xref: /dragonfly/sys/kern/lwkt_thread.c (revision 0dace59e)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59 
60 #include <sys/dsched.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70 
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 
74 #ifdef _KERNEL_VIRTUAL
75 #include <pthread.h>
76 #endif
77 
78 #if !defined(KTR_CTXSW)
79 #define KTR_CTXSW KTR_ALL
80 #endif
81 KTR_INFO_MASTER(ctxsw);
82 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
83 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
84 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
86 
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88 
89 #ifdef	INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static __int64_t switch_count = 0;
93 static __int64_t preempt_hit = 0;
94 static __int64_t preempt_miss = 0;
95 static __int64_t preempt_weird = 0;
96 static int lwkt_use_spin_port;
97 static struct objcache *thread_cache;
98 int cpu_mwait_spin = 0;
99 
100 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
101 static void lwkt_setcpu_remote(void *arg);
102 
103 extern void cpu_heavy_restore(void);
104 extern void cpu_lwkt_restore(void);
105 extern void cpu_kthread_restore(void);
106 extern void cpu_idle_restore(void);
107 
108 /*
109  * We can make all thread ports use the spin backend instead of the thread
110  * backend.  This should only be set to debug the spin backend.
111  */
112 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
113 
114 #ifdef	INVARIANTS
115 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
116     "Panic if attempting to switch lwkt's while mastering cpusync");
117 #endif
118 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RW, &cpu_mwait_spin, 0,
119     "monitor/mwait target state");
120 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
121     "Number of switched threads");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
123     "Successful preemption events");
124 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
125     "Failed preemption events");
126 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
127     "Number of preempted threads.");
128 static int fairq_enable = 0;
129 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
130 	&fairq_enable, 0, "Turn on fairq priority accumulators");
131 static int fairq_bypass = -1;
132 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
133 	&fairq_bypass, 0, "Allow fairq to bypass td on token failure");
134 extern int lwkt_sched_debug;
135 int lwkt_sched_debug = 0;
136 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
137 	&lwkt_sched_debug, 0, "Scheduler debug");
138 static int lwkt_spin_loops = 10;
139 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
140 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
141 static int lwkt_spin_reseq = 0;
142 SYSCTL_INT(_lwkt, OID_AUTO, spin_reseq, CTLFLAG_RW,
143 	&lwkt_spin_reseq, 0, "Scheduler resequencer enable");
144 static int lwkt_spin_monitor = 0;
145 SYSCTL_INT(_lwkt, OID_AUTO, spin_monitor, CTLFLAG_RW,
146 	&lwkt_spin_monitor, 0, "Scheduler uses monitor/mwait");
147 static int lwkt_spin_fatal = 0;	/* disabled */
148 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
149 	&lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
150 static int preempt_enable = 1;
151 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
152 	&preempt_enable, 0, "Enable preemption");
153 static int lwkt_cache_threads = 0;
154 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
155 	&lwkt_cache_threads, 0, "thread+kstack cache");
156 
157 #ifndef _KERNEL_VIRTUAL
158 static __cachealign int lwkt_cseq_rindex;
159 static __cachealign int lwkt_cseq_windex;
160 #endif
161 
162 /*
163  * These helper procedures handle the runq, they can only be called from
164  * within a critical section.
165  *
166  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
167  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
168  * instead of 'mycpu' when referencing the globaldata structure.   Once
169  * SMP live enqueuing and dequeueing only occurs on the current cpu.
170  */
171 static __inline
172 void
173 _lwkt_dequeue(thread_t td)
174 {
175     if (td->td_flags & TDF_RUNQ) {
176 	struct globaldata *gd = td->td_gd;
177 
178 	td->td_flags &= ~TDF_RUNQ;
179 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
180 	--gd->gd_tdrunqcount;
181 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
182 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
183     }
184 }
185 
186 /*
187  * Priority enqueue.
188  *
189  * There are a limited number of lwkt threads runnable since user
190  * processes only schedule one at a time per cpu.  However, there can
191  * be many user processes in kernel mode exiting from a tsleep() which
192  * become runnable.
193  *
194  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
195  *	 will ignore user priority.  This is to ensure that user threads in
196  *	 kernel mode get cpu at some point regardless of what the user
197  *	 scheduler thinks.
198  */
199 static __inline
200 void
201 _lwkt_enqueue(thread_t td)
202 {
203     thread_t xtd;
204 
205     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
206 	struct globaldata *gd = td->td_gd;
207 
208 	td->td_flags |= TDF_RUNQ;
209 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
210 	if (xtd == NULL) {
211 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
212 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
213 	} else {
214 	    /*
215 	     * NOTE: td_upri - higher numbers more desireable, same sense
216 	     *	     as td_pri (typically reversed from lwp_upri).
217 	     *
218 	     *	     In the equal priority case we want the best selection
219 	     *	     at the beginning so the less desireable selections know
220 	     *	     that they have to setrunqueue/go-to-another-cpu, even
221 	     *	     though it means switching back to the 'best' selection.
222 	     *	     This also avoids degenerate situations when many threads
223 	     *	     are runnable or waking up at the same time.
224 	     *
225 	     *	     If upri matches exactly place at end/round-robin.
226 	     */
227 	    while (xtd &&
228 		   (xtd->td_pri >= td->td_pri ||
229 		    (xtd->td_pri == td->td_pri &&
230 		     xtd->td_upri >= td->td_upri))) {
231 		xtd = TAILQ_NEXT(xtd, td_threadq);
232 	    }
233 	    if (xtd)
234 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
235 	    else
236 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
237 	}
238 	++gd->gd_tdrunqcount;
239 
240 	/*
241 	 * Request a LWKT reschedule if we are now at the head of the queue.
242 	 */
243 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
244 	    need_lwkt_resched();
245     }
246 }
247 
248 static __boolean_t
249 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
250 {
251 	struct thread *td = (struct thread *)obj;
252 
253 	td->td_kstack = NULL;
254 	td->td_kstack_size = 0;
255 	td->td_flags = TDF_ALLOCATED_THREAD;
256 	td->td_mpflags = 0;
257 	return (1);
258 }
259 
260 static void
261 _lwkt_thread_dtor(void *obj, void *privdata)
262 {
263 	struct thread *td = (struct thread *)obj;
264 
265 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
266 	    ("_lwkt_thread_dtor: not allocated from objcache"));
267 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
268 		td->td_kstack_size > 0,
269 	    ("_lwkt_thread_dtor: corrupted stack"));
270 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
271 	td->td_kstack = NULL;
272 	td->td_flags = 0;
273 }
274 
275 /*
276  * Initialize the lwkt s/system.
277  *
278  * Nominally cache up to 32 thread + kstack structures.  Cache more on
279  * systems with a lot of cpu cores.
280  */
281 void
282 lwkt_init(void)
283 {
284     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
285     if (lwkt_cache_threads == 0) {
286 	lwkt_cache_threads = ncpus * 4;
287 	if (lwkt_cache_threads < 32)
288 	    lwkt_cache_threads = 32;
289     }
290     thread_cache = objcache_create_mbacked(
291 				M_THREAD, sizeof(struct thread),
292 				0, lwkt_cache_threads,
293 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
294 }
295 
296 /*
297  * Schedule a thread to run.  As the current thread we can always safely
298  * schedule ourselves, and a shortcut procedure is provided for that
299  * function.
300  *
301  * (non-blocking, self contained on a per cpu basis)
302  */
303 void
304 lwkt_schedule_self(thread_t td)
305 {
306     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
307     crit_enter_quick(td);
308     KASSERT(td != &td->td_gd->gd_idlethread,
309 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
310     KKASSERT(td->td_lwp == NULL ||
311 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
312     _lwkt_enqueue(td);
313     crit_exit_quick(td);
314 }
315 
316 /*
317  * Deschedule a thread.
318  *
319  * (non-blocking, self contained on a per cpu basis)
320  */
321 void
322 lwkt_deschedule_self(thread_t td)
323 {
324     crit_enter_quick(td);
325     _lwkt_dequeue(td);
326     crit_exit_quick(td);
327 }
328 
329 /*
330  * LWKTs operate on a per-cpu basis
331  *
332  * WARNING!  Called from early boot, 'mycpu' may not work yet.
333  */
334 void
335 lwkt_gdinit(struct globaldata *gd)
336 {
337     TAILQ_INIT(&gd->gd_tdrunq);
338     TAILQ_INIT(&gd->gd_tdallq);
339 }
340 
341 /*
342  * Create a new thread.  The thread must be associated with a process context
343  * or LWKT start address before it can be scheduled.  If the target cpu is
344  * -1 the thread will be created on the current cpu.
345  *
346  * If you intend to create a thread without a process context this function
347  * does everything except load the startup and switcher function.
348  */
349 thread_t
350 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
351 {
352     static int cpu_rotator;
353     globaldata_t gd = mycpu;
354     void *stack;
355 
356     /*
357      * If static thread storage is not supplied allocate a thread.  Reuse
358      * a cached free thread if possible.  gd_freetd is used to keep an exiting
359      * thread intact through the exit.
360      */
361     if (td == NULL) {
362 	crit_enter_gd(gd);
363 	if ((td = gd->gd_freetd) != NULL) {
364 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
365 				      TDF_RUNQ)) == 0);
366 	    gd->gd_freetd = NULL;
367 	} else {
368 	    td = objcache_get(thread_cache, M_WAITOK);
369 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
370 				      TDF_RUNQ)) == 0);
371 	}
372 	crit_exit_gd(gd);
373     	KASSERT((td->td_flags &
374 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
375 		 TDF_ALLOCATED_THREAD,
376 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
377     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
378     }
379 
380     /*
381      * Try to reuse cached stack.
382      */
383     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
384 	if (flags & TDF_ALLOCATED_STACK) {
385 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
386 	    stack = NULL;
387 	}
388     }
389     if (stack == NULL) {
390 	stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
391 	flags |= TDF_ALLOCATED_STACK;
392     }
393     if (cpu < 0) {
394 	cpu = ++cpu_rotator;
395 	cpu_ccfence();
396 	cpu %= ncpus;
397     }
398     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
399     return(td);
400 }
401 
402 /*
403  * Initialize a preexisting thread structure.  This function is used by
404  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
405  *
406  * All threads start out in a critical section at a priority of
407  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
408  * appropriate.  This function may send an IPI message when the
409  * requested cpu is not the current cpu and consequently gd_tdallq may
410  * not be initialized synchronously from the point of view of the originating
411  * cpu.
412  *
413  * NOTE! we have to be careful in regards to creating threads for other cpus
414  * if SMP has not yet been activated.
415  */
416 static void
417 lwkt_init_thread_remote(void *arg)
418 {
419     thread_t td = arg;
420 
421     /*
422      * Protected by critical section held by IPI dispatch
423      */
424     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
425 }
426 
427 /*
428  * lwkt core thread structural initialization.
429  *
430  * NOTE: All threads are initialized as mpsafe threads.
431  */
432 void
433 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
434 		struct globaldata *gd)
435 {
436     globaldata_t mygd = mycpu;
437 
438     bzero(td, sizeof(struct thread));
439     td->td_kstack = stack;
440     td->td_kstack_size = stksize;
441     td->td_flags = flags;
442     td->td_mpflags = 0;
443     td->td_type = TD_TYPE_GENERIC;
444     td->td_gd = gd;
445     td->td_pri = TDPRI_KERN_DAEMON;
446     td->td_critcount = 1;
447     td->td_toks_have = NULL;
448     td->td_toks_stop = &td->td_toks_base;
449     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT))
450 	lwkt_initport_spin(&td->td_msgport, td);
451     else
452 	lwkt_initport_thread(&td->td_msgport, td);
453     pmap_init_thread(td);
454     /*
455      * Normally initializing a thread for a remote cpu requires sending an
456      * IPI.  However, the idlethread is setup before the other cpus are
457      * activated so we have to treat it as a special case.  XXX manipulation
458      * of gd_tdallq requires the BGL.
459      */
460     if (gd == mygd || td == &gd->gd_idlethread) {
461 	crit_enter_gd(mygd);
462 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
463 	crit_exit_gd(mygd);
464     } else {
465 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
466     }
467     dsched_new_thread(td);
468 }
469 
470 void
471 lwkt_set_comm(thread_t td, const char *ctl, ...)
472 {
473     __va_list va;
474 
475     __va_start(va, ctl);
476     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
477     __va_end(va);
478     KTR_LOG(ctxsw_newtd, td, td->td_comm);
479 }
480 
481 /*
482  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
483  * this does not prevent the thread from migrating to another cpu so the
484  * gd_tdallq state is not protected by this.
485  */
486 void
487 lwkt_hold(thread_t td)
488 {
489     atomic_add_int(&td->td_refs, 1);
490 }
491 
492 void
493 lwkt_rele(thread_t td)
494 {
495     KKASSERT(td->td_refs > 0);
496     atomic_add_int(&td->td_refs, -1);
497 }
498 
499 void
500 lwkt_free_thread(thread_t td)
501 {
502     KKASSERT(td->td_refs == 0);
503     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
504 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
505     if (td->td_flags & TDF_ALLOCATED_THREAD) {
506     	objcache_put(thread_cache, td);
507     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
508 	/* client-allocated struct with internally allocated stack */
509 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
510 	    ("lwkt_free_thread: corrupted stack"));
511 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
512 	td->td_kstack = NULL;
513 	td->td_kstack_size = 0;
514     }
515 
516     KTR_LOG(ctxsw_deadtd, td);
517 }
518 
519 
520 /*
521  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
522  * switch to the idlethread.  Switching must occur within a critical
523  * section to avoid races with the scheduling queue.
524  *
525  * We always have full control over our cpu's run queue.  Other cpus
526  * that wish to manipulate our queue must use the cpu_*msg() calls to
527  * talk to our cpu, so a critical section is all that is needed and
528  * the result is very, very fast thread switching.
529  *
530  * The LWKT scheduler uses a fixed priority model and round-robins at
531  * each priority level.  User process scheduling is a totally
532  * different beast and LWKT priorities should not be confused with
533  * user process priorities.
534  *
535  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
536  * is not called by the current thread in the preemption case, only when
537  * the preempting thread blocks (in order to return to the original thread).
538  *
539  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
540  * migration and tsleep deschedule the current lwkt thread and call
541  * lwkt_switch().  In particular, the target cpu of the migration fully
542  * expects the thread to become non-runnable and can deadlock against
543  * cpusync operations if we run any IPIs prior to switching the thread out.
544  *
545  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
546  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
547  */
548 void
549 lwkt_switch(void)
550 {
551     globaldata_t gd = mycpu;
552     thread_t td = gd->gd_curthread;
553     thread_t ntd;
554     int spinning = 0;
555 
556     KKASSERT(gd->gd_processing_ipiq == 0);
557     KKASSERT(td->td_flags & TDF_RUNNING);
558 
559     /*
560      * Switching from within a 'fast' (non thread switched) interrupt or IPI
561      * is illegal.  However, we may have to do it anyway if we hit a fatal
562      * kernel trap or we have paniced.
563      *
564      * If this case occurs save and restore the interrupt nesting level.
565      */
566     if (gd->gd_intr_nesting_level) {
567 	int savegdnest;
568 	int savegdtrap;
569 
570 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
571 	    panic("lwkt_switch: Attempt to switch from a "
572 		  "fast interrupt, ipi, or hard code section, "
573 		  "td %p\n",
574 		  td);
575 	} else {
576 	    savegdnest = gd->gd_intr_nesting_level;
577 	    savegdtrap = gd->gd_trap_nesting_level;
578 	    gd->gd_intr_nesting_level = 0;
579 	    gd->gd_trap_nesting_level = 0;
580 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
581 		td->td_flags |= TDF_PANICWARN;
582 		kprintf("Warning: thread switch from interrupt, IPI, "
583 			"or hard code section.\n"
584 			"thread %p (%s)\n", td, td->td_comm);
585 		print_backtrace(-1);
586 	    }
587 	    lwkt_switch();
588 	    gd->gd_intr_nesting_level = savegdnest;
589 	    gd->gd_trap_nesting_level = savegdtrap;
590 	    return;
591 	}
592     }
593 
594     /*
595      * Release our current user process designation if we are blocking
596      * or if a user reschedule was requested.
597      *
598      * NOTE: This function is NOT called if we are switching into or
599      *	     returning from a preemption.
600      *
601      * NOTE: Releasing our current user process designation may cause
602      *	     it to be assigned to another thread, which in turn will
603      *	     cause us to block in the usched acquire code when we attempt
604      *	     to return to userland.
605      *
606      * NOTE: On SMP systems this can be very nasty when heavy token
607      *	     contention is present so we want to be careful not to
608      *	     release the designation gratuitously.
609      */
610     if (td->td_release &&
611 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
612 	    td->td_release(td);
613     }
614 
615     /*
616      * Release all tokens
617      */
618     crit_enter_gd(gd);
619     if (TD_TOKS_HELD(td))
620 	    lwkt_relalltokens(td);
621 
622     /*
623      * We had better not be holding any spin locks, but don't get into an
624      * endless panic loop.
625      */
626     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
627 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
628 	     gd->gd_spinlocks));
629 
630 
631 #ifdef	INVARIANTS
632     if (td->td_cscount) {
633 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
634 		td);
635 	if (panic_on_cscount)
636 	    panic("switching while mastering cpusync");
637     }
638 #endif
639 
640     /*
641      * If we had preempted another thread on this cpu, resume the preempted
642      * thread.  This occurs transparently, whether the preempted thread
643      * was scheduled or not (it may have been preempted after descheduling
644      * itself).
645      *
646      * We have to setup the MP lock for the original thread after backing
647      * out the adjustment that was made to curthread when the original
648      * was preempted.
649      */
650     if ((ntd = td->td_preempted) != NULL) {
651 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
652 	ntd->td_flags |= TDF_PREEMPT_DONE;
653 
654 	/*
655 	 * The interrupt may have woken a thread up, we need to properly
656 	 * set the reschedule flag if the originally interrupted thread is
657 	 * at a lower priority.
658 	 *
659 	 * The interrupt may not have descheduled.
660 	 */
661 	if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
662 	    need_lwkt_resched();
663 	goto havethread_preempted;
664     }
665 
666     /*
667      * If we cannot obtain ownership of the tokens we cannot immediately
668      * schedule the target thread.
669      *
670      * Reminder: Again, we cannot afford to run any IPIs in this path if
671      * the current thread has been descheduled.
672      */
673     for (;;) {
674 	clear_lwkt_resched();
675 
676 	/*
677 	 * Hotpath - pull the head of the run queue and attempt to schedule
678 	 * it.
679 	 */
680 	ntd = TAILQ_FIRST(&gd->gd_tdrunq);
681 
682 	if (ntd == NULL) {
683 	    /*
684 	     * Runq is empty, switch to idle to allow it to halt.
685 	     */
686 	    ntd = &gd->gd_idlethread;
687 	    if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
688 		ASSERT_NO_TOKENS_HELD(ntd);
689 	    cpu_time.cp_msg[0] = 0;
690 	    cpu_time.cp_stallpc = 0;
691 	    goto haveidle;
692 	}
693 
694 	/*
695 	 * Hotpath - schedule ntd.
696 	 *
697 	 * NOTE: For UP there is no mplock and lwkt_getalltokens()
698 	 *	     always succeeds.
699 	 */
700 	if (TD_TOKS_NOT_HELD(ntd) ||
701 	    lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops)))
702 	{
703 	    goto havethread;
704 	}
705 
706 	/*
707 	 * Coldpath (SMP only since tokens always succeed on UP)
708 	 *
709 	 * We had some contention on the thread we wanted to schedule.
710 	 * What we do now is try to find a thread that we can schedule
711 	 * in its stead.
712 	 *
713 	 * The coldpath scan does NOT rearrange threads in the run list.
714 	 * The lwkt_schedulerclock() will assert need_lwkt_resched() on
715 	 * the next tick whenever the current head is not the current thread.
716 	 */
717 #ifdef	INVARIANTS
718 	++ntd->td_contended;
719 #endif
720 	++gd->gd_cnt.v_token_colls;
721 
722 	if (fairq_bypass > 0)
723 		goto skip;
724 
725 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
726 #ifndef NO_LWKT_SPLIT_USERPRI
727 		/*
728 		 * Never schedule threads returning to userland or the
729 		 * user thread scheduler helper thread when higher priority
730 		 * threads are present.  The runq is sorted by priority
731 		 * so we can give up traversing it when we find the first
732 		 * low priority thread.
733 		 */
734 		if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
735 			ntd = NULL;
736 			break;
737 		}
738 #endif
739 
740 		/*
741 		 * Try this one.
742 		 */
743 		if (TD_TOKS_NOT_HELD(ntd) ||
744 		    lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops))) {
745 			goto havethread;
746 		}
747 #ifdef	INVARIANTS
748 		++ntd->td_contended;
749 #endif
750 		++gd->gd_cnt.v_token_colls;
751 	}
752 
753 skip:
754 	/*
755 	 * We exhausted the run list, meaning that all runnable threads
756 	 * are contested.
757 	 */
758 	cpu_pause();
759 #ifdef _KERNEL_VIRTUAL
760 	pthread_yield();
761 #endif
762 	ntd = &gd->gd_idlethread;
763 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
764 	    ASSERT_NO_TOKENS_HELD(ntd);
765 	/* contention case, do not clear contention mask */
766 
767 	/*
768 	 * We are going to have to retry but if the current thread is not
769 	 * on the runq we instead switch through the idle thread to get away
770 	 * from the current thread.  We have to flag for lwkt reschedule
771 	 * to prevent the idle thread from halting.
772 	 *
773 	 * NOTE: A non-zero spinning is passed to lwkt_getalltokens() to
774 	 *	 instruct it to deal with the potential for deadlocks by
775 	 *	 ordering the tokens by address.
776 	 */
777 	if ((td->td_flags & TDF_RUNQ) == 0) {
778 	    need_lwkt_resched();	/* prevent hlt */
779 	    goto haveidle;
780 	}
781 #if defined(INVARIANTS) && defined(__x86_64__)
782 	if ((read_rflags() & PSL_I) == 0) {
783 		cpu_enable_intr();
784 		panic("lwkt_switch() called with interrupts disabled");
785 	}
786 #endif
787 
788 	/*
789 	 * Number iterations so far.  After a certain point we switch to
790 	 * a sorted-address/monitor/mwait version of lwkt_getalltokens()
791 	 */
792 	if (spinning < 0x7FFFFFFF)
793 	    ++spinning;
794 
795 #ifndef _KERNEL_VIRTUAL
796 	/*
797 	 * lwkt_getalltokens() failed in sorted token mode, we can use
798 	 * monitor/mwait in this case.
799 	 */
800 	if (spinning >= lwkt_spin_loops &&
801 	    (cpu_mi_feature & CPU_MI_MONITOR) &&
802 	    lwkt_spin_monitor)
803 	{
804 	    cpu_mmw_pause_int(&gd->gd_reqflags,
805 			      (gd->gd_reqflags | RQF_SPINNING) &
806 			      ~RQF_IDLECHECK_WK_MASK,
807 			      cpu_mwait_spin);
808 	}
809 #endif
810 
811 	/*
812 	 * We already checked that td is still scheduled so this should be
813 	 * safe.
814 	 */
815 	splz_check();
816 
817 #ifndef _KERNEL_VIRTUAL
818 	/*
819 	 * This experimental resequencer is used as a fall-back to reduce
820 	 * hw cache line contention by placing each core's scheduler into a
821 	 * time-domain-multplexed slot.
822 	 *
823 	 * The resequencer is disabled by default.  It's functionality has
824 	 * largely been superceeded by the token algorithm which limits races
825 	 * to a subset of cores.
826 	 *
827 	 * The resequencer algorithm tends to break down when more than
828 	 * 20 cores are contending.  What appears to happen is that new
829 	 * tokens can be obtained out of address-sorted order by new cores
830 	 * while existing cores languish in long delays between retries and
831 	 * wind up being starved-out of the token acquisition.
832 	 */
833 	if (lwkt_spin_reseq && spinning >= lwkt_spin_reseq) {
834 	    int cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
835 	    int oseq;
836 
837 	    while ((oseq = lwkt_cseq_rindex) != cseq) {
838 		cpu_ccfence();
839 #if 1
840 		if (cpu_mi_feature & CPU_MI_MONITOR) {
841 		    cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq, cpu_mwait_spin);
842 		} else {
843 #endif
844 		    cpu_pause();
845 		    cpu_lfence();
846 #if 1
847 		}
848 #endif
849 	    }
850 	    DELAY(1);
851 	    atomic_add_int(&lwkt_cseq_rindex, 1);
852 	}
853 #endif
854 	/* highest level for(;;) loop */
855     }
856 
857 havethread:
858     /*
859      * Clear gd_idle_repeat when doing a normal switch to a non-idle
860      * thread.
861      */
862     ntd->td_wmesg = NULL;
863     ++gd->gd_cnt.v_swtch;
864     gd->gd_idle_repeat = 0;
865 
866 havethread_preempted:
867     /*
868      * If the new target does not need the MP lock and we are holding it,
869      * release the MP lock.  If the new target requires the MP lock we have
870      * already acquired it for the target.
871      */
872     ;
873 haveidle:
874     KASSERT(ntd->td_critcount,
875 	    ("priority problem in lwkt_switch %d %d",
876 	    td->td_critcount, ntd->td_critcount));
877 
878     if (td != ntd) {
879 	/*
880 	 * Execute the actual thread switch operation.  This function
881 	 * returns to the current thread and returns the previous thread
882 	 * (which may be different from the thread we switched to).
883 	 *
884 	 * We are responsible for marking ntd as TDF_RUNNING.
885 	 */
886 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
887 	++switch_count;
888 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
889 	ntd->td_flags |= TDF_RUNNING;
890 	lwkt_switch_return(td->td_switch(ntd));
891 	/* ntd invalid, td_switch() can return a different thread_t */
892     }
893 
894     /*
895      * catch-all.  XXX is this strictly needed?
896      */
897     splz_check();
898 
899     /* NOTE: current cpu may have changed after switch */
900     crit_exit_quick(td);
901 }
902 
903 /*
904  * Called by assembly in the td_switch (thread restore path) for thread
905  * bootstrap cases which do not 'return' to lwkt_switch().
906  */
907 void
908 lwkt_switch_return(thread_t otd)
909 {
910 	globaldata_t rgd;
911 
912 	/*
913 	 * Check if otd was migrating.  Now that we are on ntd we can finish
914 	 * up the migration.  This is a bit messy but it is the only place
915 	 * where td is known to be fully descheduled.
916 	 *
917 	 * We can only activate the migration if otd was migrating but not
918 	 * held on the cpu due to a preemption chain.  We still have to
919 	 * clear TDF_RUNNING on the old thread either way.
920 	 *
921 	 * We are responsible for clearing the previously running thread's
922 	 * TDF_RUNNING.
923 	 */
924 	if ((rgd = otd->td_migrate_gd) != NULL &&
925 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
926 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
927 			 (TDF_MIGRATING | TDF_RUNNING));
928 		otd->td_migrate_gd = NULL;
929 		otd->td_flags &= ~TDF_RUNNING;
930 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
931 	} else {
932 		otd->td_flags &= ~TDF_RUNNING;
933 	}
934 
935 	/*
936 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
937 	 * invalid the *instant* we set TDF_MP_EXITSIG.
938 	 */
939 	while (otd->td_flags & TDF_EXITING) {
940 		u_int mpflags;
941 
942 		mpflags = otd->td_mpflags;
943 		cpu_ccfence();
944 
945 		if (mpflags & TDF_MP_EXITWAIT) {
946 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
947 					      mpflags | TDF_MP_EXITSIG)) {
948 				wakeup(otd);
949 				break;
950 			}
951 		} else {
952 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
953 					      mpflags | TDF_MP_EXITSIG)) {
954 				wakeup(otd);
955 				break;
956 			}
957 		}
958 	}
959 }
960 
961 /*
962  * Request that the target thread preempt the current thread.  Preemption
963  * can only occur if our only critical section is the one that we were called
964  * with, the relative priority of the target thread is higher, and the target
965  * thread holds no tokens.  This also only works if we are not holding any
966  * spinlocks (obviously).
967  *
968  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
969  * this is called via lwkt_schedule() through the td_preemptable callback.
970  * critcount is the managed critical priority that we should ignore in order
971  * to determine whether preemption is possible (aka usually just the crit
972  * priority of lwkt_schedule() itself).
973  *
974  * Preemption is typically limited to interrupt threads.
975  *
976  * Operation works in a fairly straight-forward manner.  The normal
977  * scheduling code is bypassed and we switch directly to the target
978  * thread.  When the target thread attempts to block or switch away
979  * code at the base of lwkt_switch() will switch directly back to our
980  * thread.  Our thread is able to retain whatever tokens it holds and
981  * if the target needs one of them the target will switch back to us
982  * and reschedule itself normally.
983  */
984 void
985 lwkt_preempt(thread_t ntd, int critcount)
986 {
987     struct globaldata *gd = mycpu;
988     thread_t xtd;
989     thread_t td;
990     int save_gd_intr_nesting_level;
991 
992     /*
993      * The caller has put us in a critical section.  We can only preempt
994      * if the caller of the caller was not in a critical section (basically
995      * a local interrupt), as determined by the 'critcount' parameter.  We
996      * also can't preempt if the caller is holding any spinlocks (even if
997      * he isn't in a critical section).  This also handles the tokens test.
998      *
999      * YYY The target thread must be in a critical section (else it must
1000      * inherit our critical section?  I dunno yet).
1001      */
1002     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
1003 
1004     td = gd->gd_curthread;
1005     if (preempt_enable == 0) {
1006 	++preempt_miss;
1007 	return;
1008     }
1009     if (ntd->td_pri <= td->td_pri) {
1010 	++preempt_miss;
1011 	return;
1012     }
1013     if (td->td_critcount > critcount) {
1014 	++preempt_miss;
1015 	return;
1016     }
1017     if (td->td_cscount) {
1018 	++preempt_miss;
1019 	return;
1020     }
1021     if (ntd->td_gd != gd) {
1022 	++preempt_miss;
1023 	return;
1024     }
1025     /*
1026      * We don't have to check spinlocks here as they will also bump
1027      * td_critcount.
1028      *
1029      * Do not try to preempt if the target thread is holding any tokens.
1030      * We could try to acquire the tokens but this case is so rare there
1031      * is no need to support it.
1032      */
1033     KKASSERT(gd->gd_spinlocks == 0);
1034 
1035     if (TD_TOKS_HELD(ntd)) {
1036 	++preempt_miss;
1037 	return;
1038     }
1039     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1040 	++preempt_weird;
1041 	return;
1042     }
1043     if (ntd->td_preempted) {
1044 	++preempt_hit;
1045 	return;
1046     }
1047     KKASSERT(gd->gd_processing_ipiq == 0);
1048 
1049     /*
1050      * Since we are able to preempt the current thread, there is no need to
1051      * call need_lwkt_resched().
1052      *
1053      * We must temporarily clear gd_intr_nesting_level around the switch
1054      * since switchouts from the target thread are allowed (they will just
1055      * return to our thread), and since the target thread has its own stack.
1056      *
1057      * A preemption must switch back to the original thread, assert the
1058      * case.
1059      */
1060     ++preempt_hit;
1061     ntd->td_preempted = td;
1062     td->td_flags |= TDF_PREEMPT_LOCK;
1063     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1064     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1065     gd->gd_intr_nesting_level = 0;
1066 
1067     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1068     ntd->td_flags |= TDF_RUNNING;
1069     xtd = td->td_switch(ntd);
1070     KKASSERT(xtd == ntd);
1071     lwkt_switch_return(xtd);
1072     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1073 
1074     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1075     ntd->td_preempted = NULL;
1076     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1077 }
1078 
1079 /*
1080  * Conditionally call splz() if gd_reqflags indicates work is pending.
1081  * This will work inside a critical section but not inside a hard code
1082  * section.
1083  *
1084  * (self contained on a per cpu basis)
1085  */
1086 void
1087 splz_check(void)
1088 {
1089     globaldata_t gd = mycpu;
1090     thread_t td = gd->gd_curthread;
1091 
1092     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1093 	gd->gd_intr_nesting_level == 0 &&
1094 	td->td_nest_count < 2)
1095     {
1096 	splz();
1097     }
1098 }
1099 
1100 /*
1101  * This version is integrated into crit_exit, reqflags has already
1102  * been tested but td_critcount has not.
1103  *
1104  * We only want to execute the splz() on the 1->0 transition of
1105  * critcount and not in a hard code section or if too deeply nested.
1106  *
1107  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1108  */
1109 void
1110 lwkt_maybe_splz(thread_t td)
1111 {
1112     globaldata_t gd = td->td_gd;
1113 
1114     if (td->td_critcount == 0 &&
1115 	gd->gd_intr_nesting_level == 0 &&
1116 	td->td_nest_count < 2)
1117     {
1118 	splz();
1119     }
1120 }
1121 
1122 /*
1123  * Drivers which set up processing co-threads can call this function to
1124  * run the co-thread at a higher priority and to allow it to preempt
1125  * normal threads.
1126  */
1127 void
1128 lwkt_set_interrupt_support_thread(void)
1129 {
1130 	thread_t td = curthread;
1131 
1132         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1133 	td->td_flags |= TDF_INTTHREAD;
1134 	td->td_preemptable = lwkt_preempt;
1135 }
1136 
1137 
1138 /*
1139  * This function is used to negotiate a passive release of the current
1140  * process/lwp designation with the user scheduler, allowing the user
1141  * scheduler to schedule another user thread.  The related kernel thread
1142  * (curthread) continues running in the released state.
1143  */
1144 void
1145 lwkt_passive_release(struct thread *td)
1146 {
1147     struct lwp *lp = td->td_lwp;
1148 
1149 #ifndef NO_LWKT_SPLIT_USERPRI
1150     td->td_release = NULL;
1151     lwkt_setpri_self(TDPRI_KERN_USER);
1152 #endif
1153 
1154     lp->lwp_proc->p_usched->release_curproc(lp);
1155 }
1156 
1157 
1158 /*
1159  * This implements a LWKT yield, allowing a kernel thread to yield to other
1160  * kernel threads at the same or higher priority.  This function can be
1161  * called in a tight loop and will typically only yield once per tick.
1162  *
1163  * Most kernel threads run at the same priority in order to allow equal
1164  * sharing.
1165  *
1166  * (self contained on a per cpu basis)
1167  */
1168 void
1169 lwkt_yield(void)
1170 {
1171     globaldata_t gd = mycpu;
1172     thread_t td = gd->gd_curthread;
1173 
1174     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1175 	splz();
1176     if (lwkt_resched_wanted()) {
1177 	lwkt_schedule_self(curthread);
1178 	lwkt_switch();
1179     }
1180 }
1181 
1182 /*
1183  * The quick version processes pending interrupts and higher-priority
1184  * LWKT threads but will not round-robin same-priority LWKT threads.
1185  *
1186  * When called while attempting to return to userland the only same-pri
1187  * threads are the ones which have already tried to become the current
1188  * user process.
1189  */
1190 void
1191 lwkt_yield_quick(void)
1192 {
1193     globaldata_t gd = mycpu;
1194     thread_t td = gd->gd_curthread;
1195 
1196     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1197 	splz();
1198     if (lwkt_resched_wanted()) {
1199 	crit_enter();
1200 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1201 	    clear_lwkt_resched();
1202 	} else {
1203 	    lwkt_schedule_self(curthread);
1204 	    lwkt_switch();
1205 	}
1206 	crit_exit();
1207     }
1208 }
1209 
1210 /*
1211  * This yield is designed for kernel threads with a user context.
1212  *
1213  * The kernel acting on behalf of the user is potentially cpu-bound,
1214  * this function will efficiently allow other threads to run and also
1215  * switch to other processes by releasing.
1216  *
1217  * The lwkt_user_yield() function is designed to have very low overhead
1218  * if no yield is determined to be needed.
1219  */
1220 void
1221 lwkt_user_yield(void)
1222 {
1223     globaldata_t gd = mycpu;
1224     thread_t td = gd->gd_curthread;
1225 
1226     /*
1227      * Always run any pending interrupts in case we are in a critical
1228      * section.
1229      */
1230     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1231 	splz();
1232 
1233     /*
1234      * Switch (which forces a release) if another kernel thread needs
1235      * the cpu, if userland wants us to resched, or if our kernel
1236      * quantum has run out.
1237      */
1238     if (lwkt_resched_wanted() ||
1239 	user_resched_wanted())
1240     {
1241 	lwkt_switch();
1242     }
1243 
1244 #if 0
1245     /*
1246      * Reacquire the current process if we are released.
1247      *
1248      * XXX not implemented atm.  The kernel may be holding locks and such,
1249      *     so we want the thread to continue to receive cpu.
1250      */
1251     if (td->td_release == NULL && lp) {
1252 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1253 	td->td_release = lwkt_passive_release;
1254 	lwkt_setpri_self(TDPRI_USER_NORM);
1255     }
1256 #endif
1257 }
1258 
1259 /*
1260  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1261  * deal with threads that might be blocked on a wait queue.
1262  *
1263  * We have a little helper inline function which does additional work after
1264  * the thread has been enqueued, including dealing with preemption and
1265  * setting need_lwkt_resched() (which prevents the kernel from returning
1266  * to userland until it has processed higher priority threads).
1267  *
1268  * It is possible for this routine to be called after a failed _enqueue
1269  * (due to the target thread migrating, sleeping, or otherwise blocked).
1270  * We have to check that the thread is actually on the run queue!
1271  */
1272 static __inline
1273 void
1274 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1275 {
1276     if (ntd->td_flags & TDF_RUNQ) {
1277 	if (ntd->td_preemptable) {
1278 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1279 	}
1280     }
1281 }
1282 
1283 static __inline
1284 void
1285 _lwkt_schedule(thread_t td)
1286 {
1287     globaldata_t mygd = mycpu;
1288 
1289     KASSERT(td != &td->td_gd->gd_idlethread,
1290 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1291     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1292     crit_enter_gd(mygd);
1293     KKASSERT(td->td_lwp == NULL ||
1294 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1295 
1296     if (td == mygd->gd_curthread) {
1297 	_lwkt_enqueue(td);
1298     } else {
1299 	/*
1300 	 * If we own the thread, there is no race (since we are in a
1301 	 * critical section).  If we do not own the thread there might
1302 	 * be a race but the target cpu will deal with it.
1303 	 */
1304 	if (td->td_gd == mygd) {
1305 	    _lwkt_enqueue(td);
1306 	    _lwkt_schedule_post(mygd, td, 1);
1307 	} else {
1308 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1309 	}
1310     }
1311     crit_exit_gd(mygd);
1312 }
1313 
1314 void
1315 lwkt_schedule(thread_t td)
1316 {
1317     _lwkt_schedule(td);
1318 }
1319 
1320 void
1321 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1322 {
1323     _lwkt_schedule(td);
1324 }
1325 
1326 /*
1327  * When scheduled remotely if frame != NULL the IPIQ is being
1328  * run via doreti or an interrupt then preemption can be allowed.
1329  *
1330  * To allow preemption we have to drop the critical section so only
1331  * one is present in _lwkt_schedule_post.
1332  */
1333 static void
1334 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1335 {
1336     thread_t td = curthread;
1337     thread_t ntd = arg;
1338 
1339     if (frame && ntd->td_preemptable) {
1340 	crit_exit_noyield(td);
1341 	_lwkt_schedule(ntd);
1342 	crit_enter_quick(td);
1343     } else {
1344 	_lwkt_schedule(ntd);
1345     }
1346 }
1347 
1348 /*
1349  * Thread migration using a 'Pull' method.  The thread may or may not be
1350  * the current thread.  It MUST be descheduled and in a stable state.
1351  * lwkt_giveaway() must be called on the cpu owning the thread.
1352  *
1353  * At any point after lwkt_giveaway() is called, the target cpu may
1354  * 'pull' the thread by calling lwkt_acquire().
1355  *
1356  * We have to make sure the thread is not sitting on a per-cpu tsleep
1357  * queue or it will blow up when it moves to another cpu.
1358  *
1359  * MPSAFE - must be called under very specific conditions.
1360  */
1361 void
1362 lwkt_giveaway(thread_t td)
1363 {
1364     globaldata_t gd = mycpu;
1365 
1366     crit_enter_gd(gd);
1367     if (td->td_flags & TDF_TSLEEPQ)
1368 	tsleep_remove(td);
1369     KKASSERT(td->td_gd == gd);
1370     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1371     td->td_flags |= TDF_MIGRATING;
1372     crit_exit_gd(gd);
1373 }
1374 
1375 void
1376 lwkt_acquire(thread_t td)
1377 {
1378     globaldata_t gd;
1379     globaldata_t mygd;
1380     int retry = 10000000;
1381 
1382     KKASSERT(td->td_flags & TDF_MIGRATING);
1383     gd = td->td_gd;
1384     mygd = mycpu;
1385     if (gd != mycpu) {
1386 	cpu_lfence();
1387 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1388 	crit_enter_gd(mygd);
1389 	DEBUG_PUSH_INFO("lwkt_acquire");
1390 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1391 	    lwkt_process_ipiq();
1392 	    cpu_lfence();
1393 	    if (--retry == 0) {
1394 		kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1395 			td, td->td_flags);
1396 		retry = 10000000;
1397 	    }
1398 #ifdef _KERNEL_VIRTUAL
1399 	    pthread_yield();
1400 #endif
1401 	}
1402 	DEBUG_POP_INFO();
1403 	cpu_mfence();
1404 	td->td_gd = mygd;
1405 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1406 	td->td_flags &= ~TDF_MIGRATING;
1407 	crit_exit_gd(mygd);
1408     } else {
1409 	crit_enter_gd(mygd);
1410 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1411 	td->td_flags &= ~TDF_MIGRATING;
1412 	crit_exit_gd(mygd);
1413     }
1414 }
1415 
1416 /*
1417  * Generic deschedule.  Descheduling threads other then your own should be
1418  * done only in carefully controlled circumstances.  Descheduling is
1419  * asynchronous.
1420  *
1421  * This function may block if the cpu has run out of messages.
1422  */
1423 void
1424 lwkt_deschedule(thread_t td)
1425 {
1426     crit_enter();
1427     if (td == curthread) {
1428 	_lwkt_dequeue(td);
1429     } else {
1430 	if (td->td_gd == mycpu) {
1431 	    _lwkt_dequeue(td);
1432 	} else {
1433 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1434 	}
1435     }
1436     crit_exit();
1437 }
1438 
1439 /*
1440  * Set the target thread's priority.  This routine does not automatically
1441  * switch to a higher priority thread, LWKT threads are not designed for
1442  * continuous priority changes.  Yield if you want to switch.
1443  */
1444 void
1445 lwkt_setpri(thread_t td, int pri)
1446 {
1447     if (td->td_pri != pri) {
1448 	KKASSERT(pri >= 0);
1449 	crit_enter();
1450 	if (td->td_flags & TDF_RUNQ) {
1451 	    KKASSERT(td->td_gd == mycpu);
1452 	    _lwkt_dequeue(td);
1453 	    td->td_pri = pri;
1454 	    _lwkt_enqueue(td);
1455 	} else {
1456 	    td->td_pri = pri;
1457 	}
1458 	crit_exit();
1459     }
1460 }
1461 
1462 /*
1463  * Set the initial priority for a thread prior to it being scheduled for
1464  * the first time.  The thread MUST NOT be scheduled before or during
1465  * this call.  The thread may be assigned to a cpu other then the current
1466  * cpu.
1467  *
1468  * Typically used after a thread has been created with TDF_STOPPREQ,
1469  * and before the thread is initially scheduled.
1470  */
1471 void
1472 lwkt_setpri_initial(thread_t td, int pri)
1473 {
1474     KKASSERT(pri >= 0);
1475     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1476     td->td_pri = pri;
1477 }
1478 
1479 void
1480 lwkt_setpri_self(int pri)
1481 {
1482     thread_t td = curthread;
1483 
1484     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1485     crit_enter();
1486     if (td->td_flags & TDF_RUNQ) {
1487 	_lwkt_dequeue(td);
1488 	td->td_pri = pri;
1489 	_lwkt_enqueue(td);
1490     } else {
1491 	td->td_pri = pri;
1492     }
1493     crit_exit();
1494 }
1495 
1496 /*
1497  * hz tick scheduler clock for LWKT threads
1498  */
1499 void
1500 lwkt_schedulerclock(thread_t td)
1501 {
1502     globaldata_t gd = td->td_gd;
1503     thread_t xtd;
1504 
1505     if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1506 	/*
1507 	 * If the current thread is at the head of the runq shift it to the
1508 	 * end of any equal-priority threads and request a LWKT reschedule
1509 	 * if it moved.
1510 	 *
1511 	 * Ignore upri in this situation.  There will only be one user thread
1512 	 * in user mode, all others will be user threads running in kernel
1513 	 * mode and we have to make sure they get some cpu.
1514 	 */
1515 	xtd = TAILQ_NEXT(td, td_threadq);
1516 	if (xtd && xtd->td_pri == td->td_pri) {
1517 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1518 	    while (xtd && xtd->td_pri == td->td_pri)
1519 		xtd = TAILQ_NEXT(xtd, td_threadq);
1520 	    if (xtd)
1521 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1522 	    else
1523 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1524 	    need_lwkt_resched();
1525 	}
1526     } else {
1527 	/*
1528 	 * If we scheduled a thread other than the one at the head of the
1529 	 * queue always request a reschedule every tick.
1530 	 */
1531 	need_lwkt_resched();
1532     }
1533 }
1534 
1535 /*
1536  * Migrate the current thread to the specified cpu.
1537  *
1538  * This is accomplished by descheduling ourselves from the current cpu
1539  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1540  * 'old' thread wants to migrate after it has been completely switched out
1541  * and will complete the migration.
1542  *
1543  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1544  *
1545  * We must be sure to release our current process designation (if a user
1546  * process) before clearing out any tsleepq we are on because the release
1547  * code may re-add us.
1548  *
1549  * We must be sure to remove ourselves from the current cpu's tsleepq
1550  * before potentially moving to another queue.  The thread can be on
1551  * a tsleepq due to a left-over tsleep_interlock().
1552  */
1553 
1554 void
1555 lwkt_setcpu_self(globaldata_t rgd)
1556 {
1557     thread_t td = curthread;
1558 
1559     if (td->td_gd != rgd) {
1560 	crit_enter_quick(td);
1561 
1562 	if (td->td_release)
1563 	    td->td_release(td);
1564 	if (td->td_flags & TDF_TSLEEPQ)
1565 	    tsleep_remove(td);
1566 
1567 	/*
1568 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1569 	 * trying to deschedule ourselves and switch away, then deschedule
1570 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1571 	 * call lwkt_switch() to complete the operation.
1572 	 */
1573 	td->td_flags |= TDF_MIGRATING;
1574 	lwkt_deschedule_self(td);
1575 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1576 	td->td_migrate_gd = rgd;
1577 	lwkt_switch();
1578 
1579 	/*
1580 	 * We are now on the target cpu
1581 	 */
1582 	KKASSERT(rgd == mycpu);
1583 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1584 	crit_exit_quick(td);
1585     }
1586 }
1587 
1588 void
1589 lwkt_migratecpu(int cpuid)
1590 {
1591 	globaldata_t rgd;
1592 
1593 	rgd = globaldata_find(cpuid);
1594 	lwkt_setcpu_self(rgd);
1595 }
1596 
1597 /*
1598  * Remote IPI for cpu migration (called while in a critical section so we
1599  * do not have to enter another one).
1600  *
1601  * The thread (td) has already been completely descheduled from the
1602  * originating cpu and we can simply assert the case.  The thread is
1603  * assigned to the new cpu and enqueued.
1604  *
1605  * The thread will re-add itself to tdallq when it resumes execution.
1606  */
1607 static void
1608 lwkt_setcpu_remote(void *arg)
1609 {
1610     thread_t td = arg;
1611     globaldata_t gd = mycpu;
1612 
1613     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1614     td->td_gd = gd;
1615     cpu_mfence();
1616     td->td_flags &= ~TDF_MIGRATING;
1617     KKASSERT(td->td_migrate_gd == NULL);
1618     KKASSERT(td->td_lwp == NULL ||
1619 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1620     _lwkt_enqueue(td);
1621 }
1622 
1623 struct lwp *
1624 lwkt_preempted_proc(void)
1625 {
1626     thread_t td = curthread;
1627     while (td->td_preempted)
1628 	td = td->td_preempted;
1629     return(td->td_lwp);
1630 }
1631 
1632 /*
1633  * Create a kernel process/thread/whatever.  It shares it's address space
1634  * with proc0 - ie: kernel only.
1635  *
1636  * If the cpu is not specified one will be selected.  In the future
1637  * specifying a cpu of -1 will enable kernel thread migration between
1638  * cpus.
1639  */
1640 int
1641 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1642 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1643 {
1644     thread_t td;
1645     __va_list ap;
1646 
1647     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1648 			   tdflags);
1649     if (tdp)
1650 	*tdp = td;
1651     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1652 
1653     /*
1654      * Set up arg0 for 'ps' etc
1655      */
1656     __va_start(ap, fmt);
1657     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1658     __va_end(ap);
1659 
1660     /*
1661      * Schedule the thread to run
1662      */
1663     if (td->td_flags & TDF_NOSTART)
1664 	td->td_flags &= ~TDF_NOSTART;
1665     else
1666 	lwkt_schedule(td);
1667     return 0;
1668 }
1669 
1670 /*
1671  * Destroy an LWKT thread.   Warning!  This function is not called when
1672  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1673  * uses a different reaping mechanism.
1674  */
1675 void
1676 lwkt_exit(void)
1677 {
1678     thread_t td = curthread;
1679     thread_t std;
1680     globaldata_t gd;
1681 
1682     /*
1683      * Do any cleanup that might block here
1684      */
1685     if (td->td_flags & TDF_VERBOSE)
1686 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1687     biosched_done(td);
1688     dsched_exit_thread(td);
1689 
1690     /*
1691      * Get us into a critical section to interlock gd_freetd and loop
1692      * until we can get it freed.
1693      *
1694      * We have to cache the current td in gd_freetd because objcache_put()ing
1695      * it would rip it out from under us while our thread is still active.
1696      *
1697      * We are the current thread so of course our own TDF_RUNNING bit will
1698      * be set, so unlike the lwp reap code we don't wait for it to clear.
1699      */
1700     gd = mycpu;
1701     crit_enter_quick(td);
1702     for (;;) {
1703 	if (td->td_refs) {
1704 	    tsleep(td, 0, "tdreap", 1);
1705 	    continue;
1706 	}
1707 	if ((std = gd->gd_freetd) != NULL) {
1708 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1709 	    gd->gd_freetd = NULL;
1710 	    objcache_put(thread_cache, std);
1711 	    continue;
1712 	}
1713 	break;
1714     }
1715 
1716     /*
1717      * Remove thread resources from kernel lists and deschedule us for
1718      * the last time.  We cannot block after this point or we may end
1719      * up with a stale td on the tsleepq.
1720      *
1721      * None of this may block, the critical section is the only thing
1722      * protecting tdallq and the only thing preventing new lwkt_hold()
1723      * thread refs now.
1724      */
1725     if (td->td_flags & TDF_TSLEEPQ)
1726 	tsleep_remove(td);
1727     lwkt_deschedule_self(td);
1728     lwkt_remove_tdallq(td);
1729     KKASSERT(td->td_refs == 0);
1730 
1731     /*
1732      * Final cleanup
1733      */
1734     KKASSERT(gd->gd_freetd == NULL);
1735     if (td->td_flags & TDF_ALLOCATED_THREAD)
1736 	gd->gd_freetd = td;
1737     cpu_thread_exit();
1738 }
1739 
1740 void
1741 lwkt_remove_tdallq(thread_t td)
1742 {
1743     KKASSERT(td->td_gd == mycpu);
1744     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1745 }
1746 
1747 /*
1748  * Code reduction and branch prediction improvements.  Call/return
1749  * overhead on modern cpus often degenerates into 0 cycles due to
1750  * the cpu's branch prediction hardware and return pc cache.  We
1751  * can take advantage of this by not inlining medium-complexity
1752  * functions and we can also reduce the branch prediction impact
1753  * by collapsing perfectly predictable branches into a single
1754  * procedure instead of duplicating it.
1755  *
1756  * Is any of this noticeable?  Probably not, so I'll take the
1757  * smaller code size.
1758  */
1759 void
1760 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1761 {
1762     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1763 }
1764 
1765 void
1766 crit_panic(void)
1767 {
1768     thread_t td = curthread;
1769     int lcrit = td->td_critcount;
1770 
1771     td->td_critcount = 0;
1772     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1773     /* NOT REACHED */
1774 }
1775 
1776 /*
1777  * Called from debugger/panic on cpus which have been stopped.  We must still
1778  * process the IPIQ while stopped, even if we were stopped while in a critical
1779  * section (XXX).
1780  *
1781  * If we are dumping also try to process any pending interrupts.  This may
1782  * or may not work depending on the state of the cpu at the point it was
1783  * stopped.
1784  */
1785 void
1786 lwkt_smp_stopped(void)
1787 {
1788     globaldata_t gd = mycpu;
1789 
1790     crit_enter_gd(gd);
1791     if (dumping) {
1792 	lwkt_process_ipiq();
1793 	splz();
1794     } else {
1795 	lwkt_process_ipiq();
1796     }
1797     crit_exit_gd(gd);
1798 }
1799