xref: /dragonfly/sys/kern/lwkt_thread.c (revision 15b85273)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.120 2008/10/26 04:29:19 sephe Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 #include "opt_ddb.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49 #include <sys/rtprio.h>
50 #include <sys/queue.h>
51 #include <sys/sysctl.h>
52 #include <sys/kthread.h>
53 #include <machine/cpu.h>
54 #include <sys/lock.h>
55 #include <sys/caps.h>
56 #include <sys/spinlock.h>
57 #include <sys/ktr.h>
58 
59 #include <sys/thread2.h>
60 #include <sys/spinlock2.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70 
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 
74 #ifdef DDB
75 #include <ddb/ddb.h>
76 #endif
77 
78 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
79 
80 static int untimely_switch = 0;
81 #ifdef	INVARIANTS
82 static int panic_on_cscount = 0;
83 #endif
84 static __int64_t switch_count = 0;
85 static __int64_t preempt_hit = 0;
86 static __int64_t preempt_miss = 0;
87 static __int64_t preempt_weird = 0;
88 static __int64_t token_contention_count = 0;
89 static __int64_t mplock_contention_count = 0;
90 static int lwkt_use_spin_port;
91 static struct objcache *thread_cache;
92 
93 /*
94  * We can make all thread ports use the spin backend instead of the thread
95  * backend.  This should only be set to debug the spin backend.
96  */
97 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
98 
99 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
100 #ifdef	INVARIANTS
101 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
102 #endif
103 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
104 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
105 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
106 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
107 #ifdef	INVARIANTS
108 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
109 	&token_contention_count, 0, "spinning due to token contention");
110 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
111 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
112 #endif
113 
114 /*
115  * Kernel Trace
116  */
117 #if !defined(KTR_GIANT_CONTENTION)
118 #define KTR_GIANT_CONTENTION	KTR_ALL
119 #endif
120 
121 KTR_INFO_MASTER(giant);
122 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
123 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
124 
125 #define loggiant(name)	KTR_LOG(giant_ ## name, curthread)
126 
127 /*
128  * These helper procedures handle the runq, they can only be called from
129  * within a critical section.
130  *
131  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
132  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
133  * instead of 'mycpu' when referencing the globaldata structure.   Once
134  * SMP live enqueuing and dequeueing only occurs on the current cpu.
135  */
136 static __inline
137 void
138 _lwkt_dequeue(thread_t td)
139 {
140     if (td->td_flags & TDF_RUNQ) {
141 	int nq = td->td_pri & TDPRI_MASK;
142 	struct globaldata *gd = td->td_gd;
143 
144 	td->td_flags &= ~TDF_RUNQ;
145 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
146 	/* runqmask is passively cleaned up by the switcher */
147     }
148 }
149 
150 static __inline
151 void
152 _lwkt_enqueue(thread_t td)
153 {
154     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
155 	int nq = td->td_pri & TDPRI_MASK;
156 	struct globaldata *gd = td->td_gd;
157 
158 	td->td_flags |= TDF_RUNQ;
159 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
160 	gd->gd_runqmask |= 1 << nq;
161     }
162 }
163 
164 static __boolean_t
165 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
166 {
167 	struct thread *td = (struct thread *)obj;
168 
169 	td->td_kstack = NULL;
170 	td->td_kstack_size = 0;
171 	td->td_flags = TDF_ALLOCATED_THREAD;
172 	return (1);
173 }
174 
175 static void
176 _lwkt_thread_dtor(void *obj, void *privdata)
177 {
178 	struct thread *td = (struct thread *)obj;
179 
180 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
181 	    ("_lwkt_thread_dtor: not allocated from objcache"));
182 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
183 		td->td_kstack_size > 0,
184 	    ("_lwkt_thread_dtor: corrupted stack"));
185 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
186 }
187 
188 /*
189  * Initialize the lwkt s/system.
190  */
191 void
192 lwkt_init(void)
193 {
194     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
195     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
196 			NULL, CACHE_NTHREADS/2,
197 			_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
198 }
199 
200 /*
201  * Schedule a thread to run.  As the current thread we can always safely
202  * schedule ourselves, and a shortcut procedure is provided for that
203  * function.
204  *
205  * (non-blocking, self contained on a per cpu basis)
206  */
207 void
208 lwkt_schedule_self(thread_t td)
209 {
210     crit_enter_quick(td);
211     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
212     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
213     _lwkt_enqueue(td);
214     crit_exit_quick(td);
215 }
216 
217 /*
218  * Deschedule a thread.
219  *
220  * (non-blocking, self contained on a per cpu basis)
221  */
222 void
223 lwkt_deschedule_self(thread_t td)
224 {
225     crit_enter_quick(td);
226     _lwkt_dequeue(td);
227     crit_exit_quick(td);
228 }
229 
230 /*
231  * LWKTs operate on a per-cpu basis
232  *
233  * WARNING!  Called from early boot, 'mycpu' may not work yet.
234  */
235 void
236 lwkt_gdinit(struct globaldata *gd)
237 {
238     int i;
239 
240     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
241 	TAILQ_INIT(&gd->gd_tdrunq[i]);
242     gd->gd_runqmask = 0;
243     TAILQ_INIT(&gd->gd_tdallq);
244 }
245 
246 /*
247  * Create a new thread.  The thread must be associated with a process context
248  * or LWKT start address before it can be scheduled.  If the target cpu is
249  * -1 the thread will be created on the current cpu.
250  *
251  * If you intend to create a thread without a process context this function
252  * does everything except load the startup and switcher function.
253  */
254 thread_t
255 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
256 {
257     globaldata_t gd = mycpu;
258     void *stack;
259 
260     /*
261      * If static thread storage is not supplied allocate a thread.  Reuse
262      * a cached free thread if possible.  gd_freetd is used to keep an exiting
263      * thread intact through the exit.
264      */
265     if (td == NULL) {
266 	if ((td = gd->gd_freetd) != NULL)
267 	    gd->gd_freetd = NULL;
268 	else
269 	    td = objcache_get(thread_cache, M_WAITOK);
270     	KASSERT((td->td_flags &
271 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
272 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
273     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
274     }
275 
276     /*
277      * Try to reuse cached stack.
278      */
279     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
280 	if (flags & TDF_ALLOCATED_STACK) {
281 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
282 	    stack = NULL;
283 	}
284     }
285     if (stack == NULL) {
286 	stack = (void *)kmem_alloc(&kernel_map, stksize);
287 	flags |= TDF_ALLOCATED_STACK;
288     }
289     if (cpu < 0)
290 	lwkt_init_thread(td, stack, stksize, flags, gd);
291     else
292 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
293     return(td);
294 }
295 
296 /*
297  * Initialize a preexisting thread structure.  This function is used by
298  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
299  *
300  * All threads start out in a critical section at a priority of
301  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
302  * appropriate.  This function may send an IPI message when the
303  * requested cpu is not the current cpu and consequently gd_tdallq may
304  * not be initialized synchronously from the point of view of the originating
305  * cpu.
306  *
307  * NOTE! we have to be careful in regards to creating threads for other cpus
308  * if SMP has not yet been activated.
309  */
310 #ifdef SMP
311 
312 static void
313 lwkt_init_thread_remote(void *arg)
314 {
315     thread_t td = arg;
316 
317     /*
318      * Protected by critical section held by IPI dispatch
319      */
320     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
321 }
322 
323 #endif
324 
325 void
326 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
327 		struct globaldata *gd)
328 {
329     globaldata_t mygd = mycpu;
330 
331     bzero(td, sizeof(struct thread));
332     td->td_kstack = stack;
333     td->td_kstack_size = stksize;
334     td->td_flags = flags;
335     td->td_gd = gd;
336     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
337 #ifdef SMP
338     if ((flags & TDF_MPSAFE) == 0)
339 	td->td_mpcount = 1;
340 #endif
341     if (lwkt_use_spin_port)
342 	lwkt_initport_spin(&td->td_msgport);
343     else
344 	lwkt_initport_thread(&td->td_msgport, td);
345     pmap_init_thread(td);
346 #ifdef SMP
347     /*
348      * Normally initializing a thread for a remote cpu requires sending an
349      * IPI.  However, the idlethread is setup before the other cpus are
350      * activated so we have to treat it as a special case.  XXX manipulation
351      * of gd_tdallq requires the BGL.
352      */
353     if (gd == mygd || td == &gd->gd_idlethread) {
354 	crit_enter_gd(mygd);
355 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
356 	crit_exit_gd(mygd);
357     } else {
358 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
359     }
360 #else
361     crit_enter_gd(mygd);
362     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
363     crit_exit_gd(mygd);
364 #endif
365 }
366 
367 void
368 lwkt_set_comm(thread_t td, const char *ctl, ...)
369 {
370     __va_list va;
371 
372     __va_start(va, ctl);
373     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
374     __va_end(va);
375 }
376 
377 void
378 lwkt_hold(thread_t td)
379 {
380     ++td->td_refs;
381 }
382 
383 void
384 lwkt_rele(thread_t td)
385 {
386     KKASSERT(td->td_refs > 0);
387     --td->td_refs;
388 }
389 
390 void
391 lwkt_wait_free(thread_t td)
392 {
393     while (td->td_refs)
394 	tsleep(td, 0, "tdreap", hz);
395 }
396 
397 void
398 lwkt_free_thread(thread_t td)
399 {
400     KASSERT((td->td_flags & TDF_RUNNING) == 0,
401 	("lwkt_free_thread: did not exit! %p", td));
402 
403     if (td->td_flags & TDF_ALLOCATED_THREAD) {
404     	objcache_put(thread_cache, td);
405     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
406 	/* client-allocated struct with internally allocated stack */
407 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
408 	    ("lwkt_free_thread: corrupted stack"));
409 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
410 	td->td_kstack = NULL;
411 	td->td_kstack_size = 0;
412     }
413 }
414 
415 
416 /*
417  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
418  * switch to the idlethread.  Switching must occur within a critical
419  * section to avoid races with the scheduling queue.
420  *
421  * We always have full control over our cpu's run queue.  Other cpus
422  * that wish to manipulate our queue must use the cpu_*msg() calls to
423  * talk to our cpu, so a critical section is all that is needed and
424  * the result is very, very fast thread switching.
425  *
426  * The LWKT scheduler uses a fixed priority model and round-robins at
427  * each priority level.  User process scheduling is a totally
428  * different beast and LWKT priorities should not be confused with
429  * user process priorities.
430  *
431  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
432  * cleans it up.  Note that the td_switch() function cannot do anything that
433  * requires the MP lock since the MP lock will have already been setup for
434  * the target thread (not the current thread).  It's nice to have a scheduler
435  * that does not need the MP lock to work because it allows us to do some
436  * really cool high-performance MP lock optimizations.
437  *
438  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
439  * is not called by the current thread in the preemption case, only when
440  * the preempting thread blocks (in order to return to the original thread).
441  */
442 void
443 lwkt_switch(void)
444 {
445     globaldata_t gd = mycpu;
446     thread_t td = gd->gd_curthread;
447     thread_t ntd;
448 #ifdef SMP
449     int mpheld;
450 #endif
451 
452     /*
453      * Switching from within a 'fast' (non thread switched) interrupt or IPI
454      * is illegal.  However, we may have to do it anyway if we hit a fatal
455      * kernel trap or we have paniced.
456      *
457      * If this case occurs save and restore the interrupt nesting level.
458      */
459     if (gd->gd_intr_nesting_level) {
460 	int savegdnest;
461 	int savegdtrap;
462 
463 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
464 	    panic("lwkt_switch: cannot switch from within "
465 		  "a fast interrupt, yet, td %p\n", td);
466 	} else {
467 	    savegdnest = gd->gd_intr_nesting_level;
468 	    savegdtrap = gd->gd_trap_nesting_level;
469 	    gd->gd_intr_nesting_level = 0;
470 	    gd->gd_trap_nesting_level = 0;
471 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
472 		td->td_flags |= TDF_PANICWARN;
473 		kprintf("Warning: thread switch from interrupt or IPI, "
474 			"thread %p (%s)\n", td, td->td_comm);
475 #ifdef DDB
476 		db_print_backtrace();
477 #endif
478 	    }
479 	    lwkt_switch();
480 	    gd->gd_intr_nesting_level = savegdnest;
481 	    gd->gd_trap_nesting_level = savegdtrap;
482 	    return;
483 	}
484     }
485 
486     /*
487      * Passive release (used to transition from user to kernel mode
488      * when we block or switch rather then when we enter the kernel).
489      * This function is NOT called if we are switching into a preemption
490      * or returning from a preemption.  Typically this causes us to lose
491      * our current process designation (if we have one) and become a true
492      * LWKT thread, and may also hand the current process designation to
493      * another process and schedule thread.
494      */
495     if (td->td_release)
496 	    td->td_release(td);
497 
498     crit_enter_gd(gd);
499     if (td->td_toks)
500 	    lwkt_relalltokens(td);
501 
502     /*
503      * We had better not be holding any spin locks, but don't get into an
504      * endless panic loop.
505      */
506     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
507 	    ("lwkt_switch: still holding a shared spinlock %p!",
508 	     gd->gd_spinlock_rd));
509     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
510 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
511 	     gd->gd_spinlocks_wr));
512 
513 
514 #ifdef SMP
515     /*
516      * td_mpcount cannot be used to determine if we currently hold the
517      * MP lock because get_mplock() will increment it prior to attempting
518      * to get the lock, and switch out if it can't.  Our ownership of
519      * the actual lock will remain stable while we are in a critical section
520      * (but, of course, another cpu may own or release the lock so the
521      * actual value of mp_lock is not stable).
522      */
523     mpheld = MP_LOCK_HELD();
524 #ifdef	INVARIANTS
525     if (td->td_cscount) {
526 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
527 		td);
528 	if (panic_on_cscount)
529 	    panic("switching while mastering cpusync");
530     }
531 #endif
532 #endif
533     if ((ntd = td->td_preempted) != NULL) {
534 	/*
535 	 * We had preempted another thread on this cpu, resume the preempted
536 	 * thread.  This occurs transparently, whether the preempted thread
537 	 * was scheduled or not (it may have been preempted after descheduling
538 	 * itself).
539 	 *
540 	 * We have to setup the MP lock for the original thread after backing
541 	 * out the adjustment that was made to curthread when the original
542 	 * was preempted.
543 	 */
544 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
545 #ifdef SMP
546 	if (ntd->td_mpcount && mpheld == 0) {
547 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
548 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
549 	}
550 	if (ntd->td_mpcount) {
551 	    td->td_mpcount -= ntd->td_mpcount;
552 	    KKASSERT(td->td_mpcount >= 0);
553 	}
554 #endif
555 	ntd->td_flags |= TDF_PREEMPT_DONE;
556 
557 	/*
558 	 * XXX.  The interrupt may have woken a thread up, we need to properly
559 	 * set the reschedule flag if the originally interrupted thread is at
560 	 * a lower priority.
561 	 */
562 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
563 	    need_lwkt_resched();
564 	/* YYY release mp lock on switchback if original doesn't need it */
565     } else {
566 	/*
567 	 * Priority queue / round-robin at each priority.  Note that user
568 	 * processes run at a fixed, low priority and the user process
569 	 * scheduler deals with interactions between user processes
570 	 * by scheduling and descheduling them from the LWKT queue as
571 	 * necessary.
572 	 *
573 	 * We have to adjust the MP lock for the target thread.  If we
574 	 * need the MP lock and cannot obtain it we try to locate a
575 	 * thread that does not need the MP lock.  If we cannot, we spin
576 	 * instead of HLT.
577 	 *
578 	 * A similar issue exists for the tokens held by the target thread.
579 	 * If we cannot obtain ownership of the tokens we cannot immediately
580 	 * schedule the thread.
581 	 */
582 
583 	/*
584 	 * If an LWKT reschedule was requested, well that is what we are
585 	 * doing now so clear it.
586 	 */
587 	clear_lwkt_resched();
588 again:
589 	if (gd->gd_runqmask) {
590 	    int nq = bsrl(gd->gd_runqmask);
591 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
592 		gd->gd_runqmask &= ~(1 << nq);
593 		goto again;
594 	    }
595 #ifdef SMP
596 	    /*
597 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
598 	     *
599 	     * If the target needs the MP lock and we couldn't get it,
600 	     * or if the target is holding tokens and we could not
601 	     * gain ownership of the tokens, continue looking for a
602 	     * thread to schedule and spin instead of HLT if we can't.
603 	     *
604 	     * NOTE: the mpheld variable invalid after this conditional, it
605 	     * can change due to both cpu_try_mplock() returning success
606 	     * AND interactions in lwkt_getalltokens() due to the fact that
607 	     * we are trying to check the mpcount of a thread other then
608 	     * the current thread.  Because of this, if the current thread
609 	     * is not holding td_mpcount, an IPI indirectly run via
610 	     * lwkt_getalltokens() can obtain and release the MP lock and
611 	     * cause the core MP lock to be released.
612 	     */
613 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
614 		(ntd->td_toks && lwkt_getalltokens(ntd) == 0)
615 	    ) {
616 		u_int32_t rqmask = gd->gd_runqmask;
617 
618 		mpheld = MP_LOCK_HELD();
619 		ntd = NULL;
620 		while (rqmask) {
621 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
622 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
623 			    /* spinning due to MP lock being held */
624 #ifdef	INVARIANTS
625 			    ++mplock_contention_count;
626 #endif
627 			    /* mplock still not held, 'mpheld' still valid */
628 			    continue;
629 			}
630 
631 			/*
632 			 * mpheld state invalid after getalltokens call returns
633 			 * failure, but the variable is only needed for
634 			 * the loop.
635 			 */
636 			if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
637 			    /* spinning due to token contention */
638 #ifdef	INVARIANTS
639 			    ++token_contention_count;
640 #endif
641 			    mpheld = MP_LOCK_HELD();
642 			    continue;
643 			}
644 			break;
645 		    }
646 		    if (ntd)
647 			break;
648 		    rqmask &= ~(1 << nq);
649 		    nq = bsrl(rqmask);
650 		}
651 		if (ntd == NULL) {
652 		    cpu_mplock_contested();
653 		    ntd = &gd->gd_idlethread;
654 		    ntd->td_flags |= TDF_IDLE_NOHLT;
655 		    goto using_idle_thread;
656 		} else {
657 		    ++gd->gd_cnt.v_swtch;
658 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
659 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
660 		}
661 	    } else {
662 		++gd->gd_cnt.v_swtch;
663 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
664 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
665 	    }
666 #else
667 	    /*
668 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
669 	     * worry about tokens or the BGL.  However, we still have
670 	     * to call lwkt_getalltokens() in order to properly detect
671 	     * stale tokens.  This call cannot fail for a UP build!
672 	     */
673 	    lwkt_getalltokens(ntd);
674 	    ++gd->gd_cnt.v_swtch;
675 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
676 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
677 #endif
678 	} else {
679 	    /*
680 	     * We have nothing to run but only let the idle loop halt
681 	     * the cpu if there are no pending interrupts.
682 	     */
683 	    ntd = &gd->gd_idlethread;
684 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
685 		ntd->td_flags |= TDF_IDLE_NOHLT;
686 #ifdef SMP
687 using_idle_thread:
688 	    /*
689 	     * The idle thread should not be holding the MP lock unless we
690 	     * are trapping in the kernel or in a panic.  Since we select the
691 	     * idle thread unconditionally when no other thread is available,
692 	     * if the MP lock is desired during a panic or kernel trap, we
693 	     * have to loop in the scheduler until we get it.
694 	     */
695 	    if (ntd->td_mpcount) {
696 		mpheld = MP_LOCK_HELD();
697 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
698 		    panic("Idle thread %p was holding the BGL!", ntd);
699 		} else if (mpheld == 0) {
700 		    cpu_mplock_contested();
701 		    goto again;
702 		}
703 	    }
704 #endif
705 	}
706     }
707     KASSERT(ntd->td_pri >= TDPRI_CRIT,
708 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
709 
710     /*
711      * Do the actual switch.  If the new target does not need the MP lock
712      * and we are holding it, release the MP lock.  If the new target requires
713      * the MP lock we have already acquired it for the target.
714      */
715 #ifdef SMP
716     if (ntd->td_mpcount == 0 ) {
717 	if (MP_LOCK_HELD())
718 	    cpu_rel_mplock();
719     } else {
720 	ASSERT_MP_LOCK_HELD(ntd);
721     }
722 #endif
723     if (td != ntd) {
724 	++switch_count;
725 	td->td_switch(ntd);
726     }
727     /* NOTE: current cpu may have changed after switch */
728     crit_exit_quick(td);
729 }
730 
731 /*
732  * Request that the target thread preempt the current thread.  Preemption
733  * only works under a specific set of conditions:
734  *
735  *	- We are not preempting ourselves
736  *	- The target thread is owned by the current cpu
737  *	- We are not currently being preempted
738  *	- The target is not currently being preempted
739  *	- We are not holding any spin locks
740  *	- The target thread is not holding any tokens
741  *	- We are able to satisfy the target's MP lock requirements (if any).
742  *
743  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
744  * this is called via lwkt_schedule() through the td_preemptable callback.
745  * critpri is the managed critical priority that we should ignore in order
746  * to determine whether preemption is possible (aka usually just the crit
747  * priority of lwkt_schedule() itself).
748  *
749  * XXX at the moment we run the target thread in a critical section during
750  * the preemption in order to prevent the target from taking interrupts
751  * that *WE* can't.  Preemption is strictly limited to interrupt threads
752  * and interrupt-like threads, outside of a critical section, and the
753  * preempted source thread will be resumed the instant the target blocks
754  * whether or not the source is scheduled (i.e. preemption is supposed to
755  * be as transparent as possible).
756  *
757  * The target thread inherits our MP count (added to its own) for the
758  * duration of the preemption in order to preserve the atomicy of the
759  * MP lock during the preemption.  Therefore, any preempting targets must be
760  * careful in regards to MP assertions.  Note that the MP count may be
761  * out of sync with the physical mp_lock, but we do not have to preserve
762  * the original ownership of the lock if it was out of synch (that is, we
763  * can leave it synchronized on return).
764  */
765 void
766 lwkt_preempt(thread_t ntd, int critpri)
767 {
768     struct globaldata *gd = mycpu;
769     thread_t td;
770 #ifdef SMP
771     int mpheld;
772     int savecnt;
773 #endif
774 
775     /*
776      * The caller has put us in a critical section.  We can only preempt
777      * if the caller of the caller was not in a critical section (basically
778      * a local interrupt), as determined by the 'critpri' parameter.  We
779      * also can't preempt if the caller is holding any spinlocks (even if
780      * he isn't in a critical section).  This also handles the tokens test.
781      *
782      * YYY The target thread must be in a critical section (else it must
783      * inherit our critical section?  I dunno yet).
784      *
785      * Set need_lwkt_resched() unconditionally for now YYY.
786      */
787     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
788 
789     td = gd->gd_curthread;
790     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
791 	++preempt_miss;
792 	return;
793     }
794     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
795 	++preempt_miss;
796 	need_lwkt_resched();
797 	return;
798     }
799 #ifdef SMP
800     if (ntd->td_gd != gd) {
801 	++preempt_miss;
802 	need_lwkt_resched();
803 	return;
804     }
805 #endif
806     /*
807      * Take the easy way out and do not preempt if we are holding
808      * any spinlocks.  We could test whether the thread(s) being
809      * preempted interlock against the target thread's tokens and whether
810      * we can get all the target thread's tokens, but this situation
811      * should not occur very often so its easier to simply not preempt.
812      * Also, plain spinlocks are impossible to figure out at this point so
813      * just don't preempt.
814      *
815      * Do not try to preempt if the target thread is holding any tokens.
816      * We could try to acquire the tokens but this case is so rare there
817      * is no need to support it.
818      */
819     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
820 	++preempt_miss;
821 	need_lwkt_resched();
822 	return;
823     }
824     if (ntd->td_toks) {
825 	++preempt_miss;
826 	need_lwkt_resched();
827 	return;
828     }
829     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
830 	++preempt_weird;
831 	need_lwkt_resched();
832 	return;
833     }
834     if (ntd->td_preempted) {
835 	++preempt_hit;
836 	need_lwkt_resched();
837 	return;
838     }
839 #ifdef SMP
840     /*
841      * note: an interrupt might have occured just as we were transitioning
842      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
843      * (non-zero) but not actually synchronized with the actual state of the
844      * lock.  We can use it to imply an MP lock requirement for the
845      * preemption but we cannot use it to test whether we hold the MP lock
846      * or not.
847      */
848     savecnt = td->td_mpcount;
849     mpheld = MP_LOCK_HELD();
850     ntd->td_mpcount += td->td_mpcount;
851     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
852 	ntd->td_mpcount -= td->td_mpcount;
853 	++preempt_miss;
854 	need_lwkt_resched();
855 	return;
856     }
857 #endif
858 
859     /*
860      * Since we are able to preempt the current thread, there is no need to
861      * call need_lwkt_resched().
862      */
863     ++preempt_hit;
864     ntd->td_preempted = td;
865     td->td_flags |= TDF_PREEMPT_LOCK;
866     td->td_switch(ntd);
867     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
868 #ifdef SMP
869     KKASSERT(savecnt == td->td_mpcount);
870     mpheld = MP_LOCK_HELD();
871     if (mpheld && td->td_mpcount == 0)
872 	cpu_rel_mplock();
873     else if (mpheld == 0 && td->td_mpcount)
874 	panic("lwkt_preempt(): MP lock was not held through");
875 #endif
876     ntd->td_preempted = NULL;
877     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
878 }
879 
880 /*
881  * Yield our thread while higher priority threads are pending.  This is
882  * typically called when we leave a critical section but it can be safely
883  * called while we are in a critical section.
884  *
885  * This function will not generally yield to equal priority threads but it
886  * can occur as a side effect.  Note that lwkt_switch() is called from
887  * inside the critical section to prevent its own crit_exit() from reentering
888  * lwkt_yield_quick().
889  *
890  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
891  * came along but was blocked and made pending.
892  *
893  * (self contained on a per cpu basis)
894  */
895 void
896 lwkt_yield_quick(void)
897 {
898     globaldata_t gd = mycpu;
899     thread_t td = gd->gd_curthread;
900 
901     /*
902      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
903      * it with a non-zero cpl then we might not wind up calling splz after
904      * a task switch when the critical section is exited even though the
905      * new task could accept the interrupt.
906      *
907      * XXX from crit_exit() only called after last crit section is released.
908      * If called directly will run splz() even if in a critical section.
909      *
910      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
911      * except for this special case, we MUST call splz() here to handle any
912      * pending ints, particularly after we switch, or we might accidently
913      * halt the cpu with interrupts pending.
914      */
915     if (gd->gd_reqflags && td->td_nest_count < 2)
916 	splz();
917 
918     /*
919      * YYY enabling will cause wakeup() to task-switch, which really
920      * confused the old 4.x code.  This is a good way to simulate
921      * preemption and MP without actually doing preemption or MP, because a
922      * lot of code assumes that wakeup() does not block.
923      */
924     if (untimely_switch && td->td_nest_count == 0 &&
925 	gd->gd_intr_nesting_level == 0
926     ) {
927 	crit_enter_quick(td);
928 	/*
929 	 * YYY temporary hacks until we disassociate the userland scheduler
930 	 * from the LWKT scheduler.
931 	 */
932 	if (td->td_flags & TDF_RUNQ) {
933 	    lwkt_switch();		/* will not reenter yield function */
934 	} else {
935 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
936 	    lwkt_switch();		/* will not reenter yield function */
937 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
938 	}
939 	crit_exit_noyield(td);
940     }
941 }
942 
943 /*
944  * This implements a normal yield which, unlike _quick, will yield to equal
945  * priority threads as well.  Note that gd_reqflags tests will be handled by
946  * the crit_exit() call in lwkt_switch().
947  *
948  * (self contained on a per cpu basis)
949  */
950 void
951 lwkt_yield(void)
952 {
953     lwkt_schedule_self(curthread);
954     lwkt_switch();
955 }
956 
957 /*
958  * Generic schedule.  Possibly schedule threads belonging to other cpus and
959  * deal with threads that might be blocked on a wait queue.
960  *
961  * We have a little helper inline function which does additional work after
962  * the thread has been enqueued, including dealing with preemption and
963  * setting need_lwkt_resched() (which prevents the kernel from returning
964  * to userland until it has processed higher priority threads).
965  *
966  * It is possible for this routine to be called after a failed _enqueue
967  * (due to the target thread migrating, sleeping, or otherwise blocked).
968  * We have to check that the thread is actually on the run queue!
969  *
970  * reschedok is an optimized constant propagated from lwkt_schedule() or
971  * lwkt_schedule_noresched().  By default it is non-zero, causing a
972  * reschedule to be requested if the target thread has a higher priority.
973  * The port messaging code will set MSG_NORESCHED and cause reschedok to
974  * be 0, prevented undesired reschedules.
975  */
976 static __inline
977 void
978 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
979 {
980     int mypri;
981 
982     if (ntd->td_flags & TDF_RUNQ) {
983 	if (ntd->td_preemptable && reschedok) {
984 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
985 	} else if (reschedok) {
986 	    /*
987 	     * This is a little sticky.  Due to the passive release function
988 	     * the LWKT priority can wiggle around for threads acting in
989 	     * the kernel on behalf of a user process.  We do not want this
990 	     * to effect the comparison per-say.
991 	     *
992 	     * What will happen is that the current user process will be
993 	     * allowed to run until the next hardclock at which time a
994 	     * forced need_lwkt_resched() will allow the other kernel mode
995 	     * threads to get in their two cents.  This prevents cavitation.
996 	     */
997 	    mypri = gd->gd_curthread->td_pri & TDPRI_MASK;
998 	    if (mypri >= TDPRI_USER_IDLE && mypri <= TDPRI_USER_REAL)
999 		mypri = TDPRI_KERN_USER;
1000 
1001 	    if ((ntd->td_pri & TDPRI_MASK) > mypri)
1002 		need_lwkt_resched();
1003 	}
1004     }
1005 }
1006 
1007 static __inline
1008 void
1009 _lwkt_schedule(thread_t td, int reschedok)
1010 {
1011     globaldata_t mygd = mycpu;
1012 
1013     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1014     crit_enter_gd(mygd);
1015     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1016     if (td == mygd->gd_curthread) {
1017 	_lwkt_enqueue(td);
1018     } else {
1019 	/*
1020 	 * If we own the thread, there is no race (since we are in a
1021 	 * critical section).  If we do not own the thread there might
1022 	 * be a race but the target cpu will deal with it.
1023 	 */
1024 #ifdef SMP
1025 	if (td->td_gd == mygd) {
1026 	    _lwkt_enqueue(td);
1027 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1028 	} else {
1029 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1030 	}
1031 #else
1032 	_lwkt_enqueue(td);
1033 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1034 #endif
1035     }
1036     crit_exit_gd(mygd);
1037 }
1038 
1039 void
1040 lwkt_schedule(thread_t td)
1041 {
1042     _lwkt_schedule(td, 1);
1043 }
1044 
1045 void
1046 lwkt_schedule_noresched(thread_t td)
1047 {
1048     _lwkt_schedule(td, 0);
1049 }
1050 
1051 #ifdef SMP
1052 
1053 /*
1054  * Thread migration using a 'Pull' method.  The thread may or may not be
1055  * the current thread.  It MUST be descheduled and in a stable state.
1056  * lwkt_giveaway() must be called on the cpu owning the thread.
1057  *
1058  * At any point after lwkt_giveaway() is called, the target cpu may
1059  * 'pull' the thread by calling lwkt_acquire().
1060  *
1061  * MPSAFE - must be called under very specific conditions.
1062  */
1063 void
1064 lwkt_giveaway(thread_t td)
1065 {
1066 	globaldata_t gd = mycpu;
1067 
1068 	crit_enter_gd(gd);
1069 	KKASSERT(td->td_gd == gd);
1070 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1071 	td->td_flags |= TDF_MIGRATING;
1072 	crit_exit_gd(gd);
1073 }
1074 
1075 void
1076 lwkt_acquire(thread_t td)
1077 {
1078     globaldata_t gd;
1079     globaldata_t mygd;
1080 
1081     KKASSERT(td->td_flags & TDF_MIGRATING);
1082     gd = td->td_gd;
1083     mygd = mycpu;
1084     if (gd != mycpu) {
1085 	cpu_lfence();
1086 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1087 	crit_enter_gd(mygd);
1088 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1089 #ifdef SMP
1090 	    lwkt_process_ipiq();
1091 #endif
1092 	    cpu_lfence();
1093 	}
1094 	td->td_gd = mygd;
1095 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1096 	td->td_flags &= ~TDF_MIGRATING;
1097 	crit_exit_gd(mygd);
1098     } else {
1099 	crit_enter_gd(mygd);
1100 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1101 	td->td_flags &= ~TDF_MIGRATING;
1102 	crit_exit_gd(mygd);
1103     }
1104 }
1105 
1106 #endif
1107 
1108 /*
1109  * Generic deschedule.  Descheduling threads other then your own should be
1110  * done only in carefully controlled circumstances.  Descheduling is
1111  * asynchronous.
1112  *
1113  * This function may block if the cpu has run out of messages.
1114  */
1115 void
1116 lwkt_deschedule(thread_t td)
1117 {
1118     crit_enter();
1119 #ifdef SMP
1120     if (td == curthread) {
1121 	_lwkt_dequeue(td);
1122     } else {
1123 	if (td->td_gd == mycpu) {
1124 	    _lwkt_dequeue(td);
1125 	} else {
1126 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1127 	}
1128     }
1129 #else
1130     _lwkt_dequeue(td);
1131 #endif
1132     crit_exit();
1133 }
1134 
1135 /*
1136  * Set the target thread's priority.  This routine does not automatically
1137  * switch to a higher priority thread, LWKT threads are not designed for
1138  * continuous priority changes.  Yield if you want to switch.
1139  *
1140  * We have to retain the critical section count which uses the high bits
1141  * of the td_pri field.  The specified priority may also indicate zero or
1142  * more critical sections by adding TDPRI_CRIT*N.
1143  *
1144  * Note that we requeue the thread whether it winds up on a different runq
1145  * or not.  uio_yield() depends on this and the routine is not normally
1146  * called with the same priority otherwise.
1147  */
1148 void
1149 lwkt_setpri(thread_t td, int pri)
1150 {
1151     KKASSERT(pri >= 0);
1152     KKASSERT(td->td_gd == mycpu);
1153     crit_enter();
1154     if (td->td_flags & TDF_RUNQ) {
1155 	_lwkt_dequeue(td);
1156 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1157 	_lwkt_enqueue(td);
1158     } else {
1159 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1160     }
1161     crit_exit();
1162 }
1163 
1164 void
1165 lwkt_setpri_self(int pri)
1166 {
1167     thread_t td = curthread;
1168 
1169     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1170     crit_enter();
1171     if (td->td_flags & TDF_RUNQ) {
1172 	_lwkt_dequeue(td);
1173 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1174 	_lwkt_enqueue(td);
1175     } else {
1176 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1177     }
1178     crit_exit();
1179 }
1180 
1181 /*
1182  * Migrate the current thread to the specified cpu.
1183  *
1184  * This is accomplished by descheduling ourselves from the current cpu,
1185  * moving our thread to the tdallq of the target cpu, IPI messaging the
1186  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1187  * races while the thread is being migrated.
1188  */
1189 #ifdef SMP
1190 static void lwkt_setcpu_remote(void *arg);
1191 #endif
1192 
1193 void
1194 lwkt_setcpu_self(globaldata_t rgd)
1195 {
1196 #ifdef SMP
1197     thread_t td = curthread;
1198 
1199     if (td->td_gd != rgd) {
1200 	crit_enter_quick(td);
1201 	td->td_flags |= TDF_MIGRATING;
1202 	lwkt_deschedule_self(td);
1203 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1204 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1205 	lwkt_switch();
1206 	/* we are now on the target cpu */
1207 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1208 	crit_exit_quick(td);
1209     }
1210 #endif
1211 }
1212 
1213 void
1214 lwkt_migratecpu(int cpuid)
1215 {
1216 #ifdef SMP
1217 	globaldata_t rgd;
1218 
1219 	rgd = globaldata_find(cpuid);
1220 	lwkt_setcpu_self(rgd);
1221 #endif
1222 }
1223 
1224 /*
1225  * Remote IPI for cpu migration (called while in a critical section so we
1226  * do not have to enter another one).  The thread has already been moved to
1227  * our cpu's allq, but we must wait for the thread to be completely switched
1228  * out on the originating cpu before we schedule it on ours or the stack
1229  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1230  * change to main memory.
1231  *
1232  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1233  * against wakeups.  It is best if this interface is used only when there
1234  * are no pending events that might try to schedule the thread.
1235  */
1236 #ifdef SMP
1237 static void
1238 lwkt_setcpu_remote(void *arg)
1239 {
1240     thread_t td = arg;
1241     globaldata_t gd = mycpu;
1242 
1243     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1244 #ifdef SMP
1245 	lwkt_process_ipiq();
1246 #endif
1247 	cpu_lfence();
1248     }
1249     td->td_gd = gd;
1250     cpu_sfence();
1251     td->td_flags &= ~TDF_MIGRATING;
1252     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1253     _lwkt_enqueue(td);
1254 }
1255 #endif
1256 
1257 struct lwp *
1258 lwkt_preempted_proc(void)
1259 {
1260     thread_t td = curthread;
1261     while (td->td_preempted)
1262 	td = td->td_preempted;
1263     return(td->td_lwp);
1264 }
1265 
1266 /*
1267  * Create a kernel process/thread/whatever.  It shares it's address space
1268  * with proc0 - ie: kernel only.
1269  *
1270  * NOTE!  By default new threads are created with the MP lock held.  A
1271  * thread which does not require the MP lock should release it by calling
1272  * rel_mplock() at the start of the new thread.
1273  */
1274 int
1275 lwkt_create(void (*func)(void *), void *arg,
1276     struct thread **tdp, thread_t template, int tdflags, int cpu,
1277     const char *fmt, ...)
1278 {
1279     thread_t td;
1280     __va_list ap;
1281 
1282     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1283 			   tdflags);
1284     if (tdp)
1285 	*tdp = td;
1286     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1287 
1288     /*
1289      * Set up arg0 for 'ps' etc
1290      */
1291     __va_start(ap, fmt);
1292     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1293     __va_end(ap);
1294 
1295     /*
1296      * Schedule the thread to run
1297      */
1298     if ((td->td_flags & TDF_STOPREQ) == 0)
1299 	lwkt_schedule(td);
1300     else
1301 	td->td_flags &= ~TDF_STOPREQ;
1302     return 0;
1303 }
1304 
1305 /*
1306  * Destroy an LWKT thread.   Warning!  This function is not called when
1307  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1308  * uses a different reaping mechanism.
1309  */
1310 void
1311 lwkt_exit(void)
1312 {
1313     thread_t td = curthread;
1314     thread_t std;
1315     globaldata_t gd;
1316 
1317     if (td->td_flags & TDF_VERBOSE)
1318 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1319     caps_exit(td);
1320 
1321     /*
1322      * Get us into a critical section to interlock gd_freetd and loop
1323      * until we can get it freed.
1324      *
1325      * We have to cache the current td in gd_freetd because objcache_put()ing
1326      * it would rip it out from under us while our thread is still active.
1327      */
1328     gd = mycpu;
1329     crit_enter_quick(td);
1330     while ((std = gd->gd_freetd) != NULL) {
1331 	gd->gd_freetd = NULL;
1332 	objcache_put(thread_cache, std);
1333     }
1334     lwkt_deschedule_self(td);
1335     lwkt_remove_tdallq(td);
1336     if (td->td_flags & TDF_ALLOCATED_THREAD)
1337 	gd->gd_freetd = td;
1338     cpu_thread_exit();
1339 }
1340 
1341 void
1342 lwkt_remove_tdallq(thread_t td)
1343 {
1344     KKASSERT(td->td_gd == mycpu);
1345     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1346 }
1347 
1348 void
1349 crit_panic(void)
1350 {
1351     thread_t td = curthread;
1352     int lpri = td->td_pri;
1353 
1354     td->td_pri = 0;
1355     panic("td_pri is/would-go negative! %p %d", td, lpri);
1356 }
1357 
1358 #ifdef SMP
1359 
1360 /*
1361  * Called from debugger/panic on cpus which have been stopped.  We must still
1362  * process the IPIQ while stopped, even if we were stopped while in a critical
1363  * section (XXX).
1364  *
1365  * If we are dumping also try to process any pending interrupts.  This may
1366  * or may not work depending on the state of the cpu at the point it was
1367  * stopped.
1368  */
1369 void
1370 lwkt_smp_stopped(void)
1371 {
1372     globaldata_t gd = mycpu;
1373 
1374     crit_enter_gd(gd);
1375     if (dumping) {
1376 	lwkt_process_ipiq();
1377 	splz();
1378     } else {
1379 	lwkt_process_ipiq();
1380     }
1381     crit_exit_gd(gd);
1382 }
1383 
1384 /*
1385  * get_mplock() calls this routine if it is unable to obtain the MP lock.
1386  * get_mplock() has already incremented td_mpcount.  We must block and
1387  * not return until giant is held.
1388  *
1389  * All we have to do is lwkt_switch() away.  The LWKT scheduler will not
1390  * reschedule the thread until it can obtain the giant lock for it.
1391  */
1392 void
1393 lwkt_mp_lock_contested(void)
1394 {
1395     loggiant(beg);
1396     lwkt_switch();
1397     loggiant(end);
1398 }
1399 
1400 #endif
1401