsleep_interlock(&other_cpumask, 0);
768 	if (other_cpumask != 0)
769 	    tsleep(&other_cpumask, PINTERLOCKED, wmesg, 0);
770     }
771 }
772 
773 /*
774  * CPU Synchronization Support
775  *
776  * lwkt_cpusync_interlock()	- Place specified cpus in a quiescent state.
777  *				  The current cpu is placed in a hard critical
778  *				  section.
779  *
780  * lwkt_cpusync_deinterlock()	- Execute cs_func on specified cpus, including
781  *				  current cpu if specified, then return.
782  */
783 void
784 lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *arg)
785 {
786     struct lwkt_cpusync cs;
787 
788     lwkt_cpusync_init(&cs, mask, func, arg);
789     lwkt_cpusync_interlock(&cs);
790     lwkt_cpusync_deinterlock(&cs);
791 }
792 
793 
794 void
795 lwkt_cpusync_interlock(lwkt_cpusync_t cs)
796 {
797 #if 0
798     const char *smsg = "SMPSYNL";
799 #endif
800     globaldata_t gd = mycpu;
801     cpumask_t mask;
802 
803     /*
804      * mask acknowledge (cs_mack):  0->mask for stage 1
805      *
806      * mack does not include the current cpu.
807      */
808     mask = cs->cs_mask & gd->gd_other_cpus & smp_active_mask;
809     cs->cs_mack = 0;
810     crit_enter_id("cpusync");
811     if (mask) {
812 	DEBUG_PUSH_INFO("cpusync_interlock");
813 	++ipiq_stat(gd).ipiq_cscount;
814 	++gd->gd_curthread->td_cscount;
815 	lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote1, cs);
816 	logipiq2(sync_start, (long)mask);
817 #if 0
818 	if (gd->gd_curthread->td_wmesg == NULL)
819 		gd->gd_curthread->td_wmesg = smsg;
820 #endif
821 	while (cs->cs_mack != mask) {
822 	    lwkt_process_ipiq();
823 	    cpu_pause();
824 	}
825 #if 0
826 	if (gd->gd_curthread->td_wmesg == smsg)
827 		gd->gd_curthread->td_wmesg = NULL;
828 #endif
829 	DEBUG_POP_INFO();
830     }
831 }
832 
833 /*
834  * Interlocked cpus have executed remote1 and are polling in remote2.
835  * To deinterlock we clear cs_mack and wait for the cpus to execute
836  * the func and set their bit in cs_mack again.
837  *
838  */
839 void
840 lwkt_cpusync_deinterlock(lwkt_cpusync_t cs)
841 {
842     globaldata_t gd = mycpu;
843 #if 0
844     const char *smsg = "SMPSYNU";
845 #endif
846     cpumask_t mask;
847 
848     /*
849      * mask acknowledge (cs_mack):  mack->0->mack for stage 2
850      *
851      * Clearing cpu bits for polling cpus in cs_mack will cause them to
852      * execute stage 2, which executes the cs_func(cs_data) and then sets
853      * their bit in cs_mack again.
854      *
855      * mack does not include the current cpu.
856      */
857     mask = cs->cs_mack;
858     cpu_ccfence();
859     cs->cs_mack = 0;
860     cpu_ccfence();
861     if (cs->cs_func && (cs->cs_mask & gd->gd_cpumask))
862 	    cs->cs_func(cs->cs_data);
863     if (mask) {
864 	DEBUG_PUSH_INFO("cpusync_deinterlock");
865 #if 0
866 	if (gd->gd_curthread->td_wmesg == NULL)
867 		gd->gd_curthread->td_wmesg = smsg;
868 #endif
869 	while (cs->cs_mack != mask) {
870 	    lwkt_process_ipiq();
871 	    cpu_pause();
872 	}
873 #if 0
874 	if (gd->gd_curthread->td_wmesg == smsg)
875 		gd->gd_curthread->td_wmesg = NULL;
876 #endif
877 	DEBUG_POP_INFO();
878 	/*
879 	 * cpusyncq ipis may be left queued without the RQF flag set due to
880 	 * a non-zero td_cscount, so be sure to process any laggards after
881 	 * decrementing td_cscount.
882 	 */
883 	--gd->gd_curthread->td_cscount;
884 	lwkt_process_ipiq();
885 	logipiq2(sync_end, (long)mask);
886     }
887     crit_exit_id("cpusync");
888 }
889 
890 /*
891  * helper IPI remote messaging function.
892  *
893  * Called on remote cpu when a new cpu synchronization request has been
894  * sent to us.  Execute the run function and adjust cs_count, then requeue
895  * the request so we spin on it.
896  */
897 static void
898 lwkt_cpusync_remote1(lwkt_cpusync_t cs)
899 {
900     globaldata_t gd = mycpu;
901 
902     atomic_set_cpumask(&cs->cs_mack, gd->gd_cpumask);
903     lwkt_cpusync_remote2(cs);
904 }
905 
906 /*
907  * helper IPI remote messaging function.
908  *
909  * Poll for the originator telling us to finish.  If it hasn't, requeue
910  * our request so we spin on it.
911  */
912 static void
913 lwkt_cpusync_remote2(lwkt_cpusync_t cs)
914 {
915     globaldata_t gd = mycpu;
916 
917     if ((cs->cs_mack & gd->gd_cpumask) == 0) {
918 	if (cs->cs_func)
919 		cs->cs_func(cs->cs_data);
920 	atomic_set_cpumask(&cs->cs_mack, gd->gd_cpumask);
921 	/* cs can be ripped out at this point */
922     } else {
923 	lwkt_ipiq_t ip;
924 	int wi;
925 
926 	ip = &gd->gd_cpusyncq;
927 	wi = ip->ip_windex & MAXCPUFIFO_MASK;
928 	ip->ip_info[wi].func = (ipifunc3_t)(ipifunc1_t)lwkt_cpusync_remote2;
929 	ip->ip_info[wi].arg1 = cs;
930 	ip->ip_info[wi].arg2 = 0;
931 	cpu_sfence();
932 	KKASSERT(ip->ip_windex - ip->ip_rindex < MAXCPUFIFO);
933 	++ip->ip_windex;
934 	if (ipiq_debug && (ip->ip_windex & 0xFFFFFF) == 0) {
935 		kprintf("cpu %d cm=%016jx %016jx f=%p\n",
936 			gd->gd_cpuid,
937 			(intmax_t)cs->cs_mask, (intmax_t)cs->cs_mack,
938 			cs->cs_func);
939 	}
940     }
941 }
942