xref: /dragonfly/sys/kern/lwkt_thread.c (revision 279dd846)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59 
60 #include <sys/dsched.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70 
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 
74 #ifdef _KERNEL_VIRTUAL
75 #include <pthread.h>
76 #endif
77 
78 #if !defined(KTR_CTXSW)
79 #define KTR_CTXSW KTR_ALL
80 #endif
81 KTR_INFO_MASTER(ctxsw);
82 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
83 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
84 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
86 
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88 
89 #ifdef	INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static int64_t switch_count = 0;
93 static int64_t preempt_hit = 0;
94 static int64_t preempt_miss = 0;
95 static int64_t preempt_weird = 0;
96 static int lwkt_use_spin_port;
97 static struct objcache *thread_cache;
98 int cpu_mwait_spin = 0;
99 
100 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
101 static void lwkt_setcpu_remote(void *arg);
102 
103 /*
104  * We can make all thread ports use the spin backend instead of the thread
105  * backend.  This should only be set to debug the spin backend.
106  */
107 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
108 
109 #ifdef	INVARIANTS
110 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
111     "Panic if attempting to switch lwkt's while mastering cpusync");
112 #endif
113 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
114     "Number of switched threads");
115 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
116     "Successful preemption events");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
118     "Failed preemption events");
119 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
120     "Number of preempted threads.");
121 static int fairq_enable = 0;
122 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
123 	&fairq_enable, 0, "Turn on fairq priority accumulators");
124 static int fairq_bypass = -1;
125 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
126 	&fairq_bypass, 0, "Allow fairq to bypass td on token failure");
127 extern int lwkt_sched_debug;
128 int lwkt_sched_debug = 0;
129 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
130 	&lwkt_sched_debug, 0, "Scheduler debug");
131 static int lwkt_spin_loops = 10;
132 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
133 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
134 static int lwkt_spin_reseq = 0;
135 SYSCTL_INT(_lwkt, OID_AUTO, spin_reseq, CTLFLAG_RW,
136 	&lwkt_spin_reseq, 0, "Scheduler resequencer enable");
137 static int lwkt_spin_monitor = 0;
138 SYSCTL_INT(_lwkt, OID_AUTO, spin_monitor, CTLFLAG_RW,
139 	&lwkt_spin_monitor, 0, "Scheduler uses monitor/mwait");
140 static int lwkt_spin_fatal = 0;	/* disabled */
141 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
142 	&lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
143 static int preempt_enable = 1;
144 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
145 	&preempt_enable, 0, "Enable preemption");
146 static int lwkt_cache_threads = 0;
147 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
148 	&lwkt_cache_threads, 0, "thread+kstack cache");
149 
150 #ifndef _KERNEL_VIRTUAL
151 static __cachealign int lwkt_cseq_rindex;
152 static __cachealign int lwkt_cseq_windex;
153 #endif
154 
155 /*
156  * These helper procedures handle the runq, they can only be called from
157  * within a critical section.
158  *
159  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
160  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
161  * instead of 'mycpu' when referencing the globaldata structure.   Once
162  * SMP live enqueuing and dequeueing only occurs on the current cpu.
163  */
164 static __inline
165 void
166 _lwkt_dequeue(thread_t td)
167 {
168     if (td->td_flags & TDF_RUNQ) {
169 	struct globaldata *gd = td->td_gd;
170 
171 	td->td_flags &= ~TDF_RUNQ;
172 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
173 	--gd->gd_tdrunqcount;
174 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
175 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
176     }
177 }
178 
179 /*
180  * Priority enqueue.
181  *
182  * There are a limited number of lwkt threads runnable since user
183  * processes only schedule one at a time per cpu.  However, there can
184  * be many user processes in kernel mode exiting from a tsleep() which
185  * become runnable.
186  *
187  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
188  *	 will ignore user priority.  This is to ensure that user threads in
189  *	 kernel mode get cpu at some point regardless of what the user
190  *	 scheduler thinks.
191  */
192 static __inline
193 void
194 _lwkt_enqueue(thread_t td)
195 {
196     thread_t xtd;
197 
198     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
199 	struct globaldata *gd = td->td_gd;
200 
201 	td->td_flags |= TDF_RUNQ;
202 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
203 	if (xtd == NULL) {
204 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
205 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
206 	} else {
207 	    /*
208 	     * NOTE: td_upri - higher numbers more desireable, same sense
209 	     *	     as td_pri (typically reversed from lwp_upri).
210 	     *
211 	     *	     In the equal priority case we want the best selection
212 	     *	     at the beginning so the less desireable selections know
213 	     *	     that they have to setrunqueue/go-to-another-cpu, even
214 	     *	     though it means switching back to the 'best' selection.
215 	     *	     This also avoids degenerate situations when many threads
216 	     *	     are runnable or waking up at the same time.
217 	     *
218 	     *	     If upri matches exactly place at end/round-robin.
219 	     */
220 	    while (xtd &&
221 		   (xtd->td_pri >= td->td_pri ||
222 		    (xtd->td_pri == td->td_pri &&
223 		     xtd->td_upri >= td->td_upri))) {
224 		xtd = TAILQ_NEXT(xtd, td_threadq);
225 	    }
226 	    if (xtd)
227 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
228 	    else
229 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
230 	}
231 	++gd->gd_tdrunqcount;
232 
233 	/*
234 	 * Request a LWKT reschedule if we are now at the head of the queue.
235 	 */
236 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
237 	    need_lwkt_resched();
238     }
239 }
240 
241 static boolean_t
242 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
243 {
244 	struct thread *td = (struct thread *)obj;
245 
246 	td->td_kstack = NULL;
247 	td->td_kstack_size = 0;
248 	td->td_flags = TDF_ALLOCATED_THREAD;
249 	td->td_mpflags = 0;
250 	return (1);
251 }
252 
253 static void
254 _lwkt_thread_dtor(void *obj, void *privdata)
255 {
256 	struct thread *td = (struct thread *)obj;
257 
258 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
259 	    ("_lwkt_thread_dtor: not allocated from objcache"));
260 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
261 		td->td_kstack_size > 0,
262 	    ("_lwkt_thread_dtor: corrupted stack"));
263 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
264 	td->td_kstack = NULL;
265 	td->td_flags = 0;
266 }
267 
268 /*
269  * Initialize the lwkt s/system.
270  *
271  * Nominally cache up to 32 thread + kstack structures.  Cache more on
272  * systems with a lot of cpu cores.
273  */
274 static void
275 lwkt_init(void)
276 {
277     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
278     if (lwkt_cache_threads == 0) {
279 	lwkt_cache_threads = ncpus * 4;
280 	if (lwkt_cache_threads < 32)
281 	    lwkt_cache_threads = 32;
282     }
283     thread_cache = objcache_create_mbacked(
284 				M_THREAD, sizeof(struct thread),
285 				0, lwkt_cache_threads,
286 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
287 }
288 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
289 
290 /*
291  * Schedule a thread to run.  As the current thread we can always safely
292  * schedule ourselves, and a shortcut procedure is provided for that
293  * function.
294  *
295  * (non-blocking, self contained on a per cpu basis)
296  */
297 void
298 lwkt_schedule_self(thread_t td)
299 {
300     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
301     crit_enter_quick(td);
302     KASSERT(td != &td->td_gd->gd_idlethread,
303 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
304     KKASSERT(td->td_lwp == NULL ||
305 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
306     _lwkt_enqueue(td);
307     crit_exit_quick(td);
308 }
309 
310 /*
311  * Deschedule a thread.
312  *
313  * (non-blocking, self contained on a per cpu basis)
314  */
315 void
316 lwkt_deschedule_self(thread_t td)
317 {
318     crit_enter_quick(td);
319     _lwkt_dequeue(td);
320     crit_exit_quick(td);
321 }
322 
323 /*
324  * LWKTs operate on a per-cpu basis
325  *
326  * WARNING!  Called from early boot, 'mycpu' may not work yet.
327  */
328 void
329 lwkt_gdinit(struct globaldata *gd)
330 {
331     TAILQ_INIT(&gd->gd_tdrunq);
332     TAILQ_INIT(&gd->gd_tdallq);
333 }
334 
335 /*
336  * Create a new thread.  The thread must be associated with a process context
337  * or LWKT start address before it can be scheduled.  If the target cpu is
338  * -1 the thread will be created on the current cpu.
339  *
340  * If you intend to create a thread without a process context this function
341  * does everything except load the startup and switcher function.
342  */
343 thread_t
344 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
345 {
346     static int cpu_rotator;
347     globaldata_t gd = mycpu;
348     void *stack;
349 
350     /*
351      * If static thread storage is not supplied allocate a thread.  Reuse
352      * a cached free thread if possible.  gd_freetd is used to keep an exiting
353      * thread intact through the exit.
354      */
355     if (td == NULL) {
356 	crit_enter_gd(gd);
357 	if ((td = gd->gd_freetd) != NULL) {
358 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
359 				      TDF_RUNQ)) == 0);
360 	    gd->gd_freetd = NULL;
361 	} else {
362 	    td = objcache_get(thread_cache, M_WAITOK);
363 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
364 				      TDF_RUNQ)) == 0);
365 	}
366 	crit_exit_gd(gd);
367     	KASSERT((td->td_flags &
368 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
369 		 TDF_ALLOCATED_THREAD,
370 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
371     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
372     }
373 
374     /*
375      * Try to reuse cached stack.
376      */
377     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
378 	if (flags & TDF_ALLOCATED_STACK) {
379 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
380 	    stack = NULL;
381 	}
382     }
383     if (stack == NULL) {
384 	stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
385 	flags |= TDF_ALLOCATED_STACK;
386     }
387     if (cpu < 0) {
388 	cpu = ++cpu_rotator;
389 	cpu_ccfence();
390 	cpu %= ncpus;
391     }
392     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
393     return(td);
394 }
395 
396 /*
397  * Initialize a preexisting thread structure.  This function is used by
398  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
399  *
400  * All threads start out in a critical section at a priority of
401  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
402  * appropriate.  This function may send an IPI message when the
403  * requested cpu is not the current cpu and consequently gd_tdallq may
404  * not be initialized synchronously from the point of view of the originating
405  * cpu.
406  *
407  * NOTE! we have to be careful in regards to creating threads for other cpus
408  * if SMP has not yet been activated.
409  */
410 static void
411 lwkt_init_thread_remote(void *arg)
412 {
413     thread_t td = arg;
414 
415     /*
416      * Protected by critical section held by IPI dispatch
417      */
418     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
419 }
420 
421 /*
422  * lwkt core thread structural initialization.
423  *
424  * NOTE: All threads are initialized as mpsafe threads.
425  */
426 void
427 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
428 		struct globaldata *gd)
429 {
430     globaldata_t mygd = mycpu;
431 
432     bzero(td, sizeof(struct thread));
433     td->td_kstack = stack;
434     td->td_kstack_size = stksize;
435     td->td_flags = flags;
436     td->td_mpflags = 0;
437     td->td_type = TD_TYPE_GENERIC;
438     td->td_gd = gd;
439     td->td_pri = TDPRI_KERN_DAEMON;
440     td->td_critcount = 1;
441     td->td_toks_have = NULL;
442     td->td_toks_stop = &td->td_toks_base;
443     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
444 	lwkt_initport_spin(&td->td_msgport, td,
445 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
446     } else {
447 	lwkt_initport_thread(&td->td_msgport, td);
448     }
449     pmap_init_thread(td);
450     /*
451      * Normally initializing a thread for a remote cpu requires sending an
452      * IPI.  However, the idlethread is setup before the other cpus are
453      * activated so we have to treat it as a special case.  XXX manipulation
454      * of gd_tdallq requires the BGL.
455      */
456     if (gd == mygd || td == &gd->gd_idlethread) {
457 	crit_enter_gd(mygd);
458 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
459 	crit_exit_gd(mygd);
460     } else {
461 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
462     }
463     dsched_new_thread(td);
464 }
465 
466 void
467 lwkt_set_comm(thread_t td, const char *ctl, ...)
468 {
469     __va_list va;
470 
471     __va_start(va, ctl);
472     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
473     __va_end(va);
474     KTR_LOG(ctxsw_newtd, td, td->td_comm);
475 }
476 
477 /*
478  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
479  * this does not prevent the thread from migrating to another cpu so the
480  * gd_tdallq state is not protected by this.
481  */
482 void
483 lwkt_hold(thread_t td)
484 {
485     atomic_add_int(&td->td_refs, 1);
486 }
487 
488 void
489 lwkt_rele(thread_t td)
490 {
491     KKASSERT(td->td_refs > 0);
492     atomic_add_int(&td->td_refs, -1);
493 }
494 
495 void
496 lwkt_free_thread(thread_t td)
497 {
498     KKASSERT(td->td_refs == 0);
499     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
500 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
501     if (td->td_flags & TDF_ALLOCATED_THREAD) {
502     	objcache_put(thread_cache, td);
503     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
504 	/* client-allocated struct with internally allocated stack */
505 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
506 	    ("lwkt_free_thread: corrupted stack"));
507 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
508 	td->td_kstack = NULL;
509 	td->td_kstack_size = 0;
510     }
511 
512     KTR_LOG(ctxsw_deadtd, td);
513 }
514 
515 
516 /*
517  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
518  * switch to the idlethread.  Switching must occur within a critical
519  * section to avoid races with the scheduling queue.
520  *
521  * We always have full control over our cpu's run queue.  Other cpus
522  * that wish to manipulate our queue must use the cpu_*msg() calls to
523  * talk to our cpu, so a critical section is all that is needed and
524  * the result is very, very fast thread switching.
525  *
526  * The LWKT scheduler uses a fixed priority model and round-robins at
527  * each priority level.  User process scheduling is a totally
528  * different beast and LWKT priorities should not be confused with
529  * user process priorities.
530  *
531  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
532  * is not called by the current thread in the preemption case, only when
533  * the preempting thread blocks (in order to return to the original thread).
534  *
535  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
536  * migration and tsleep deschedule the current lwkt thread and call
537  * lwkt_switch().  In particular, the target cpu of the migration fully
538  * expects the thread to become non-runnable and can deadlock against
539  * cpusync operations if we run any IPIs prior to switching the thread out.
540  *
541  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
542  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
543  */
544 void
545 lwkt_switch(void)
546 {
547     globaldata_t gd = mycpu;
548     thread_t td = gd->gd_curthread;
549     thread_t ntd;
550     int spinning = 0;
551 
552     KKASSERT(gd->gd_processing_ipiq == 0);
553     KKASSERT(td->td_flags & TDF_RUNNING);
554 
555     /*
556      * Switching from within a 'fast' (non thread switched) interrupt or IPI
557      * is illegal.  However, we may have to do it anyway if we hit a fatal
558      * kernel trap or we have paniced.
559      *
560      * If this case occurs save and restore the interrupt nesting level.
561      */
562     if (gd->gd_intr_nesting_level) {
563 	int savegdnest;
564 	int savegdtrap;
565 
566 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
567 	    panic("lwkt_switch: Attempt to switch from a "
568 		  "fast interrupt, ipi, or hard code section, "
569 		  "td %p\n",
570 		  td);
571 	} else {
572 	    savegdnest = gd->gd_intr_nesting_level;
573 	    savegdtrap = gd->gd_trap_nesting_level;
574 	    gd->gd_intr_nesting_level = 0;
575 	    gd->gd_trap_nesting_level = 0;
576 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
577 		td->td_flags |= TDF_PANICWARN;
578 		kprintf("Warning: thread switch from interrupt, IPI, "
579 			"or hard code section.\n"
580 			"thread %p (%s)\n", td, td->td_comm);
581 		print_backtrace(-1);
582 	    }
583 	    lwkt_switch();
584 	    gd->gd_intr_nesting_level = savegdnest;
585 	    gd->gd_trap_nesting_level = savegdtrap;
586 	    return;
587 	}
588     }
589 
590     /*
591      * Release our current user process designation if we are blocking
592      * or if a user reschedule was requested.
593      *
594      * NOTE: This function is NOT called if we are switching into or
595      *	     returning from a preemption.
596      *
597      * NOTE: Releasing our current user process designation may cause
598      *	     it to be assigned to another thread, which in turn will
599      *	     cause us to block in the usched acquire code when we attempt
600      *	     to return to userland.
601      *
602      * NOTE: On SMP systems this can be very nasty when heavy token
603      *	     contention is present so we want to be careful not to
604      *	     release the designation gratuitously.
605      */
606     if (td->td_release &&
607 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
608 	    td->td_release(td);
609     }
610 
611     /*
612      * Release all tokens
613      */
614     crit_enter_gd(gd);
615     if (TD_TOKS_HELD(td))
616 	    lwkt_relalltokens(td);
617 
618     /*
619      * We had better not be holding any spin locks, but don't get into an
620      * endless panic loop.
621      */
622     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
623 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
624 	     gd->gd_spinlocks));
625 
626 
627 #ifdef	INVARIANTS
628     if (td->td_cscount) {
629 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
630 		td);
631 	if (panic_on_cscount)
632 	    panic("switching while mastering cpusync");
633     }
634 #endif
635 
636     /*
637      * If we had preempted another thread on this cpu, resume the preempted
638      * thread.  This occurs transparently, whether the preempted thread
639      * was scheduled or not (it may have been preempted after descheduling
640      * itself).
641      *
642      * We have to setup the MP lock for the original thread after backing
643      * out the adjustment that was made to curthread when the original
644      * was preempted.
645      */
646     if ((ntd = td->td_preempted) != NULL) {
647 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
648 	ntd->td_flags |= TDF_PREEMPT_DONE;
649 
650 	/*
651 	 * The interrupt may have woken a thread up, we need to properly
652 	 * set the reschedule flag if the originally interrupted thread is
653 	 * at a lower priority.
654 	 *
655 	 * The interrupt may not have descheduled.
656 	 */
657 	if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
658 	    need_lwkt_resched();
659 	goto havethread_preempted;
660     }
661 
662     /*
663      * If we cannot obtain ownership of the tokens we cannot immediately
664      * schedule the target thread.
665      *
666      * Reminder: Again, we cannot afford to run any IPIs in this path if
667      * the current thread has been descheduled.
668      */
669     for (;;) {
670 	clear_lwkt_resched();
671 
672 	/*
673 	 * Hotpath - pull the head of the run queue and attempt to schedule
674 	 * it.
675 	 */
676 	ntd = TAILQ_FIRST(&gd->gd_tdrunq);
677 
678 	if (ntd == NULL) {
679 	    /*
680 	     * Runq is empty, switch to idle to allow it to halt.
681 	     */
682 	    ntd = &gd->gd_idlethread;
683 	    if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
684 		ASSERT_NO_TOKENS_HELD(ntd);
685 	    cpu_time.cp_msg[0] = 0;
686 	    cpu_time.cp_stallpc = 0;
687 	    goto haveidle;
688 	}
689 
690 	/*
691 	 * Hotpath - schedule ntd.
692 	 *
693 	 * NOTE: For UP there is no mplock and lwkt_getalltokens()
694 	 *	     always succeeds.
695 	 */
696 	if (TD_TOKS_NOT_HELD(ntd) ||
697 	    lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops)))
698 	{
699 	    goto havethread;
700 	}
701 
702 	/*
703 	 * Coldpath (SMP only since tokens always succeed on UP)
704 	 *
705 	 * We had some contention on the thread we wanted to schedule.
706 	 * What we do now is try to find a thread that we can schedule
707 	 * in its stead.
708 	 *
709 	 * The coldpath scan does NOT rearrange threads in the run list.
710 	 * The lwkt_schedulerclock() will assert need_lwkt_resched() on
711 	 * the next tick whenever the current head is not the current thread.
712 	 */
713 #ifdef	INVARIANTS
714 	++ntd->td_contended;
715 #endif
716 	++gd->gd_cnt.v_lock_colls;
717 
718 	if (fairq_bypass > 0)
719 		goto skip;
720 
721 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
722 #ifndef NO_LWKT_SPLIT_USERPRI
723 		/*
724 		 * Never schedule threads returning to userland or the
725 		 * user thread scheduler helper thread when higher priority
726 		 * threads are present.  The runq is sorted by priority
727 		 * so we can give up traversing it when we find the first
728 		 * low priority thread.
729 		 */
730 		if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
731 			ntd = NULL;
732 			break;
733 		}
734 #endif
735 
736 		/*
737 		 * Try this one.
738 		 */
739 		if (TD_TOKS_NOT_HELD(ntd) ||
740 		    lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops))) {
741 			goto havethread;
742 		}
743 #ifdef	INVARIANTS
744 		++ntd->td_contended;
745 #endif
746 		++gd->gd_cnt.v_lock_colls;
747 	}
748 
749 skip:
750 	/*
751 	 * We exhausted the run list, meaning that all runnable threads
752 	 * are contested.
753 	 */
754 	cpu_pause();
755 #ifdef _KERNEL_VIRTUAL
756 	pthread_yield();
757 #endif
758 	ntd = &gd->gd_idlethread;
759 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
760 	    ASSERT_NO_TOKENS_HELD(ntd);
761 	/* contention case, do not clear contention mask */
762 
763 	/*
764 	 * We are going to have to retry but if the current thread is not
765 	 * on the runq we instead switch through the idle thread to get away
766 	 * from the current thread.  We have to flag for lwkt reschedule
767 	 * to prevent the idle thread from halting.
768 	 *
769 	 * NOTE: A non-zero spinning is passed to lwkt_getalltokens() to
770 	 *	 instruct it to deal with the potential for deadlocks by
771 	 *	 ordering the tokens by address.
772 	 */
773 	if ((td->td_flags & TDF_RUNQ) == 0) {
774 	    need_lwkt_resched();	/* prevent hlt */
775 	    goto haveidle;
776 	}
777 #if defined(INVARIANTS) && defined(__x86_64__)
778 	if ((read_rflags() & PSL_I) == 0) {
779 		cpu_enable_intr();
780 		panic("lwkt_switch() called with interrupts disabled");
781 	}
782 #endif
783 
784 	/*
785 	 * Number iterations so far.  After a certain point we switch to
786 	 * a sorted-address/monitor/mwait version of lwkt_getalltokens()
787 	 */
788 	if (spinning < 0x7FFFFFFF)
789 	    ++spinning;
790 
791 #ifndef _KERNEL_VIRTUAL
792 	/*
793 	 * lwkt_getalltokens() failed in sorted token mode, we can use
794 	 * monitor/mwait in this case.
795 	 */
796 	if (spinning >= lwkt_spin_loops &&
797 	    (cpu_mi_feature & CPU_MI_MONITOR) &&
798 	    lwkt_spin_monitor)
799 	{
800 	    cpu_mmw_pause_int(&gd->gd_reqflags,
801 			      (gd->gd_reqflags | RQF_SPINNING) &
802 			      ~RQF_IDLECHECK_WK_MASK,
803 			      cpu_mwait_spin, 0);
804 	}
805 #endif
806 
807 	/*
808 	 * We already checked that td is still scheduled so this should be
809 	 * safe.
810 	 */
811 	splz_check();
812 
813 #ifndef _KERNEL_VIRTUAL
814 	/*
815 	 * This experimental resequencer is used as a fall-back to reduce
816 	 * hw cache line contention by placing each core's scheduler into a
817 	 * time-domain-multplexed slot.
818 	 *
819 	 * The resequencer is disabled by default.  It's functionality has
820 	 * largely been superceeded by the token algorithm which limits races
821 	 * to a subset of cores.
822 	 *
823 	 * The resequencer algorithm tends to break down when more than
824 	 * 20 cores are contending.  What appears to happen is that new
825 	 * tokens can be obtained out of address-sorted order by new cores
826 	 * while existing cores languish in long delays between retries and
827 	 * wind up being starved-out of the token acquisition.
828 	 */
829 	if (lwkt_spin_reseq && spinning >= lwkt_spin_reseq) {
830 	    int cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
831 	    int oseq;
832 
833 	    while ((oseq = lwkt_cseq_rindex) != cseq) {
834 		cpu_ccfence();
835 #if 1
836 		if (cpu_mi_feature & CPU_MI_MONITOR) {
837 		    cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq,
838 			cpu_mwait_spin, 0);
839 		} else {
840 #endif
841 		    cpu_pause();
842 		    cpu_lfence();
843 #if 1
844 		}
845 #endif
846 	    }
847 	    DELAY(1);
848 	    atomic_add_int(&lwkt_cseq_rindex, 1);
849 	}
850 #endif
851 	/* highest level for(;;) loop */
852     }
853 
854 havethread:
855     /*
856      * Clear gd_idle_repeat when doing a normal switch to a non-idle
857      * thread.
858      */
859     ntd->td_wmesg = NULL;
860     ++gd->gd_cnt.v_swtch;
861     gd->gd_idle_repeat = 0;
862 
863 havethread_preempted:
864     /*
865      * If the new target does not need the MP lock and we are holding it,
866      * release the MP lock.  If the new target requires the MP lock we have
867      * already acquired it for the target.
868      */
869     ;
870 haveidle:
871     KASSERT(ntd->td_critcount,
872 	    ("priority problem in lwkt_switch %d %d",
873 	    td->td_critcount, ntd->td_critcount));
874 
875     if (td != ntd) {
876 	/*
877 	 * Execute the actual thread switch operation.  This function
878 	 * returns to the current thread and returns the previous thread
879 	 * (which may be different from the thread we switched to).
880 	 *
881 	 * We are responsible for marking ntd as TDF_RUNNING.
882 	 */
883 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
884 	++switch_count;
885 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
886 	ntd->td_flags |= TDF_RUNNING;
887 	lwkt_switch_return(td->td_switch(ntd));
888 	/* ntd invalid, td_switch() can return a different thread_t */
889     }
890 
891     /*
892      * catch-all.  XXX is this strictly needed?
893      */
894     splz_check();
895 
896     /* NOTE: current cpu may have changed after switch */
897     crit_exit_quick(td);
898 }
899 
900 /*
901  * Called by assembly in the td_switch (thread restore path) for thread
902  * bootstrap cases which do not 'return' to lwkt_switch().
903  */
904 void
905 lwkt_switch_return(thread_t otd)
906 {
907 	globaldata_t rgd;
908 
909 	/*
910 	 * Check if otd was migrating.  Now that we are on ntd we can finish
911 	 * up the migration.  This is a bit messy but it is the only place
912 	 * where td is known to be fully descheduled.
913 	 *
914 	 * We can only activate the migration if otd was migrating but not
915 	 * held on the cpu due to a preemption chain.  We still have to
916 	 * clear TDF_RUNNING on the old thread either way.
917 	 *
918 	 * We are responsible for clearing the previously running thread's
919 	 * TDF_RUNNING.
920 	 */
921 	if ((rgd = otd->td_migrate_gd) != NULL &&
922 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
923 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
924 			 (TDF_MIGRATING | TDF_RUNNING));
925 		otd->td_migrate_gd = NULL;
926 		otd->td_flags &= ~TDF_RUNNING;
927 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
928 	} else {
929 		otd->td_flags &= ~TDF_RUNNING;
930 	}
931 
932 	/*
933 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
934 	 * invalid the *instant* we set TDF_MP_EXITSIG.
935 	 */
936 	while (otd->td_flags & TDF_EXITING) {
937 		u_int mpflags;
938 
939 		mpflags = otd->td_mpflags;
940 		cpu_ccfence();
941 
942 		if (mpflags & TDF_MP_EXITWAIT) {
943 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
944 					      mpflags | TDF_MP_EXITSIG)) {
945 				wakeup(otd);
946 				break;
947 			}
948 		} else {
949 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
950 					      mpflags | TDF_MP_EXITSIG)) {
951 				wakeup(otd);
952 				break;
953 			}
954 		}
955 	}
956 }
957 
958 /*
959  * Request that the target thread preempt the current thread.  Preemption
960  * can only occur if our only critical section is the one that we were called
961  * with, the relative priority of the target thread is higher, and the target
962  * thread holds no tokens.  This also only works if we are not holding any
963  * spinlocks (obviously).
964  *
965  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
966  * this is called via lwkt_schedule() through the td_preemptable callback.
967  * critcount is the managed critical priority that we should ignore in order
968  * to determine whether preemption is possible (aka usually just the crit
969  * priority of lwkt_schedule() itself).
970  *
971  * Preemption is typically limited to interrupt threads.
972  *
973  * Operation works in a fairly straight-forward manner.  The normal
974  * scheduling code is bypassed and we switch directly to the target
975  * thread.  When the target thread attempts to block or switch away
976  * code at the base of lwkt_switch() will switch directly back to our
977  * thread.  Our thread is able to retain whatever tokens it holds and
978  * if the target needs one of them the target will switch back to us
979  * and reschedule itself normally.
980  */
981 void
982 lwkt_preempt(thread_t ntd, int critcount)
983 {
984     struct globaldata *gd = mycpu;
985     thread_t xtd;
986     thread_t td;
987     int save_gd_intr_nesting_level;
988 
989     /*
990      * The caller has put us in a critical section.  We can only preempt
991      * if the caller of the caller was not in a critical section (basically
992      * a local interrupt), as determined by the 'critcount' parameter.  We
993      * also can't preempt if the caller is holding any spinlocks (even if
994      * he isn't in a critical section).  This also handles the tokens test.
995      *
996      * YYY The target thread must be in a critical section (else it must
997      * inherit our critical section?  I dunno yet).
998      */
999     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
1000 
1001     td = gd->gd_curthread;
1002     if (preempt_enable == 0) {
1003 	++preempt_miss;
1004 	return;
1005     }
1006     if (ntd->td_pri <= td->td_pri) {
1007 	++preempt_miss;
1008 	return;
1009     }
1010     if (td->td_critcount > critcount) {
1011 	++preempt_miss;
1012 	return;
1013     }
1014     if (td->td_cscount) {
1015 	++preempt_miss;
1016 	return;
1017     }
1018     if (ntd->td_gd != gd) {
1019 	++preempt_miss;
1020 	return;
1021     }
1022     /*
1023      * We don't have to check spinlocks here as they will also bump
1024      * td_critcount.
1025      *
1026      * Do not try to preempt if the target thread is holding any tokens.
1027      * We could try to acquire the tokens but this case is so rare there
1028      * is no need to support it.
1029      */
1030     KKASSERT(gd->gd_spinlocks == 0);
1031 
1032     if (TD_TOKS_HELD(ntd)) {
1033 	++preempt_miss;
1034 	return;
1035     }
1036     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1037 	++preempt_weird;
1038 	return;
1039     }
1040     if (ntd->td_preempted) {
1041 	++preempt_hit;
1042 	return;
1043     }
1044     KKASSERT(gd->gd_processing_ipiq == 0);
1045 
1046     /*
1047      * Since we are able to preempt the current thread, there is no need to
1048      * call need_lwkt_resched().
1049      *
1050      * We must temporarily clear gd_intr_nesting_level around the switch
1051      * since switchouts from the target thread are allowed (they will just
1052      * return to our thread), and since the target thread has its own stack.
1053      *
1054      * A preemption must switch back to the original thread, assert the
1055      * case.
1056      */
1057     ++preempt_hit;
1058     ntd->td_preempted = td;
1059     td->td_flags |= TDF_PREEMPT_LOCK;
1060     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1061     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1062     gd->gd_intr_nesting_level = 0;
1063 
1064     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1065     ntd->td_flags |= TDF_RUNNING;
1066     xtd = td->td_switch(ntd);
1067     KKASSERT(xtd == ntd);
1068     lwkt_switch_return(xtd);
1069     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1070 
1071     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1072     ntd->td_preempted = NULL;
1073     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1074 }
1075 
1076 /*
1077  * Conditionally call splz() if gd_reqflags indicates work is pending.
1078  * This will work inside a critical section but not inside a hard code
1079  * section.
1080  *
1081  * (self contained on a per cpu basis)
1082  */
1083 void
1084 splz_check(void)
1085 {
1086     globaldata_t gd = mycpu;
1087     thread_t td = gd->gd_curthread;
1088 
1089     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1090 	gd->gd_intr_nesting_level == 0 &&
1091 	td->td_nest_count < 2)
1092     {
1093 	splz();
1094     }
1095 }
1096 
1097 /*
1098  * This version is integrated into crit_exit, reqflags has already
1099  * been tested but td_critcount has not.
1100  *
1101  * We only want to execute the splz() on the 1->0 transition of
1102  * critcount and not in a hard code section or if too deeply nested.
1103  *
1104  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1105  */
1106 void
1107 lwkt_maybe_splz(thread_t td)
1108 {
1109     globaldata_t gd = td->td_gd;
1110 
1111     if (td->td_critcount == 0 &&
1112 	gd->gd_intr_nesting_level == 0 &&
1113 	td->td_nest_count < 2)
1114     {
1115 	splz();
1116     }
1117 }
1118 
1119 /*
1120  * Drivers which set up processing co-threads can call this function to
1121  * run the co-thread at a higher priority and to allow it to preempt
1122  * normal threads.
1123  */
1124 void
1125 lwkt_set_interrupt_support_thread(void)
1126 {
1127 	thread_t td = curthread;
1128 
1129         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1130 	td->td_flags |= TDF_INTTHREAD;
1131 	td->td_preemptable = lwkt_preempt;
1132 }
1133 
1134 
1135 /*
1136  * This function is used to negotiate a passive release of the current
1137  * process/lwp designation with the user scheduler, allowing the user
1138  * scheduler to schedule another user thread.  The related kernel thread
1139  * (curthread) continues running in the released state.
1140  */
1141 void
1142 lwkt_passive_release(struct thread *td)
1143 {
1144     struct lwp *lp = td->td_lwp;
1145 
1146 #ifndef NO_LWKT_SPLIT_USERPRI
1147     td->td_release = NULL;
1148     lwkt_setpri_self(TDPRI_KERN_USER);
1149 #endif
1150 
1151     lp->lwp_proc->p_usched->release_curproc(lp);
1152 }
1153 
1154 
1155 /*
1156  * This implements a LWKT yield, allowing a kernel thread to yield to other
1157  * kernel threads at the same or higher priority.  This function can be
1158  * called in a tight loop and will typically only yield once per tick.
1159  *
1160  * Most kernel threads run at the same priority in order to allow equal
1161  * sharing.
1162  *
1163  * (self contained on a per cpu basis)
1164  */
1165 void
1166 lwkt_yield(void)
1167 {
1168     globaldata_t gd = mycpu;
1169     thread_t td = gd->gd_curthread;
1170 
1171     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1172 	splz();
1173     if (lwkt_resched_wanted()) {
1174 	lwkt_schedule_self(curthread);
1175 	lwkt_switch();
1176     }
1177 }
1178 
1179 /*
1180  * The quick version processes pending interrupts and higher-priority
1181  * LWKT threads but will not round-robin same-priority LWKT threads.
1182  *
1183  * When called while attempting to return to userland the only same-pri
1184  * threads are the ones which have already tried to become the current
1185  * user process.
1186  */
1187 void
1188 lwkt_yield_quick(void)
1189 {
1190     globaldata_t gd = mycpu;
1191     thread_t td = gd->gd_curthread;
1192 
1193     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1194 	splz();
1195     if (lwkt_resched_wanted()) {
1196 	crit_enter();
1197 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1198 	    clear_lwkt_resched();
1199 	} else {
1200 	    lwkt_schedule_self(curthread);
1201 	    lwkt_switch();
1202 	}
1203 	crit_exit();
1204     }
1205 }
1206 
1207 /*
1208  * This yield is designed for kernel threads with a user context.
1209  *
1210  * The kernel acting on behalf of the user is potentially cpu-bound,
1211  * this function will efficiently allow other threads to run and also
1212  * switch to other processes by releasing.
1213  *
1214  * The lwkt_user_yield() function is designed to have very low overhead
1215  * if no yield is determined to be needed.
1216  */
1217 void
1218 lwkt_user_yield(void)
1219 {
1220     globaldata_t gd = mycpu;
1221     thread_t td = gd->gd_curthread;
1222 
1223     /*
1224      * Always run any pending interrupts in case we are in a critical
1225      * section.
1226      */
1227     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1228 	splz();
1229 
1230     /*
1231      * Switch (which forces a release) if another kernel thread needs
1232      * the cpu, if userland wants us to resched, or if our kernel
1233      * quantum has run out.
1234      */
1235     if (lwkt_resched_wanted() ||
1236 	user_resched_wanted())
1237     {
1238 	lwkt_switch();
1239     }
1240 
1241 #if 0
1242     /*
1243      * Reacquire the current process if we are released.
1244      *
1245      * XXX not implemented atm.  The kernel may be holding locks and such,
1246      *     so we want the thread to continue to receive cpu.
1247      */
1248     if (td->td_release == NULL && lp) {
1249 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1250 	td->td_release = lwkt_passive_release;
1251 	lwkt_setpri_self(TDPRI_USER_NORM);
1252     }
1253 #endif
1254 }
1255 
1256 /*
1257  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1258  * deal with threads that might be blocked on a wait queue.
1259  *
1260  * We have a little helper inline function which does additional work after
1261  * the thread has been enqueued, including dealing with preemption and
1262  * setting need_lwkt_resched() (which prevents the kernel from returning
1263  * to userland until it has processed higher priority threads).
1264  *
1265  * It is possible for this routine to be called after a failed _enqueue
1266  * (due to the target thread migrating, sleeping, or otherwise blocked).
1267  * We have to check that the thread is actually on the run queue!
1268  */
1269 static __inline
1270 void
1271 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1272 {
1273     if (ntd->td_flags & TDF_RUNQ) {
1274 	if (ntd->td_preemptable) {
1275 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1276 	}
1277     }
1278 }
1279 
1280 static __inline
1281 void
1282 _lwkt_schedule(thread_t td)
1283 {
1284     globaldata_t mygd = mycpu;
1285 
1286     KASSERT(td != &td->td_gd->gd_idlethread,
1287 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1288     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1289     crit_enter_gd(mygd);
1290     KKASSERT(td->td_lwp == NULL ||
1291 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1292 
1293     if (td == mygd->gd_curthread) {
1294 	_lwkt_enqueue(td);
1295     } else {
1296 	/*
1297 	 * If we own the thread, there is no race (since we are in a
1298 	 * critical section).  If we do not own the thread there might
1299 	 * be a race but the target cpu will deal with it.
1300 	 */
1301 	if (td->td_gd == mygd) {
1302 	    _lwkt_enqueue(td);
1303 	    _lwkt_schedule_post(mygd, td, 1);
1304 	} else {
1305 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1306 	}
1307     }
1308     crit_exit_gd(mygd);
1309 }
1310 
1311 void
1312 lwkt_schedule(thread_t td)
1313 {
1314     _lwkt_schedule(td);
1315 }
1316 
1317 void
1318 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1319 {
1320     _lwkt_schedule(td);
1321 }
1322 
1323 /*
1324  * When scheduled remotely if frame != NULL the IPIQ is being
1325  * run via doreti or an interrupt then preemption can be allowed.
1326  *
1327  * To allow preemption we have to drop the critical section so only
1328  * one is present in _lwkt_schedule_post.
1329  */
1330 static void
1331 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1332 {
1333     thread_t td = curthread;
1334     thread_t ntd = arg;
1335 
1336     if (frame && ntd->td_preemptable) {
1337 	crit_exit_noyield(td);
1338 	_lwkt_schedule(ntd);
1339 	crit_enter_quick(td);
1340     } else {
1341 	_lwkt_schedule(ntd);
1342     }
1343 }
1344 
1345 /*
1346  * Thread migration using a 'Pull' method.  The thread may or may not be
1347  * the current thread.  It MUST be descheduled and in a stable state.
1348  * lwkt_giveaway() must be called on the cpu owning the thread.
1349  *
1350  * At any point after lwkt_giveaway() is called, the target cpu may
1351  * 'pull' the thread by calling lwkt_acquire().
1352  *
1353  * We have to make sure the thread is not sitting on a per-cpu tsleep
1354  * queue or it will blow up when it moves to another cpu.
1355  *
1356  * MPSAFE - must be called under very specific conditions.
1357  */
1358 void
1359 lwkt_giveaway(thread_t td)
1360 {
1361     globaldata_t gd = mycpu;
1362 
1363     crit_enter_gd(gd);
1364     if (td->td_flags & TDF_TSLEEPQ)
1365 	tsleep_remove(td);
1366     KKASSERT(td->td_gd == gd);
1367     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1368     td->td_flags |= TDF_MIGRATING;
1369     crit_exit_gd(gd);
1370 }
1371 
1372 void
1373 lwkt_acquire(thread_t td)
1374 {
1375     globaldata_t gd;
1376     globaldata_t mygd;
1377     int retry = 10000000;
1378 
1379     KKASSERT(td->td_flags & TDF_MIGRATING);
1380     gd = td->td_gd;
1381     mygd = mycpu;
1382     if (gd != mycpu) {
1383 	cpu_lfence();
1384 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1385 	crit_enter_gd(mygd);
1386 	DEBUG_PUSH_INFO("lwkt_acquire");
1387 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1388 	    lwkt_process_ipiq();
1389 	    cpu_lfence();
1390 	    if (--retry == 0) {
1391 		kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1392 			td, td->td_flags);
1393 		retry = 10000000;
1394 	    }
1395 #ifdef _KERNEL_VIRTUAL
1396 	    pthread_yield();
1397 #endif
1398 	}
1399 	DEBUG_POP_INFO();
1400 	cpu_mfence();
1401 	td->td_gd = mygd;
1402 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1403 	td->td_flags &= ~TDF_MIGRATING;
1404 	crit_exit_gd(mygd);
1405     } else {
1406 	crit_enter_gd(mygd);
1407 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1408 	td->td_flags &= ~TDF_MIGRATING;
1409 	crit_exit_gd(mygd);
1410     }
1411 }
1412 
1413 /*
1414  * Generic deschedule.  Descheduling threads other then your own should be
1415  * done only in carefully controlled circumstances.  Descheduling is
1416  * asynchronous.
1417  *
1418  * This function may block if the cpu has run out of messages.
1419  */
1420 void
1421 lwkt_deschedule(thread_t td)
1422 {
1423     crit_enter();
1424     if (td == curthread) {
1425 	_lwkt_dequeue(td);
1426     } else {
1427 	if (td->td_gd == mycpu) {
1428 	    _lwkt_dequeue(td);
1429 	} else {
1430 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1431 	}
1432     }
1433     crit_exit();
1434 }
1435 
1436 /*
1437  * Set the target thread's priority.  This routine does not automatically
1438  * switch to a higher priority thread, LWKT threads are not designed for
1439  * continuous priority changes.  Yield if you want to switch.
1440  */
1441 void
1442 lwkt_setpri(thread_t td, int pri)
1443 {
1444     if (td->td_pri != pri) {
1445 	KKASSERT(pri >= 0);
1446 	crit_enter();
1447 	if (td->td_flags & TDF_RUNQ) {
1448 	    KKASSERT(td->td_gd == mycpu);
1449 	    _lwkt_dequeue(td);
1450 	    td->td_pri = pri;
1451 	    _lwkt_enqueue(td);
1452 	} else {
1453 	    td->td_pri = pri;
1454 	}
1455 	crit_exit();
1456     }
1457 }
1458 
1459 /*
1460  * Set the initial priority for a thread prior to it being scheduled for
1461  * the first time.  The thread MUST NOT be scheduled before or during
1462  * this call.  The thread may be assigned to a cpu other then the current
1463  * cpu.
1464  *
1465  * Typically used after a thread has been created with TDF_STOPPREQ,
1466  * and before the thread is initially scheduled.
1467  */
1468 void
1469 lwkt_setpri_initial(thread_t td, int pri)
1470 {
1471     KKASSERT(pri >= 0);
1472     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1473     td->td_pri = pri;
1474 }
1475 
1476 void
1477 lwkt_setpri_self(int pri)
1478 {
1479     thread_t td = curthread;
1480 
1481     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1482     crit_enter();
1483     if (td->td_flags & TDF_RUNQ) {
1484 	_lwkt_dequeue(td);
1485 	td->td_pri = pri;
1486 	_lwkt_enqueue(td);
1487     } else {
1488 	td->td_pri = pri;
1489     }
1490     crit_exit();
1491 }
1492 
1493 /*
1494  * hz tick scheduler clock for LWKT threads
1495  */
1496 void
1497 lwkt_schedulerclock(thread_t td)
1498 {
1499     globaldata_t gd = td->td_gd;
1500     thread_t xtd;
1501 
1502     if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1503 	/*
1504 	 * If the current thread is at the head of the runq shift it to the
1505 	 * end of any equal-priority threads and request a LWKT reschedule
1506 	 * if it moved.
1507 	 *
1508 	 * Ignore upri in this situation.  There will only be one user thread
1509 	 * in user mode, all others will be user threads running in kernel
1510 	 * mode and we have to make sure they get some cpu.
1511 	 */
1512 	xtd = TAILQ_NEXT(td, td_threadq);
1513 	if (xtd && xtd->td_pri == td->td_pri) {
1514 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1515 	    while (xtd && xtd->td_pri == td->td_pri)
1516 		xtd = TAILQ_NEXT(xtd, td_threadq);
1517 	    if (xtd)
1518 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1519 	    else
1520 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1521 	    need_lwkt_resched();
1522 	}
1523     } else {
1524 	/*
1525 	 * If we scheduled a thread other than the one at the head of the
1526 	 * queue always request a reschedule every tick.
1527 	 */
1528 	need_lwkt_resched();
1529     }
1530 }
1531 
1532 /*
1533  * Migrate the current thread to the specified cpu.
1534  *
1535  * This is accomplished by descheduling ourselves from the current cpu
1536  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1537  * 'old' thread wants to migrate after it has been completely switched out
1538  * and will complete the migration.
1539  *
1540  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1541  *
1542  * We must be sure to release our current process designation (if a user
1543  * process) before clearing out any tsleepq we are on because the release
1544  * code may re-add us.
1545  *
1546  * We must be sure to remove ourselves from the current cpu's tsleepq
1547  * before potentially moving to another queue.  The thread can be on
1548  * a tsleepq due to a left-over tsleep_interlock().
1549  */
1550 
1551 void
1552 lwkt_setcpu_self(globaldata_t rgd)
1553 {
1554     thread_t td = curthread;
1555 
1556     if (td->td_gd != rgd) {
1557 	crit_enter_quick(td);
1558 
1559 	if (td->td_release)
1560 	    td->td_release(td);
1561 	if (td->td_flags & TDF_TSLEEPQ)
1562 	    tsleep_remove(td);
1563 
1564 	/*
1565 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1566 	 * trying to deschedule ourselves and switch away, then deschedule
1567 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1568 	 * call lwkt_switch() to complete the operation.
1569 	 */
1570 	td->td_flags |= TDF_MIGRATING;
1571 	lwkt_deschedule_self(td);
1572 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1573 	td->td_migrate_gd = rgd;
1574 	lwkt_switch();
1575 
1576 	/*
1577 	 * We are now on the target cpu
1578 	 */
1579 	KKASSERT(rgd == mycpu);
1580 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1581 	crit_exit_quick(td);
1582     }
1583 }
1584 
1585 void
1586 lwkt_migratecpu(int cpuid)
1587 {
1588 	globaldata_t rgd;
1589 
1590 	rgd = globaldata_find(cpuid);
1591 	lwkt_setcpu_self(rgd);
1592 }
1593 
1594 /*
1595  * Remote IPI for cpu migration (called while in a critical section so we
1596  * do not have to enter another one).
1597  *
1598  * The thread (td) has already been completely descheduled from the
1599  * originating cpu and we can simply assert the case.  The thread is
1600  * assigned to the new cpu and enqueued.
1601  *
1602  * The thread will re-add itself to tdallq when it resumes execution.
1603  */
1604 static void
1605 lwkt_setcpu_remote(void *arg)
1606 {
1607     thread_t td = arg;
1608     globaldata_t gd = mycpu;
1609 
1610     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1611     td->td_gd = gd;
1612     cpu_mfence();
1613     td->td_flags &= ~TDF_MIGRATING;
1614     KKASSERT(td->td_migrate_gd == NULL);
1615     KKASSERT(td->td_lwp == NULL ||
1616 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1617     _lwkt_enqueue(td);
1618 }
1619 
1620 struct lwp *
1621 lwkt_preempted_proc(void)
1622 {
1623     thread_t td = curthread;
1624     while (td->td_preempted)
1625 	td = td->td_preempted;
1626     return(td->td_lwp);
1627 }
1628 
1629 /*
1630  * Create a kernel process/thread/whatever.  It shares it's address space
1631  * with proc0 - ie: kernel only.
1632  *
1633  * If the cpu is not specified one will be selected.  In the future
1634  * specifying a cpu of -1 will enable kernel thread migration between
1635  * cpus.
1636  */
1637 int
1638 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1639 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1640 {
1641     thread_t td;
1642     __va_list ap;
1643 
1644     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1645 			   tdflags);
1646     if (tdp)
1647 	*tdp = td;
1648     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1649 
1650     /*
1651      * Set up arg0 for 'ps' etc
1652      */
1653     __va_start(ap, fmt);
1654     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1655     __va_end(ap);
1656 
1657     /*
1658      * Schedule the thread to run
1659      */
1660     if (td->td_flags & TDF_NOSTART)
1661 	td->td_flags &= ~TDF_NOSTART;
1662     else
1663 	lwkt_schedule(td);
1664     return 0;
1665 }
1666 
1667 /*
1668  * Destroy an LWKT thread.   Warning!  This function is not called when
1669  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1670  * uses a different reaping mechanism.
1671  */
1672 void
1673 lwkt_exit(void)
1674 {
1675     thread_t td = curthread;
1676     thread_t std;
1677     globaldata_t gd;
1678 
1679     /*
1680      * Do any cleanup that might block here
1681      */
1682     if (td->td_flags & TDF_VERBOSE)
1683 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1684     biosched_done(td);
1685     dsched_exit_thread(td);
1686 
1687     /*
1688      * Get us into a critical section to interlock gd_freetd and loop
1689      * until we can get it freed.
1690      *
1691      * We have to cache the current td in gd_freetd because objcache_put()ing
1692      * it would rip it out from under us while our thread is still active.
1693      *
1694      * We are the current thread so of course our own TDF_RUNNING bit will
1695      * be set, so unlike the lwp reap code we don't wait for it to clear.
1696      */
1697     gd = mycpu;
1698     crit_enter_quick(td);
1699     for (;;) {
1700 	if (td->td_refs) {
1701 	    tsleep(td, 0, "tdreap", 1);
1702 	    continue;
1703 	}
1704 	if ((std = gd->gd_freetd) != NULL) {
1705 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1706 	    gd->gd_freetd = NULL;
1707 	    objcache_put(thread_cache, std);
1708 	    continue;
1709 	}
1710 	break;
1711     }
1712 
1713     /*
1714      * Remove thread resources from kernel lists and deschedule us for
1715      * the last time.  We cannot block after this point or we may end
1716      * up with a stale td on the tsleepq.
1717      *
1718      * None of this may block, the critical section is the only thing
1719      * protecting tdallq and the only thing preventing new lwkt_hold()
1720      * thread refs now.
1721      */
1722     if (td->td_flags & TDF_TSLEEPQ)
1723 	tsleep_remove(td);
1724     lwkt_deschedule_self(td);
1725     lwkt_remove_tdallq(td);
1726     KKASSERT(td->td_refs == 0);
1727 
1728     /*
1729      * Final cleanup
1730      */
1731     KKASSERT(gd->gd_freetd == NULL);
1732     if (td->td_flags & TDF_ALLOCATED_THREAD)
1733 	gd->gd_freetd = td;
1734     cpu_thread_exit();
1735 }
1736 
1737 void
1738 lwkt_remove_tdallq(thread_t td)
1739 {
1740     KKASSERT(td->td_gd == mycpu);
1741     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1742 }
1743 
1744 /*
1745  * Code reduction and branch prediction improvements.  Call/return
1746  * overhead on modern cpus often degenerates into 0 cycles due to
1747  * the cpu's branch prediction hardware and return pc cache.  We
1748  * can take advantage of this by not inlining medium-complexity
1749  * functions and we can also reduce the branch prediction impact
1750  * by collapsing perfectly predictable branches into a single
1751  * procedure instead of duplicating it.
1752  *
1753  * Is any of this noticeable?  Probably not, so I'll take the
1754  * smaller code size.
1755  */
1756 void
1757 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1758 {
1759     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1760 }
1761 
1762 void
1763 crit_panic(void)
1764 {
1765     thread_t td = curthread;
1766     int lcrit = td->td_critcount;
1767 
1768     td->td_critcount = 0;
1769     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1770     /* NOT REACHED */
1771 }
1772 
1773 /*
1774  * Called from debugger/panic on cpus which have been stopped.  We must still
1775  * process the IPIQ while stopped.
1776  *
1777  * If we are dumping also try to process any pending interrupts.  This may
1778  * or may not work depending on the state of the cpu at the point it was
1779  * stopped.
1780  */
1781 void
1782 lwkt_smp_stopped(void)
1783 {
1784     globaldata_t gd = mycpu;
1785 
1786     if (dumping) {
1787 	lwkt_process_ipiq();
1788 	--gd->gd_intr_nesting_level;
1789 	splz();
1790 	++gd->gd_intr_nesting_level;
1791     } else {
1792 	lwkt_process_ipiq();
1793     }
1794 }
1795