xref: /dragonfly/sys/kern/lwkt_ipiq.c (revision f223f854)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * This module implements IPI message queueing and the MI portion of IPI
37  * message processing.
38  */
39 
40 #include "opt_ddb.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/thread2.h>
49 #include <sys/sysctl.h>
50 #include <sys/ktr.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 
55 #include <vm/vm.h>
56 #include <vm/vm_param.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_pager.h>
62 #include <vm/vm_extern.h>
63 #include <vm/vm_zone.h>
64 
65 #include <machine/stdarg.h>
66 #include <machine/smp.h>
67 #include <machine/clock.h>
68 #include <machine/atomic.h>
69 
70 #ifdef _KERNEL_VIRTUAL
71 #include <pthread.h>
72 #endif
73 
74 struct ipiq_stats {
75     int64_t ipiq_count;		/* total calls to lwkt_send_ipiq*() */
76     int64_t ipiq_fifofull;	/* number of fifo full conditions detected */
77     int64_t ipiq_avoided;	/* interlock with target avoids cpu ipi */
78     int64_t ipiq_passive;	/* passive IPI messages */
79     int64_t ipiq_cscount;	/* number of cpu synchronizations */
80 } __cachealign;
81 
82 static struct ipiq_stats ipiq_stats_percpu[MAXCPU];
83 #define ipiq_stat(gd)	ipiq_stats_percpu[(gd)->gd_cpuid]
84 
85 static int ipiq_debug;		/* set to 1 for debug */
86 #ifdef PANIC_DEBUG
87 static int	panic_ipiq_cpu = -1;
88 static int	panic_ipiq_count = 100;
89 #endif
90 
91 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_debug, CTLFLAG_RW, &ipiq_debug, 0,
92     "");
93 #ifdef PANIC_DEBUG
94 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_cpu, CTLFLAG_RW, &panic_ipiq_cpu, 0, "");
95 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_count, CTLFLAG_RW, &panic_ipiq_count, 0, "");
96 #endif
97 
98 #define IPIQ_STRING	"func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
99 #define IPIQ_ARGS	void *func, void *arg1, int arg2, int scpu, int dcpu
100 
101 #if !defined(KTR_IPIQ)
102 #define KTR_IPIQ	KTR_ALL
103 #endif
104 KTR_INFO_MASTER(ipiq);
105 KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARGS);
106 KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARGS);
107 KTR_INFO(KTR_IPIQ, ipiq, send_nbio, 2, IPIQ_STRING, IPIQ_ARGS);
108 KTR_INFO(KTR_IPIQ, ipiq, send_fail, 3, IPIQ_STRING, IPIQ_ARGS);
109 KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARGS);
110 KTR_INFO(KTR_IPIQ, ipiq, sync_start, 5, "cpumask=%08lx", unsigned long mask);
111 KTR_INFO(KTR_IPIQ, ipiq, sync_end, 6, "cpumask=%08lx", unsigned long mask);
112 KTR_INFO(KTR_IPIQ, ipiq, cpu_send, 7, IPIQ_STRING, IPIQ_ARGS);
113 KTR_INFO(KTR_IPIQ, ipiq, send_end, 8, IPIQ_STRING, IPIQ_ARGS);
114 KTR_INFO(KTR_IPIQ, ipiq, sync_quick, 9, "cpumask=%08lx", unsigned long mask);
115 
116 #define logipiq(name, func, arg1, arg2, sgd, dgd)	\
117 	KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
118 #define logipiq2(name, arg)	\
119 	KTR_LOG(ipiq_ ## name, arg)
120 
121 static int lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
122 				  struct intrframe *frame);
123 static void lwkt_cpusync_remote1(lwkt_cpusync_t cs);
124 static void lwkt_cpusync_remote2(lwkt_cpusync_t cs);
125 
126 #define IPIQ_SYSCTL(name) \
127 static int \
128 sysctl_##name(SYSCTL_HANDLER_ARGS) \
129 { \
130     int64_t val = 0; \
131     int cpu, error; \
132  \
133     for (cpu = 0; cpu < ncpus; ++cpu) \
134 	val += ipiq_stats_percpu[cpu].name; \
135  \
136     error = sysctl_handle_quad(oidp, &val, 0, req); \
137     if (error || req->newptr == NULL) \
138 	return error; \
139  \
140     for (cpu = 0; cpu < ncpus; ++cpu) \
141     	ipiq_stats_percpu[cpu].name = val; \
142  \
143     return 0; \
144 }
145 
146 IPIQ_SYSCTL(ipiq_count);
147 IPIQ_SYSCTL(ipiq_fifofull);
148 IPIQ_SYSCTL(ipiq_avoided);
149 IPIQ_SYSCTL(ipiq_passive);
150 IPIQ_SYSCTL(ipiq_cscount);
151 
152 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_count, (CTLTYPE_QUAD | CTLFLAG_RW),
153     0, 0, sysctl_ipiq_count, "Q", "Number of IPI's sent");
154 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_fifofull, (CTLTYPE_QUAD | CTLFLAG_RW),
155     0, 0, sysctl_ipiq_fifofull, "Q",
156     "Number of fifo full conditions detected");
157 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_avoided, (CTLTYPE_QUAD | CTLFLAG_RW),
158     0, 0, sysctl_ipiq_avoided, "Q",
159     "Number of IPI's avoided by interlock with target cpu");
160 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_passive, (CTLTYPE_QUAD | CTLFLAG_RW),
161     0, 0, sysctl_ipiq_passive, "Q",
162     "Number of passive IPI messages sent");
163 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_cscount, (CTLTYPE_QUAD | CTLFLAG_RW),
164     0, 0, sysctl_ipiq_cscount, "Q",
165     "Number of cpu synchronizations");
166 
167 /*
168  * Send a function execution request to another cpu.  The request is queued
169  * on the cpu<->cpu ipiq matrix.  Each cpu owns a unique ipiq FIFO for every
170  * possible target cpu.  The FIFO can be written.
171  *
172  * If the FIFO fills up we have to enable interrupts to avoid an APIC
173  * deadlock and process pending IPIQs while waiting for it to empty.
174  * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
175  *
176  * We can safely bump gd_intr_nesting_level because our crit_exit() at the
177  * end will take care of any pending interrupts.
178  *
179  * The actual hardware IPI is avoided if the target cpu is already processing
180  * the queue from a prior IPI.  It is possible to pipeline IPI messages
181  * very quickly between cpus due to the FIFO hysteresis.
182  *
183  * Need not be called from a critical section.
184  */
185 int
186 lwkt_send_ipiq3(globaldata_t target, ipifunc3_t func, void *arg1, int arg2)
187 {
188     lwkt_ipiq_t ip;
189     int windex;
190 #ifdef _KERNEL_VIRTUAL
191     int repeating = 0;
192 #endif
193     struct globaldata *gd = mycpu;
194 
195     logipiq(send_norm, func, arg1, arg2, gd, target);
196 
197     if (target == gd) {
198 	func(arg1, arg2, NULL);
199 	logipiq(send_end, func, arg1, arg2, gd, target);
200 	return(0);
201     }
202     crit_enter();
203     ++gd->gd_intr_nesting_level;
204 #ifdef INVARIANTS
205     if (gd->gd_intr_nesting_level > 20)
206 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
207 #endif
208     KKASSERT(curthread->td_critcount);
209     ++ipiq_stat(gd).ipiq_count;
210     ip = &gd->gd_ipiq[target->gd_cpuid];
211 
212     /*
213      * Do not allow the FIFO to become full.  Interrupts must be physically
214      * enabled while we liveloop to avoid deadlocking the APIC.
215      *
216      * The target ipiq may have gotten filled up due to passive IPIs and thus
217      * not be aware that its queue is too full, so be sure to issue an
218      * ipiq interrupt to the target cpu.
219      */
220     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
221 #if defined(__x86_64__)
222 	unsigned long rflags = read_rflags();
223 #else
224 #error "no read_*flags"
225 #endif
226 
227 	cpu_enable_intr();
228 	++ipiq_stat(gd).ipiq_fifofull;
229 	DEBUG_PUSH_INFO("send_ipiq3");
230 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
231 	    if (atomic_poll_acquire_int(&target->gd_npoll)) {
232 		logipiq(cpu_send, func, arg1, arg2, gd, target);
233 		cpu_send_ipiq(target->gd_cpuid);
234 	    }
235 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
236 	    lwkt_process_ipiq();
237 	    cpu_pause();
238 #ifdef _KERNEL_VIRTUAL
239 	    if (repeating++ > 10)
240 		    pthread_yield();
241 #endif
242 	}
243 	DEBUG_POP_INFO();
244 #if defined(__x86_64__)
245 	write_rflags(rflags);
246 #else
247 #error "no write_*flags"
248 #endif
249     }
250 
251     /*
252      * Queue the new message
253      */
254     windex = ip->ip_windex & MAXCPUFIFO_MASK;
255     ip->ip_info[windex].func = func;
256     ip->ip_info[windex].arg1 = arg1;
257     ip->ip_info[windex].arg2 = arg2;
258     cpu_sfence();
259     ++ip->ip_windex;
260     ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
261 
262     /*
263      * signal the target cpu that there is work pending.
264      */
265     if (atomic_poll_acquire_int(&target->gd_npoll)) {
266 	logipiq(cpu_send, func, arg1, arg2, gd, target);
267 	cpu_send_ipiq(target->gd_cpuid);
268     } else {
269 	++ipiq_stat(gd).ipiq_avoided;
270     }
271     --gd->gd_intr_nesting_level;
272     crit_exit();
273     logipiq(send_end, func, arg1, arg2, gd, target);
274 
275     return(ip->ip_windex);
276 }
277 
278 /*
279  * Similar to lwkt_send_ipiq() but this function does not actually initiate
280  * the IPI to the target cpu unless the FIFO has become too full, so it is
281  * very fast.
282  *
283  * This function is used for non-critical IPI messages, such as memory
284  * deallocations.  The queue will typically be flushed by the target cpu at
285  * the next clock interrupt.
286  *
287  * Need not be called from a critical section.
288  */
289 int
290 lwkt_send_ipiq3_passive(globaldata_t target, ipifunc3_t func,
291 			void *arg1, int arg2)
292 {
293     lwkt_ipiq_t ip;
294     int windex;
295 #ifdef _KERNEL_VIRTUAL
296     int repeating = 0;
297 #endif
298     struct globaldata *gd = mycpu;
299 
300     KKASSERT(target != gd);
301     crit_enter();
302     ++gd->gd_intr_nesting_level;
303     logipiq(send_pasv, func, arg1, arg2, gd, target);
304 #ifdef INVARIANTS
305     if (gd->gd_intr_nesting_level > 20)
306 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
307 #endif
308     KKASSERT(curthread->td_critcount);
309     ++ipiq_stat(gd).ipiq_count;
310     ++ipiq_stat(gd).ipiq_passive;
311     ip = &gd->gd_ipiq[target->gd_cpuid];
312 
313     /*
314      * Do not allow the FIFO to become full.  Interrupts must be physically
315      * enabled while we liveloop to avoid deadlocking the APIC.
316      */
317     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
318 #if defined(__x86_64__)
319 	unsigned long rflags = read_rflags();
320 #else
321 #error "no read_*flags"
322 #endif
323 
324 	cpu_enable_intr();
325 	++ipiq_stat(gd).ipiq_fifofull;
326 	DEBUG_PUSH_INFO("send_ipiq3_passive");
327 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
328 	    if (atomic_poll_acquire_int(&target->gd_npoll)) {
329 		logipiq(cpu_send, func, arg1, arg2, gd, target);
330 		cpu_send_ipiq(target->gd_cpuid);
331 	    }
332 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
333 	    lwkt_process_ipiq();
334 	    cpu_pause();
335 #ifdef _KERNEL_VIRTUAL
336 	    if (repeating++ > 10)
337 		    pthread_yield();
338 #endif
339 	}
340 	DEBUG_POP_INFO();
341 #if defined(__x86_64__)
342 	write_rflags(rflags);
343 #else
344 #error "no write_*flags"
345 #endif
346     }
347 
348     /*
349      * Queue the new message
350      */
351     windex = ip->ip_windex & MAXCPUFIFO_MASK;
352     ip->ip_info[windex].func = func;
353     ip->ip_info[windex].arg1 = arg1;
354     ip->ip_info[windex].arg2 = arg2;
355     cpu_sfence();
356     ++ip->ip_windex;
357     ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
358     --gd->gd_intr_nesting_level;
359 
360     /*
361      * Do not signal the target cpu, it will pick up the IPI when it next
362      * polls (typically on the next tick).
363      */
364     crit_exit();
365     logipiq(send_end, func, arg1, arg2, gd, target);
366 
367     return(ip->ip_windex);
368 }
369 
370 /*
371  * Send an IPI request without blocking, return 0 on success, ENOENT on
372  * failure.  The actual queueing of the hardware IPI may still force us
373  * to spin and process incoming IPIs but that will eventually go away
374  * when we've gotten rid of the other general IPIs.
375  */
376 int
377 lwkt_send_ipiq3_nowait(globaldata_t target, ipifunc3_t func,
378 		       void *arg1, int arg2)
379 {
380     lwkt_ipiq_t ip;
381     int windex;
382     struct globaldata *gd = mycpu;
383 
384     logipiq(send_nbio, func, arg1, arg2, gd, target);
385     KKASSERT(curthread->td_critcount);
386     if (target == gd) {
387 	func(arg1, arg2, NULL);
388 	logipiq(send_end, func, arg1, arg2, gd, target);
389 	return(0);
390     }
391     crit_enter();
392     ++gd->gd_intr_nesting_level;
393     ++ipiq_stat(gd).ipiq_count;
394     ip = &gd->gd_ipiq[target->gd_cpuid];
395 
396     if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO * 2 / 3) {
397 	logipiq(send_fail, func, arg1, arg2, gd, target);
398 	--gd->gd_intr_nesting_level;
399 	crit_exit();
400 	return(ENOENT);
401     }
402     windex = ip->ip_windex & MAXCPUFIFO_MASK;
403     ip->ip_info[windex].func = func;
404     ip->ip_info[windex].arg1 = arg1;
405     ip->ip_info[windex].arg2 = arg2;
406     cpu_sfence();
407     ++ip->ip_windex;
408     ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
409 
410     /*
411      * This isn't a passive IPI, we still have to signal the target cpu.
412      */
413     if (atomic_poll_acquire_int(&target->gd_npoll)) {
414 	logipiq(cpu_send, func, arg1, arg2, gd, target);
415 	cpu_send_ipiq(target->gd_cpuid);
416     } else {
417 	++ipiq_stat(gd).ipiq_avoided;
418     }
419     --gd->gd_intr_nesting_level;
420     crit_exit();
421 
422     logipiq(send_end, func, arg1, arg2, gd, target);
423     return(0);
424 }
425 
426 /*
427  * deprecated, used only by fast int forwarding.
428  */
429 int
430 lwkt_send_ipiq3_bycpu(int dcpu, ipifunc3_t func, void *arg1, int arg2)
431 {
432     return(lwkt_send_ipiq3(globaldata_find(dcpu), func, arg1, arg2));
433 }
434 
435 /*
436  * Send a message to several target cpus.  Typically used for scheduling.
437  * The message will not be sent to stopped cpus.
438  */
439 int
440 lwkt_send_ipiq3_mask(cpumask_t mask, ipifunc3_t func, void *arg1, int arg2)
441 {
442     int cpuid;
443     int count = 0;
444 
445     CPUMASK_NANDMASK(mask, stopped_cpus);
446     while (CPUMASK_TESTNZERO(mask)) {
447 	cpuid = BSFCPUMASK(mask);
448 	lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
449 	CPUMASK_NANDBIT(mask, cpuid);
450 	++count;
451     }
452     return(count);
453 }
454 
455 /*
456  * Wait for the remote cpu to finish processing a function.
457  *
458  * YYY we have to enable interrupts and process the IPIQ while waiting
459  * for it to empty or we may deadlock with another cpu.  Create a CPU_*()
460  * function to do this!  YYY we really should 'block' here.
461  *
462  * MUST be called from a critical section.  This routine may be called
463  * from an interrupt (for example, if an interrupt wakes a foreign thread
464  * up).
465  */
466 void
467 lwkt_wait_ipiq(globaldata_t target, int seq)
468 {
469     lwkt_ipiq_t ip;
470 
471     if (target != mycpu) {
472 	ip = &mycpu->gd_ipiq[target->gd_cpuid];
473 	if ((int)(ip->ip_xindex - seq) < 0) {
474 #if defined(__x86_64__)
475 	    unsigned long rflags = read_rflags();
476 #else
477 #error "no read_*flags"
478 #endif
479 	    int64_t time_tgt = tsc_get_target(1000000000LL);
480 	    int time_loops = 10;
481 	    int benice = 0;
482 #ifdef _KERNEL_VIRTUAL
483 	    int repeating = 0;
484 #endif
485 
486 	    cpu_enable_intr();
487 	    DEBUG_PUSH_INFO("wait_ipiq");
488 	    while ((int)(ip->ip_xindex - seq) < 0) {
489 		crit_enter();
490 		lwkt_process_ipiq();
491 		crit_exit();
492 #ifdef _KERNEL_VIRTUAL
493 		if (repeating++ > 10)
494 			pthread_yield();
495 #endif
496 
497 		/*
498 		 * IPIQs must be handled within 10 seconds and this code
499 		 * will warn after one second.
500 		 */
501 		if ((benice & 255) == 0 && tsc_test_target(time_tgt) > 0) {
502 			kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n",
503 				mycpu->gd_cpuid, target->gd_cpuid,
504 				ip->ip_xindex - seq);
505 			if (--time_loops == 0)
506 				panic("LWKT_WAIT_IPIQ");
507 			time_tgt = tsc_get_target(1000000000LL);
508 		}
509 		++benice;
510 
511 		/*
512 		 * xindex may be modified by another cpu, use a load fence
513 		 * to ensure that the loop does not use a speculative value
514 		 * (which may improve performance).
515 		 */
516 		cpu_pause();
517 		cpu_lfence();
518 	    }
519 	    DEBUG_POP_INFO();
520 #if defined(__x86_64__)
521 	    write_rflags(rflags);
522 #else
523 #error "no write_*flags"
524 #endif
525 	}
526     }
527 }
528 
529 int
530 lwkt_seq_ipiq(globaldata_t target)
531 {
532     lwkt_ipiq_t ip;
533 
534     ip = &mycpu->gd_ipiq[target->gd_cpuid];
535     return(ip->ip_windex);
536 }
537 
538 /*
539  * Called from IPI interrupt (like a fast interrupt), which has placed
540  * us in a critical section.  The MP lock may or may not be held.
541  * May also be called from doreti or splz, or be reentrantly called
542  * indirectly through the ip_info[].func we run.
543  *
544  * There are two versions, one where no interrupt frame is available (when
545  * called from the send code and from splz, and one where an interrupt
546  * frame is available.
547  *
548  * When the current cpu is mastering a cpusync we do NOT internally loop
549  * on the cpusyncq poll.  We also do not re-flag a pending ipi due to
550  * the cpusyncq poll because this can cause doreti/splz to loop internally.
551  * The cpusync master's own loop must be allowed to run to avoid a deadlock.
552  */
553 void
554 lwkt_process_ipiq(void)
555 {
556     globaldata_t gd = mycpu;
557     globaldata_t sgd;
558     lwkt_ipiq_t ip;
559     cpumask_t mask;
560     int n;
561 
562     ++gd->gd_processing_ipiq;
563 again:
564     cpu_lfence();
565     mask = gd->gd_ipimask;
566     ATOMIC_CPUMASK_NANDMASK(gd->gd_ipimask, mask);
567     while (CPUMASK_TESTNZERO(mask)) {
568 	n = BSFCPUMASK(mask);
569 	if (n != gd->gd_cpuid) {
570 	    sgd = globaldata_find(n);
571 	    ip = sgd->gd_ipiq;
572 	    if (ip != NULL) {
573 		while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], NULL))
574 		    ;
575 	    }
576 	}
577 	CPUMASK_NANDBIT(mask, n);
578     }
579 
580     /*
581      * Process pending cpusyncs.  If the current thread has a cpusync
582      * active cpusync we only run the list once and do not re-flag
583      * as the thread itself is processing its interlock.
584      */
585     if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL)) {
586 	if (gd->gd_curthread->td_cscount == 0)
587 	    goto again;
588 	/* need_ipiq(); do not reflag */
589     }
590 
591     /*
592      * Interlock to allow more IPI interrupts.  Recheck ipimask after
593      * releasing gd_npoll.
594      */
595     if (CPUMASK_TESTNZERO(gd->gd_ipimask))
596 	goto again;
597     atomic_poll_release_int(&gd->gd_npoll);
598     cpu_mfence();
599     if (CPUMASK_TESTNZERO(gd->gd_ipimask))
600 	goto again;
601     --gd->gd_processing_ipiq;
602 }
603 
604 void
605 lwkt_process_ipiq_frame(struct intrframe *frame)
606 {
607     globaldata_t gd = mycpu;
608     globaldata_t sgd;
609     lwkt_ipiq_t ip;
610     cpumask_t mask;
611     int n;
612 
613 again:
614     cpu_lfence();
615     mask = gd->gd_ipimask;
616     ATOMIC_CPUMASK_NANDMASK(gd->gd_ipimask, mask);
617     while (CPUMASK_TESTNZERO(mask)) {
618 	n = BSFCPUMASK(mask);
619 	if (n != gd->gd_cpuid) {
620 	    sgd = globaldata_find(n);
621 	    ip = sgd->gd_ipiq;
622 	    if (ip != NULL) {
623 		while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], frame))
624 		    ;
625 	    }
626 	}
627 	CPUMASK_NANDBIT(mask, n);
628     }
629     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
630 	if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, frame)) {
631 	    if (gd->gd_curthread->td_cscount == 0)
632 		goto again;
633 	    /* need_ipiq(); do not reflag */
634 	}
635     }
636 
637     /*
638      * Interlock to allow more IPI interrupts.  Recheck ipimask after
639      * releasing gd_npoll.
640      */
641     if (CPUMASK_TESTNZERO(gd->gd_ipimask))
642 	goto again;
643     atomic_poll_release_int(&gd->gd_npoll);
644     cpu_mfence();
645     if (CPUMASK_TESTNZERO(gd->gd_ipimask))
646 	goto again;
647 }
648 
649 #if 0
650 static int iqticks[SMP_MAXCPU];
651 static int iqcount[SMP_MAXCPU];
652 #endif
653 #if 0
654 static int iqterm[SMP_MAXCPU];
655 #endif
656 
657 static int
658 lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
659 		       struct intrframe *frame)
660 {
661     globaldata_t mygd = mycpu;
662     int ri;
663     int wi;
664     ipifunc3_t copy_func;
665     void *copy_arg1;
666     int copy_arg2;
667 
668 #if 0
669     if (iqticks[mygd->gd_cpuid] != ticks) {
670 	    iqticks[mygd->gd_cpuid] = ticks;
671 	    iqcount[mygd->gd_cpuid] = 0;
672     }
673     if (++iqcount[mygd->gd_cpuid] > 3000000) {
674 	kprintf("cpu %d ipiq maxed cscount %d spin %d\n",
675 		mygd->gd_cpuid,
676 		mygd->gd_curthread->td_cscount,
677 		mygd->gd_spinlocks);
678 	iqcount[mygd->gd_cpuid] = 0;
679 #if 0
680 	if (++iqterm[mygd->gd_cpuid] > 10)
681 		panic("cpu %d ipiq maxed", mygd->gd_cpuid);
682 #endif
683 	int i;
684 	for (i = 0; i < ncpus; ++i) {
685 		if (globaldata_find(i)->gd_infomsg)
686 			kprintf(" %s", globaldata_find(i)->gd_infomsg);
687 	}
688 	kprintf("\n");
689     }
690 #endif
691 
692     /*
693      * Clear the originating core from our ipimask, we will process all
694      * incoming messages.
695      *
696      * Obtain the current write index, which is modified by a remote cpu.
697      * Issue a load fence to prevent speculative reads of e.g. data written
698      * by the other cpu prior to it updating the index.
699      */
700     KKASSERT(curthread->td_critcount);
701     wi = ip->ip_windex;
702     cpu_lfence();
703     ++mygd->gd_intr_nesting_level;
704 
705     /*
706      * NOTE: xindex is only updated after we are sure the function has
707      *	     finished execution.  Beware lwkt_process_ipiq() reentrancy!
708      *	     The function may send an IPI which may block/drain.
709      *
710      * NOTE: Due to additional IPI operations that the callback function
711      *	     may make, it is possible for both rindex and windex to advance and
712      *	     thus for rindex to advance passed our cached windex.
713      *
714      * NOTE: A load fence is required to prevent speculative loads prior
715      *	     to the loading of ip_rindex.  Even though stores might be
716      *	     ordered, loads are probably not.  A memory fence is required
717      *	     to prevent reordering of the loads after the ip_rindex update.
718      *
719      * NOTE: Single pass only.  Returns non-zero if the queue is not empty
720      *	     on return.
721      */
722     while (wi - (ri = ip->ip_rindex) > 0) {
723 	ri &= MAXCPUFIFO_MASK;
724 	cpu_lfence();
725 	copy_func = ip->ip_info[ri].func;
726 	copy_arg1 = ip->ip_info[ri].arg1;
727 	copy_arg2 = ip->ip_info[ri].arg2;
728 	cpu_mfence();
729 	++ip->ip_rindex;
730 	KKASSERT((ip->ip_rindex & MAXCPUFIFO_MASK) ==
731 		 ((ri + 1) & MAXCPUFIFO_MASK));
732 	logipiq(receive, copy_func, copy_arg1, copy_arg2, sgd, mycpu);
733 #ifdef INVARIANTS
734 	if (ipiq_debug && (ip->ip_rindex & 0xFFFFFF) == 0) {
735 		kprintf("cpu %d ipifunc %p %p %d (frame %p)\n",
736 			mycpu->gd_cpuid,
737 			copy_func, copy_arg1, copy_arg2,
738 #if defined(__x86_64__)
739 			(frame ? (void *)frame->if_rip : NULL));
740 #else
741 			NULL);
742 #endif
743 	}
744 #endif
745 	copy_func(copy_arg1, copy_arg2, frame);
746 	cpu_sfence();
747 	ip->ip_xindex = ip->ip_rindex;
748 
749 #ifdef PANIC_DEBUG
750 	/*
751 	 * Simulate panics during the processing of an IPI
752 	 */
753 	if (mycpu->gd_cpuid == panic_ipiq_cpu && panic_ipiq_count) {
754 		if (--panic_ipiq_count == 0) {
755 #ifdef DDB
756 			Debugger("PANIC_DEBUG");
757 #else
758 			panic("PANIC_DEBUG");
759 #endif
760 		}
761 	}
762 #endif
763     }
764     --mygd->gd_intr_nesting_level;
765 
766     /*
767      * Return non-zero if there is still more in the queue.
768      */
769     cpu_lfence();
770     return (ip->ip_rindex != ip->ip_windex);
771 }
772 
773 static void
774 lwkt_sync_ipiq(void *arg)
775 {
776     volatile cpumask_t *cpumask = arg;
777 
778     ATOMIC_CPUMASK_NANDBIT(*cpumask, mycpu->gd_cpuid);
779     if (CPUMASK_TESTZERO(*cpumask))
780 	wakeup(cpumask);
781 }
782 
783 void
784 lwkt_synchronize_ipiqs(const char *wmesg)
785 {
786     volatile cpumask_t other_cpumask;
787 
788     other_cpumask = smp_active_mask;
789     CPUMASK_ANDMASK(other_cpumask, mycpu->gd_other_cpus);
790     lwkt_send_ipiq_mask(other_cpumask, lwkt_sync_ipiq,
791 			__DEVOLATILE(void *, &other_cpumask));
792 
793     while (CPUMASK_TESTNZERO(other_cpumask)) {
794 	tsleep_interlock(&other_cpumask, 0);
795 	if (CPUMASK_TESTNZERO(other_cpumask))
796 	    tsleep(&other_cpumask, PINTERLOCKED, wmesg, 0);
797     }
798 }
799 
800 /*
801  * CPU Synchronization Support
802  *
803  * lwkt_cpusync_interlock()	- Place specified cpus in a quiescent state.
804  *				  The current cpu is placed in a hard critical
805  *				  section.
806  *
807  * lwkt_cpusync_deinterlock()	- Execute cs_func on specified cpus, including
808  *				  current cpu if specified, then return.
809  */
810 void
811 lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *arg)
812 {
813     struct lwkt_cpusync cs;
814 
815     lwkt_cpusync_init(&cs, mask, func, arg);
816     lwkt_cpusync_interlock(&cs);
817     lwkt_cpusync_deinterlock(&cs);
818 }
819 
820 
821 void
822 lwkt_cpusync_interlock(lwkt_cpusync_t cs)
823 {
824     globaldata_t gd = mycpu;
825     cpumask_t mask;
826 
827     /*
828      * mask acknowledge (cs_mack):  0->mask for stage 1
829      *
830      * mack does not include the current cpu.
831      */
832     mask = cs->cs_mask;
833     CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
834     CPUMASK_ANDMASK(mask, smp_active_mask);
835     CPUMASK_ASSZERO(cs->cs_mack);
836 
837     crit_enter_id("cpusync");
838     if (CPUMASK_TESTNZERO(mask)) {
839 	DEBUG_PUSH_INFO("cpusync_interlock");
840 	++ipiq_stat(gd).ipiq_cscount;
841 	++gd->gd_curthread->td_cscount;
842 	lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote1, cs);
843 	logipiq2(sync_start, (long)CPUMASK_LOWMASK(mask));
844 	while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
845 	    lwkt_process_ipiq();
846 	    cpu_pause();
847 #ifdef _KERNEL_VIRTUAL
848 	    pthread_yield();
849 #endif
850 	}
851 	DEBUG_POP_INFO();
852     }
853 }
854 
855 /*
856  * Interlocked cpus have executed remote1 and are polling in remote2.
857  * To deinterlock we clear cs_mack and wait for the cpus to execute
858  * the func and set their bit in cs_mack again.
859  *
860  */
861 void
862 lwkt_cpusync_deinterlock(lwkt_cpusync_t cs)
863 {
864     globaldata_t gd = mycpu;
865     cpumask_t mask;
866 
867     /*
868      * mask acknowledge (cs_mack):  mack->0->mack for stage 2
869      *
870      * Clearing cpu bits for polling cpus in cs_mack will cause them to
871      * execute stage 2, which executes the cs_func(cs_data) and then sets
872      * their bit in cs_mack again.
873      *
874      * mack does not include the current cpu.
875      */
876     mask = cs->cs_mack;
877     cpu_ccfence();
878     CPUMASK_ASSZERO(cs->cs_mack);
879     cpu_ccfence();
880     if (cs->cs_func && CPUMASK_TESTBIT(cs->cs_mask, gd->gd_cpuid))
881 	    cs->cs_func(cs->cs_data);
882     if (CPUMASK_TESTNZERO(mask)) {
883 	DEBUG_PUSH_INFO("cpusync_deinterlock");
884 	while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
885 	    lwkt_process_ipiq();
886 	    cpu_pause();
887 #ifdef _KERNEL_VIRTUAL
888 	    pthread_yield();
889 #endif
890 	}
891 	DEBUG_POP_INFO();
892 	/*
893 	 * cpusyncq ipis may be left queued without the RQF flag set due to
894 	 * a non-zero td_cscount, so be sure to process any laggards after
895 	 * decrementing td_cscount.
896 	 */
897 	--gd->gd_curthread->td_cscount;
898 	lwkt_process_ipiq();
899 	logipiq2(sync_end, (long)CPUMASK_LOWMASK(mask));
900     }
901     crit_exit_id("cpusync");
902 }
903 
904 /*
905  * The quick version does not quiesce the target cpu(s) but instead executes
906  * the function on the target cpu(s) and waits for all to acknowledge.  This
907  * avoids spinning on the target cpus.
908  *
909  * This function is typically only used for kernel_pmap updates.  User pmaps
910  * have to be quiesced.
911  */
912 void
913 lwkt_cpusync_quick(lwkt_cpusync_t cs)
914 {
915     globaldata_t gd = mycpu;
916     cpumask_t mask;
917 
918     /*
919      * stage-2 cs_mack only.
920      */
921     mask = cs->cs_mask;
922     CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
923     CPUMASK_ANDMASK(mask, smp_active_mask);
924     CPUMASK_ASSZERO(cs->cs_mack);
925 
926     crit_enter_id("cpusync");
927     if (CPUMASK_TESTNZERO(mask)) {
928 	DEBUG_PUSH_INFO("cpusync_interlock");
929 	++ipiq_stat(gd).ipiq_cscount;
930 	++gd->gd_curthread->td_cscount;
931 	lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote2, cs);
932 	logipiq2(sync_quick, (long)CPUMASK_LOWMASK(mask));
933 	while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
934 	    lwkt_process_ipiq();
935 	    cpu_pause();
936 #ifdef _KERNEL_VIRTUAL
937 	    pthread_yield();
938 #endif
939 	}
940 
941 	/*
942 	 * cpusyncq ipis may be left queued without the RQF flag set due to
943 	 * a non-zero td_cscount, so be sure to process any laggards after
944 	 * decrementing td_cscount.
945 	 */
946 	DEBUG_POP_INFO();
947 	--gd->gd_curthread->td_cscount;
948 	lwkt_process_ipiq();
949     }
950     if (cs->cs_func && CPUMASK_TESTBIT(cs->cs_mask, gd->gd_cpuid))
951 	    cs->cs_func(cs->cs_data);
952     crit_exit_id("cpusync");
953 }
954 
955 /*
956  * helper IPI remote messaging function.
957  *
958  * Called on remote cpu when a new cpu synchronization request has been
959  * sent to us.  Execute the run function and adjust cs_count, then requeue
960  * the request so we spin on it.
961  */
962 static void
963 lwkt_cpusync_remote1(lwkt_cpusync_t cs)
964 {
965     globaldata_t gd = mycpu;
966 
967     ATOMIC_CPUMASK_ORBIT(cs->cs_mack, gd->gd_cpuid);
968     lwkt_cpusync_remote2(cs);
969 }
970 
971 /*
972  * helper IPI remote messaging function.
973  *
974  * Poll for the originator telling us to finish.  If it hasn't, requeue
975  * our request so we spin on it.
976  */
977 static void
978 lwkt_cpusync_remote2(lwkt_cpusync_t cs)
979 {
980     globaldata_t gd = mycpu;
981 
982     if (CPUMASK_TESTMASK(cs->cs_mack, gd->gd_cpumask) == 0) {
983 	if (cs->cs_func)
984 		cs->cs_func(cs->cs_data);
985 	ATOMIC_CPUMASK_ORBIT(cs->cs_mack, gd->gd_cpuid);
986 	/* cs can be ripped out at this point */
987     } else {
988 	lwkt_ipiq_t ip;
989 	int wi;
990 
991 	cpu_pause();
992 #ifdef _KERNEL_VIRTUAL
993 	pthread_yield();
994 #endif
995 	cpu_lfence();
996 
997 	/*
998 	 * Requeue our IPI to avoid a deep stack recursion.  If no other
999 	 * IPIs are pending we can just loop up, which should help VMs
1000 	 * better-detect spin loops.
1001 	 */
1002 	ip = &gd->gd_cpusyncq;
1003 #if 0
1004 	if (ip->ip_rindex == ip->ip_windex) {
1005 		__asm __volatile("cli");
1006 		if (ip->ip_rindex == ip->ip_windex) {
1007 			__asm __volatile("sti; hlt");
1008 		} else {
1009 			__asm __volatile("sti");
1010 		}
1011 	}
1012 #endif
1013 
1014 	wi = ip->ip_windex & MAXCPUFIFO_MASK;
1015 	ip->ip_info[wi].func = (ipifunc3_t)(ipifunc1_t)lwkt_cpusync_remote2;
1016 	ip->ip_info[wi].arg1 = cs;
1017 	ip->ip_info[wi].arg2 = 0;
1018 	cpu_sfence();
1019 	KKASSERT(ip->ip_windex - ip->ip_rindex < MAXCPUFIFO);
1020 	++ip->ip_windex;
1021 	if (ipiq_debug && (ip->ip_windex & 0xFFFFFF) == 0) {
1022 		kprintf("cpu %d cm=%016jx %016jx f=%p\n",
1023 			gd->gd_cpuid,
1024 			(intmax_t)CPUMASK_LOWMASK(cs->cs_mask),
1025 			(intmax_t)CPUMASK_LOWMASK(cs->cs_mack),
1026 			cs->cs_func);
1027 	}
1028     }
1029 }
1030 
1031 #define LWKT_IPIQ_NLATENCY	8
1032 #define LWKT_IPIQ_NLATENCY_MASK	(LWKT_IPIQ_NLATENCY - 1)
1033 
1034 struct lwkt_ipiq_latency_log {
1035 	int		idx;	/* unmasked index */
1036 	int		pad;
1037 	uint64_t	latency[LWKT_IPIQ_NLATENCY];
1038 };
1039 
1040 static struct lwkt_ipiq_latency_log	lwkt_ipiq_latency_logs[MAXCPU];
1041 static uint64_t save_tsc;
1042 
1043 /*
1044  * IPI callback (already in a critical section)
1045  */
1046 static void
1047 lwkt_ipiq_latency_testfunc(void *arg __unused)
1048 {
1049 	uint64_t delta_tsc;
1050 	struct globaldata *gd;
1051 	struct lwkt_ipiq_latency_log *lat;
1052 
1053 	/*
1054 	 * Get delta TSC (assume TSCs are synchronized) as quickly as
1055 	 * possible and then convert to nanoseconds.
1056 	 */
1057 	delta_tsc = rdtsc_ordered() - save_tsc;
1058 	delta_tsc = delta_tsc * 1000000000LU / tsc_frequency;
1059 
1060 	/*
1061 	 * Record in our save array.
1062 	 */
1063 	gd = mycpu;
1064 	lat = &lwkt_ipiq_latency_logs[gd->gd_cpuid];
1065 	lat->latency[lat->idx & LWKT_IPIQ_NLATENCY_MASK] = delta_tsc;
1066 	++lat->idx;
1067 }
1068 
1069 /*
1070  * Send IPI from cpu0 to other cpus
1071  *
1072  * NOTE: Machine must be idle for test to run dependably, and also probably
1073  *	 a good idea not to be running powerd.
1074  *
1075  * NOTE: Caller should use 'usched :1 <command>' to lock itself to cpu 0.
1076  *	 See 'ipitest' script in /usr/src/test/sysperf/ipitest
1077  */
1078 static int
1079 lwkt_ipiq_latency_test(SYSCTL_HANDLER_ARGS)
1080 {
1081 	struct globaldata *gd;
1082 	int cpu = 0, orig_cpu, error;
1083 
1084 	error = sysctl_handle_int(oidp, &cpu, arg2, req);
1085 	if (error || req->newptr == NULL)
1086 		return error;
1087 
1088 	if (cpu == 0)
1089 		return 0;
1090 	else if (cpu >= ncpus || cpu < 0)
1091 		return EINVAL;
1092 
1093 	orig_cpu = mycpuid;
1094 	lwkt_migratecpu(0);
1095 
1096 	gd = globaldata_find(cpu);
1097 
1098 	save_tsc = rdtsc_ordered();
1099 	lwkt_send_ipiq(gd, lwkt_ipiq_latency_testfunc, NULL);
1100 
1101 	lwkt_migratecpu(orig_cpu);
1102 	return 0;
1103 }
1104 
1105 SYSCTL_NODE(_debug, OID_AUTO, ipiq, CTLFLAG_RW, 0, "");
1106 SYSCTL_PROC(_debug_ipiq, OID_AUTO, latency_test, CTLTYPE_INT | CTLFLAG_RW,
1107     NULL, 0, lwkt_ipiq_latency_test, "I",
1108     "ipi latency test, arg: remote cpuid");
1109 
1110 static int
1111 lwkt_ipiq_latency(SYSCTL_HANDLER_ARGS)
1112 {
1113 	struct lwkt_ipiq_latency_log *latency = arg1;
1114 	uint64_t lat[LWKT_IPIQ_NLATENCY];
1115 	int i;
1116 
1117 	for (i = 0; i < LWKT_IPIQ_NLATENCY; ++i)
1118 		lat[i] = latency->latency[i];
1119 
1120 	return sysctl_handle_opaque(oidp, lat, sizeof(lat), req);
1121 }
1122 
1123 static void
1124 lwkt_ipiq_latency_init(void *dummy __unused)
1125 {
1126 	int cpu;
1127 
1128 	for (cpu = 0; cpu < ncpus; ++cpu) {
1129 		char name[32];
1130 
1131 		ksnprintf(name, sizeof(name), "latency%d", cpu);
1132 		SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_debug_ipiq),
1133 		    OID_AUTO, name, CTLTYPE_OPAQUE | CTLFLAG_RD,
1134 		    &lwkt_ipiq_latency_logs[cpu], 0, lwkt_ipiq_latency,
1135 		    "LU", "7 latest ipi latency measurement results");
1136 	}
1137 }
1138 SYSINIT(lwkt_ipiq_latency, SI_SUB_CONFIGURE, SI_ORDER_ANY,
1139     lwkt_ipiq_latency_init, NULL);
1140