xref: /dragonfly/sys/kern/lwkt_thread.c (revision 3f5e28f4)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.107 2007/05/01 00:05:18 dillon Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #ifdef _KERNEL
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/sysctl.h>
53 #include <sys/kthread.h>
54 #include <machine/cpu.h>
55 #include <sys/lock.h>
56 #include <sys/caps.h>
57 #include <sys/spinlock.h>
58 #include <sys/ktr.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_zone.h>
72 
73 #include <machine/stdarg.h>
74 #include <machine/smp.h>
75 
76 #else
77 
78 #include <sys/stdint.h>
79 #include <libcaps/thread.h>
80 #include <sys/thread.h>
81 #include <sys/msgport.h>
82 #include <sys/errno.h>
83 #include <libcaps/globaldata.h>
84 #include <machine/cpufunc.h>
85 #include <sys/thread2.h>
86 #include <sys/msgport2.h>
87 #include <stdio.h>
88 #include <stdlib.h>
89 #include <string.h>
90 #include <machine/lock.h>
91 #include <machine/atomic.h>
92 #include <machine/cpu.h>
93 
94 #endif
95 
96 static int untimely_switch = 0;
97 #ifdef	INVARIANTS
98 static int panic_on_cscount = 0;
99 #endif
100 static __int64_t switch_count = 0;
101 static __int64_t preempt_hit = 0;
102 static __int64_t preempt_miss = 0;
103 static __int64_t preempt_weird = 0;
104 static __int64_t token_contention_count = 0;
105 static __int64_t mplock_contention_count = 0;
106 
107 #ifdef _KERNEL
108 
109 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
110 #ifdef	INVARIANTS
111 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
112 #endif
113 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
114 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
115 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
116 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
117 #ifdef	INVARIANTS
118 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
119 	&token_contention_count, 0, "spinning due to token contention");
120 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
121 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
122 #endif
123 #endif
124 
125 /*
126  * Kernel Trace
127  */
128 #ifdef _KERNEL
129 
130 #if !defined(KTR_GIANT_CONTENTION)
131 #define KTR_GIANT_CONTENTION	KTR_ALL
132 #endif
133 
134 KTR_INFO_MASTER(giant);
135 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
136 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
137 
138 #define loggiant(name)	KTR_LOG(giant_ ## name, curthread)
139 
140 #endif
141 
142 /*
143  * These helper procedures handle the runq, they can only be called from
144  * within a critical section.
145  *
146  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
147  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
148  * instead of 'mycpu' when referencing the globaldata structure.   Once
149  * SMP live enqueuing and dequeueing only occurs on the current cpu.
150  */
151 static __inline
152 void
153 _lwkt_dequeue(thread_t td)
154 {
155     if (td->td_flags & TDF_RUNQ) {
156 	int nq = td->td_pri & TDPRI_MASK;
157 	struct globaldata *gd = td->td_gd;
158 
159 	td->td_flags &= ~TDF_RUNQ;
160 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
161 	/* runqmask is passively cleaned up by the switcher */
162     }
163 }
164 
165 static __inline
166 void
167 _lwkt_enqueue(thread_t td)
168 {
169     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
170 	int nq = td->td_pri & TDPRI_MASK;
171 	struct globaldata *gd = td->td_gd;
172 
173 	td->td_flags |= TDF_RUNQ;
174 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
175 	gd->gd_runqmask |= 1 << nq;
176     }
177 }
178 
179 /*
180  * Schedule a thread to run.  As the current thread we can always safely
181  * schedule ourselves, and a shortcut procedure is provided for that
182  * function.
183  *
184  * (non-blocking, self contained on a per cpu basis)
185  */
186 void
187 lwkt_schedule_self(thread_t td)
188 {
189     crit_enter_quick(td);
190     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
191     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
192     _lwkt_enqueue(td);
193     crit_exit_quick(td);
194 }
195 
196 /*
197  * Deschedule a thread.
198  *
199  * (non-blocking, self contained on a per cpu basis)
200  */
201 void
202 lwkt_deschedule_self(thread_t td)
203 {
204     crit_enter_quick(td);
205     _lwkt_dequeue(td);
206     crit_exit_quick(td);
207 }
208 
209 #ifdef _KERNEL
210 
211 /*
212  * LWKTs operate on a per-cpu basis
213  *
214  * WARNING!  Called from early boot, 'mycpu' may not work yet.
215  */
216 void
217 lwkt_gdinit(struct globaldata *gd)
218 {
219     int i;
220 
221     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
222 	TAILQ_INIT(&gd->gd_tdrunq[i]);
223     gd->gd_runqmask = 0;
224     TAILQ_INIT(&gd->gd_tdallq);
225 }
226 
227 #endif /* _KERNEL */
228 
229 /*
230  * Create a new thread.  The thread must be associated with a process context
231  * or LWKT start address before it can be scheduled.  If the target cpu is
232  * -1 the thread will be created on the current cpu.
233  *
234  * If you intend to create a thread without a process context this function
235  * does everything except load the startup and switcher function.
236  */
237 thread_t
238 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
239 {
240     void *stack;
241     globaldata_t gd = mycpu;
242 
243     if (td == NULL) {
244 	crit_enter_gd(gd);
245 	if (gd->gd_tdfreecount > 0) {
246 	    --gd->gd_tdfreecount;
247 	    td = TAILQ_FIRST(&gd->gd_tdfreeq);
248 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
249 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
250 	    TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
251 	    crit_exit_gd(gd);
252 	    flags |= td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
253 	} else {
254 	    crit_exit_gd(gd);
255 #ifdef _KERNEL
256 	    td = zalloc(thread_zone);
257 #else
258 	    td = malloc(sizeof(struct thread));
259 #endif
260 	    td->td_kstack = NULL;
261 	    td->td_kstack_size = 0;
262 	    flags |= TDF_ALLOCATED_THREAD;
263 	}
264     }
265     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
266 	if (flags & TDF_ALLOCATED_STACK) {
267 #ifdef _KERNEL
268 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
269 #else
270 	    libcaps_free_stack(stack, td->td_kstack_size);
271 #endif
272 	    stack = NULL;
273 	}
274     }
275     if (stack == NULL) {
276 #ifdef _KERNEL
277 	stack = (void *)kmem_alloc(&kernel_map, stksize);
278 #else
279 	stack = libcaps_alloc_stack(stksize);
280 #endif
281 	flags |= TDF_ALLOCATED_STACK;
282     }
283     if (cpu < 0)
284 	lwkt_init_thread(td, stack, stksize, flags, mycpu);
285     else
286 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
287     return(td);
288 }
289 
290 #ifdef _KERNEL
291 
292 /*
293  * Initialize a preexisting thread structure.  This function is used by
294  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
295  *
296  * All threads start out in a critical section at a priority of
297  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
298  * appropriate.  This function may send an IPI message when the
299  * requested cpu is not the current cpu and consequently gd_tdallq may
300  * not be initialized synchronously from the point of view of the originating
301  * cpu.
302  *
303  * NOTE! we have to be careful in regards to creating threads for other cpus
304  * if SMP has not yet been activated.
305  */
306 #ifdef SMP
307 
308 static void
309 lwkt_init_thread_remote(void *arg)
310 {
311     thread_t td = arg;
312 
313     /*
314      * Protected by critical section held by IPI dispatch
315      */
316     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
317 }
318 
319 #endif
320 
321 void
322 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
323 		struct globaldata *gd)
324 {
325     globaldata_t mygd = mycpu;
326 
327     bzero(td, sizeof(struct thread));
328     td->td_kstack = stack;
329     td->td_kstack_size = stksize;
330     td->td_flags = flags;
331     td->td_gd = gd;
332     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
333 #ifdef SMP
334     if ((flags & TDF_MPSAFE) == 0)
335 	td->td_mpcount = 1;
336 #endif
337     lwkt_initport(&td->td_msgport, td);
338     pmap_init_thread(td);
339 #ifdef SMP
340     /*
341      * Normally initializing a thread for a remote cpu requires sending an
342      * IPI.  However, the idlethread is setup before the other cpus are
343      * activated so we have to treat it as a special case.  XXX manipulation
344      * of gd_tdallq requires the BGL.
345      */
346     if (gd == mygd || td == &gd->gd_idlethread) {
347 	crit_enter_gd(mygd);
348 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
349 	crit_exit_gd(mygd);
350     } else {
351 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
352     }
353 #else
354     crit_enter_gd(mygd);
355     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
356     crit_exit_gd(mygd);
357 #endif
358 }
359 
360 #endif /* _KERNEL */
361 
362 void
363 lwkt_set_comm(thread_t td, const char *ctl, ...)
364 {
365     __va_list va;
366 
367     __va_start(va, ctl);
368     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
369     __va_end(va);
370 }
371 
372 void
373 lwkt_hold(thread_t td)
374 {
375     ++td->td_refs;
376 }
377 
378 void
379 lwkt_rele(thread_t td)
380 {
381     KKASSERT(td->td_refs > 0);
382     --td->td_refs;
383 }
384 
385 #ifdef _KERNEL
386 
387 void
388 lwkt_wait_free(thread_t td)
389 {
390     while (td->td_refs)
391 	tsleep(td, 0, "tdreap", hz);
392 }
393 
394 #endif
395 
396 void
397 lwkt_free_thread(thread_t td)
398 {
399     struct globaldata *gd = mycpu;
400 
401     KASSERT((td->td_flags & TDF_RUNNING) == 0,
402 	("lwkt_free_thread: did not exit! %p", td));
403 
404     crit_enter_gd(gd);
405     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
406 	(td->td_flags & TDF_ALLOCATED_THREAD)
407     ) {
408 	++gd->gd_tdfreecount;
409 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
410 	crit_exit_gd(gd);
411     } else {
412 	crit_exit_gd(gd);
413 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
414 #ifdef _KERNEL
415 	    kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
416 #else
417 	    libcaps_free_stack(td->td_kstack, td->td_kstack_size);
418 #endif
419 	    /* gd invalid */
420 	    td->td_kstack = NULL;
421 	    td->td_kstack_size = 0;
422 	}
423 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
424 #ifdef _KERNEL
425 	    zfree(thread_zone, td);
426 #else
427 	    free(td);
428 #endif
429 	}
430     }
431 }
432 
433 
434 /*
435  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
436  * switch to the idlethread.  Switching must occur within a critical
437  * section to avoid races with the scheduling queue.
438  *
439  * We always have full control over our cpu's run queue.  Other cpus
440  * that wish to manipulate our queue must use the cpu_*msg() calls to
441  * talk to our cpu, so a critical section is all that is needed and
442  * the result is very, very fast thread switching.
443  *
444  * The LWKT scheduler uses a fixed priority model and round-robins at
445  * each priority level.  User process scheduling is a totally
446  * different beast and LWKT priorities should not be confused with
447  * user process priorities.
448  *
449  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
450  * cleans it up.  Note that the td_switch() function cannot do anything that
451  * requires the MP lock since the MP lock will have already been setup for
452  * the target thread (not the current thread).  It's nice to have a scheduler
453  * that does not need the MP lock to work because it allows us to do some
454  * really cool high-performance MP lock optimizations.
455  *
456  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
457  * is not called by the current thread in the preemption case, only when
458  * the preempting thread blocks (in order to return to the original thread).
459  */
460 void
461 lwkt_switch(void)
462 {
463     globaldata_t gd = mycpu;
464     thread_t td = gd->gd_curthread;
465     thread_t ntd;
466 #ifdef SMP
467     int mpheld;
468 #endif
469 
470     /*
471      * Switching from within a 'fast' (non thread switched) interrupt or IPI
472      * is illegal.  However, we may have to do it anyway if we hit a fatal
473      * kernel trap or we have paniced.
474      *
475      * If this case occurs save and restore the interrupt nesting level.
476      */
477     if (gd->gd_intr_nesting_level) {
478 	int savegdnest;
479 	int savegdtrap;
480 
481 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
482 	    panic("lwkt_switch: cannot switch from within "
483 		  "a fast interrupt, yet, td %p\n", td);
484 	} else {
485 	    savegdnest = gd->gd_intr_nesting_level;
486 	    savegdtrap = gd->gd_trap_nesting_level;
487 	    gd->gd_intr_nesting_level = 0;
488 	    gd->gd_trap_nesting_level = 0;
489 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
490 		td->td_flags |= TDF_PANICWARN;
491 		kprintf("Warning: thread switch from interrupt or IPI, "
492 			"thread %p (%s)\n", td, td->td_comm);
493 #ifdef DDB
494 		db_print_backtrace();
495 #endif
496 	    }
497 	    lwkt_switch();
498 	    gd->gd_intr_nesting_level = savegdnest;
499 	    gd->gd_trap_nesting_level = savegdtrap;
500 	    return;
501 	}
502     }
503 
504     /*
505      * Passive release (used to transition from user to kernel mode
506      * when we block or switch rather then when we enter the kernel).
507      * This function is NOT called if we are switching into a preemption
508      * or returning from a preemption.  Typically this causes us to lose
509      * our current process designation (if we have one) and become a true
510      * LWKT thread, and may also hand the current process designation to
511      * another process and schedule thread.
512      */
513     if (td->td_release)
514 	    td->td_release(td);
515 
516     crit_enter_gd(gd);
517 #ifdef SMP
518     if (td->td_toks)
519 	    lwkt_relalltokens(td);
520 #endif
521 
522     /*
523      * We had better not be holding any spin locks, but don't get into an
524      * endless panic loop.
525      */
526     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
527 	    ("lwkt_switch: still holding a shared spinlock %p!",
528 	     gd->gd_spinlock_rd));
529     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
530 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
531 	     gd->gd_spinlocks_wr));
532 
533 
534 #ifdef SMP
535     /*
536      * td_mpcount cannot be used to determine if we currently hold the
537      * MP lock because get_mplock() will increment it prior to attempting
538      * to get the lock, and switch out if it can't.  Our ownership of
539      * the actual lock will remain stable while we are in a critical section
540      * (but, of course, another cpu may own or release the lock so the
541      * actual value of mp_lock is not stable).
542      */
543     mpheld = MP_LOCK_HELD();
544 #ifdef	INVARIANTS
545     if (td->td_cscount) {
546 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
547 		td);
548 	if (panic_on_cscount)
549 	    panic("switching while mastering cpusync");
550     }
551 #endif
552 #endif
553     if ((ntd = td->td_preempted) != NULL) {
554 	/*
555 	 * We had preempted another thread on this cpu, resume the preempted
556 	 * thread.  This occurs transparently, whether the preempted thread
557 	 * was scheduled or not (it may have been preempted after descheduling
558 	 * itself).
559 	 *
560 	 * We have to setup the MP lock for the original thread after backing
561 	 * out the adjustment that was made to curthread when the original
562 	 * was preempted.
563 	 */
564 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
565 #ifdef SMP
566 	if (ntd->td_mpcount && mpheld == 0) {
567 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
568 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
569 	}
570 	if (ntd->td_mpcount) {
571 	    td->td_mpcount -= ntd->td_mpcount;
572 	    KKASSERT(td->td_mpcount >= 0);
573 	}
574 #endif
575 	ntd->td_flags |= TDF_PREEMPT_DONE;
576 
577 	/*
578 	 * XXX.  The interrupt may have woken a thread up, we need to properly
579 	 * set the reschedule flag if the originally interrupted thread is at
580 	 * a lower priority.
581 	 */
582 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
583 	    need_lwkt_resched();
584 	/* YYY release mp lock on switchback if original doesn't need it */
585     } else {
586 	/*
587 	 * Priority queue / round-robin at each priority.  Note that user
588 	 * processes run at a fixed, low priority and the user process
589 	 * scheduler deals with interactions between user processes
590 	 * by scheduling and descheduling them from the LWKT queue as
591 	 * necessary.
592 	 *
593 	 * We have to adjust the MP lock for the target thread.  If we
594 	 * need the MP lock and cannot obtain it we try to locate a
595 	 * thread that does not need the MP lock.  If we cannot, we spin
596 	 * instead of HLT.
597 	 *
598 	 * A similar issue exists for the tokens held by the target thread.
599 	 * If we cannot obtain ownership of the tokens we cannot immediately
600 	 * schedule the thread.
601 	 */
602 
603 	/*
604 	 * If an LWKT reschedule was requested, well that is what we are
605 	 * doing now so clear it.
606 	 */
607 	clear_lwkt_resched();
608 again:
609 	if (gd->gd_runqmask) {
610 	    int nq = bsrl(gd->gd_runqmask);
611 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
612 		gd->gd_runqmask &= ~(1 << nq);
613 		goto again;
614 	    }
615 #ifdef SMP
616 	    /*
617 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
618 	     *
619 	     * If the target needs the MP lock and we couldn't get it,
620 	     * or if the target is holding tokens and we could not
621 	     * gain ownership of the tokens, continue looking for a
622 	     * thread to schedule and spin instead of HLT if we can't.
623 	     *
624 	     * NOTE: the mpheld variable invalid after this conditional, it
625 	     * can change due to both cpu_try_mplock() returning success
626 	     * AND interactions in lwkt_getalltokens() due to the fact that
627 	     * we are trying to check the mpcount of a thread other then
628 	     * the current thread.  Because of this, if the current thread
629 	     * is not holding td_mpcount, an IPI indirectly run via
630 	     * lwkt_getalltokens() can obtain and release the MP lock and
631 	     * cause the core MP lock to be released.
632 	     */
633 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
634 		(ntd->td_toks && lwkt_getalltokens(ntd) == 0)
635 	    ) {
636 		u_int32_t rqmask = gd->gd_runqmask;
637 
638 		mpheld = MP_LOCK_HELD();
639 		ntd = NULL;
640 		while (rqmask) {
641 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
642 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
643 			    /* spinning due to MP lock being held */
644 #ifdef	INVARIANTS
645 			    ++mplock_contention_count;
646 #endif
647 			    /* mplock still not held, 'mpheld' still valid */
648 			    continue;
649 			}
650 
651 			/*
652 			 * mpheld state invalid after getalltokens call returns
653 			 * failure, but the variable is only needed for
654 			 * the loop.
655 			 */
656 			if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
657 			    /* spinning due to token contention */
658 #ifdef	INVARIANTS
659 			    ++token_contention_count;
660 #endif
661 			    mpheld = MP_LOCK_HELD();
662 			    continue;
663 			}
664 			break;
665 		    }
666 		    if (ntd)
667 			break;
668 		    rqmask &= ~(1 << nq);
669 		    nq = bsrl(rqmask);
670 		}
671 		if (ntd == NULL) {
672 		    ntd = &gd->gd_idlethread;
673 		    ntd->td_flags |= TDF_IDLE_NOHLT;
674 		    goto using_idle_thread;
675 		} else {
676 		    ++gd->gd_cnt.v_swtch;
677 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
678 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
679 		}
680 	    } else {
681 		++gd->gd_cnt.v_swtch;
682 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
683 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
684 	    }
685 #else
686 	    /*
687 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
688 	     * worry about tokens or the BGL.
689 	     */
690 	    ++gd->gd_cnt.v_swtch;
691 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
692 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
693 #endif
694 	} else {
695 	    /*
696 	     * We have nothing to run but only let the idle loop halt
697 	     * the cpu if there are no pending interrupts.
698 	     */
699 	    ntd = &gd->gd_idlethread;
700 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
701 		ntd->td_flags |= TDF_IDLE_NOHLT;
702 #ifdef SMP
703 using_idle_thread:
704 	    /*
705 	     * The idle thread should not be holding the MP lock unless we
706 	     * are trapping in the kernel or in a panic.  Since we select the
707 	     * idle thread unconditionally when no other thread is available,
708 	     * if the MP lock is desired during a panic or kernel trap, we
709 	     * have to loop in the scheduler until we get it.
710 	     */
711 	    if (ntd->td_mpcount) {
712 		mpheld = MP_LOCK_HELD();
713 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
714 		    panic("Idle thread %p was holding the BGL!", ntd);
715 		else if (mpheld == 0)
716 		    goto again;
717 	    }
718 #endif
719 	}
720     }
721     KASSERT(ntd->td_pri >= TDPRI_CRIT,
722 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
723 
724     /*
725      * Do the actual switch.  If the new target does not need the MP lock
726      * and we are holding it, release the MP lock.  If the new target requires
727      * the MP lock we have already acquired it for the target.
728      */
729 #ifdef SMP
730     if (ntd->td_mpcount == 0 ) {
731 	if (MP_LOCK_HELD())
732 	    cpu_rel_mplock();
733     } else {
734 	ASSERT_MP_LOCK_HELD(ntd);
735     }
736 #endif
737     if (td != ntd) {
738 	++switch_count;
739 	td->td_switch(ntd);
740     }
741     /* NOTE: current cpu may have changed after switch */
742     crit_exit_quick(td);
743 }
744 
745 /*
746  * Request that the target thread preempt the current thread.  Preemption
747  * only works under a specific set of conditions:
748  *
749  *	- We are not preempting ourselves
750  *	- The target thread is owned by the current cpu
751  *	- We are not currently being preempted
752  *	- The target is not currently being preempted
753  *	- We are able to satisfy the target's MP lock requirements (if any).
754  *
755  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
756  * this is called via lwkt_schedule() through the td_preemptable callback.
757  * critpri is the managed critical priority that we should ignore in order
758  * to determine whether preemption is possible (aka usually just the crit
759  * priority of lwkt_schedule() itself).
760  *
761  * XXX at the moment we run the target thread in a critical section during
762  * the preemption in order to prevent the target from taking interrupts
763  * that *WE* can't.  Preemption is strictly limited to interrupt threads
764  * and interrupt-like threads, outside of a critical section, and the
765  * preempted source thread will be resumed the instant the target blocks
766  * whether or not the source is scheduled (i.e. preemption is supposed to
767  * be as transparent as possible).
768  *
769  * The target thread inherits our MP count (added to its own) for the
770  * duration of the preemption in order to preserve the atomicy of the
771  * MP lock during the preemption.  Therefore, any preempting targets must be
772  * careful in regards to MP assertions.  Note that the MP count may be
773  * out of sync with the physical mp_lock, but we do not have to preserve
774  * the original ownership of the lock if it was out of synch (that is, we
775  * can leave it synchronized on return).
776  */
777 void
778 lwkt_preempt(thread_t ntd, int critpri)
779 {
780     struct globaldata *gd = mycpu;
781     thread_t td;
782 #ifdef SMP
783     int mpheld;
784     int savecnt;
785 #endif
786 
787     /*
788      * The caller has put us in a critical section.  We can only preempt
789      * if the caller of the caller was not in a critical section (basically
790      * a local interrupt), as determined by the 'critpri' parameter.  We
791      * also acn't preempt if the caller is holding any spinlocks (even if
792      * he isn't in a critical section).  This also handles the tokens test.
793      *
794      * YYY The target thread must be in a critical section (else it must
795      * inherit our critical section?  I dunno yet).
796      *
797      * Set need_lwkt_resched() unconditionally for now YYY.
798      */
799     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
800 
801     td = gd->gd_curthread;
802     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
803 	++preempt_miss;
804 	return;
805     }
806     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
807 	++preempt_miss;
808 	need_lwkt_resched();
809 	return;
810     }
811 #ifdef SMP
812     if (ntd->td_gd != gd) {
813 	++preempt_miss;
814 	need_lwkt_resched();
815 	return;
816     }
817 #endif
818     /*
819      * Take the easy way out and do not preempt if the target is holding
820      * any spinlocks.  We could test whether the thread(s) being
821      * preempted interlock against the target thread's tokens and whether
822      * we can get all the target thread's tokens, but this situation
823      * should not occur very often so its easier to simply not preempt.
824      * Also, plain spinlocks are impossible to figure out at this point so
825      * just don't preempt.
826      */
827     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
828 	++preempt_miss;
829 	need_lwkt_resched();
830 	return;
831     }
832     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
833 	++preempt_weird;
834 	need_lwkt_resched();
835 	return;
836     }
837     if (ntd->td_preempted) {
838 	++preempt_hit;
839 	need_lwkt_resched();
840 	return;
841     }
842 #ifdef SMP
843     /*
844      * note: an interrupt might have occured just as we were transitioning
845      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
846      * (non-zero) but not actually synchronized with the actual state of the
847      * lock.  We can use it to imply an MP lock requirement for the
848      * preemption but we cannot use it to test whether we hold the MP lock
849      * or not.
850      */
851     savecnt = td->td_mpcount;
852     mpheld = MP_LOCK_HELD();
853     ntd->td_mpcount += td->td_mpcount;
854     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
855 	ntd->td_mpcount -= td->td_mpcount;
856 	++preempt_miss;
857 	need_lwkt_resched();
858 	return;
859     }
860 #endif
861 
862     /*
863      * Since we are able to preempt the current thread, there is no need to
864      * call need_lwkt_resched().
865      */
866     ++preempt_hit;
867     ntd->td_preempted = td;
868     td->td_flags |= TDF_PREEMPT_LOCK;
869     td->td_switch(ntd);
870     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
871 #ifdef SMP
872     KKASSERT(savecnt == td->td_mpcount);
873     mpheld = MP_LOCK_HELD();
874     if (mpheld && td->td_mpcount == 0)
875 	cpu_rel_mplock();
876     else if (mpheld == 0 && td->td_mpcount)
877 	panic("lwkt_preempt(): MP lock was not held through");
878 #endif
879     ntd->td_preempted = NULL;
880     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
881 }
882 
883 /*
884  * Yield our thread while higher priority threads are pending.  This is
885  * typically called when we leave a critical section but it can be safely
886  * called while we are in a critical section.
887  *
888  * This function will not generally yield to equal priority threads but it
889  * can occur as a side effect.  Note that lwkt_switch() is called from
890  * inside the critical section to prevent its own crit_exit() from reentering
891  * lwkt_yield_quick().
892  *
893  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
894  * came along but was blocked and made pending.
895  *
896  * (self contained on a per cpu basis)
897  */
898 void
899 lwkt_yield_quick(void)
900 {
901     globaldata_t gd = mycpu;
902     thread_t td = gd->gd_curthread;
903 
904     /*
905      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
906      * it with a non-zero cpl then we might not wind up calling splz after
907      * a task switch when the critical section is exited even though the
908      * new task could accept the interrupt.
909      *
910      * XXX from crit_exit() only called after last crit section is released.
911      * If called directly will run splz() even if in a critical section.
912      *
913      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
914      * except for this special case, we MUST call splz() here to handle any
915      * pending ints, particularly after we switch, or we might accidently
916      * halt the cpu with interrupts pending.
917      */
918     if (gd->gd_reqflags && td->td_nest_count < 2)
919 	splz();
920 
921     /*
922      * YYY enabling will cause wakeup() to task-switch, which really
923      * confused the old 4.x code.  This is a good way to simulate
924      * preemption and MP without actually doing preemption or MP, because a
925      * lot of code assumes that wakeup() does not block.
926      */
927     if (untimely_switch && td->td_nest_count == 0 &&
928 	gd->gd_intr_nesting_level == 0
929     ) {
930 	crit_enter_quick(td);
931 	/*
932 	 * YYY temporary hacks until we disassociate the userland scheduler
933 	 * from the LWKT scheduler.
934 	 */
935 	if (td->td_flags & TDF_RUNQ) {
936 	    lwkt_switch();		/* will not reenter yield function */
937 	} else {
938 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
939 	    lwkt_switch();		/* will not reenter yield function */
940 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
941 	}
942 	crit_exit_noyield(td);
943     }
944 }
945 
946 /*
947  * This implements a normal yield which, unlike _quick, will yield to equal
948  * priority threads as well.  Note that gd_reqflags tests will be handled by
949  * the crit_exit() call in lwkt_switch().
950  *
951  * (self contained on a per cpu basis)
952  */
953 void
954 lwkt_yield(void)
955 {
956     lwkt_schedule_self(curthread);
957     lwkt_switch();
958 }
959 
960 /*
961  * Generic schedule.  Possibly schedule threads belonging to other cpus and
962  * deal with threads that might be blocked on a wait queue.
963  *
964  * We have a little helper inline function which does additional work after
965  * the thread has been enqueued, including dealing with preemption and
966  * setting need_lwkt_resched() (which prevents the kernel from returning
967  * to userland until it has processed higher priority threads).
968  *
969  * It is possible for this routine to be called after a failed _enqueue
970  * (due to the target thread migrating, sleeping, or otherwise blocked).
971  * We have to check that the thread is actually on the run queue!
972  */
973 static __inline
974 void
975 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
976 {
977     if (ntd->td_flags & TDF_RUNQ) {
978 	if (ntd->td_preemptable) {
979 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
980 	} else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
981 	    (ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
982 	) {
983 	    need_lwkt_resched();
984 	}
985     }
986 }
987 
988 void
989 lwkt_schedule(thread_t td)
990 {
991     globaldata_t mygd = mycpu;
992 
993     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
994     crit_enter_gd(mygd);
995     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
996     if (td == mygd->gd_curthread) {
997 	_lwkt_enqueue(td);
998     } else {
999 	/*
1000 	 * If we own the thread, there is no race (since we are in a
1001 	 * critical section).  If we do not own the thread there might
1002 	 * be a race but the target cpu will deal with it.
1003 	 */
1004 #ifdef SMP
1005 	if (td->td_gd == mygd) {
1006 	    _lwkt_enqueue(td);
1007 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1008 	} else {
1009 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1010 	}
1011 #else
1012 	_lwkt_enqueue(td);
1013 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1014 #endif
1015     }
1016     crit_exit_gd(mygd);
1017 }
1018 
1019 #ifdef SMP
1020 
1021 /*
1022  * Thread migration using a 'Pull' method.  The thread may or may not be
1023  * the current thread.  It MUST be descheduled and in a stable state.
1024  * lwkt_giveaway() must be called on the cpu owning the thread.
1025  *
1026  * At any point after lwkt_giveaway() is called, the target cpu may
1027  * 'pull' the thread by calling lwkt_acquire().
1028  *
1029  * MPSAFE - must be called under very specific conditions.
1030  */
1031 void
1032 lwkt_giveaway(thread_t td)
1033 {
1034 	globaldata_t gd = mycpu;
1035 
1036 	crit_enter_gd(gd);
1037 	KKASSERT(td->td_gd == gd);
1038 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1039 	td->td_flags |= TDF_MIGRATING;
1040 	crit_exit_gd(gd);
1041 }
1042 
1043 void
1044 lwkt_acquire(thread_t td)
1045 {
1046     globaldata_t gd;
1047     globaldata_t mygd;
1048 
1049     KKASSERT(td->td_flags & TDF_MIGRATING);
1050     gd = td->td_gd;
1051     mygd = mycpu;
1052     if (gd != mycpu) {
1053 	cpu_lfence();
1054 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1055 	crit_enter_gd(mygd);
1056 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK))
1057 	    cpu_lfence();
1058 	td->td_gd = mygd;
1059 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1060 	td->td_flags &= ~TDF_MIGRATING;
1061 	crit_exit_gd(mygd);
1062     } else {
1063 	crit_enter_gd(mygd);
1064 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1065 	td->td_flags &= ~TDF_MIGRATING;
1066 	crit_exit_gd(mygd);
1067     }
1068 }
1069 
1070 #endif
1071 
1072 /*
1073  * Generic deschedule.  Descheduling threads other then your own should be
1074  * done only in carefully controlled circumstances.  Descheduling is
1075  * asynchronous.
1076  *
1077  * This function may block if the cpu has run out of messages.
1078  */
1079 void
1080 lwkt_deschedule(thread_t td)
1081 {
1082     crit_enter();
1083 #ifdef SMP
1084     if (td == curthread) {
1085 	_lwkt_dequeue(td);
1086     } else {
1087 	if (td->td_gd == mycpu) {
1088 	    _lwkt_dequeue(td);
1089 	} else {
1090 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1091 	}
1092     }
1093 #else
1094     _lwkt_dequeue(td);
1095 #endif
1096     crit_exit();
1097 }
1098 
1099 /*
1100  * Set the target thread's priority.  This routine does not automatically
1101  * switch to a higher priority thread, LWKT threads are not designed for
1102  * continuous priority changes.  Yield if you want to switch.
1103  *
1104  * We have to retain the critical section count which uses the high bits
1105  * of the td_pri field.  The specified priority may also indicate zero or
1106  * more critical sections by adding TDPRI_CRIT*N.
1107  *
1108  * Note that we requeue the thread whether it winds up on a different runq
1109  * or not.  uio_yield() depends on this and the routine is not normally
1110  * called with the same priority otherwise.
1111  */
1112 void
1113 lwkt_setpri(thread_t td, int pri)
1114 {
1115     KKASSERT(pri >= 0);
1116     KKASSERT(td->td_gd == mycpu);
1117     crit_enter();
1118     if (td->td_flags & TDF_RUNQ) {
1119 	_lwkt_dequeue(td);
1120 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1121 	_lwkt_enqueue(td);
1122     } else {
1123 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1124     }
1125     crit_exit();
1126 }
1127 
1128 void
1129 lwkt_setpri_self(int pri)
1130 {
1131     thread_t td = curthread;
1132 
1133     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1134     crit_enter();
1135     if (td->td_flags & TDF_RUNQ) {
1136 	_lwkt_dequeue(td);
1137 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1138 	_lwkt_enqueue(td);
1139     } else {
1140 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1141     }
1142     crit_exit();
1143 }
1144 
1145 /*
1146  * Determine if there is a runnable thread at a higher priority then
1147  * the current thread.  lwkt_setpri() does not check this automatically.
1148  * Return 1 if there is, 0 if there isn't.
1149  *
1150  * Example: if bit 31 of runqmask is set and the current thread is priority
1151  * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.
1152  *
1153  * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1154  * up comparing against 0xffffffff, a comparison that will always be false.
1155  */
1156 int
1157 lwkt_checkpri_self(void)
1158 {
1159     globaldata_t gd = mycpu;
1160     thread_t td = gd->gd_curthread;
1161     int nq = td->td_pri & TDPRI_MASK;
1162 
1163     while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1164 	if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1165 	    return(1);
1166 	++nq;
1167     }
1168     return(0);
1169 }
1170 
1171 /*
1172  * Migrate the current thread to the specified cpu.
1173  *
1174  * This is accomplished by descheduling ourselves from the current cpu,
1175  * moving our thread to the tdallq of the target cpu, IPI messaging the
1176  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1177  * races while the thread is being migrated.
1178  */
1179 #ifdef SMP
1180 static void lwkt_setcpu_remote(void *arg);
1181 #endif
1182 
1183 void
1184 lwkt_setcpu_self(globaldata_t rgd)
1185 {
1186 #ifdef SMP
1187     thread_t td = curthread;
1188 
1189     if (td->td_gd != rgd) {
1190 	crit_enter_quick(td);
1191 	td->td_flags |= TDF_MIGRATING;
1192 	lwkt_deschedule_self(td);
1193 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1194 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1195 	lwkt_switch();
1196 	/* we are now on the target cpu */
1197 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1198 	crit_exit_quick(td);
1199     }
1200 #endif
1201 }
1202 
1203 void
1204 lwkt_migratecpu(int cpuid)
1205 {
1206 #ifdef SMP
1207 	globaldata_t rgd;
1208 
1209 	rgd = globaldata_find(cpuid);
1210 	lwkt_setcpu_self(rgd);
1211 #endif
1212 }
1213 
1214 /*
1215  * Remote IPI for cpu migration (called while in a critical section so we
1216  * do not have to enter another one).  The thread has already been moved to
1217  * our cpu's allq, but we must wait for the thread to be completely switched
1218  * out on the originating cpu before we schedule it on ours or the stack
1219  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1220  * change to main memory.
1221  *
1222  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1223  * against wakeups.  It is best if this interface is used only when there
1224  * are no pending events that might try to schedule the thread.
1225  */
1226 #ifdef SMP
1227 static void
1228 lwkt_setcpu_remote(void *arg)
1229 {
1230     thread_t td = arg;
1231     globaldata_t gd = mycpu;
1232 
1233     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK))
1234 	cpu_lfence();
1235     td->td_gd = gd;
1236     cpu_sfence();
1237     td->td_flags &= ~TDF_MIGRATING;
1238     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1239     _lwkt_enqueue(td);
1240 }
1241 #endif
1242 
1243 struct lwp *
1244 lwkt_preempted_proc(void)
1245 {
1246     thread_t td = curthread;
1247     while (td->td_preempted)
1248 	td = td->td_preempted;
1249     return(td->td_lwp);
1250 }
1251 
1252 /*
1253  * Create a kernel process/thread/whatever.  It shares it's address space
1254  * with proc0 - ie: kernel only.
1255  *
1256  * NOTE!  By default new threads are created with the MP lock held.  A
1257  * thread which does not require the MP lock should release it by calling
1258  * rel_mplock() at the start of the new thread.
1259  */
1260 int
1261 lwkt_create(void (*func)(void *), void *arg,
1262     struct thread **tdp, thread_t template, int tdflags, int cpu,
1263     const char *fmt, ...)
1264 {
1265     thread_t td;
1266     __va_list ap;
1267 
1268     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1269 			   tdflags);
1270     if (tdp)
1271 	*tdp = td;
1272     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1273 
1274     /*
1275      * Set up arg0 for 'ps' etc
1276      */
1277     __va_start(ap, fmt);
1278     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1279     __va_end(ap);
1280 
1281     /*
1282      * Schedule the thread to run
1283      */
1284     if ((td->td_flags & TDF_STOPREQ) == 0)
1285 	lwkt_schedule(td);
1286     else
1287 	td->td_flags &= ~TDF_STOPREQ;
1288     return 0;
1289 }
1290 
1291 /*
1292  * kthread_* is specific to the kernel and is not needed by userland.
1293  */
1294 #ifdef _KERNEL
1295 
1296 /*
1297  * Destroy an LWKT thread.   Warning!  This function is not called when
1298  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1299  * uses a different reaping mechanism.
1300  */
1301 void
1302 lwkt_exit(void)
1303 {
1304     thread_t td = curthread;
1305     globaldata_t gd;
1306 
1307     if (td->td_flags & TDF_VERBOSE)
1308 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1309     caps_exit(td);
1310     crit_enter_quick(td);
1311     lwkt_deschedule_self(td);
1312     gd = mycpu;
1313     lwkt_remove_tdallq(td);
1314     if (td->td_flags & TDF_ALLOCATED_THREAD) {
1315 	++gd->gd_tdfreecount;
1316 	TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1317     }
1318     cpu_thread_exit();
1319 }
1320 
1321 void
1322 lwkt_remove_tdallq(thread_t td)
1323 {
1324     KKASSERT(td->td_gd == mycpu);
1325     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1326 }
1327 
1328 #endif /* _KERNEL */
1329 
1330 void
1331 crit_panic(void)
1332 {
1333     thread_t td = curthread;
1334     int lpri = td->td_pri;
1335 
1336     td->td_pri = 0;
1337     panic("td_pri is/would-go negative! %p %d", td, lpri);
1338 }
1339 
1340 #ifdef SMP
1341 
1342 /*
1343  * Called from debugger/panic on cpus which have been stopped.  We must still
1344  * process the IPIQ while stopped, even if we were stopped while in a critical
1345  * section (XXX).
1346  *
1347  * If we are dumping also try to process any pending interrupts.  This may
1348  * or may not work depending on the state of the cpu at the point it was
1349  * stopped.
1350  */
1351 void
1352 lwkt_smp_stopped(void)
1353 {
1354     globaldata_t gd = mycpu;
1355 
1356     crit_enter_gd(gd);
1357     if (dumping) {
1358 	lwkt_process_ipiq();
1359 	splz();
1360     } else {
1361 	lwkt_process_ipiq();
1362     }
1363     crit_exit_gd(gd);
1364 }
1365 
1366 /*
1367  * get_mplock() calls this routine if it is unable to obtain the MP lock.
1368  * get_mplock() has already incremented td_mpcount.  We must block and
1369  * not return until giant is held.
1370  *
1371  * All we have to do is lwkt_switch() away.  The LWKT scheduler will not
1372  * reschedule the thread until it can obtain the giant lock for it.
1373  */
1374 void
1375 lwkt_mp_lock_contested(void)
1376 {
1377 #ifdef _KERNEL
1378     loggiant(beg);
1379 #endif
1380     lwkt_switch();
1381 #ifdef _KERNEL
1382     loggiant(end);
1383 #endif
1384 }
1385 
1386 #endif
1387