xref: /dragonfly/sys/kern/lwkt_thread.c (revision 51f35c5c)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.116 2008/06/16 02:00:05 dillon Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/proc.h>
48 #include <sys/rtprio.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 #include <sys/caps.h>
55 #include <sys/spinlock.h>
56 #include <sys/ktr.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_map.h>
67 #include <vm/vm_pager.h>
68 #include <vm/vm_extern.h>
69 
70 #include <machine/stdarg.h>
71 #include <machine/smp.h>
72 
73 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
74 
75 static int untimely_switch = 0;
76 #ifdef	INVARIANTS
77 static int panic_on_cscount = 0;
78 #endif
79 static __int64_t switch_count = 0;
80 static __int64_t preempt_hit = 0;
81 static __int64_t preempt_miss = 0;
82 static __int64_t preempt_weird = 0;
83 static __int64_t token_contention_count = 0;
84 static __int64_t mplock_contention_count = 0;
85 static int lwkt_use_spin_port;
86 static struct objcache *thread_cache;
87 
88 /*
89  * We can make all thread ports use the spin backend instead of the thread
90  * backend.  This should only be set to debug the spin backend.
91  */
92 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
93 
94 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
95 #ifdef	INVARIANTS
96 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
97 #endif
98 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
99 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
100 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
101 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
102 #ifdef	INVARIANTS
103 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
104 	&token_contention_count, 0, "spinning due to token contention");
105 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
106 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
107 #endif
108 
109 /*
110  * Kernel Trace
111  */
112 #if !defined(KTR_GIANT_CONTENTION)
113 #define KTR_GIANT_CONTENTION	KTR_ALL
114 #endif
115 
116 KTR_INFO_MASTER(giant);
117 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
118 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
119 
120 #define loggiant(name)	KTR_LOG(giant_ ## name, curthread)
121 
122 /*
123  * These helper procedures handle the runq, they can only be called from
124  * within a critical section.
125  *
126  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
127  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
128  * instead of 'mycpu' when referencing the globaldata structure.   Once
129  * SMP live enqueuing and dequeueing only occurs on the current cpu.
130  */
131 static __inline
132 void
133 _lwkt_dequeue(thread_t td)
134 {
135     if (td->td_flags & TDF_RUNQ) {
136 	int nq = td->td_pri & TDPRI_MASK;
137 	struct globaldata *gd = td->td_gd;
138 
139 	td->td_flags &= ~TDF_RUNQ;
140 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
141 	/* runqmask is passively cleaned up by the switcher */
142     }
143 }
144 
145 static __inline
146 void
147 _lwkt_enqueue(thread_t td)
148 {
149     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
150 	int nq = td->td_pri & TDPRI_MASK;
151 	struct globaldata *gd = td->td_gd;
152 
153 	td->td_flags |= TDF_RUNQ;
154 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
155 	gd->gd_runqmask |= 1 << nq;
156     }
157 }
158 
159 static __boolean_t
160 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
161 {
162 	struct thread *td = (struct thread *)obj;
163 
164 	td->td_kstack = NULL;
165 	td->td_kstack_size = 0;
166 	td->td_flags = TDF_ALLOCATED_THREAD;
167 	return (1);
168 }
169 
170 static void
171 _lwkt_thread_dtor(void *obj, void *privdata)
172 {
173 	struct thread *td = (struct thread *)obj;
174 
175 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
176 	    ("_lwkt_thread_dtor: not allocated from objcache"));
177 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
178 		td->td_kstack_size > 0,
179 	    ("_lwkt_thread_dtor: corrupted stack"));
180 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
181 }
182 
183 /*
184  * Initialize the lwkt s/system.
185  */
186 void
187 lwkt_init(void)
188 {
189     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
190     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread), 0,
191 			CACHE_NTHREADS/2, _lwkt_thread_ctor, _lwkt_thread_dtor,
192 			NULL);
193 }
194 
195 /*
196  * Schedule a thread to run.  As the current thread we can always safely
197  * schedule ourselves, and a shortcut procedure is provided for that
198  * function.
199  *
200  * (non-blocking, self contained on a per cpu basis)
201  */
202 void
203 lwkt_schedule_self(thread_t td)
204 {
205     crit_enter_quick(td);
206     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
207     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
208     _lwkt_enqueue(td);
209     crit_exit_quick(td);
210 }
211 
212 /*
213  * Deschedule a thread.
214  *
215  * (non-blocking, self contained on a per cpu basis)
216  */
217 void
218 lwkt_deschedule_self(thread_t td)
219 {
220     crit_enter_quick(td);
221     _lwkt_dequeue(td);
222     crit_exit_quick(td);
223 }
224 
225 /*
226  * LWKTs operate on a per-cpu basis
227  *
228  * WARNING!  Called from early boot, 'mycpu' may not work yet.
229  */
230 void
231 lwkt_gdinit(struct globaldata *gd)
232 {
233     int i;
234 
235     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
236 	TAILQ_INIT(&gd->gd_tdrunq[i]);
237     gd->gd_runqmask = 0;
238     TAILQ_INIT(&gd->gd_tdallq);
239 }
240 
241 /*
242  * Create a new thread.  The thread must be associated with a process context
243  * or LWKT start address before it can be scheduled.  If the target cpu is
244  * -1 the thread will be created on the current cpu.
245  *
246  * If you intend to create a thread without a process context this function
247  * does everything except load the startup and switcher function.
248  */
249 thread_t
250 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
251 {
252     globaldata_t gd = mycpu;
253     void *stack;
254 
255     /*
256      * If static thread storage is not supplied allocate a thread.  Reuse
257      * a cached free thread if possible.  gd_freetd is used to keep an exiting
258      * thread intact through the exit.
259      */
260     if (td == NULL) {
261 	if ((td = gd->gd_freetd) != NULL)
262 	    gd->gd_freetd = NULL;
263 	else
264 	    td = objcache_get(thread_cache, M_WAITOK);
265     	KASSERT((td->td_flags &
266 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
267 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
268     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
269     }
270 
271     /*
272      * Try to reuse cached stack.
273      */
274     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
275 	if (flags & TDF_ALLOCATED_STACK) {
276 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
277 	    stack = NULL;
278 	}
279     }
280     if (stack == NULL) {
281 	stack = (void *)kmem_alloc(&kernel_map, stksize);
282 	flags |= TDF_ALLOCATED_STACK;
283     }
284     if (cpu < 0)
285 	lwkt_init_thread(td, stack, stksize, flags, gd);
286     else
287 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
288     return(td);
289 }
290 
291 /*
292  * Initialize a preexisting thread structure.  This function is used by
293  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
294  *
295  * All threads start out in a critical section at a priority of
296  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
297  * appropriate.  This function may send an IPI message when the
298  * requested cpu is not the current cpu and consequently gd_tdallq may
299  * not be initialized synchronously from the point of view of the originating
300  * cpu.
301  *
302  * NOTE! we have to be careful in regards to creating threads for other cpus
303  * if SMP has not yet been activated.
304  */
305 #ifdef SMP
306 
307 static void
308 lwkt_init_thread_remote(void *arg)
309 {
310     thread_t td = arg;
311 
312     /*
313      * Protected by critical section held by IPI dispatch
314      */
315     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
316 }
317 
318 #endif
319 
320 void
321 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
322 		struct globaldata *gd)
323 {
324     globaldata_t mygd = mycpu;
325 
326     bzero(td, sizeof(struct thread));
327     td->td_kstack = stack;
328     td->td_kstack_size = stksize;
329     td->td_flags = flags;
330     td->td_gd = gd;
331     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
332 #ifdef SMP
333     if ((flags & TDF_MPSAFE) == 0)
334 	td->td_mpcount = 1;
335 #endif
336     if (lwkt_use_spin_port)
337 	lwkt_initport_spin(&td->td_msgport);
338     else
339 	lwkt_initport_thread(&td->td_msgport, td);
340     pmap_init_thread(td);
341 #ifdef SMP
342     /*
343      * Normally initializing a thread for a remote cpu requires sending an
344      * IPI.  However, the idlethread is setup before the other cpus are
345      * activated so we have to treat it as a special case.  XXX manipulation
346      * of gd_tdallq requires the BGL.
347      */
348     if (gd == mygd || td == &gd->gd_idlethread) {
349 	crit_enter_gd(mygd);
350 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
351 	crit_exit_gd(mygd);
352     } else {
353 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
354     }
355 #else
356     crit_enter_gd(mygd);
357     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
358     crit_exit_gd(mygd);
359 #endif
360 }
361 
362 void
363 lwkt_set_comm(thread_t td, const char *ctl, ...)
364 {
365     __va_list va;
366 
367     __va_start(va, ctl);
368     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
369     __va_end(va);
370 }
371 
372 void
373 lwkt_hold(thread_t td)
374 {
375     ++td->td_refs;
376 }
377 
378 void
379 lwkt_rele(thread_t td)
380 {
381     KKASSERT(td->td_refs > 0);
382     --td->td_refs;
383 }
384 
385 void
386 lwkt_wait_free(thread_t td)
387 {
388     while (td->td_refs)
389 	tsleep(td, 0, "tdreap", hz);
390 }
391 
392 void
393 lwkt_free_thread(thread_t td)
394 {
395     KASSERT((td->td_flags & TDF_RUNNING) == 0,
396 	("lwkt_free_thread: did not exit! %p", td));
397 
398     if (td->td_flags & TDF_ALLOCATED_THREAD) {
399     	objcache_put(thread_cache, td);
400     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
401 	/* client-allocated struct with internally allocated stack */
402 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
403 	    ("lwkt_free_thread: corrupted stack"));
404 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
405 	td->td_kstack = NULL;
406 	td->td_kstack_size = 0;
407     }
408 }
409 
410 
411 /*
412  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
413  * switch to the idlethread.  Switching must occur within a critical
414  * section to avoid races with the scheduling queue.
415  *
416  * We always have full control over our cpu's run queue.  Other cpus
417  * that wish to manipulate our queue must use the cpu_*msg() calls to
418  * talk to our cpu, so a critical section is all that is needed and
419  * the result is very, very fast thread switching.
420  *
421  * The LWKT scheduler uses a fixed priority model and round-robins at
422  * each priority level.  User process scheduling is a totally
423  * different beast and LWKT priorities should not be confused with
424  * user process priorities.
425  *
426  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
427  * cleans it up.  Note that the td_switch() function cannot do anything that
428  * requires the MP lock since the MP lock will have already been setup for
429  * the target thread (not the current thread).  It's nice to have a scheduler
430  * that does not need the MP lock to work because it allows us to do some
431  * really cool high-performance MP lock optimizations.
432  *
433  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
434  * is not called by the current thread in the preemption case, only when
435  * the preempting thread blocks (in order to return to the original thread).
436  */
437 void
438 lwkt_switch(void)
439 {
440     globaldata_t gd = mycpu;
441     thread_t td = gd->gd_curthread;
442     thread_t ntd;
443 #ifdef SMP
444     int mpheld;
445 #endif
446 
447     /*
448      * Switching from within a 'fast' (non thread switched) interrupt or IPI
449      * is illegal.  However, we may have to do it anyway if we hit a fatal
450      * kernel trap or we have paniced.
451      *
452      * If this case occurs save and restore the interrupt nesting level.
453      */
454     if (gd->gd_intr_nesting_level) {
455 	int savegdnest;
456 	int savegdtrap;
457 
458 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
459 	    panic("lwkt_switch: cannot switch from within "
460 		  "a fast interrupt, yet, td %p\n", td);
461 	} else {
462 	    savegdnest = gd->gd_intr_nesting_level;
463 	    savegdtrap = gd->gd_trap_nesting_level;
464 	    gd->gd_intr_nesting_level = 0;
465 	    gd->gd_trap_nesting_level = 0;
466 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
467 		td->td_flags |= TDF_PANICWARN;
468 		kprintf("Warning: thread switch from interrupt or IPI, "
469 			"thread %p (%s)\n", td, td->td_comm);
470 #ifdef DDB
471 		db_print_backtrace();
472 #endif
473 	    }
474 	    lwkt_switch();
475 	    gd->gd_intr_nesting_level = savegdnest;
476 	    gd->gd_trap_nesting_level = savegdtrap;
477 	    return;
478 	}
479     }
480 
481     /*
482      * Passive release (used to transition from user to kernel mode
483      * when we block or switch rather then when we enter the kernel).
484      * This function is NOT called if we are switching into a preemption
485      * or returning from a preemption.  Typically this causes us to lose
486      * our current process designation (if we have one) and become a true
487      * LWKT thread, and may also hand the current process designation to
488      * another process and schedule thread.
489      */
490     if (td->td_release)
491 	    td->td_release(td);
492 
493     crit_enter_gd(gd);
494     if (td->td_toks)
495 	    lwkt_relalltokens(td);
496 
497     /*
498      * We had better not be holding any spin locks, but don't get into an
499      * endless panic loop.
500      */
501     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
502 	    ("lwkt_switch: still holding a shared spinlock %p!",
503 	     gd->gd_spinlock_rd));
504     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
505 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
506 	     gd->gd_spinlocks_wr));
507 
508 
509 #ifdef SMP
510     /*
511      * td_mpcount cannot be used to determine if we currently hold the
512      * MP lock because get_mplock() will increment it prior to attempting
513      * to get the lock, and switch out if it can't.  Our ownership of
514      * the actual lock will remain stable while we are in a critical section
515      * (but, of course, another cpu may own or release the lock so the
516      * actual value of mp_lock is not stable).
517      */
518     mpheld = MP_LOCK_HELD();
519 #ifdef	INVARIANTS
520     if (td->td_cscount) {
521 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
522 		td);
523 	if (panic_on_cscount)
524 	    panic("switching while mastering cpusync");
525     }
526 #endif
527 #endif
528     if ((ntd = td->td_preempted) != NULL) {
529 	/*
530 	 * We had preempted another thread on this cpu, resume the preempted
531 	 * thread.  This occurs transparently, whether the preempted thread
532 	 * was scheduled or not (it may have been preempted after descheduling
533 	 * itself).
534 	 *
535 	 * We have to setup the MP lock for the original thread after backing
536 	 * out the adjustment that was made to curthread when the original
537 	 * was preempted.
538 	 */
539 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
540 #ifdef SMP
541 	if (ntd->td_mpcount && mpheld == 0) {
542 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
543 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
544 	}
545 	if (ntd->td_mpcount) {
546 	    td->td_mpcount -= ntd->td_mpcount;
547 	    KKASSERT(td->td_mpcount >= 0);
548 	}
549 #endif
550 	ntd->td_flags |= TDF_PREEMPT_DONE;
551 
552 	/*
553 	 * XXX.  The interrupt may have woken a thread up, we need to properly
554 	 * set the reschedule flag if the originally interrupted thread is at
555 	 * a lower priority.
556 	 */
557 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
558 	    need_lwkt_resched();
559 	/* YYY release mp lock on switchback if original doesn't need it */
560     } else {
561 	/*
562 	 * Priority queue / round-robin at each priority.  Note that user
563 	 * processes run at a fixed, low priority and the user process
564 	 * scheduler deals with interactions between user processes
565 	 * by scheduling and descheduling them from the LWKT queue as
566 	 * necessary.
567 	 *
568 	 * We have to adjust the MP lock for the target thread.  If we
569 	 * need the MP lock and cannot obtain it we try to locate a
570 	 * thread that does not need the MP lock.  If we cannot, we spin
571 	 * instead of HLT.
572 	 *
573 	 * A similar issue exists for the tokens held by the target thread.
574 	 * If we cannot obtain ownership of the tokens we cannot immediately
575 	 * schedule the thread.
576 	 */
577 
578 	/*
579 	 * If an LWKT reschedule was requested, well that is what we are
580 	 * doing now so clear it.
581 	 */
582 	clear_lwkt_resched();
583 again:
584 	if (gd->gd_runqmask) {
585 	    int nq = bsrl(gd->gd_runqmask);
586 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
587 		gd->gd_runqmask &= ~(1 << nq);
588 		goto again;
589 	    }
590 #ifdef SMP
591 	    /*
592 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
593 	     *
594 	     * If the target needs the MP lock and we couldn't get it,
595 	     * or if the target is holding tokens and we could not
596 	     * gain ownership of the tokens, continue looking for a
597 	     * thread to schedule and spin instead of HLT if we can't.
598 	     *
599 	     * NOTE: the mpheld variable invalid after this conditional, it
600 	     * can change due to both cpu_try_mplock() returning success
601 	     * AND interactions in lwkt_getalltokens() due to the fact that
602 	     * we are trying to check the mpcount of a thread other then
603 	     * the current thread.  Because of this, if the current thread
604 	     * is not holding td_mpcount, an IPI indirectly run via
605 	     * lwkt_getalltokens() can obtain and release the MP lock and
606 	     * cause the core MP lock to be released.
607 	     */
608 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
609 		(ntd->td_toks && lwkt_getalltokens(ntd) == 0)
610 	    ) {
611 		u_int32_t rqmask = gd->gd_runqmask;
612 
613 		mpheld = MP_LOCK_HELD();
614 		ntd = NULL;
615 		while (rqmask) {
616 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
617 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
618 			    /* spinning due to MP lock being held */
619 #ifdef	INVARIANTS
620 			    ++mplock_contention_count;
621 #endif
622 			    /* mplock still not held, 'mpheld' still valid */
623 			    continue;
624 			}
625 
626 			/*
627 			 * mpheld state invalid after getalltokens call returns
628 			 * failure, but the variable is only needed for
629 			 * the loop.
630 			 */
631 			if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
632 			    /* spinning due to token contention */
633 #ifdef	INVARIANTS
634 			    ++token_contention_count;
635 #endif
636 			    mpheld = MP_LOCK_HELD();
637 			    continue;
638 			}
639 			break;
640 		    }
641 		    if (ntd)
642 			break;
643 		    rqmask &= ~(1 << nq);
644 		    nq = bsrl(rqmask);
645 		}
646 		if (ntd == NULL) {
647 		    cpu_mplock_contested();
648 		    ntd = &gd->gd_idlethread;
649 		    ntd->td_flags |= TDF_IDLE_NOHLT;
650 		    goto using_idle_thread;
651 		} else {
652 		    ++gd->gd_cnt.v_swtch;
653 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
654 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
655 		}
656 	    } else {
657 		++gd->gd_cnt.v_swtch;
658 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
659 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
660 	    }
661 #else
662 	    /*
663 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
664 	     * worry about tokens or the BGL.  However, we still have
665 	     * to call lwkt_getalltokens() in order to properly detect
666 	     * stale tokens.  This call cannot fail for a UP build!
667 	     */
668 	    lwkt_getalltokens(ntd);
669 	    ++gd->gd_cnt.v_swtch;
670 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
671 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
672 #endif
673 	} else {
674 	    /*
675 	     * We have nothing to run but only let the idle loop halt
676 	     * the cpu if there are no pending interrupts.
677 	     */
678 	    ntd = &gd->gd_idlethread;
679 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
680 		ntd->td_flags |= TDF_IDLE_NOHLT;
681 #ifdef SMP
682 using_idle_thread:
683 	    /*
684 	     * The idle thread should not be holding the MP lock unless we
685 	     * are trapping in the kernel or in a panic.  Since we select the
686 	     * idle thread unconditionally when no other thread is available,
687 	     * if the MP lock is desired during a panic or kernel trap, we
688 	     * have to loop in the scheduler until we get it.
689 	     */
690 	    if (ntd->td_mpcount) {
691 		mpheld = MP_LOCK_HELD();
692 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
693 		    panic("Idle thread %p was holding the BGL!", ntd);
694 		} else if (mpheld == 0) {
695 		    cpu_mplock_contested();
696 		    goto again;
697 		}
698 	    }
699 #endif
700 	}
701     }
702     KASSERT(ntd->td_pri >= TDPRI_CRIT,
703 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
704 
705     /*
706      * Do the actual switch.  If the new target does not need the MP lock
707      * and we are holding it, release the MP lock.  If the new target requires
708      * the MP lock we have already acquired it for the target.
709      */
710 #ifdef SMP
711     if (ntd->td_mpcount == 0 ) {
712 	if (MP_LOCK_HELD())
713 	    cpu_rel_mplock();
714     } else {
715 	ASSERT_MP_LOCK_HELD(ntd);
716     }
717 #endif
718     if (td != ntd) {
719 	++switch_count;
720 	td->td_switch(ntd);
721     }
722     /* NOTE: current cpu may have changed after switch */
723     crit_exit_quick(td);
724 }
725 
726 /*
727  * Request that the target thread preempt the current thread.  Preemption
728  * only works under a specific set of conditions:
729  *
730  *	- We are not preempting ourselves
731  *	- The target thread is owned by the current cpu
732  *	- We are not currently being preempted
733  *	- The target is not currently being preempted
734  *	- We are not holding any spin locks
735  *	- The target thread is not holding any tokens
736  *	- We are able to satisfy the target's MP lock requirements (if any).
737  *
738  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
739  * this is called via lwkt_schedule() through the td_preemptable callback.
740  * critpri is the managed critical priority that we should ignore in order
741  * to determine whether preemption is possible (aka usually just the crit
742  * priority of lwkt_schedule() itself).
743  *
744  * XXX at the moment we run the target thread in a critical section during
745  * the preemption in order to prevent the target from taking interrupts
746  * that *WE* can't.  Preemption is strictly limited to interrupt threads
747  * and interrupt-like threads, outside of a critical section, and the
748  * preempted source thread will be resumed the instant the target blocks
749  * whether or not the source is scheduled (i.e. preemption is supposed to
750  * be as transparent as possible).
751  *
752  * The target thread inherits our MP count (added to its own) for the
753  * duration of the preemption in order to preserve the atomicy of the
754  * MP lock during the preemption.  Therefore, any preempting targets must be
755  * careful in regards to MP assertions.  Note that the MP count may be
756  * out of sync with the physical mp_lock, but we do not have to preserve
757  * the original ownership of the lock if it was out of synch (that is, we
758  * can leave it synchronized on return).
759  */
760 void
761 lwkt_preempt(thread_t ntd, int critpri)
762 {
763     struct globaldata *gd = mycpu;
764     thread_t td;
765 #ifdef SMP
766     int mpheld;
767     int savecnt;
768 #endif
769 
770     /*
771      * The caller has put us in a critical section.  We can only preempt
772      * if the caller of the caller was not in a critical section (basically
773      * a local interrupt), as determined by the 'critpri' parameter.  We
774      * also can't preempt if the caller is holding any spinlocks (even if
775      * he isn't in a critical section).  This also handles the tokens test.
776      *
777      * YYY The target thread must be in a critical section (else it must
778      * inherit our critical section?  I dunno yet).
779      *
780      * Set need_lwkt_resched() unconditionally for now YYY.
781      */
782     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
783 
784     td = gd->gd_curthread;
785     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
786 	++preempt_miss;
787 	return;
788     }
789     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
790 	++preempt_miss;
791 	need_lwkt_resched();
792 	return;
793     }
794 #ifdef SMP
795     if (ntd->td_gd != gd) {
796 	++preempt_miss;
797 	need_lwkt_resched();
798 	return;
799     }
800 #endif
801     /*
802      * Take the easy way out and do not preempt if we are holding
803      * any spinlocks.  We could test whether the thread(s) being
804      * preempted interlock against the target thread's tokens and whether
805      * we can get all the target thread's tokens, but this situation
806      * should not occur very often so its easier to simply not preempt.
807      * Also, plain spinlocks are impossible to figure out at this point so
808      * just don't preempt.
809      *
810      * Do not try to preempt if the target thread is holding any tokens.
811      * We could try to acquire the tokens but this case is so rare there
812      * is no need to support it.
813      */
814     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
815 	++preempt_miss;
816 	need_lwkt_resched();
817 	return;
818     }
819     if (ntd->td_toks) {
820 	++preempt_miss;
821 	need_lwkt_resched();
822 	return;
823     }
824     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
825 	++preempt_weird;
826 	need_lwkt_resched();
827 	return;
828     }
829     if (ntd->td_preempted) {
830 	++preempt_hit;
831 	need_lwkt_resched();
832 	return;
833     }
834 #ifdef SMP
835     /*
836      * note: an interrupt might have occured just as we were transitioning
837      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
838      * (non-zero) but not actually synchronized with the actual state of the
839      * lock.  We can use it to imply an MP lock requirement for the
840      * preemption but we cannot use it to test whether we hold the MP lock
841      * or not.
842      */
843     savecnt = td->td_mpcount;
844     mpheld = MP_LOCK_HELD();
845     ntd->td_mpcount += td->td_mpcount;
846     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
847 	ntd->td_mpcount -= td->td_mpcount;
848 	++preempt_miss;
849 	need_lwkt_resched();
850 	return;
851     }
852 #endif
853 
854     /*
855      * Since we are able to preempt the current thread, there is no need to
856      * call need_lwkt_resched().
857      */
858     ++preempt_hit;
859     ntd->td_preempted = td;
860     td->td_flags |= TDF_PREEMPT_LOCK;
861     td->td_switch(ntd);
862     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
863 #ifdef SMP
864     KKASSERT(savecnt == td->td_mpcount);
865     mpheld = MP_LOCK_HELD();
866     if (mpheld && td->td_mpcount == 0)
867 	cpu_rel_mplock();
868     else if (mpheld == 0 && td->td_mpcount)
869 	panic("lwkt_preempt(): MP lock was not held through");
870 #endif
871     ntd->td_preempted = NULL;
872     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
873 }
874 
875 /*
876  * Yield our thread while higher priority threads are pending.  This is
877  * typically called when we leave a critical section but it can be safely
878  * called while we are in a critical section.
879  *
880  * This function will not generally yield to equal priority threads but it
881  * can occur as a side effect.  Note that lwkt_switch() is called from
882  * inside the critical section to prevent its own crit_exit() from reentering
883  * lwkt_yield_quick().
884  *
885  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
886  * came along but was blocked and made pending.
887  *
888  * (self contained on a per cpu basis)
889  */
890 void
891 lwkt_yield_quick(void)
892 {
893     globaldata_t gd = mycpu;
894     thread_t td = gd->gd_curthread;
895 
896     /*
897      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
898      * it with a non-zero cpl then we might not wind up calling splz after
899      * a task switch when the critical section is exited even though the
900      * new task could accept the interrupt.
901      *
902      * XXX from crit_exit() only called after last crit section is released.
903      * If called directly will run splz() even if in a critical section.
904      *
905      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
906      * except for this special case, we MUST call splz() here to handle any
907      * pending ints, particularly after we switch, or we might accidently
908      * halt the cpu with interrupts pending.
909      */
910     if (gd->gd_reqflags && td->td_nest_count < 2)
911 	splz();
912 
913     /*
914      * YYY enabling will cause wakeup() to task-switch, which really
915      * confused the old 4.x code.  This is a good way to simulate
916      * preemption and MP without actually doing preemption or MP, because a
917      * lot of code assumes that wakeup() does not block.
918      */
919     if (untimely_switch && td->td_nest_count == 0 &&
920 	gd->gd_intr_nesting_level == 0
921     ) {
922 	crit_enter_quick(td);
923 	/*
924 	 * YYY temporary hacks until we disassociate the userland scheduler
925 	 * from the LWKT scheduler.
926 	 */
927 	if (td->td_flags & TDF_RUNQ) {
928 	    lwkt_switch();		/* will not reenter yield function */
929 	} else {
930 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
931 	    lwkt_switch();		/* will not reenter yield function */
932 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
933 	}
934 	crit_exit_noyield(td);
935     }
936 }
937 
938 /*
939  * This implements a normal yield which, unlike _quick, will yield to equal
940  * priority threads as well.  Note that gd_reqflags tests will be handled by
941  * the crit_exit() call in lwkt_switch().
942  *
943  * (self contained on a per cpu basis)
944  */
945 void
946 lwkt_yield(void)
947 {
948     lwkt_schedule_self(curthread);
949     lwkt_switch();
950 }
951 
952 /*
953  * Generic schedule.  Possibly schedule threads belonging to other cpus and
954  * deal with threads that might be blocked on a wait queue.
955  *
956  * We have a little helper inline function which does additional work after
957  * the thread has been enqueued, including dealing with preemption and
958  * setting need_lwkt_resched() (which prevents the kernel from returning
959  * to userland until it has processed higher priority threads).
960  *
961  * It is possible for this routine to be called after a failed _enqueue
962  * (due to the target thread migrating, sleeping, or otherwise blocked).
963  * We have to check that the thread is actually on the run queue!
964  */
965 static __inline
966 void
967 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
968 {
969     if (ntd->td_flags & TDF_RUNQ) {
970 	if (ntd->td_preemptable) {
971 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
972 	} else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
973 	    (ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
974 	) {
975 	    need_lwkt_resched();
976 	}
977     }
978 }
979 
980 void
981 lwkt_schedule(thread_t td)
982 {
983     globaldata_t mygd = mycpu;
984 
985     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
986     crit_enter_gd(mygd);
987     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
988     if (td == mygd->gd_curthread) {
989 	_lwkt_enqueue(td);
990     } else {
991 	/*
992 	 * If we own the thread, there is no race (since we are in a
993 	 * critical section).  If we do not own the thread there might
994 	 * be a race but the target cpu will deal with it.
995 	 */
996 #ifdef SMP
997 	if (td->td_gd == mygd) {
998 	    _lwkt_enqueue(td);
999 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1000 	} else {
1001 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1002 	}
1003 #else
1004 	_lwkt_enqueue(td);
1005 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1006 #endif
1007     }
1008     crit_exit_gd(mygd);
1009 }
1010 
1011 #ifdef SMP
1012 
1013 /*
1014  * Thread migration using a 'Pull' method.  The thread may or may not be
1015  * the current thread.  It MUST be descheduled and in a stable state.
1016  * lwkt_giveaway() must be called on the cpu owning the thread.
1017  *
1018  * At any point after lwkt_giveaway() is called, the target cpu may
1019  * 'pull' the thread by calling lwkt_acquire().
1020  *
1021  * MPSAFE - must be called under very specific conditions.
1022  */
1023 void
1024 lwkt_giveaway(thread_t td)
1025 {
1026 	globaldata_t gd = mycpu;
1027 
1028 	crit_enter_gd(gd);
1029 	KKASSERT(td->td_gd == gd);
1030 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1031 	td->td_flags |= TDF_MIGRATING;
1032 	crit_exit_gd(gd);
1033 }
1034 
1035 void
1036 lwkt_acquire(thread_t td)
1037 {
1038     globaldata_t gd;
1039     globaldata_t mygd;
1040 
1041     KKASSERT(td->td_flags & TDF_MIGRATING);
1042     gd = td->td_gd;
1043     mygd = mycpu;
1044     if (gd != mycpu) {
1045 	cpu_lfence();
1046 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1047 	crit_enter_gd(mygd);
1048 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1049 #ifdef SMP
1050 	    lwkt_process_ipiq();
1051 #endif
1052 	    cpu_lfence();
1053 	}
1054 	td->td_gd = mygd;
1055 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1056 	td->td_flags &= ~TDF_MIGRATING;
1057 	crit_exit_gd(mygd);
1058     } else {
1059 	crit_enter_gd(mygd);
1060 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1061 	td->td_flags &= ~TDF_MIGRATING;
1062 	crit_exit_gd(mygd);
1063     }
1064 }
1065 
1066 #endif
1067 
1068 /*
1069  * Generic deschedule.  Descheduling threads other then your own should be
1070  * done only in carefully controlled circumstances.  Descheduling is
1071  * asynchronous.
1072  *
1073  * This function may block if the cpu has run out of messages.
1074  */
1075 void
1076 lwkt_deschedule(thread_t td)
1077 {
1078     crit_enter();
1079 #ifdef SMP
1080     if (td == curthread) {
1081 	_lwkt_dequeue(td);
1082     } else {
1083 	if (td->td_gd == mycpu) {
1084 	    _lwkt_dequeue(td);
1085 	} else {
1086 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1087 	}
1088     }
1089 #else
1090     _lwkt_dequeue(td);
1091 #endif
1092     crit_exit();
1093 }
1094 
1095 /*
1096  * Set the target thread's priority.  This routine does not automatically
1097  * switch to a higher priority thread, LWKT threads are not designed for
1098  * continuous priority changes.  Yield if you want to switch.
1099  *
1100  * We have to retain the critical section count which uses the high bits
1101  * of the td_pri field.  The specified priority may also indicate zero or
1102  * more critical sections by adding TDPRI_CRIT*N.
1103  *
1104  * Note that we requeue the thread whether it winds up on a different runq
1105  * or not.  uio_yield() depends on this and the routine is not normally
1106  * called with the same priority otherwise.
1107  */
1108 void
1109 lwkt_setpri(thread_t td, int pri)
1110 {
1111     KKASSERT(pri >= 0);
1112     KKASSERT(td->td_gd == mycpu);
1113     crit_enter();
1114     if (td->td_flags & TDF_RUNQ) {
1115 	_lwkt_dequeue(td);
1116 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1117 	_lwkt_enqueue(td);
1118     } else {
1119 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1120     }
1121     crit_exit();
1122 }
1123 
1124 void
1125 lwkt_setpri_self(int pri)
1126 {
1127     thread_t td = curthread;
1128 
1129     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1130     crit_enter();
1131     if (td->td_flags & TDF_RUNQ) {
1132 	_lwkt_dequeue(td);
1133 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1134 	_lwkt_enqueue(td);
1135     } else {
1136 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1137     }
1138     crit_exit();
1139 }
1140 
1141 /*
1142  * Determine if there is a runnable thread at a higher priority then
1143  * the current thread.  lwkt_setpri() does not check this automatically.
1144  * Return 1 if there is, 0 if there isn't.
1145  *
1146  * Example: if bit 31 of runqmask is set and the current thread is priority
1147  * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.
1148  *
1149  * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1150  * up comparing against 0xffffffff, a comparison that will always be false.
1151  */
1152 int
1153 lwkt_checkpri_self(void)
1154 {
1155     globaldata_t gd = mycpu;
1156     thread_t td = gd->gd_curthread;
1157     int nq = td->td_pri & TDPRI_MASK;
1158 
1159     while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1160 	if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1161 	    return(1);
1162 	++nq;
1163     }
1164     return(0);
1165 }
1166 
1167 /*
1168  * Migrate the current thread to the specified cpu.
1169  *
1170  * This is accomplished by descheduling ourselves from the current cpu,
1171  * moving our thread to the tdallq of the target cpu, IPI messaging the
1172  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1173  * races while the thread is being migrated.
1174  */
1175 #ifdef SMP
1176 static void lwkt_setcpu_remote(void *arg);
1177 #endif
1178 
1179 void
1180 lwkt_setcpu_self(globaldata_t rgd)
1181 {
1182 #ifdef SMP
1183     thread_t td = curthread;
1184 
1185     if (td->td_gd != rgd) {
1186 	crit_enter_quick(td);
1187 	td->td_flags |= TDF_MIGRATING;
1188 	lwkt_deschedule_self(td);
1189 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1190 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1191 	lwkt_switch();
1192 	/* we are now on the target cpu */
1193 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1194 	crit_exit_quick(td);
1195     }
1196 #endif
1197 }
1198 
1199 void
1200 lwkt_migratecpu(int cpuid)
1201 {
1202 #ifdef SMP
1203 	globaldata_t rgd;
1204 
1205 	rgd = globaldata_find(cpuid);
1206 	lwkt_setcpu_self(rgd);
1207 #endif
1208 }
1209 
1210 /*
1211  * Remote IPI for cpu migration (called while in a critical section so we
1212  * do not have to enter another one).  The thread has already been moved to
1213  * our cpu's allq, but we must wait for the thread to be completely switched
1214  * out on the originating cpu before we schedule it on ours or the stack
1215  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1216  * change to main memory.
1217  *
1218  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1219  * against wakeups.  It is best if this interface is used only when there
1220  * are no pending events that might try to schedule the thread.
1221  */
1222 #ifdef SMP
1223 static void
1224 lwkt_setcpu_remote(void *arg)
1225 {
1226     thread_t td = arg;
1227     globaldata_t gd = mycpu;
1228 
1229     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1230 #ifdef SMP
1231 	lwkt_process_ipiq();
1232 #endif
1233 	cpu_lfence();
1234     }
1235     td->td_gd = gd;
1236     cpu_sfence();
1237     td->td_flags &= ~TDF_MIGRATING;
1238     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1239     _lwkt_enqueue(td);
1240 }
1241 #endif
1242 
1243 struct lwp *
1244 lwkt_preempted_proc(void)
1245 {
1246     thread_t td = curthread;
1247     while (td->td_preempted)
1248 	td = td->td_preempted;
1249     return(td->td_lwp);
1250 }
1251 
1252 /*
1253  * Create a kernel process/thread/whatever.  It shares it's address space
1254  * with proc0 - ie: kernel only.
1255  *
1256  * NOTE!  By default new threads are created with the MP lock held.  A
1257  * thread which does not require the MP lock should release it by calling
1258  * rel_mplock() at the start of the new thread.
1259  */
1260 int
1261 lwkt_create(void (*func)(void *), void *arg,
1262     struct thread **tdp, thread_t template, int tdflags, int cpu,
1263     const char *fmt, ...)
1264 {
1265     thread_t td;
1266     __va_list ap;
1267 
1268     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1269 			   tdflags);
1270     if (tdp)
1271 	*tdp = td;
1272     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1273 
1274     /*
1275      * Set up arg0 for 'ps' etc
1276      */
1277     __va_start(ap, fmt);
1278     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1279     __va_end(ap);
1280 
1281     /*
1282      * Schedule the thread to run
1283      */
1284     if ((td->td_flags & TDF_STOPREQ) == 0)
1285 	lwkt_schedule(td);
1286     else
1287 	td->td_flags &= ~TDF_STOPREQ;
1288     return 0;
1289 }
1290 
1291 /*
1292  * Destroy an LWKT thread.   Warning!  This function is not called when
1293  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1294  * uses a different reaping mechanism.
1295  */
1296 void
1297 lwkt_exit(void)
1298 {
1299     thread_t td = curthread;
1300     thread_t std;
1301     globaldata_t gd;
1302 
1303     if (td->td_flags & TDF_VERBOSE)
1304 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1305     caps_exit(td);
1306 
1307     /*
1308      * Get us into a critical section to interlock gd_freetd and loop
1309      * until we can get it freed.
1310      *
1311      * We have to cache the current td in gd_freetd because objcache_put()ing
1312      * it would rip it out from under us while our thread is still active.
1313      */
1314     gd = mycpu;
1315     crit_enter_quick(td);
1316     while ((std = gd->gd_freetd) != NULL) {
1317 	gd->gd_freetd = NULL;
1318 	objcache_put(thread_cache, std);
1319     }
1320     lwkt_deschedule_self(td);
1321     lwkt_remove_tdallq(td);
1322     if (td->td_flags & TDF_ALLOCATED_THREAD)
1323 	gd->gd_freetd = td;
1324     cpu_thread_exit();
1325 }
1326 
1327 void
1328 lwkt_remove_tdallq(thread_t td)
1329 {
1330     KKASSERT(td->td_gd == mycpu);
1331     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1332 }
1333 
1334 void
1335 crit_panic(void)
1336 {
1337     thread_t td = curthread;
1338     int lpri = td->td_pri;
1339 
1340     td->td_pri = 0;
1341     panic("td_pri is/would-go negative! %p %d", td, lpri);
1342 }
1343 
1344 #ifdef SMP
1345 
1346 /*
1347  * Called from debugger/panic on cpus which have been stopped.  We must still
1348  * process the IPIQ while stopped, even if we were stopped while in a critical
1349  * section (XXX).
1350  *
1351  * If we are dumping also try to process any pending interrupts.  This may
1352  * or may not work depending on the state of the cpu at the point it was
1353  * stopped.
1354  */
1355 void
1356 lwkt_smp_stopped(void)
1357 {
1358     globaldata_t gd = mycpu;
1359 
1360     crit_enter_gd(gd);
1361     if (dumping) {
1362 	lwkt_process_ipiq();
1363 	splz();
1364     } else {
1365 	lwkt_process_ipiq();
1366     }
1367     crit_exit_gd(gd);
1368 }
1369 
1370 /*
1371  * get_mplock() calls this routine if it is unable to obtain the MP lock.
1372  * get_mplock() has already incremented td_mpcount.  We must block and
1373  * not return until giant is held.
1374  *
1375  * All we have to do is lwkt_switch() away.  The LWKT scheduler will not
1376  * reschedule the thread until it can obtain the giant lock for it.
1377  */
1378 void
1379 lwkt_mp_lock_contested(void)
1380 {
1381     loggiant(beg);
1382     lwkt_switch();
1383     loggiant(end);
1384 }
1385 
1386 #endif
1387