xref: /dragonfly/sys/kern/lwkt_ipiq.c (revision 92fc8b5c)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_ipiq.c,v 1.27 2008/05/18 20:57:56 nth Exp $
35  */
36 
37 /*
38  * This module implements IPI message queueing and the MI portion of IPI
39  * message processing.
40  */
41 
42 #include "opt_ddb.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/proc.h>
48 #include <sys/rtprio.h>
49 #include <sys/queue.h>
50 #include <sys/thread2.h>
51 #include <sys/sysctl.h>
52 #include <sys/ktr.h>
53 #include <sys/kthread.h>
54 #include <machine/cpu.h>
55 #include <sys/lock.h>
56 #include <sys/caps.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <vm/vm_kern.h>
61 #include <vm/vm_object.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_pager.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_zone.h>
67 
68 #include <machine/stdarg.h>
69 #include <machine/smp.h>
70 #include <machine/atomic.h>
71 
72 #ifdef SMP
73 static __int64_t ipiq_count;	/* total calls to lwkt_send_ipiq*() */
74 static __int64_t ipiq_fifofull;	/* number of fifo full conditions detected */
75 static __int64_t ipiq_avoided;	/* interlock with target avoids cpu ipi */
76 static __int64_t ipiq_passive;	/* passive IPI messages */
77 static __int64_t ipiq_cscount;	/* number of cpu synchronizations */
78 static int ipiq_optimized = 1;	/* XXX temporary sysctl */
79 static int ipiq_debug;		/* set to 1 for debug */
80 #ifdef PANIC_DEBUG
81 static int	panic_ipiq_cpu = -1;
82 static int	panic_ipiq_count = 100;
83 #endif
84 #endif
85 
86 #ifdef SMP
87 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_count, CTLFLAG_RW, &ipiq_count, 0,
88     "Number of IPI's sent");
89 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_fifofull, CTLFLAG_RW, &ipiq_fifofull, 0,
90     "Number of fifo full conditions detected");
91 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_avoided, CTLFLAG_RW, &ipiq_avoided, 0,
92     "Number of IPI's avoided by interlock with target cpu");
93 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_passive, CTLFLAG_RW, &ipiq_passive, 0,
94     "Number of passive IPI messages sent");
95 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_cscount, CTLFLAG_RW, &ipiq_cscount, 0,
96     "Number of cpu synchronizations");
97 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_optimized, CTLFLAG_RW, &ipiq_optimized, 0,
98     "");
99 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_debug, CTLFLAG_RW, &ipiq_debug, 0,
100     "");
101 #ifdef PANIC_DEBUG
102 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_cpu, CTLFLAG_RW, &panic_ipiq_cpu, 0, "");
103 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_count, CTLFLAG_RW, &panic_ipiq_count, 0, "");
104 #endif
105 
106 #define IPIQ_STRING	"func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
107 #define IPIQ_ARG_SIZE	(sizeof(void *) * 2 + sizeof(int) * 3)
108 
109 #if !defined(KTR_IPIQ)
110 #define KTR_IPIQ	KTR_ALL
111 #endif
112 KTR_INFO_MASTER(ipiq);
113 KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARG_SIZE);
114 KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARG_SIZE);
115 KTR_INFO(KTR_IPIQ, ipiq, send_nbio, 2, IPIQ_STRING, IPIQ_ARG_SIZE);
116 KTR_INFO(KTR_IPIQ, ipiq, send_fail, 3, IPIQ_STRING, IPIQ_ARG_SIZE);
117 KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARG_SIZE);
118 KTR_INFO(KTR_IPIQ, ipiq, sync_start, 5, "cpumask=%08x", sizeof(cpumask_t));
119 KTR_INFO(KTR_IPIQ, ipiq, sync_end, 6, "cpumask=%08x", sizeof(cpumask_t));
120 KTR_INFO(KTR_IPIQ, ipiq, cpu_send, 7, IPIQ_STRING, IPIQ_ARG_SIZE);
121 KTR_INFO(KTR_IPIQ, ipiq, send_end, 8, IPIQ_STRING, IPIQ_ARG_SIZE);
122 
123 #define logipiq(name, func, arg1, arg2, sgd, dgd)	\
124 	KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
125 #define logipiq2(name, arg)	\
126 	KTR_LOG(ipiq_ ## name, arg)
127 
128 #endif	/* SMP */
129 
130 #ifdef SMP
131 
132 static int lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
133 				  struct intrframe *frame);
134 static void lwkt_cpusync_remote1(lwkt_cpusync_t cs);
135 static void lwkt_cpusync_remote2(lwkt_cpusync_t cs);
136 
137 /*
138  * Send a function execution request to another cpu.  The request is queued
139  * on the cpu<->cpu ipiq matrix.  Each cpu owns a unique ipiq FIFO for every
140  * possible target cpu.  The FIFO can be written.
141  *
142  * If the FIFO fills up we have to enable interrupts to avoid an APIC
143  * deadlock and process pending IPIQs while waiting for it to empty.
144  * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
145  *
146  * We can safely bump gd_intr_nesting_level because our crit_exit() at the
147  * end will take care of any pending interrupts.
148  *
149  * The actual hardware IPI is avoided if the target cpu is already processing
150  * the queue from a prior IPI.  It is possible to pipeline IPI messages
151  * very quickly between cpus due to the FIFO hysteresis.
152  *
153  * Need not be called from a critical section.
154  */
155 int
156 lwkt_send_ipiq3(globaldata_t target, ipifunc3_t func, void *arg1, int arg2)
157 {
158     lwkt_ipiq_t ip;
159     int windex;
160     struct globaldata *gd = mycpu;
161 
162     logipiq(send_norm, func, arg1, arg2, gd, target);
163 
164     if (target == gd) {
165 	func(arg1, arg2, NULL);
166 	logipiq(send_end, func, arg1, arg2, gd, target);
167 	return(0);
168     }
169     crit_enter();
170     ++gd->gd_intr_nesting_level;
171 #ifdef INVARIANTS
172     if (gd->gd_intr_nesting_level > 20)
173 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
174 #endif
175     KKASSERT(curthread->td_critcount);
176     ++ipiq_count;
177     ip = &gd->gd_ipiq[target->gd_cpuid];
178 
179     /*
180      * Do not allow the FIFO to become full.  Interrupts must be physically
181      * enabled while we liveloop to avoid deadlocking the APIC.
182      */
183     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
184 #if defined(__i386__)
185 	unsigned int eflags = read_eflags();
186 #elif defined(__x86_64__)
187 	unsigned long rflags = read_rflags();
188 #endif
189 
190 	if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0) {
191 	    logipiq(cpu_send, func, arg1, arg2, gd, target);
192 	    cpu_send_ipiq(target->gd_cpuid);
193 	}
194 	cpu_enable_intr();
195 	++ipiq_fifofull;
196 	DEBUG_PUSH_INFO("send_ipiq3");
197 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
198 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
199 	    lwkt_process_ipiq();
200 	}
201 	DEBUG_POP_INFO();
202 #if defined(__i386__)
203 	write_eflags(eflags);
204 #elif defined(__x86_64__)
205 	write_rflags(rflags);
206 #endif
207     }
208 
209     /*
210      * Queue the new message
211      */
212     windex = ip->ip_windex & MAXCPUFIFO_MASK;
213     ip->ip_func[windex] = func;
214     ip->ip_arg1[windex] = arg1;
215     ip->ip_arg2[windex] = arg2;
216     cpu_sfence();
217     ++ip->ip_windex;
218     --gd->gd_intr_nesting_level;
219 
220     /*
221      * signal the target cpu that there is work pending.
222      */
223     if (atomic_poll_acquire_int(&ip->ip_npoll)) {
224 	logipiq(cpu_send, func, arg1, arg2, gd, target);
225 	cpu_send_ipiq(target->gd_cpuid);
226     } else {
227 	if (ipiq_optimized == 0) {
228 	    logipiq(cpu_send, func, arg1, arg2, gd, target);
229 	    cpu_send_ipiq(target->gd_cpuid);
230 	} else {
231 	    ++ipiq_avoided;
232 	}
233     }
234     crit_exit();
235 
236     logipiq(send_end, func, arg1, arg2, gd, target);
237     return(ip->ip_windex);
238 }
239 
240 /*
241  * Similar to lwkt_send_ipiq() but this function does not actually initiate
242  * the IPI to the target cpu unless the FIFO has become too full, so it is
243  * very fast.
244  *
245  * This function is used for non-critical IPI messages, such as memory
246  * deallocations.  The queue will typically be flushed by the target cpu at
247  * the next clock interrupt.
248  *
249  * Need not be called from a critical section.
250  */
251 int
252 lwkt_send_ipiq3_passive(globaldata_t target, ipifunc3_t func,
253 			void *arg1, int arg2)
254 {
255     lwkt_ipiq_t ip;
256     int windex;
257     struct globaldata *gd = mycpu;
258 
259     KKASSERT(target != gd);
260     crit_enter();
261     logipiq(send_pasv, func, arg1, arg2, gd, target);
262     ++gd->gd_intr_nesting_level;
263 #ifdef INVARIANTS
264     if (gd->gd_intr_nesting_level > 20)
265 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
266 #endif
267     KKASSERT(curthread->td_critcount);
268     ++ipiq_count;
269     ++ipiq_passive;
270     ip = &gd->gd_ipiq[target->gd_cpuid];
271 
272     /*
273      * Do not allow the FIFO to become full.  Interrupts must be physically
274      * enabled while we liveloop to avoid deadlocking the APIC.
275      */
276     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
277 #if defined(__i386__)
278 	unsigned int eflags = read_eflags();
279 #elif defined(__x86_64__)
280 	unsigned long rflags = read_rflags();
281 #endif
282 
283 	if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0) {
284 	    logipiq(cpu_send, func, arg1, arg2, gd, target);
285 	    cpu_send_ipiq(target->gd_cpuid);
286 	}
287 	cpu_enable_intr();
288 	++ipiq_fifofull;
289 	DEBUG_PUSH_INFO("send_ipiq3_passive");
290 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
291 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
292 	    lwkt_process_ipiq();
293 	}
294 	DEBUG_POP_INFO();
295 #if defined(__i386__)
296 	write_eflags(eflags);
297 #elif defined(__x86_64__)
298 	write_rflags(rflags);
299 #endif
300     }
301 
302     /*
303      * Queue the new message
304      */
305     windex = ip->ip_windex & MAXCPUFIFO_MASK;
306     ip->ip_func[windex] = func;
307     ip->ip_arg1[windex] = arg1;
308     ip->ip_arg2[windex] = arg2;
309     cpu_sfence();
310     ++ip->ip_windex;
311     --gd->gd_intr_nesting_level;
312 
313     /*
314      * Do not signal the target cpu, it will pick up the IPI when it next
315      * polls (typically on the next tick).
316      */
317     crit_exit();
318 
319     logipiq(send_end, func, arg1, arg2, gd, target);
320     return(ip->ip_windex);
321 }
322 
323 /*
324  * Send an IPI request without blocking, return 0 on success, ENOENT on
325  * failure.  The actual queueing of the hardware IPI may still force us
326  * to spin and process incoming IPIs but that will eventually go away
327  * when we've gotten rid of the other general IPIs.
328  */
329 int
330 lwkt_send_ipiq3_nowait(globaldata_t target, ipifunc3_t func,
331 		       void *arg1, int arg2)
332 {
333     lwkt_ipiq_t ip;
334     int windex;
335     struct globaldata *gd = mycpu;
336 
337     logipiq(send_nbio, func, arg1, arg2, gd, target);
338     KKASSERT(curthread->td_critcount);
339     if (target == gd) {
340 	func(arg1, arg2, NULL);
341 	logipiq(send_end, func, arg1, arg2, gd, target);
342 	return(0);
343     }
344     ++ipiq_count;
345     ip = &gd->gd_ipiq[target->gd_cpuid];
346 
347     if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO * 2 / 3) {
348 	logipiq(send_fail, func, arg1, arg2, gd, target);
349 	return(ENOENT);
350     }
351     windex = ip->ip_windex & MAXCPUFIFO_MASK;
352     ip->ip_func[windex] = func;
353     ip->ip_arg1[windex] = arg1;
354     ip->ip_arg2[windex] = arg2;
355     cpu_sfence();
356     ++ip->ip_windex;
357 
358     /*
359      * This isn't a passive IPI, we still have to signal the target cpu.
360      */
361     if (atomic_poll_acquire_int(&ip->ip_npoll)) {
362 	logipiq(cpu_send, func, arg1, arg2, gd, target);
363 	cpu_send_ipiq(target->gd_cpuid);
364     } else {
365 	if (ipiq_optimized == 0) {
366 	    logipiq(cpu_send, func, arg1, arg2, gd, target);
367 	    cpu_send_ipiq(target->gd_cpuid);
368 	} else {
369 	    ++ipiq_avoided;
370     	}
371     }
372 
373     logipiq(send_end, func, arg1, arg2, gd, target);
374     return(0);
375 }
376 
377 /*
378  * deprecated, used only by fast int forwarding.
379  */
380 int
381 lwkt_send_ipiq3_bycpu(int dcpu, ipifunc3_t func, void *arg1, int arg2)
382 {
383     return(lwkt_send_ipiq3(globaldata_find(dcpu), func, arg1, arg2));
384 }
385 
386 /*
387  * Send a message to several target cpus.  Typically used for scheduling.
388  * The message will not be sent to stopped cpus.
389  */
390 int
391 lwkt_send_ipiq3_mask(cpumask_t mask, ipifunc3_t func, void *arg1, int arg2)
392 {
393     int cpuid;
394     int count = 0;
395 
396     mask &= ~stopped_cpus;
397     while (mask) {
398 	cpuid = BSFCPUMASK(mask);
399 	lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
400 	mask &= ~CPUMASK(cpuid);
401 	++count;
402     }
403     return(count);
404 }
405 
406 /*
407  * Wait for the remote cpu to finish processing a function.
408  *
409  * YYY we have to enable interrupts and process the IPIQ while waiting
410  * for it to empty or we may deadlock with another cpu.  Create a CPU_*()
411  * function to do this!  YYY we really should 'block' here.
412  *
413  * MUST be called from a critical section.  This routine may be called
414  * from an interrupt (for example, if an interrupt wakes a foreign thread
415  * up).
416  */
417 void
418 lwkt_wait_ipiq(globaldata_t target, int seq)
419 {
420     lwkt_ipiq_t ip;
421     int maxc = 100000000;
422 
423     if (target != mycpu) {
424 	ip = &mycpu->gd_ipiq[target->gd_cpuid];
425 	if ((int)(ip->ip_xindex - seq) < 0) {
426 #if defined(__i386__)
427 	    unsigned int eflags = read_eflags();
428 #elif defined(__x86_64__)
429 	    unsigned long rflags = read_rflags();
430 #endif
431 	    cpu_enable_intr();
432 	    DEBUG_PUSH_INFO("wait_ipiq");
433 	    while ((int)(ip->ip_xindex - seq) < 0) {
434 		crit_enter();
435 		lwkt_process_ipiq();
436 		crit_exit();
437 		if (--maxc == 0)
438 			kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n", mycpu->gd_cpuid, target->gd_cpuid, ip->ip_xindex - seq);
439 		if (maxc < -1000000)
440 			panic("LWKT_WAIT_IPIQ");
441 		/*
442 		 * xindex may be modified by another cpu, use a load fence
443 		 * to ensure that the loop does not use a speculative value
444 		 * (which may improve performance).
445 		 */
446 		cpu_lfence();
447 	    }
448 	    DEBUG_POP_INFO();
449 #if defined(__i386__)
450 	    write_eflags(eflags);
451 #elif defined(__x86_64__)
452 	    write_rflags(rflags);
453 #endif
454 	}
455     }
456 }
457 
458 int
459 lwkt_seq_ipiq(globaldata_t target)
460 {
461     lwkt_ipiq_t ip;
462 
463     ip = &mycpu->gd_ipiq[target->gd_cpuid];
464     return(ip->ip_windex);
465 }
466 
467 /*
468  * Called from IPI interrupt (like a fast interrupt), which has placed
469  * us in a critical section.  The MP lock may or may not be held.
470  * May also be called from doreti or splz, or be reentrantly called
471  * indirectly through the ip_func[] we run.
472  *
473  * There are two versions, one where no interrupt frame is available (when
474  * called from the send code and from splz, and one where an interrupt
475  * frame is available.
476  *
477  * When the current cpu is mastering a cpusync we do NOT internally loop
478  * on the cpusyncq poll.  We also do not re-flag a pending ipi due to
479  * the cpusyncq poll because this can cause doreti/splz to loop internally.
480  * The cpusync master's own loop must be allowed to run to avoid a deadlock.
481  */
482 void
483 lwkt_process_ipiq(void)
484 {
485     globaldata_t gd = mycpu;
486     globaldata_t sgd;
487     lwkt_ipiq_t ip;
488     int n;
489 
490 again:
491     for (n = 0; n < ncpus; ++n) {
492 	if (n != gd->gd_cpuid) {
493 	    sgd = globaldata_find(n);
494 	    ip = sgd->gd_ipiq;
495 	    if (ip != NULL) {
496 		while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], NULL))
497 		    ;
498 	    }
499 	}
500     }
501     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
502 	if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL)) {
503 	    if (gd->gd_curthread->td_cscount == 0)
504 		goto again;
505 	}
506     }
507 }
508 
509 void
510 lwkt_process_ipiq_frame(struct intrframe *frame)
511 {
512     globaldata_t gd = mycpu;
513     globaldata_t sgd;
514     lwkt_ipiq_t ip;
515     int n;
516 
517 again:
518     for (n = 0; n < ncpus; ++n) {
519 	if (n != gd->gd_cpuid) {
520 	    sgd = globaldata_find(n);
521 	    ip = sgd->gd_ipiq;
522 	    if (ip != NULL) {
523 		while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], frame))
524 		    ;
525 	    }
526 	}
527     }
528     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
529 	if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, frame)) {
530 	    if (gd->gd_curthread->td_cscount == 0)
531 		goto again;
532 	}
533     }
534 }
535 
536 #if 0
537 static int iqticks[SMP_MAXCPU];
538 static int iqcount[SMP_MAXCPU];
539 #endif
540 #if 0
541 static int iqterm[SMP_MAXCPU];
542 #endif
543 
544 static int
545 lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
546 		       struct intrframe *frame)
547 {
548     globaldata_t mygd = mycpu;
549     int ri;
550     int wi;
551     ipifunc3_t copy_func;
552     void *copy_arg1;
553     int copy_arg2;
554 
555 #if 0
556     if (iqticks[mygd->gd_cpuid] != ticks) {
557 	    iqticks[mygd->gd_cpuid] = ticks;
558 	    iqcount[mygd->gd_cpuid] = 0;
559     }
560     if (++iqcount[mygd->gd_cpuid] > 3000000) {
561 	kprintf("cpu %d ipiq maxed cscount %d spin %d\n",
562 		mygd->gd_cpuid,
563 		mygd->gd_curthread->td_cscount,
564 		mygd->gd_spinlocks_wr);
565 	iqcount[mygd->gd_cpuid] = 0;
566 #if 0
567 	if (++iqterm[mygd->gd_cpuid] > 10)
568 		panic("cpu %d ipiq maxed", mygd->gd_cpuid);
569 #endif
570 	int i;
571 	for (i = 0; i < ncpus; ++i) {
572 		if (globaldata_find(i)->gd_infomsg)
573 			kprintf(" %s", globaldata_find(i)->gd_infomsg);
574 	}
575 	kprintf("\n");
576     }
577 #endif
578 
579     /*
580      * Obtain the current write index, which is modified by a remote cpu.
581      * Issue a load fence to prevent speculative reads of e.g. data written
582      * by the other cpu prior to it updating the index.
583      */
584     KKASSERT(curthread->td_critcount);
585     wi = ip->ip_windex;
586     cpu_lfence();
587     ++mygd->gd_intr_nesting_level;
588 
589     /*
590      * NOTE: xindex is only updated after we are sure the function has
591      *	     finished execution.  Beware lwkt_process_ipiq() reentrancy!
592      *	     The function may send an IPI which may block/drain.
593      *
594      * NOTE: Due to additional IPI operations that the callback function
595      *	     may make, it is possible for both rindex and windex to advance and
596      *	     thus for rindex to advance passed our cached windex.
597      *
598      * NOTE: A load fence is required to prevent speculative loads prior
599      *	     to the loading of ip_rindex.  Even though stores might be
600      *	     ordered, loads are probably not.  A memory fence is required
601      *	     to prevent reordering of the loads after the ip_rindex update.
602      */
603     while (wi - (ri = ip->ip_rindex) > 0) {
604 	ri &= MAXCPUFIFO_MASK;
605 	cpu_lfence();
606 	copy_func = ip->ip_func[ri];
607 	copy_arg1 = ip->ip_arg1[ri];
608 	copy_arg2 = ip->ip_arg2[ri];
609 	cpu_mfence();
610 	++ip->ip_rindex;
611 	KKASSERT((ip->ip_rindex & MAXCPUFIFO_MASK) ==
612 		 ((ri + 1) & MAXCPUFIFO_MASK));
613 	logipiq(receive, copy_func, copy_arg1, copy_arg2, sgd, mycpu);
614 #ifdef INVARIANTS
615 	if (ipiq_debug && (ip->ip_rindex & 0xFFFFFF) == 0) {
616 		kprintf("cpu %d ipifunc %p %p %d (frame %p)\n",
617 			mycpu->gd_cpuid,
618 			copy_func, copy_arg1, copy_arg2,
619 #if defined(__i386__)
620 			(frame ? (void *)frame->if_eip : NULL));
621 #elif defined(__amd64__)
622 			(frame ? (void *)frame->if_rip : NULL));
623 #else
624 			NULL);
625 #endif
626 	}
627 #endif
628 	copy_func(copy_arg1, copy_arg2, frame);
629 	cpu_sfence();
630 	ip->ip_xindex = ip->ip_rindex;
631 
632 #ifdef PANIC_DEBUG
633 	/*
634 	 * Simulate panics during the processing of an IPI
635 	 */
636 	if (mycpu->gd_cpuid == panic_ipiq_cpu && panic_ipiq_count) {
637 		if (--panic_ipiq_count == 0) {
638 #ifdef DDB
639 			Debugger("PANIC_DEBUG");
640 #else
641 			panic("PANIC_DEBUG");
642 #endif
643 		}
644 	}
645 #endif
646     }
647     --mygd->gd_intr_nesting_level;
648 
649     /*
650      * Return non-zero if there are more IPI messages pending on this
651      * ipiq.  ip_npoll is left set as long as possible to reduce the
652      * number of IPIs queued by the originating cpu, but must be cleared
653      * *BEFORE* checking windex.
654      */
655     atomic_poll_release_int(&ip->ip_npoll);
656     return(wi != ip->ip_windex);
657 }
658 
659 static void
660 lwkt_sync_ipiq(void *arg)
661 {
662     volatile cpumask_t *cpumask = arg;
663 
664     atomic_clear_cpumask(cpumask, mycpu->gd_cpumask);
665     if (*cpumask == 0)
666 	wakeup(cpumask);
667 }
668 
669 void
670 lwkt_synchronize_ipiqs(const char *wmesg)
671 {
672     volatile cpumask_t other_cpumask;
673 
674     other_cpumask = mycpu->gd_other_cpus & smp_active_mask;
675     lwkt_send_ipiq_mask(other_cpumask, lwkt_sync_ipiq,
676     	__DEVOLATILE(void *, &other_cpumask));
677 
678     while (other_cpumask != 0) {
679 	tsleep_interlock(&other_cpumask, 0);
680 	if (other_cpumask != 0)
681 	    tsleep(&other_cpumask, PINTERLOCKED, wmesg, 0);
682     }
683 }
684 
685 #endif
686 
687 /*
688  * CPU Synchronization Support
689  *
690  * lwkt_cpusync_interlock()	- Place specified cpus in a quiescent state.
691  *				  The current cpu is placed in a hard critical
692  *				  section.
693  *
694  * lwkt_cpusync_deinterlock()	- Execute cs_func on specified cpus, including
695  *				  current cpu if specified, then return.
696  */
697 void
698 lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *arg)
699 {
700     struct lwkt_cpusync cs;
701 
702     lwkt_cpusync_init(&cs, mask, func, arg);
703     lwkt_cpusync_interlock(&cs);
704     lwkt_cpusync_deinterlock(&cs);
705 }
706 
707 
708 void
709 lwkt_cpusync_interlock(lwkt_cpusync_t cs)
710 {
711 #ifdef SMP
712     globaldata_t gd = mycpu;
713     cpumask_t mask;
714 
715     /*
716      * mask acknowledge (cs_mack):  0->mask for stage 1
717      *
718      * mack does not include the current cpu.
719      */
720     mask = cs->cs_mask & gd->gd_other_cpus & smp_active_mask;
721     cs->cs_mack = 0;
722     crit_enter_id("cpusync");
723     if (mask) {
724 	DEBUG_PUSH_INFO("cpusync_interlock");
725 	++ipiq_cscount;
726 	++gd->gd_curthread->td_cscount;
727 	lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote1, cs);
728 	logipiq2(sync_start, mask);
729 	while (cs->cs_mack != mask) {
730 	    lwkt_process_ipiq();
731 	    cpu_pause();
732 	}
733 	DEBUG_POP_INFO();
734     }
735 #else
736     cs->cs_mack = 0;
737 #endif
738 }
739 
740 /*
741  * Interlocked cpus have executed remote1 and are polling in remote2.
742  * To deinterlock we clear cs_mack and wait for the cpus to execute
743  * the func and set their bit in cs_mack again.
744  *
745  */
746 void
747 lwkt_cpusync_deinterlock(lwkt_cpusync_t cs)
748 {
749     globaldata_t gd = mycpu;
750 #ifdef SMP
751     cpumask_t mask;
752 
753     /*
754      * mask acknowledge (cs_mack):  mack->0->mack for stage 2
755      *
756      * Clearing cpu bits for polling cpus in cs_mack will cause them to
757      * execute stage 2, which executes the cs_func(cs_data) and then sets
758      * their bit in cs_mack again.
759      *
760      * mack does not include the current cpu.
761      */
762     mask = cs->cs_mack;
763     cpu_ccfence();
764     cs->cs_mack = 0;
765     if (cs->cs_func && (cs->cs_mask & gd->gd_cpumask))
766 	    cs->cs_func(cs->cs_data);
767     if (mask) {
768 	DEBUG_PUSH_INFO("cpusync_deinterlock");
769 	while (cs->cs_mack != mask) {
770 	    lwkt_process_ipiq();
771 	    cpu_pause();
772 	}
773 	DEBUG_POP_INFO();
774 	/*
775 	 * cpusyncq ipis may be left queued without the RQF flag set due to
776 	 * a non-zero td_cscount, so be sure to process any laggards after
777 	 * decrementing td_cscount.
778 	 */
779 	--gd->gd_curthread->td_cscount;
780 	lwkt_process_ipiq();
781 	logipiq2(sync_end, mask);
782     }
783     crit_exit_id("cpusync");
784 #else
785     if (cs->cs_func && (cs->cs_mask & gd->gd_cpumask))
786 	cs->cs_func(cs->cs_data);
787 #endif
788 }
789 
790 #ifdef SMP
791 
792 /*
793  * helper IPI remote messaging function.
794  *
795  * Called on remote cpu when a new cpu synchronization request has been
796  * sent to us.  Execute the run function and adjust cs_count, then requeue
797  * the request so we spin on it.
798  */
799 static void
800 lwkt_cpusync_remote1(lwkt_cpusync_t cs)
801 {
802     globaldata_t gd = mycpu;
803 
804     atomic_set_cpumask(&cs->cs_mack, gd->gd_cpumask);
805     lwkt_cpusync_remote2(cs);
806 }
807 
808 /*
809  * helper IPI remote messaging function.
810  *
811  * Poll for the originator telling us to finish.  If it hasn't, requeue
812  * our request so we spin on it.
813  */
814 static void
815 lwkt_cpusync_remote2(lwkt_cpusync_t cs)
816 {
817     globaldata_t gd = mycpu;
818 
819     if ((cs->cs_mack & gd->gd_cpumask) == 0) {
820 	if (cs->cs_func)
821 		cs->cs_func(cs->cs_data);
822 	atomic_set_cpumask(&cs->cs_mack, gd->gd_cpumask);
823     } else {
824 	lwkt_ipiq_t ip;
825 	int wi;
826 
827 	ip = &gd->gd_cpusyncq;
828 	wi = ip->ip_windex & MAXCPUFIFO_MASK;
829 	ip->ip_func[wi] = (ipifunc3_t)(ipifunc1_t)lwkt_cpusync_remote2;
830 	ip->ip_arg1[wi] = cs;
831 	ip->ip_arg2[wi] = 0;
832 	cpu_sfence();
833 	++ip->ip_windex;
834 	if (ipiq_debug && (ip->ip_windex & 0xFFFFFF) == 0) {
835 		kprintf("cpu %d cm=%016jx %016jx f=%p\n",
836 			gd->gd_cpuid,
837 			(intmax_t)cs->cs_mask, (intmax_t)cs->cs_mack,
838 			cs->cs_func);
839 	}
840     }
841 }
842 
843 #endif
844