xref: /dragonfly/sys/kern/lwkt_thread.c (revision 235099c3)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 #include <machine/cpu.h>
51 #include <sys/lock.h>
52 #include <sys/caps.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_object.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_pager.h>
66 #include <vm/vm_extern.h>
67 
68 #include <machine/stdarg.h>
69 #include <machine/smp.h>
70 
71 #if !defined(KTR_CTXSW)
72 #define KTR_CTXSW KTR_ALL
73 #endif
74 KTR_INFO_MASTER(ctxsw);
75 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "sw  %p > %p", 2 * sizeof(struct thread *));
76 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "pre %p > %p", 2 * sizeof(struct thread *));
77 
78 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
79 
80 #ifdef SMP
81 static int mplock_countx = 0;
82 #endif
83 #ifdef	INVARIANTS
84 static int panic_on_cscount = 0;
85 #endif
86 static __int64_t switch_count = 0;
87 static __int64_t preempt_hit = 0;
88 static __int64_t preempt_miss = 0;
89 static __int64_t preempt_weird = 0;
90 static __int64_t token_contention_count = 0;
91 static __int64_t mplock_contention_count = 0;
92 static int lwkt_use_spin_port;
93 #ifdef SMP
94 static int chain_mplock = 0;
95 static int bgl_yield = 10;
96 #endif
97 static struct objcache *thread_cache;
98 
99 volatile cpumask_t mp_lock_contention_mask;
100 
101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
102 
103 extern void cpu_heavy_restore(void);
104 extern void cpu_lwkt_restore(void);
105 extern void cpu_kthread_restore(void);
106 extern void cpu_idle_restore(void);
107 
108 #ifdef __amd64__
109 
110 static int
111 jg_tos_ok(struct thread *td)
112 {
113 	void *tos;
114 	int tos_ok;
115 
116 	if (td == NULL) {
117 		return 1;
118 	}
119 	KKASSERT(td->td_sp != NULL);
120 	tos = ((void **)td->td_sp)[0];
121 	tos_ok = 0;
122 	if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) ||
123 	    (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
124 		tos_ok = 1;
125 	}
126 	return tos_ok;
127 }
128 
129 #endif
130 
131 /*
132  * We can make all thread ports use the spin backend instead of the thread
133  * backend.  This should only be set to debug the spin backend.
134  */
135 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
136 
137 #ifdef	INVARIANTS
138 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
139 #endif
140 #ifdef SMP
141 SYSCTL_INT(_lwkt, OID_AUTO, chain_mplock, CTLFLAG_RW, &chain_mplock, 0, "");
142 SYSCTL_INT(_lwkt, OID_AUTO, bgl_yield_delay, CTLFLAG_RW, &bgl_yield, 0, "");
143 #endif
144 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
145 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
146 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
147 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
148 #ifdef	INVARIANTS
149 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
150 	&token_contention_count, 0, "spinning due to token contention");
151 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
152 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
153 #endif
154 
155 /*
156  * Kernel Trace
157  */
158 #if !defined(KTR_GIANT_CONTENTION)
159 #define KTR_GIANT_CONTENTION	KTR_ALL
160 #endif
161 
162 KTR_INFO_MASTER(giant);
163 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
164 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
165 
166 #define loggiant(name)	KTR_LOG(giant_ ## name, curthread)
167 
168 /*
169  * These helper procedures handle the runq, they can only be called from
170  * within a critical section.
171  *
172  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
173  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
174  * instead of 'mycpu' when referencing the globaldata structure.   Once
175  * SMP live enqueuing and dequeueing only occurs on the current cpu.
176  */
177 static __inline
178 void
179 _lwkt_dequeue(thread_t td)
180 {
181     if (td->td_flags & TDF_RUNQ) {
182 	int nq = td->td_pri & TDPRI_MASK;
183 	struct globaldata *gd = td->td_gd;
184 
185 	td->td_flags &= ~TDF_RUNQ;
186 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
187 	/* runqmask is passively cleaned up by the switcher */
188     }
189 }
190 
191 static __inline
192 void
193 _lwkt_enqueue(thread_t td)
194 {
195     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
196 	int nq = td->td_pri & TDPRI_MASK;
197 	struct globaldata *gd = td->td_gd;
198 
199 	td->td_flags |= TDF_RUNQ;
200 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
201 	gd->gd_runqmask |= 1 << nq;
202     }
203 }
204 
205 static __boolean_t
206 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
207 {
208 	struct thread *td = (struct thread *)obj;
209 
210 	td->td_kstack = NULL;
211 	td->td_kstack_size = 0;
212 	td->td_flags = TDF_ALLOCATED_THREAD;
213 	return (1);
214 }
215 
216 static void
217 _lwkt_thread_dtor(void *obj, void *privdata)
218 {
219 	struct thread *td = (struct thread *)obj;
220 
221 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
222 	    ("_lwkt_thread_dtor: not allocated from objcache"));
223 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
224 		td->td_kstack_size > 0,
225 	    ("_lwkt_thread_dtor: corrupted stack"));
226 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
227 }
228 
229 /*
230  * Initialize the lwkt s/system.
231  */
232 void
233 lwkt_init(void)
234 {
235     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
236     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
237 			NULL, CACHE_NTHREADS/2,
238 			_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
239 }
240 
241 /*
242  * Schedule a thread to run.  As the current thread we can always safely
243  * schedule ourselves, and a shortcut procedure is provided for that
244  * function.
245  *
246  * (non-blocking, self contained on a per cpu basis)
247  */
248 void
249 lwkt_schedule_self(thread_t td)
250 {
251     crit_enter_quick(td);
252     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
253     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
254     _lwkt_enqueue(td);
255     crit_exit_quick(td);
256 }
257 
258 /*
259  * Deschedule a thread.
260  *
261  * (non-blocking, self contained on a per cpu basis)
262  */
263 void
264 lwkt_deschedule_self(thread_t td)
265 {
266     crit_enter_quick(td);
267     _lwkt_dequeue(td);
268     crit_exit_quick(td);
269 }
270 
271 /*
272  * LWKTs operate on a per-cpu basis
273  *
274  * WARNING!  Called from early boot, 'mycpu' may not work yet.
275  */
276 void
277 lwkt_gdinit(struct globaldata *gd)
278 {
279     int i;
280 
281     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
282 	TAILQ_INIT(&gd->gd_tdrunq[i]);
283     gd->gd_runqmask = 0;
284     TAILQ_INIT(&gd->gd_tdallq);
285 }
286 
287 /*
288  * Create a new thread.  The thread must be associated with a process context
289  * or LWKT start address before it can be scheduled.  If the target cpu is
290  * -1 the thread will be created on the current cpu.
291  *
292  * If you intend to create a thread without a process context this function
293  * does everything except load the startup and switcher function.
294  */
295 thread_t
296 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
297 {
298     globaldata_t gd = mycpu;
299     void *stack;
300 
301     /*
302      * If static thread storage is not supplied allocate a thread.  Reuse
303      * a cached free thread if possible.  gd_freetd is used to keep an exiting
304      * thread intact through the exit.
305      */
306     if (td == NULL) {
307 	if ((td = gd->gd_freetd) != NULL)
308 	    gd->gd_freetd = NULL;
309 	else
310 	    td = objcache_get(thread_cache, M_WAITOK);
311     	KASSERT((td->td_flags &
312 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
313 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
314     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
315     }
316 
317     /*
318      * Try to reuse cached stack.
319      */
320     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
321 	if (flags & TDF_ALLOCATED_STACK) {
322 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
323 	    stack = NULL;
324 	}
325     }
326     if (stack == NULL) {
327 	stack = (void *)kmem_alloc(&kernel_map, stksize);
328 	flags |= TDF_ALLOCATED_STACK;
329     }
330     if (cpu < 0)
331 	lwkt_init_thread(td, stack, stksize, flags, gd);
332     else
333 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
334     return(td);
335 }
336 
337 /*
338  * Initialize a preexisting thread structure.  This function is used by
339  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
340  *
341  * All threads start out in a critical section at a priority of
342  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
343  * appropriate.  This function may send an IPI message when the
344  * requested cpu is not the current cpu and consequently gd_tdallq may
345  * not be initialized synchronously from the point of view of the originating
346  * cpu.
347  *
348  * NOTE! we have to be careful in regards to creating threads for other cpus
349  * if SMP has not yet been activated.
350  */
351 #ifdef SMP
352 
353 static void
354 lwkt_init_thread_remote(void *arg)
355 {
356     thread_t td = arg;
357 
358     /*
359      * Protected by critical section held by IPI dispatch
360      */
361     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
362 }
363 
364 #endif
365 
366 void
367 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
368 		struct globaldata *gd)
369 {
370     globaldata_t mygd = mycpu;
371 
372     bzero(td, sizeof(struct thread));
373     td->td_kstack = stack;
374     td->td_kstack_size = stksize;
375     td->td_flags = flags;
376     td->td_gd = gd;
377     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
378 #ifdef SMP
379     if ((flags & TDF_MPSAFE) == 0)
380 	td->td_mpcount = 1;
381 #endif
382     if (lwkt_use_spin_port)
383 	lwkt_initport_spin(&td->td_msgport);
384     else
385 	lwkt_initport_thread(&td->td_msgport, td);
386     pmap_init_thread(td);
387 #ifdef SMP
388     /*
389      * Normally initializing a thread for a remote cpu requires sending an
390      * IPI.  However, the idlethread is setup before the other cpus are
391      * activated so we have to treat it as a special case.  XXX manipulation
392      * of gd_tdallq requires the BGL.
393      */
394     if (gd == mygd || td == &gd->gd_idlethread) {
395 	crit_enter_gd(mygd);
396 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
397 	crit_exit_gd(mygd);
398     } else {
399 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
400     }
401 #else
402     crit_enter_gd(mygd);
403     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
404     crit_exit_gd(mygd);
405 #endif
406 }
407 
408 void
409 lwkt_set_comm(thread_t td, const char *ctl, ...)
410 {
411     __va_list va;
412 
413     __va_start(va, ctl);
414     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
415     __va_end(va);
416 }
417 
418 void
419 lwkt_hold(thread_t td)
420 {
421     ++td->td_refs;
422 }
423 
424 void
425 lwkt_rele(thread_t td)
426 {
427     KKASSERT(td->td_refs > 0);
428     --td->td_refs;
429 }
430 
431 void
432 lwkt_wait_free(thread_t td)
433 {
434     while (td->td_refs)
435 	tsleep(td, 0, "tdreap", hz);
436 }
437 
438 void
439 lwkt_free_thread(thread_t td)
440 {
441     KASSERT((td->td_flags & TDF_RUNNING) == 0,
442 	("lwkt_free_thread: did not exit! %p", td));
443 
444     if (td->td_flags & TDF_ALLOCATED_THREAD) {
445     	objcache_put(thread_cache, td);
446     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
447 	/* client-allocated struct with internally allocated stack */
448 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
449 	    ("lwkt_free_thread: corrupted stack"));
450 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
451 	td->td_kstack = NULL;
452 	td->td_kstack_size = 0;
453     }
454 }
455 
456 
457 /*
458  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
459  * switch to the idlethread.  Switching must occur within a critical
460  * section to avoid races with the scheduling queue.
461  *
462  * We always have full control over our cpu's run queue.  Other cpus
463  * that wish to manipulate our queue must use the cpu_*msg() calls to
464  * talk to our cpu, so a critical section is all that is needed and
465  * the result is very, very fast thread switching.
466  *
467  * The LWKT scheduler uses a fixed priority model and round-robins at
468  * each priority level.  User process scheduling is a totally
469  * different beast and LWKT priorities should not be confused with
470  * user process priorities.
471  *
472  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
473  * cleans it up.  Note that the td_switch() function cannot do anything that
474  * requires the MP lock since the MP lock will have already been setup for
475  * the target thread (not the current thread).  It's nice to have a scheduler
476  * that does not need the MP lock to work because it allows us to do some
477  * really cool high-performance MP lock optimizations.
478  *
479  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
480  * is not called by the current thread in the preemption case, only when
481  * the preempting thread blocks (in order to return to the original thread).
482  */
483 void
484 lwkt_switch(void)
485 {
486     globaldata_t gd = mycpu;
487     thread_t td = gd->gd_curthread;
488     thread_t ntd;
489 #ifdef SMP
490     int mpheld;
491 #endif
492 
493     /*
494      * Switching from within a 'fast' (non thread switched) interrupt or IPI
495      * is illegal.  However, we may have to do it anyway if we hit a fatal
496      * kernel trap or we have paniced.
497      *
498      * If this case occurs save and restore the interrupt nesting level.
499      */
500     if (gd->gd_intr_nesting_level) {
501 	int savegdnest;
502 	int savegdtrap;
503 
504 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
505 	    panic("lwkt_switch: cannot switch from within "
506 		  "a fast interrupt, yet, td %p\n", td);
507 	} else {
508 	    savegdnest = gd->gd_intr_nesting_level;
509 	    savegdtrap = gd->gd_trap_nesting_level;
510 	    gd->gd_intr_nesting_level = 0;
511 	    gd->gd_trap_nesting_level = 0;
512 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
513 		td->td_flags |= TDF_PANICWARN;
514 		kprintf("Warning: thread switch from interrupt or IPI, "
515 			"thread %p (%s)\n", td, td->td_comm);
516 		print_backtrace();
517 	    }
518 	    lwkt_switch();
519 	    gd->gd_intr_nesting_level = savegdnest;
520 	    gd->gd_trap_nesting_level = savegdtrap;
521 	    return;
522 	}
523     }
524 
525     /*
526      * Passive release (used to transition from user to kernel mode
527      * when we block or switch rather then when we enter the kernel).
528      * This function is NOT called if we are switching into a preemption
529      * or returning from a preemption.  Typically this causes us to lose
530      * our current process designation (if we have one) and become a true
531      * LWKT thread, and may also hand the current process designation to
532      * another process and schedule thread.
533      */
534     if (td->td_release)
535 	    td->td_release(td);
536 
537     crit_enter_gd(gd);
538     if (td->td_toks)
539 	    lwkt_relalltokens(td);
540 
541     /*
542      * We had better not be holding any spin locks, but don't get into an
543      * endless panic loop.
544      */
545     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
546 	    ("lwkt_switch: still holding a shared spinlock %p!",
547 	     gd->gd_spinlock_rd));
548     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
549 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
550 	     gd->gd_spinlocks_wr));
551 
552 
553 #ifdef SMP
554     /*
555      * td_mpcount cannot be used to determine if we currently hold the
556      * MP lock because get_mplock() will increment it prior to attempting
557      * to get the lock, and switch out if it can't.  Our ownership of
558      * the actual lock will remain stable while we are in a critical section
559      * (but, of course, another cpu may own or release the lock so the
560      * actual value of mp_lock is not stable).
561      */
562     mpheld = MP_LOCK_HELD();
563 #ifdef	INVARIANTS
564     if (td->td_cscount) {
565 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
566 		td);
567 	if (panic_on_cscount)
568 	    panic("switching while mastering cpusync");
569     }
570 #endif
571 #endif
572     if ((ntd = td->td_preempted) != NULL) {
573 	/*
574 	 * We had preempted another thread on this cpu, resume the preempted
575 	 * thread.  This occurs transparently, whether the preempted thread
576 	 * was scheduled or not (it may have been preempted after descheduling
577 	 * itself).
578 	 *
579 	 * We have to setup the MP lock for the original thread after backing
580 	 * out the adjustment that was made to curthread when the original
581 	 * was preempted.
582 	 */
583 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
584 #ifdef SMP
585 	if (ntd->td_mpcount && mpheld == 0) {
586 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
587 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
588 	}
589 	if (ntd->td_mpcount) {
590 	    td->td_mpcount -= ntd->td_mpcount;
591 	    KKASSERT(td->td_mpcount >= 0);
592 	}
593 #endif
594 	ntd->td_flags |= TDF_PREEMPT_DONE;
595 
596 	/*
597 	 * The interrupt may have woken a thread up, we need to properly
598 	 * set the reschedule flag if the originally interrupted thread is
599 	 * at a lower priority.
600 	 */
601 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
602 	    need_lwkt_resched();
603 	/* YYY release mp lock on switchback if original doesn't need it */
604     } else {
605 	/*
606 	 * Priority queue / round-robin at each priority.  Note that user
607 	 * processes run at a fixed, low priority and the user process
608 	 * scheduler deals with interactions between user processes
609 	 * by scheduling and descheduling them from the LWKT queue as
610 	 * necessary.
611 	 *
612 	 * We have to adjust the MP lock for the target thread.  If we
613 	 * need the MP lock and cannot obtain it we try to locate a
614 	 * thread that does not need the MP lock.  If we cannot, we spin
615 	 * instead of HLT.
616 	 *
617 	 * A similar issue exists for the tokens held by the target thread.
618 	 * If we cannot obtain ownership of the tokens we cannot immediately
619 	 * schedule the thread.
620 	 */
621 
622 	/*
623 	 * If an LWKT reschedule was requested, well that is what we are
624 	 * doing now so clear it.
625 	 */
626 	clear_lwkt_resched();
627 again:
628 	if (gd->gd_runqmask) {
629 	    int nq = bsrl(gd->gd_runqmask);
630 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
631 		gd->gd_runqmask &= ~(1 << nq);
632 		goto again;
633 	    }
634 #ifdef SMP
635 	    /*
636 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
637 	     *
638 	     * If the target needs the MP lock and we couldn't get it,
639 	     * or if the target is holding tokens and we could not
640 	     * gain ownership of the tokens, continue looking for a
641 	     * thread to schedule and spin instead of HLT if we can't.
642 	     *
643 	     * NOTE: the mpheld variable invalid after this conditional, it
644 	     * can change due to both cpu_try_mplock() returning success
645 	     * AND interactions in lwkt_getalltokens() due to the fact that
646 	     * we are trying to check the mpcount of a thread other then
647 	     * the current thread.  Because of this, if the current thread
648 	     * is not holding td_mpcount, an IPI indirectly run via
649 	     * lwkt_getalltokens() can obtain and release the MP lock and
650 	     * cause the core MP lock to be released.
651 	     */
652 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
653 		(ntd->td_toks && lwkt_getalltokens(ntd) == 0)
654 	    ) {
655 		u_int32_t rqmask = gd->gd_runqmask;
656 
657 		mpheld = MP_LOCK_HELD();
658 		ntd = NULL;
659 		while (rqmask) {
660 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
661 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
662 			    /* spinning due to MP lock being held */
663 #ifdef	INVARIANTS
664 			    ++mplock_contention_count;
665 #endif
666 			    /* mplock still not held, 'mpheld' still valid */
667 			    continue;
668 			}
669 
670 			/*
671 			 * mpheld state invalid after getalltokens call returns
672 			 * failure, but the variable is only needed for
673 			 * the loop.
674 			 */
675 			if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
676 			    /* spinning due to token contention */
677 #ifdef	INVARIANTS
678 			    ++token_contention_count;
679 #endif
680 			    mpheld = MP_LOCK_HELD();
681 			    continue;
682 			}
683 			break;
684 		    }
685 		    if (ntd)
686 			break;
687 		    rqmask &= ~(1 << nq);
688 		    nq = bsrl(rqmask);
689 
690 		    /*
691 		     * We have two choices. We can either refuse to run a
692 		     * user thread when a kernel thread needs the MP lock
693 		     * but could not get it, or we can allow it to run but
694 		     * then expect an IPI (hopefully) later on to force a
695 		     * reschedule when the MP lock might become available.
696 		     */
697 		    if (nq < TDPRI_KERN_LPSCHED) {
698 			if (chain_mplock == 0)
699 				break;
700 			atomic_set_int(&mp_lock_contention_mask,
701 				       gd->gd_cpumask);
702 			/* continue loop, allow user threads to be scheduled */
703 		    }
704 		}
705 		if (ntd == NULL) {
706 		    cpu_mplock_contested();
707 		    ntd = &gd->gd_idlethread;
708 		    ntd->td_flags |= TDF_IDLE_NOHLT;
709 		    goto using_idle_thread;
710 		} else {
711 		    ++gd->gd_cnt.v_swtch;
712 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
713 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
714 		}
715 	    } else {
716 		if (ntd->td_mpcount)
717 			++mplock_countx;
718 		++gd->gd_cnt.v_swtch;
719 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
720 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
721 	    }
722 #else
723 	    /*
724 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
725 	     * worry about tokens or the BGL.  However, we still have
726 	     * to call lwkt_getalltokens() in order to properly detect
727 	     * stale tokens.  This call cannot fail for a UP build!
728 	     */
729 	    lwkt_getalltokens(ntd);
730 	    ++gd->gd_cnt.v_swtch;
731 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
732 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
733 #endif
734 	} else {
735 	    /*
736 	     * We have nothing to run but only let the idle loop halt
737 	     * the cpu if there are no pending interrupts.
738 	     */
739 	    ntd = &gd->gd_idlethread;
740 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
741 		ntd->td_flags |= TDF_IDLE_NOHLT;
742 #ifdef SMP
743 using_idle_thread:
744 	    /*
745 	     * The idle thread should not be holding the MP lock unless we
746 	     * are trapping in the kernel or in a panic.  Since we select the
747 	     * idle thread unconditionally when no other thread is available,
748 	     * if the MP lock is desired during a panic or kernel trap, we
749 	     * have to loop in the scheduler until we get it.
750 	     */
751 	    if (ntd->td_mpcount) {
752 		mpheld = MP_LOCK_HELD();
753 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
754 		    panic("Idle thread %p was holding the BGL!", ntd);
755 		} else if (mpheld == 0) {
756 		    cpu_mplock_contested();
757 		    goto again;
758 		}
759 	    }
760 #endif
761 	}
762     }
763     KASSERT(ntd->td_pri >= TDPRI_CRIT,
764 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
765 
766     /*
767      * Do the actual switch.  If the new target does not need the MP lock
768      * and we are holding it, release the MP lock.  If the new target requires
769      * the MP lock we have already acquired it for the target.
770      */
771 #ifdef SMP
772     if (ntd->td_mpcount == 0 ) {
773 	if (MP_LOCK_HELD())
774 	    cpu_rel_mplock();
775     } else {
776 	ASSERT_MP_LOCK_HELD(ntd);
777     }
778 #endif
779     if (td != ntd) {
780 	++switch_count;
781 #ifdef __amd64__
782 	KKASSERT(jg_tos_ok(ntd));
783 #endif
784 	KTR_LOG(ctxsw_sw, td, ntd);
785 	td->td_switch(ntd);
786     }
787     /* NOTE: current cpu may have changed after switch */
788     crit_exit_quick(td);
789 }
790 
791 /*
792  * Request that the target thread preempt the current thread.  Preemption
793  * only works under a specific set of conditions:
794  *
795  *	- We are not preempting ourselves
796  *	- The target thread is owned by the current cpu
797  *	- We are not currently being preempted
798  *	- The target is not currently being preempted
799  *	- We are not holding any spin locks
800  *	- The target thread is not holding any tokens
801  *	- We are able to satisfy the target's MP lock requirements (if any).
802  *
803  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
804  * this is called via lwkt_schedule() through the td_preemptable callback.
805  * critpri is the managed critical priority that we should ignore in order
806  * to determine whether preemption is possible (aka usually just the crit
807  * priority of lwkt_schedule() itself).
808  *
809  * XXX at the moment we run the target thread in a critical section during
810  * the preemption in order to prevent the target from taking interrupts
811  * that *WE* can't.  Preemption is strictly limited to interrupt threads
812  * and interrupt-like threads, outside of a critical section, and the
813  * preempted source thread will be resumed the instant the target blocks
814  * whether or not the source is scheduled (i.e. preemption is supposed to
815  * be as transparent as possible).
816  *
817  * The target thread inherits our MP count (added to its own) for the
818  * duration of the preemption in order to preserve the atomicy of the
819  * MP lock during the preemption.  Therefore, any preempting targets must be
820  * careful in regards to MP assertions.  Note that the MP count may be
821  * out of sync with the physical mp_lock, but we do not have to preserve
822  * the original ownership of the lock if it was out of synch (that is, we
823  * can leave it synchronized on return).
824  */
825 void
826 lwkt_preempt(thread_t ntd, int critpri)
827 {
828     struct globaldata *gd = mycpu;
829     thread_t td;
830 #ifdef SMP
831     int mpheld;
832     int savecnt;
833 #endif
834 
835     /*
836      * The caller has put us in a critical section.  We can only preempt
837      * if the caller of the caller was not in a critical section (basically
838      * a local interrupt), as determined by the 'critpri' parameter.  We
839      * also can't preempt if the caller is holding any spinlocks (even if
840      * he isn't in a critical section).  This also handles the tokens test.
841      *
842      * YYY The target thread must be in a critical section (else it must
843      * inherit our critical section?  I dunno yet).
844      *
845      * Set need_lwkt_resched() unconditionally for now YYY.
846      */
847     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
848 
849     td = gd->gd_curthread;
850     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
851 	++preempt_miss;
852 	return;
853     }
854     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
855 	++preempt_miss;
856 	need_lwkt_resched();
857 	return;
858     }
859 #ifdef SMP
860     if (ntd->td_gd != gd) {
861 	++preempt_miss;
862 	need_lwkt_resched();
863 	return;
864     }
865 #endif
866     /*
867      * Take the easy way out and do not preempt if we are holding
868      * any spinlocks.  We could test whether the thread(s) being
869      * preempted interlock against the target thread's tokens and whether
870      * we can get all the target thread's tokens, but this situation
871      * should not occur very often so its easier to simply not preempt.
872      * Also, plain spinlocks are impossible to figure out at this point so
873      * just don't preempt.
874      *
875      * Do not try to preempt if the target thread is holding any tokens.
876      * We could try to acquire the tokens but this case is so rare there
877      * is no need to support it.
878      */
879     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
880 	++preempt_miss;
881 	need_lwkt_resched();
882 	return;
883     }
884     if (ntd->td_toks) {
885 	++preempt_miss;
886 	need_lwkt_resched();
887 	return;
888     }
889     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
890 	++preempt_weird;
891 	need_lwkt_resched();
892 	return;
893     }
894     if (ntd->td_preempted) {
895 	++preempt_hit;
896 	need_lwkt_resched();
897 	return;
898     }
899 #ifdef SMP
900     /*
901      * note: an interrupt might have occured just as we were transitioning
902      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
903      * (non-zero) but not actually synchronized with the actual state of the
904      * lock.  We can use it to imply an MP lock requirement for the
905      * preemption but we cannot use it to test whether we hold the MP lock
906      * or not.
907      */
908     savecnt = td->td_mpcount;
909     mpheld = MP_LOCK_HELD();
910     ntd->td_mpcount += td->td_mpcount;
911     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
912 	ntd->td_mpcount -= td->td_mpcount;
913 	++preempt_miss;
914 	need_lwkt_resched();
915 	return;
916     }
917 #endif
918 
919     /*
920      * Since we are able to preempt the current thread, there is no need to
921      * call need_lwkt_resched().
922      */
923     ++preempt_hit;
924     ntd->td_preempted = td;
925     td->td_flags |= TDF_PREEMPT_LOCK;
926     KTR_LOG(ctxsw_pre, td, ntd);
927     td->td_switch(ntd);
928 
929     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
930 #ifdef SMP
931     KKASSERT(savecnt == td->td_mpcount);
932     mpheld = MP_LOCK_HELD();
933     if (mpheld && td->td_mpcount == 0)
934 	cpu_rel_mplock();
935     else if (mpheld == 0 && td->td_mpcount)
936 	panic("lwkt_preempt(): MP lock was not held through");
937 #endif
938     ntd->td_preempted = NULL;
939     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
940 }
941 
942 /*
943  * Conditionally call splz() if gd_reqflags indicates work is pending.
944  *
945  * td_nest_count prevents deep nesting via splz() or doreti() which
946  * might otherwise blow out the kernel stack.  Note that except for
947  * this special case, we MUST call splz() here to handle any
948  * pending ints, particularly after we switch, or we might accidently
949  * halt the cpu with interrupts pending.
950  *
951  * (self contained on a per cpu basis)
952  */
953 void
954 splz_check(void)
955 {
956     globaldata_t gd = mycpu;
957     thread_t td = gd->gd_curthread;
958 
959     if (gd->gd_reqflags && td->td_nest_count < 2)
960 	splz();
961 }
962 
963 /*
964  * This implements a normal yield which will yield to equal priority
965  * threads as well as higher priority threads.  Note that gd_reqflags
966  * tests will be handled by the crit_exit() call in lwkt_switch().
967  *
968  * (self contained on a per cpu basis)
969  */
970 void
971 lwkt_yield(void)
972 {
973     lwkt_schedule_self(curthread);
974     lwkt_switch();
975 }
976 
977 /*
978  * This function is used along with the lwkt_passive_recover() inline
979  * by the trap code to negotiate a passive release of the current
980  * process/lwp designation with the user scheduler.
981  */
982 void
983 lwkt_passive_release(struct thread *td)
984 {
985     struct lwp *lp = td->td_lwp;
986 
987     td->td_release = NULL;
988     lwkt_setpri_self(TDPRI_KERN_USER);
989     lp->lwp_proc->p_usched->release_curproc(lp);
990 }
991 
992 /*
993  * Make a kernel thread act as if it were in user mode with regards
994  * to scheduling, to avoid becoming cpu-bound in the kernel.  Kernel
995  * loops which may be potentially cpu-bound can call lwkt_user_yield().
996  *
997  * The lwkt_user_yield() function is designed to have very low overhead
998  * if no yield is determined to be needed.
999  */
1000 void
1001 lwkt_user_yield(void)
1002 {
1003     thread_t td = curthread;
1004     struct lwp *lp = td->td_lwp;
1005 
1006 #ifdef SMP
1007     /*
1008      * XXX SEVERE TEMPORARY HACK.  A cpu-bound operation running in the
1009      * kernel can prevent other cpus from servicing interrupt threads
1010      * which still require the MP lock (which is a lot of them).  This
1011      * has a chaining effect since if the interrupt is blocked, so is
1012      * the event, so normal scheduling will not pick up on the problem.
1013      */
1014     if (mplock_countx && td->td_mpcount) {
1015 	int savecnt = td->td_mpcount;
1016 
1017 	td->td_mpcount = 1;
1018 	mplock_countx = 0;
1019 	rel_mplock();
1020 	DELAY(bgl_yield);
1021 	get_mplock();
1022 	td->td_mpcount = savecnt;
1023     }
1024 #endif
1025 
1026     /*
1027      * Another kernel thread wants the cpu
1028      */
1029     if (lwkt_resched_wanted())
1030 	lwkt_switch();
1031 
1032     /*
1033      * If the user scheduler has asynchronously determined that the current
1034      * process (when running in user mode) needs to lose the cpu then make
1035      * sure we are released.
1036      */
1037     if (user_resched_wanted()) {
1038 	if (td->td_release)
1039 	    td->td_release(td);
1040     }
1041 
1042     /*
1043      * If we are released reduce our priority
1044      */
1045     if (td->td_release == NULL) {
1046 	if (lwkt_check_resched(td) > 0)
1047 		lwkt_switch();
1048 	if (lp) {
1049 		lp->lwp_proc->p_usched->acquire_curproc(lp);
1050 		td->td_release = lwkt_passive_release;
1051 		lwkt_setpri_self(TDPRI_USER_NORM);
1052 	}
1053     }
1054 }
1055 
1056 /*
1057  * Return 0 if no runnable threads are pending at the same or higher
1058  * priority as the passed thread.
1059  *
1060  * Return 1 if runnable threads are pending at the same priority.
1061  *
1062  * Return 2 if runnable threads are pending at a higher priority.
1063  */
1064 int
1065 lwkt_check_resched(thread_t td)
1066 {
1067 	int pri = td->td_pri & TDPRI_MASK;
1068 
1069 	if (td->td_gd->gd_runqmask > (2 << pri) - 1)
1070 		return(2);
1071 	if (TAILQ_NEXT(td, td_threadq))
1072 		return(1);
1073 	return(0);
1074 }
1075 
1076 /*
1077  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1078  * deal with threads that might be blocked on a wait queue.
1079  *
1080  * We have a little helper inline function which does additional work after
1081  * the thread has been enqueued, including dealing with preemption and
1082  * setting need_lwkt_resched() (which prevents the kernel from returning
1083  * to userland until it has processed higher priority threads).
1084  *
1085  * It is possible for this routine to be called after a failed _enqueue
1086  * (due to the target thread migrating, sleeping, or otherwise blocked).
1087  * We have to check that the thread is actually on the run queue!
1088  *
1089  * reschedok is an optimized constant propagated from lwkt_schedule() or
1090  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1091  * reschedule to be requested if the target thread has a higher priority.
1092  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1093  * be 0, prevented undesired reschedules.
1094  */
1095 static __inline
1096 void
1097 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
1098 {
1099     thread_t otd;
1100 
1101     if (ntd->td_flags & TDF_RUNQ) {
1102 	if (ntd->td_preemptable && reschedok) {
1103 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
1104 	} else if (reschedok) {
1105 	    otd = curthread;
1106 	    if ((ntd->td_pri & TDPRI_MASK) > (otd->td_pri & TDPRI_MASK))
1107 		need_lwkt_resched();
1108 	}
1109     }
1110 }
1111 
1112 static __inline
1113 void
1114 _lwkt_schedule(thread_t td, int reschedok)
1115 {
1116     globaldata_t mygd = mycpu;
1117 
1118     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1119     crit_enter_gd(mygd);
1120     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1121     if (td == mygd->gd_curthread) {
1122 	_lwkt_enqueue(td);
1123     } else {
1124 	/*
1125 	 * If we own the thread, there is no race (since we are in a
1126 	 * critical section).  If we do not own the thread there might
1127 	 * be a race but the target cpu will deal with it.
1128 	 */
1129 #ifdef SMP
1130 	if (td->td_gd == mygd) {
1131 	    _lwkt_enqueue(td);
1132 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1133 	} else {
1134 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1135 	}
1136 #else
1137 	_lwkt_enqueue(td);
1138 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1139 #endif
1140     }
1141     crit_exit_gd(mygd);
1142 }
1143 
1144 void
1145 lwkt_schedule(thread_t td)
1146 {
1147     _lwkt_schedule(td, 1);
1148 }
1149 
1150 void
1151 lwkt_schedule_noresched(thread_t td)
1152 {
1153     _lwkt_schedule(td, 0);
1154 }
1155 
1156 /*
1157  * When scheduled remotely if frame != NULL the IPIQ is being
1158  * run via doreti or an interrupt then preemption can be allowed.
1159  *
1160  * To allow preemption we have to drop the critical section so only
1161  * one is present in _lwkt_schedule_post.
1162  */
1163 static void
1164 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1165 {
1166     thread_t td = curthread;
1167     thread_t ntd = arg;
1168 
1169     if (frame && ntd->td_preemptable) {
1170 	crit_exit_noyield(td);
1171 	_lwkt_schedule(ntd, 1);
1172 	crit_enter_quick(td);
1173     } else {
1174 	_lwkt_schedule(ntd, 1);
1175     }
1176 }
1177 
1178 #ifdef SMP
1179 
1180 /*
1181  * Thread migration using a 'Pull' method.  The thread may or may not be
1182  * the current thread.  It MUST be descheduled and in a stable state.
1183  * lwkt_giveaway() must be called on the cpu owning the thread.
1184  *
1185  * At any point after lwkt_giveaway() is called, the target cpu may
1186  * 'pull' the thread by calling lwkt_acquire().
1187  *
1188  * We have to make sure the thread is not sitting on a per-cpu tsleep
1189  * queue or it will blow up when it moves to another cpu.
1190  *
1191  * MPSAFE - must be called under very specific conditions.
1192  */
1193 void
1194 lwkt_giveaway(thread_t td)
1195 {
1196     globaldata_t gd = mycpu;
1197 
1198     crit_enter_gd(gd);
1199     if (td->td_flags & TDF_TSLEEPQ)
1200 	tsleep_remove(td);
1201     KKASSERT(td->td_gd == gd);
1202     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1203     td->td_flags |= TDF_MIGRATING;
1204     crit_exit_gd(gd);
1205 }
1206 
1207 void
1208 lwkt_acquire(thread_t td)
1209 {
1210     globaldata_t gd;
1211     globaldata_t mygd;
1212 
1213     KKASSERT(td->td_flags & TDF_MIGRATING);
1214     gd = td->td_gd;
1215     mygd = mycpu;
1216     if (gd != mycpu) {
1217 	cpu_lfence();
1218 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1219 	crit_enter_gd(mygd);
1220 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1221 #ifdef SMP
1222 	    lwkt_process_ipiq();
1223 #endif
1224 	    cpu_lfence();
1225 	}
1226 	td->td_gd = mygd;
1227 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1228 	td->td_flags &= ~TDF_MIGRATING;
1229 	crit_exit_gd(mygd);
1230     } else {
1231 	crit_enter_gd(mygd);
1232 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1233 	td->td_flags &= ~TDF_MIGRATING;
1234 	crit_exit_gd(mygd);
1235     }
1236 }
1237 
1238 #endif
1239 
1240 /*
1241  * Generic deschedule.  Descheduling threads other then your own should be
1242  * done only in carefully controlled circumstances.  Descheduling is
1243  * asynchronous.
1244  *
1245  * This function may block if the cpu has run out of messages.
1246  */
1247 void
1248 lwkt_deschedule(thread_t td)
1249 {
1250     crit_enter();
1251 #ifdef SMP
1252     if (td == curthread) {
1253 	_lwkt_dequeue(td);
1254     } else {
1255 	if (td->td_gd == mycpu) {
1256 	    _lwkt_dequeue(td);
1257 	} else {
1258 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1259 	}
1260     }
1261 #else
1262     _lwkt_dequeue(td);
1263 #endif
1264     crit_exit();
1265 }
1266 
1267 /*
1268  * Set the target thread's priority.  This routine does not automatically
1269  * switch to a higher priority thread, LWKT threads are not designed for
1270  * continuous priority changes.  Yield if you want to switch.
1271  *
1272  * We have to retain the critical section count which uses the high bits
1273  * of the td_pri field.  The specified priority may also indicate zero or
1274  * more critical sections by adding TDPRI_CRIT*N.
1275  *
1276  * Note that we requeue the thread whether it winds up on a different runq
1277  * or not.  uio_yield() depends on this and the routine is not normally
1278  * called with the same priority otherwise.
1279  */
1280 void
1281 lwkt_setpri(thread_t td, int pri)
1282 {
1283     KKASSERT(pri >= 0);
1284     KKASSERT(td->td_gd == mycpu);
1285     crit_enter();
1286     if (td->td_flags & TDF_RUNQ) {
1287 	_lwkt_dequeue(td);
1288 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1289 	_lwkt_enqueue(td);
1290     } else {
1291 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1292     }
1293     crit_exit();
1294 }
1295 
1296 void
1297 lwkt_setpri_self(int pri)
1298 {
1299     thread_t td = curthread;
1300 
1301     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1302     crit_enter();
1303     if (td->td_flags & TDF_RUNQ) {
1304 	_lwkt_dequeue(td);
1305 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1306 	_lwkt_enqueue(td);
1307     } else {
1308 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1309     }
1310     crit_exit();
1311 }
1312 
1313 /*
1314  * Migrate the current thread to the specified cpu.
1315  *
1316  * This is accomplished by descheduling ourselves from the current cpu,
1317  * moving our thread to the tdallq of the target cpu, IPI messaging the
1318  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1319  * races while the thread is being migrated.
1320  *
1321  * We must be sure to remove ourselves from the current cpu's tsleepq
1322  * before potentially moving to another queue.  The thread can be on
1323  * a tsleepq due to a left-over tsleep_interlock().
1324  */
1325 #ifdef SMP
1326 static void lwkt_setcpu_remote(void *arg);
1327 #endif
1328 
1329 void
1330 lwkt_setcpu_self(globaldata_t rgd)
1331 {
1332 #ifdef SMP
1333     thread_t td = curthread;
1334 
1335     if (td->td_gd != rgd) {
1336 	crit_enter_quick(td);
1337 	if (td->td_flags & TDF_TSLEEPQ)
1338 	    tsleep_remove(td);
1339 	td->td_flags |= TDF_MIGRATING;
1340 	lwkt_deschedule_self(td);
1341 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1342 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1343 	lwkt_switch();
1344 	/* we are now on the target cpu */
1345 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1346 	crit_exit_quick(td);
1347     }
1348 #endif
1349 }
1350 
1351 void
1352 lwkt_migratecpu(int cpuid)
1353 {
1354 #ifdef SMP
1355 	globaldata_t rgd;
1356 
1357 	rgd = globaldata_find(cpuid);
1358 	lwkt_setcpu_self(rgd);
1359 #endif
1360 }
1361 
1362 /*
1363  * Remote IPI for cpu migration (called while in a critical section so we
1364  * do not have to enter another one).  The thread has already been moved to
1365  * our cpu's allq, but we must wait for the thread to be completely switched
1366  * out on the originating cpu before we schedule it on ours or the stack
1367  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1368  * change to main memory.
1369  *
1370  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1371  * against wakeups.  It is best if this interface is used only when there
1372  * are no pending events that might try to schedule the thread.
1373  */
1374 #ifdef SMP
1375 static void
1376 lwkt_setcpu_remote(void *arg)
1377 {
1378     thread_t td = arg;
1379     globaldata_t gd = mycpu;
1380 
1381     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1382 #ifdef SMP
1383 	lwkt_process_ipiq();
1384 #endif
1385 	cpu_lfence();
1386     }
1387     td->td_gd = gd;
1388     cpu_sfence();
1389     td->td_flags &= ~TDF_MIGRATING;
1390     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1391     _lwkt_enqueue(td);
1392 }
1393 #endif
1394 
1395 struct lwp *
1396 lwkt_preempted_proc(void)
1397 {
1398     thread_t td = curthread;
1399     while (td->td_preempted)
1400 	td = td->td_preempted;
1401     return(td->td_lwp);
1402 }
1403 
1404 /*
1405  * Create a kernel process/thread/whatever.  It shares it's address space
1406  * with proc0 - ie: kernel only.
1407  *
1408  * NOTE!  By default new threads are created with the MP lock held.  A
1409  * thread which does not require the MP lock should release it by calling
1410  * rel_mplock() at the start of the new thread.
1411  */
1412 int
1413 lwkt_create(void (*func)(void *), void *arg,
1414     struct thread **tdp, thread_t template, int tdflags, int cpu,
1415     const char *fmt, ...)
1416 {
1417     thread_t td;
1418     __va_list ap;
1419 
1420     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1421 			   tdflags);
1422     if (tdp)
1423 	*tdp = td;
1424     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1425 
1426     /*
1427      * Set up arg0 for 'ps' etc
1428      */
1429     __va_start(ap, fmt);
1430     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1431     __va_end(ap);
1432 
1433     /*
1434      * Schedule the thread to run
1435      */
1436     if ((td->td_flags & TDF_STOPREQ) == 0)
1437 	lwkt_schedule(td);
1438     else
1439 	td->td_flags &= ~TDF_STOPREQ;
1440     return 0;
1441 }
1442 
1443 /*
1444  * Destroy an LWKT thread.   Warning!  This function is not called when
1445  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1446  * uses a different reaping mechanism.
1447  */
1448 void
1449 lwkt_exit(void)
1450 {
1451     thread_t td = curthread;
1452     thread_t std;
1453     globaldata_t gd;
1454 
1455     if (td->td_flags & TDF_VERBOSE)
1456 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1457     caps_exit(td);
1458 
1459     /*
1460      * Get us into a critical section to interlock gd_freetd and loop
1461      * until we can get it freed.
1462      *
1463      * We have to cache the current td in gd_freetd because objcache_put()ing
1464      * it would rip it out from under us while our thread is still active.
1465      */
1466     gd = mycpu;
1467     crit_enter_quick(td);
1468     while ((std = gd->gd_freetd) != NULL) {
1469 	gd->gd_freetd = NULL;
1470 	objcache_put(thread_cache, std);
1471     }
1472 
1473     /*
1474      * Remove thread resources from kernel lists and deschedule us for
1475      * the last time.
1476      */
1477     if (td->td_flags & TDF_TSLEEPQ)
1478 	tsleep_remove(td);
1479     biosched_done(td);
1480     lwkt_deschedule_self(td);
1481     lwkt_remove_tdallq(td);
1482     if (td->td_flags & TDF_ALLOCATED_THREAD)
1483 	gd->gd_freetd = td;
1484     cpu_thread_exit();
1485 }
1486 
1487 void
1488 lwkt_remove_tdallq(thread_t td)
1489 {
1490     KKASSERT(td->td_gd == mycpu);
1491     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1492 }
1493 
1494 void
1495 crit_panic(void)
1496 {
1497     thread_t td = curthread;
1498     int lpri = td->td_pri;
1499 
1500     td->td_pri = 0;
1501     panic("td_pri is/would-go negative! %p %d", td, lpri);
1502 }
1503 
1504 #ifdef SMP
1505 
1506 /*
1507  * Called from debugger/panic on cpus which have been stopped.  We must still
1508  * process the IPIQ while stopped, even if we were stopped while in a critical
1509  * section (XXX).
1510  *
1511  * If we are dumping also try to process any pending interrupts.  This may
1512  * or may not work depending on the state of the cpu at the point it was
1513  * stopped.
1514  */
1515 void
1516 lwkt_smp_stopped(void)
1517 {
1518     globaldata_t gd = mycpu;
1519 
1520     crit_enter_gd(gd);
1521     if (dumping) {
1522 	lwkt_process_ipiq();
1523 	splz();
1524     } else {
1525 	lwkt_process_ipiq();
1526     }
1527     crit_exit_gd(gd);
1528 }
1529 
1530 /*
1531  * get_mplock() calls this routine if it is unable to obtain the MP lock.
1532  * get_mplock() has already incremented td_mpcount.  We must block and
1533  * not return until giant is held.
1534  *
1535  * All we have to do is lwkt_switch() away.  The LWKT scheduler will not
1536  * reschedule the thread until it can obtain the giant lock for it.
1537  */
1538 void
1539 lwkt_mp_lock_contested(void)
1540 {
1541     ++mplock_countx;
1542     loggiant(beg);
1543     lwkt_switch();
1544     loggiant(end);
1545 }
1546 
1547 /*
1548  * The rel_mplock() code will call this function after releasing the
1549  * last reference on the MP lock if mp_lock_contention_mask is non-zero.
1550  *
1551  * We then chain an IPI to a single other cpu potentially needing the
1552  * lock.  This is a bit heuristical and we can wind up with IPIs flying
1553  * all over the place.
1554  */
1555 static void lwkt_mp_lock_uncontested_remote(void *arg __unused);
1556 
1557 void
1558 lwkt_mp_lock_uncontested(void)
1559 {
1560     globaldata_t gd;
1561     globaldata_t dgd;
1562     cpumask_t mask;
1563     cpumask_t tmpmask;
1564     int cpuid;
1565 
1566     if (chain_mplock) {
1567 	gd = mycpu;
1568 	atomic_clear_int(&mp_lock_contention_mask, gd->gd_cpumask);
1569 	mask = mp_lock_contention_mask;
1570 	tmpmask = ~((1 << gd->gd_cpuid) - 1);
1571 
1572 	if (mask) {
1573 	    if (mask & tmpmask)
1574 		    cpuid = bsfl(mask & tmpmask);
1575 	    else
1576 		    cpuid = bsfl(mask);
1577 	    atomic_clear_int(&mp_lock_contention_mask, 1 << cpuid);
1578 	    dgd = globaldata_find(cpuid);
1579 	    lwkt_send_ipiq(dgd, lwkt_mp_lock_uncontested_remote, NULL);
1580 	}
1581     }
1582 }
1583 
1584 /*
1585  * The idea is for this IPI to interrupt a potentially lower priority
1586  * thread, such as a user thread, to allow the scheduler to reschedule
1587  * a higher priority kernel thread that needs the MP lock.
1588  *
1589  * For now we set the LWKT reschedule flag which generates an AST in
1590  * doreti, though theoretically it is also possible to possibly preempt
1591  * here if the underlying thread was operating in user mode.  Nah.
1592  */
1593 static void
1594 lwkt_mp_lock_uncontested_remote(void *arg __unused)
1595 {
1596 	need_lwkt_resched();
1597 }
1598 
1599 #endif
1600