xref: /dragonfly/sys/kern/lwkt_thread.c (revision 52cb6762)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59 
60 #include <sys/dsched.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70 
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 
74 #ifdef _KERNEL_VIRTUAL
75 #include <pthread.h>
76 #endif
77 
78 #if !defined(KTR_CTXSW)
79 #define KTR_CTXSW KTR_ALL
80 #endif
81 KTR_INFO_MASTER(ctxsw);
82 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
83 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
84 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
86 
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88 
89 #ifdef	INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static int64_t switch_count = 0;
93 static int64_t preempt_hit = 0;
94 static int64_t preempt_miss = 0;
95 static int64_t preempt_weird = 0;
96 static int lwkt_use_spin_port;
97 static struct objcache *thread_cache;
98 int cpu_mwait_spin = 0;
99 
100 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
101 static void lwkt_setcpu_remote(void *arg);
102 
103 /*
104  * We can make all thread ports use the spin backend instead of the thread
105  * backend.  This should only be set to debug the spin backend.
106  */
107 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
108 
109 #ifdef	INVARIANTS
110 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
111     "Panic if attempting to switch lwkt's while mastering cpusync");
112 #endif
113 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
114     "Number of switched threads");
115 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
116     "Successful preemption events");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
118     "Failed preemption events");
119 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
120     "Number of preempted threads.");
121 static int fairq_enable = 0;
122 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
123 	&fairq_enable, 0, "Turn on fairq priority accumulators");
124 static int fairq_bypass = -1;
125 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
126 	&fairq_bypass, 0, "Allow fairq to bypass td on token failure");
127 extern int lwkt_sched_debug;
128 int lwkt_sched_debug = 0;
129 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
130 	&lwkt_sched_debug, 0, "Scheduler debug");
131 static int lwkt_spin_loops = 10;
132 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
133 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
134 static int preempt_enable = 1;
135 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
136 	&preempt_enable, 0, "Enable preemption");
137 static int lwkt_cache_threads = 0;
138 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
139 	&lwkt_cache_threads, 0, "thread+kstack cache");
140 
141 /*
142  * These helper procedures handle the runq, they can only be called from
143  * within a critical section.
144  *
145  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
146  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
147  * instead of 'mycpu' when referencing the globaldata structure.   Once
148  * SMP live enqueuing and dequeueing only occurs on the current cpu.
149  */
150 static __inline
151 void
152 _lwkt_dequeue(thread_t td)
153 {
154     if (td->td_flags & TDF_RUNQ) {
155 	struct globaldata *gd = td->td_gd;
156 
157 	td->td_flags &= ~TDF_RUNQ;
158 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
159 	--gd->gd_tdrunqcount;
160 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
161 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
162     }
163 }
164 
165 /*
166  * Priority enqueue.
167  *
168  * There are a limited number of lwkt threads runnable since user
169  * processes only schedule one at a time per cpu.  However, there can
170  * be many user processes in kernel mode exiting from a tsleep() which
171  * become runnable.
172  *
173  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
174  *	 will ignore user priority.  This is to ensure that user threads in
175  *	 kernel mode get cpu at some point regardless of what the user
176  *	 scheduler thinks.
177  */
178 static __inline
179 void
180 _lwkt_enqueue(thread_t td)
181 {
182     thread_t xtd;
183 
184     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
185 	struct globaldata *gd = td->td_gd;
186 
187 	td->td_flags |= TDF_RUNQ;
188 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
189 	if (xtd == NULL) {
190 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
191 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
192 	} else {
193 	    /*
194 	     * NOTE: td_upri - higher numbers more desireable, same sense
195 	     *	     as td_pri (typically reversed from lwp_upri).
196 	     *
197 	     *	     In the equal priority case we want the best selection
198 	     *	     at the beginning so the less desireable selections know
199 	     *	     that they have to setrunqueue/go-to-another-cpu, even
200 	     *	     though it means switching back to the 'best' selection.
201 	     *	     This also avoids degenerate situations when many threads
202 	     *	     are runnable or waking up at the same time.
203 	     *
204 	     *	     If upri matches exactly place at end/round-robin.
205 	     */
206 	    while (xtd &&
207 		   (xtd->td_pri >= td->td_pri ||
208 		    (xtd->td_pri == td->td_pri &&
209 		     xtd->td_upri >= td->td_upri))) {
210 		xtd = TAILQ_NEXT(xtd, td_threadq);
211 	    }
212 	    if (xtd)
213 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
214 	    else
215 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
216 	}
217 	++gd->gd_tdrunqcount;
218 
219 	/*
220 	 * Request a LWKT reschedule if we are now at the head of the queue.
221 	 */
222 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
223 	    need_lwkt_resched();
224     }
225 }
226 
227 static boolean_t
228 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
229 {
230 	struct thread *td = (struct thread *)obj;
231 
232 	td->td_kstack = NULL;
233 	td->td_kstack_size = 0;
234 	td->td_flags = TDF_ALLOCATED_THREAD;
235 	td->td_mpflags = 0;
236 	return (1);
237 }
238 
239 static void
240 _lwkt_thread_dtor(void *obj, void *privdata)
241 {
242 	struct thread *td = (struct thread *)obj;
243 
244 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
245 	    ("_lwkt_thread_dtor: not allocated from objcache"));
246 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
247 		td->td_kstack_size > 0,
248 	    ("_lwkt_thread_dtor: corrupted stack"));
249 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
250 	td->td_kstack = NULL;
251 	td->td_flags = 0;
252 }
253 
254 /*
255  * Initialize the lwkt s/system.
256  *
257  * Nominally cache up to 32 thread + kstack structures.  Cache more on
258  * systems with a lot of cpu cores.
259  */
260 static void
261 lwkt_init(void)
262 {
263     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
264     if (lwkt_cache_threads == 0) {
265 	lwkt_cache_threads = ncpus * 4;
266 	if (lwkt_cache_threads < 32)
267 	    lwkt_cache_threads = 32;
268     }
269     thread_cache = objcache_create_mbacked(
270 				M_THREAD, sizeof(struct thread),
271 				0, lwkt_cache_threads,
272 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
273 }
274 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
275 
276 /*
277  * Schedule a thread to run.  As the current thread we can always safely
278  * schedule ourselves, and a shortcut procedure is provided for that
279  * function.
280  *
281  * (non-blocking, self contained on a per cpu basis)
282  */
283 void
284 lwkt_schedule_self(thread_t td)
285 {
286     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
287     crit_enter_quick(td);
288     KASSERT(td != &td->td_gd->gd_idlethread,
289 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
290     KKASSERT(td->td_lwp == NULL ||
291 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
292     _lwkt_enqueue(td);
293     crit_exit_quick(td);
294 }
295 
296 /*
297  * Deschedule a thread.
298  *
299  * (non-blocking, self contained on a per cpu basis)
300  */
301 void
302 lwkt_deschedule_self(thread_t td)
303 {
304     crit_enter_quick(td);
305     _lwkt_dequeue(td);
306     crit_exit_quick(td);
307 }
308 
309 /*
310  * LWKTs operate on a per-cpu basis
311  *
312  * WARNING!  Called from early boot, 'mycpu' may not work yet.
313  */
314 void
315 lwkt_gdinit(struct globaldata *gd)
316 {
317     TAILQ_INIT(&gd->gd_tdrunq);
318     TAILQ_INIT(&gd->gd_tdallq);
319 }
320 
321 /*
322  * Create a new thread.  The thread must be associated with a process context
323  * or LWKT start address before it can be scheduled.  If the target cpu is
324  * -1 the thread will be created on the current cpu.
325  *
326  * If you intend to create a thread without a process context this function
327  * does everything except load the startup and switcher function.
328  */
329 thread_t
330 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
331 {
332     static int cpu_rotator;
333     globaldata_t gd = mycpu;
334     void *stack;
335 
336     /*
337      * If static thread storage is not supplied allocate a thread.  Reuse
338      * a cached free thread if possible.  gd_freetd is used to keep an exiting
339      * thread intact through the exit.
340      */
341     if (td == NULL) {
342 	crit_enter_gd(gd);
343 	if ((td = gd->gd_freetd) != NULL) {
344 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
345 				      TDF_RUNQ)) == 0);
346 	    gd->gd_freetd = NULL;
347 	} else {
348 	    td = objcache_get(thread_cache, M_WAITOK);
349 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
350 				      TDF_RUNQ)) == 0);
351 	}
352 	crit_exit_gd(gd);
353     	KASSERT((td->td_flags &
354 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
355 		 TDF_ALLOCATED_THREAD,
356 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
357     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
358     }
359 
360     /*
361      * Try to reuse cached stack.
362      */
363     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
364 	if (flags & TDF_ALLOCATED_STACK) {
365 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
366 	    stack = NULL;
367 	}
368     }
369     if (stack == NULL) {
370 	stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
371 	flags |= TDF_ALLOCATED_STACK;
372     }
373     if (cpu < 0) {
374 	cpu = ++cpu_rotator;
375 	cpu_ccfence();
376 	cpu %= ncpus;
377     }
378     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
379     return(td);
380 }
381 
382 /*
383  * Initialize a preexisting thread structure.  This function is used by
384  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
385  *
386  * All threads start out in a critical section at a priority of
387  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
388  * appropriate.  This function may send an IPI message when the
389  * requested cpu is not the current cpu and consequently gd_tdallq may
390  * not be initialized synchronously from the point of view of the originating
391  * cpu.
392  *
393  * NOTE! we have to be careful in regards to creating threads for other cpus
394  * if SMP has not yet been activated.
395  */
396 static void
397 lwkt_init_thread_remote(void *arg)
398 {
399     thread_t td = arg;
400 
401     /*
402      * Protected by critical section held by IPI dispatch
403      */
404     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
405 }
406 
407 /*
408  * lwkt core thread structural initialization.
409  *
410  * NOTE: All threads are initialized as mpsafe threads.
411  */
412 void
413 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
414 		struct globaldata *gd)
415 {
416     globaldata_t mygd = mycpu;
417 
418     bzero(td, sizeof(struct thread));
419     td->td_kstack = stack;
420     td->td_kstack_size = stksize;
421     td->td_flags = flags;
422     td->td_mpflags = 0;
423     td->td_type = TD_TYPE_GENERIC;
424     td->td_gd = gd;
425     td->td_pri = TDPRI_KERN_DAEMON;
426     td->td_critcount = 1;
427     td->td_toks_have = NULL;
428     td->td_toks_stop = &td->td_toks_base;
429     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
430 	lwkt_initport_spin(&td->td_msgport, td,
431 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
432     } else {
433 	lwkt_initport_thread(&td->td_msgport, td);
434     }
435     pmap_init_thread(td);
436     /*
437      * Normally initializing a thread for a remote cpu requires sending an
438      * IPI.  However, the idlethread is setup before the other cpus are
439      * activated so we have to treat it as a special case.  XXX manipulation
440      * of gd_tdallq requires the BGL.
441      */
442     if (gd == mygd || td == &gd->gd_idlethread) {
443 	crit_enter_gd(mygd);
444 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
445 	crit_exit_gd(mygd);
446     } else {
447 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
448     }
449     dsched_enter_thread(td);
450 }
451 
452 void
453 lwkt_set_comm(thread_t td, const char *ctl, ...)
454 {
455     __va_list va;
456 
457     __va_start(va, ctl);
458     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
459     __va_end(va);
460     KTR_LOG(ctxsw_newtd, td, td->td_comm);
461 }
462 
463 /*
464  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
465  * this does not prevent the thread from migrating to another cpu so the
466  * gd_tdallq state is not protected by this.
467  */
468 void
469 lwkt_hold(thread_t td)
470 {
471     atomic_add_int(&td->td_refs, 1);
472 }
473 
474 void
475 lwkt_rele(thread_t td)
476 {
477     KKASSERT(td->td_refs > 0);
478     atomic_add_int(&td->td_refs, -1);
479 }
480 
481 void
482 lwkt_free_thread(thread_t td)
483 {
484     KKASSERT(td->td_refs == 0);
485     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
486 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
487     if (td->td_flags & TDF_ALLOCATED_THREAD) {
488     	objcache_put(thread_cache, td);
489     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
490 	/* client-allocated struct with internally allocated stack */
491 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
492 	    ("lwkt_free_thread: corrupted stack"));
493 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
494 	td->td_kstack = NULL;
495 	td->td_kstack_size = 0;
496     }
497 
498     KTR_LOG(ctxsw_deadtd, td);
499 }
500 
501 
502 /*
503  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
504  * switch to the idlethread.  Switching must occur within a critical
505  * section to avoid races with the scheduling queue.
506  *
507  * We always have full control over our cpu's run queue.  Other cpus
508  * that wish to manipulate our queue must use the cpu_*msg() calls to
509  * talk to our cpu, so a critical section is all that is needed and
510  * the result is very, very fast thread switching.
511  *
512  * The LWKT scheduler uses a fixed priority model and round-robins at
513  * each priority level.  User process scheduling is a totally
514  * different beast and LWKT priorities should not be confused with
515  * user process priorities.
516  *
517  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
518  * is not called by the current thread in the preemption case, only when
519  * the preempting thread blocks (in order to return to the original thread).
520  *
521  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
522  * migration and tsleep deschedule the current lwkt thread and call
523  * lwkt_switch().  In particular, the target cpu of the migration fully
524  * expects the thread to become non-runnable and can deadlock against
525  * cpusync operations if we run any IPIs prior to switching the thread out.
526  *
527  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
528  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
529  */
530 void
531 lwkt_switch(void)
532 {
533     globaldata_t gd = mycpu;
534     thread_t td = gd->gd_curthread;
535     thread_t ntd;
536     int upri;
537 
538     KKASSERT(gd->gd_processing_ipiq == 0);
539     KKASSERT(td->td_flags & TDF_RUNNING);
540 
541     /*
542      * Switching from within a 'fast' (non thread switched) interrupt or IPI
543      * is illegal.  However, we may have to do it anyway if we hit a fatal
544      * kernel trap or we have paniced.
545      *
546      * If this case occurs save and restore the interrupt nesting level.
547      */
548     if (gd->gd_intr_nesting_level) {
549 	int savegdnest;
550 	int savegdtrap;
551 
552 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
553 	    panic("lwkt_switch: Attempt to switch from a "
554 		  "fast interrupt, ipi, or hard code section, "
555 		  "td %p\n",
556 		  td);
557 	} else {
558 	    savegdnest = gd->gd_intr_nesting_level;
559 	    savegdtrap = gd->gd_trap_nesting_level;
560 	    gd->gd_intr_nesting_level = 0;
561 	    gd->gd_trap_nesting_level = 0;
562 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
563 		td->td_flags |= TDF_PANICWARN;
564 		kprintf("Warning: thread switch from interrupt, IPI, "
565 			"or hard code section.\n"
566 			"thread %p (%s)\n", td, td->td_comm);
567 		print_backtrace(-1);
568 	    }
569 	    lwkt_switch();
570 	    gd->gd_intr_nesting_level = savegdnest;
571 	    gd->gd_trap_nesting_level = savegdtrap;
572 	    return;
573 	}
574     }
575 
576     /*
577      * Release our current user process designation if we are blocking
578      * or if a user reschedule was requested.
579      *
580      * NOTE: This function is NOT called if we are switching into or
581      *	     returning from a preemption.
582      *
583      * NOTE: Releasing our current user process designation may cause
584      *	     it to be assigned to another thread, which in turn will
585      *	     cause us to block in the usched acquire code when we attempt
586      *	     to return to userland.
587      *
588      * NOTE: On SMP systems this can be very nasty when heavy token
589      *	     contention is present so we want to be careful not to
590      *	     release the designation gratuitously.
591      */
592     if (td->td_release &&
593 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
594 	    td->td_release(td);
595     }
596 
597     /*
598      * Release all tokens.  Once we do this we must remain in the critical
599      * section and cannot run IPIs or other interrupts until we switch away
600      * because they may implode if they try to get a token using our thread
601      * context.
602      */
603     crit_enter_gd(gd);
604     if (TD_TOKS_HELD(td))
605 	    lwkt_relalltokens(td);
606 
607     /*
608      * We had better not be holding any spin locks, but don't get into an
609      * endless panic loop.
610      */
611     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
612 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
613 	     gd->gd_spinlocks));
614 
615 #ifdef	INVARIANTS
616     if (td->td_cscount) {
617 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
618 		td);
619 	if (panic_on_cscount)
620 	    panic("switching while mastering cpusync");
621     }
622 #endif
623 
624     /*
625      * If we had preempted another thread on this cpu, resume the preempted
626      * thread.  This occurs transparently, whether the preempted thread
627      * was scheduled or not (it may have been preempted after descheduling
628      * itself).
629      *
630      * We have to setup the MP lock for the original thread after backing
631      * out the adjustment that was made to curthread when the original
632      * was preempted.
633      */
634     if ((ntd = td->td_preempted) != NULL) {
635 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
636 	ntd->td_flags |= TDF_PREEMPT_DONE;
637 
638 	/*
639 	 * The interrupt may have woken a thread up, we need to properly
640 	 * set the reschedule flag if the originally interrupted thread is
641 	 * at a lower priority.
642 	 *
643 	 * The interrupt may not have descheduled.
644 	 */
645 	if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
646 	    need_lwkt_resched();
647 	goto havethread_preempted;
648     }
649 
650     /*
651      * Figure out switch target.  If we cannot switch to our desired target
652      * look for a thread that we can switch to.
653      *
654      * NOTE! The limited spin loop and related parameters are extremely
655      *	     important for system performance, particularly for pipes and
656      *	     concurrent conflicting VM faults.
657      */
658     clear_lwkt_resched();
659     ntd = TAILQ_FIRST(&gd->gd_tdrunq);
660 
661     if (ntd) {
662 	do {
663 	    if (TD_TOKS_NOT_HELD(ntd) ||
664 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
665 	    {
666 		goto havethread;
667 	    }
668 	    ++gd->gd_cnt.v_lock_colls;
669 	    ++ntd->td_contended;
670 	} while (ntd->td_contended < (lwkt_spin_loops >> 1));
671 	upri = ntd->td_upri;
672 
673 	/*
674 	 * Bleh, the thread we wanted to switch to has a contended token.
675 	 * See if we can switch to another thread.
676 	 *
677 	 * We generally don't want to do this because it represents a
678 	 * priority inversion.  Do not allow the case if the thread
679 	 * is returning to userland (not a kernel thread) AND the thread
680 	 * has a lower upri.
681 	 */
682 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
683 	    if (ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri)
684 		break;
685 	    upri = ntd->td_upri;
686 
687 	    /*
688 	     * Try this one.
689 	     */
690 	    if (TD_TOKS_NOT_HELD(ntd) ||
691 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
692 		    goto havethread;
693 	    }
694 	    ++ntd->td_contended;
695 	    ++gd->gd_cnt.v_lock_colls;
696 	}
697 
698 	/*
699 	 * Fall through, switch to idle thread to get us out of the current
700 	 * context.  Since we were contended, prevent HLT by flagging a
701 	 * LWKT reschedule.
702 	 */
703 	need_lwkt_resched();
704     }
705 
706     /*
707      * We either contended on ntd or the runq is empty.  We must switch
708      * through the idle thread to get out of the current context.
709      */
710     ntd = &gd->gd_idlethread;
711     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
712 	ASSERT_NO_TOKENS_HELD(ntd);
713     cpu_time.cp_msg[0] = 0;
714     goto haveidle;
715 
716 havethread:
717     /*
718      * Clear gd_idle_repeat when doing a normal switch to a non-idle
719      * thread.
720      */
721     ntd->td_wmesg = NULL;
722     ntd->td_contended = 0;
723     ++gd->gd_cnt.v_swtch;
724     gd->gd_idle_repeat = 0;
725 
726 havethread_preempted:
727     /*
728      * If the new target does not need the MP lock and we are holding it,
729      * release the MP lock.  If the new target requires the MP lock we have
730      * already acquired it for the target.
731      */
732     ;
733 haveidle:
734     KASSERT(ntd->td_critcount,
735 	    ("priority problem in lwkt_switch %d %d",
736 	    td->td_critcount, ntd->td_critcount));
737 
738     if (td != ntd) {
739 	/*
740 	 * Execute the actual thread switch operation.  This function
741 	 * returns to the current thread and returns the previous thread
742 	 * (which may be different from the thread we switched to).
743 	 *
744 	 * We are responsible for marking ntd as TDF_RUNNING.
745 	 */
746 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
747 	++switch_count;
748 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
749 	ntd->td_flags |= TDF_RUNNING;
750 	lwkt_switch_return(td->td_switch(ntd));
751 	/* ntd invalid, td_switch() can return a different thread_t */
752     }
753 
754     /*
755      * catch-all.  XXX is this strictly needed?
756      */
757     splz_check();
758 
759     /* NOTE: current cpu may have changed after switch */
760     crit_exit_quick(td);
761 }
762 
763 /*
764  * Called by assembly in the td_switch (thread restore path) for thread
765  * bootstrap cases which do not 'return' to lwkt_switch().
766  */
767 void
768 lwkt_switch_return(thread_t otd)
769 {
770 	globaldata_t rgd;
771 
772 	/*
773 	 * Check if otd was migrating.  Now that we are on ntd we can finish
774 	 * up the migration.  This is a bit messy but it is the only place
775 	 * where td is known to be fully descheduled.
776 	 *
777 	 * We can only activate the migration if otd was migrating but not
778 	 * held on the cpu due to a preemption chain.  We still have to
779 	 * clear TDF_RUNNING on the old thread either way.
780 	 *
781 	 * We are responsible for clearing the previously running thread's
782 	 * TDF_RUNNING.
783 	 */
784 	if ((rgd = otd->td_migrate_gd) != NULL &&
785 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
786 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
787 			 (TDF_MIGRATING | TDF_RUNNING));
788 		otd->td_migrate_gd = NULL;
789 		otd->td_flags &= ~TDF_RUNNING;
790 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
791 	} else {
792 		otd->td_flags &= ~TDF_RUNNING;
793 	}
794 
795 	/*
796 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
797 	 * invalid the *instant* we set TDF_MP_EXITSIG.
798 	 */
799 	while (otd->td_flags & TDF_EXITING) {
800 		u_int mpflags;
801 
802 		mpflags = otd->td_mpflags;
803 		cpu_ccfence();
804 
805 		if (mpflags & TDF_MP_EXITWAIT) {
806 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
807 					      mpflags | TDF_MP_EXITSIG)) {
808 				wakeup(otd);
809 				break;
810 			}
811 		} else {
812 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
813 					      mpflags | TDF_MP_EXITSIG)) {
814 				wakeup(otd);
815 				break;
816 			}
817 		}
818 	}
819 }
820 
821 /*
822  * Request that the target thread preempt the current thread.  Preemption
823  * can only occur if our only critical section is the one that we were called
824  * with, the relative priority of the target thread is higher, and the target
825  * thread holds no tokens.  This also only works if we are not holding any
826  * spinlocks (obviously).
827  *
828  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
829  * this is called via lwkt_schedule() through the td_preemptable callback.
830  * critcount is the managed critical priority that we should ignore in order
831  * to determine whether preemption is possible (aka usually just the crit
832  * priority of lwkt_schedule() itself).
833  *
834  * Preemption is typically limited to interrupt threads.
835  *
836  * Operation works in a fairly straight-forward manner.  The normal
837  * scheduling code is bypassed and we switch directly to the target
838  * thread.  When the target thread attempts to block or switch away
839  * code at the base of lwkt_switch() will switch directly back to our
840  * thread.  Our thread is able to retain whatever tokens it holds and
841  * if the target needs one of them the target will switch back to us
842  * and reschedule itself normally.
843  */
844 void
845 lwkt_preempt(thread_t ntd, int critcount)
846 {
847     struct globaldata *gd = mycpu;
848     thread_t xtd;
849     thread_t td;
850     int save_gd_intr_nesting_level;
851 
852     /*
853      * The caller has put us in a critical section.  We can only preempt
854      * if the caller of the caller was not in a critical section (basically
855      * a local interrupt), as determined by the 'critcount' parameter.  We
856      * also can't preempt if the caller is holding any spinlocks (even if
857      * he isn't in a critical section).  This also handles the tokens test.
858      *
859      * YYY The target thread must be in a critical section (else it must
860      * inherit our critical section?  I dunno yet).
861      */
862     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
863 
864     td = gd->gd_curthread;
865     if (preempt_enable == 0) {
866 	++preempt_miss;
867 	return;
868     }
869     if (ntd->td_pri <= td->td_pri) {
870 	++preempt_miss;
871 	return;
872     }
873     if (td->td_critcount > critcount) {
874 	++preempt_miss;
875 	return;
876     }
877     if (td->td_cscount) {
878 	++preempt_miss;
879 	return;
880     }
881     if (ntd->td_gd != gd) {
882 	++preempt_miss;
883 	return;
884     }
885     /*
886      * We don't have to check spinlocks here as they will also bump
887      * td_critcount.
888      *
889      * Do not try to preempt if the target thread is holding any tokens.
890      * We could try to acquire the tokens but this case is so rare there
891      * is no need to support it.
892      */
893     KKASSERT(gd->gd_spinlocks == 0);
894 
895     if (TD_TOKS_HELD(ntd)) {
896 	++preempt_miss;
897 	return;
898     }
899     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
900 	++preempt_weird;
901 	return;
902     }
903     if (ntd->td_preempted) {
904 	++preempt_hit;
905 	return;
906     }
907     KKASSERT(gd->gd_processing_ipiq == 0);
908 
909     /*
910      * Since we are able to preempt the current thread, there is no need to
911      * call need_lwkt_resched().
912      *
913      * We must temporarily clear gd_intr_nesting_level around the switch
914      * since switchouts from the target thread are allowed (they will just
915      * return to our thread), and since the target thread has its own stack.
916      *
917      * A preemption must switch back to the original thread, assert the
918      * case.
919      */
920     ++preempt_hit;
921     ntd->td_preempted = td;
922     td->td_flags |= TDF_PREEMPT_LOCK;
923     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
924     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
925     gd->gd_intr_nesting_level = 0;
926 
927     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
928     ntd->td_flags |= TDF_RUNNING;
929     xtd = td->td_switch(ntd);
930     KKASSERT(xtd == ntd);
931     lwkt_switch_return(xtd);
932     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
933 
934     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
935     ntd->td_preempted = NULL;
936     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
937 }
938 
939 /*
940  * Conditionally call splz() if gd_reqflags indicates work is pending.
941  * This will work inside a critical section but not inside a hard code
942  * section.
943  *
944  * (self contained on a per cpu basis)
945  */
946 void
947 splz_check(void)
948 {
949     globaldata_t gd = mycpu;
950     thread_t td = gd->gd_curthread;
951 
952     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
953 	gd->gd_intr_nesting_level == 0 &&
954 	td->td_nest_count < 2)
955     {
956 	splz();
957     }
958 }
959 
960 /*
961  * This version is integrated into crit_exit, reqflags has already
962  * been tested but td_critcount has not.
963  *
964  * We only want to execute the splz() on the 1->0 transition of
965  * critcount and not in a hard code section or if too deeply nested.
966  *
967  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
968  */
969 void
970 lwkt_maybe_splz(thread_t td)
971 {
972     globaldata_t gd = td->td_gd;
973 
974     if (td->td_critcount == 0 &&
975 	gd->gd_intr_nesting_level == 0 &&
976 	td->td_nest_count < 2)
977     {
978 	splz();
979     }
980 }
981 
982 /*
983  * Drivers which set up processing co-threads can call this function to
984  * run the co-thread at a higher priority and to allow it to preempt
985  * normal threads.
986  */
987 void
988 lwkt_set_interrupt_support_thread(void)
989 {
990 	thread_t td = curthread;
991 
992         lwkt_setpri_self(TDPRI_INT_SUPPORT);
993 	td->td_flags |= TDF_INTTHREAD;
994 	td->td_preemptable = lwkt_preempt;
995 }
996 
997 
998 /*
999  * This function is used to negotiate a passive release of the current
1000  * process/lwp designation with the user scheduler, allowing the user
1001  * scheduler to schedule another user thread.  The related kernel thread
1002  * (curthread) continues running in the released state.
1003  */
1004 void
1005 lwkt_passive_release(struct thread *td)
1006 {
1007     struct lwp *lp = td->td_lwp;
1008 
1009     td->td_release = NULL;
1010     lwkt_setpri_self(TDPRI_KERN_USER);
1011 
1012     lp->lwp_proc->p_usched->release_curproc(lp);
1013 }
1014 
1015 
1016 /*
1017  * This implements a LWKT yield, allowing a kernel thread to yield to other
1018  * kernel threads at the same or higher priority.  This function can be
1019  * called in a tight loop and will typically only yield once per tick.
1020  *
1021  * Most kernel threads run at the same priority in order to allow equal
1022  * sharing.
1023  *
1024  * (self contained on a per cpu basis)
1025  */
1026 void
1027 lwkt_yield(void)
1028 {
1029     globaldata_t gd = mycpu;
1030     thread_t td = gd->gd_curthread;
1031 
1032     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1033 	splz();
1034     if (lwkt_resched_wanted()) {
1035 	lwkt_schedule_self(curthread);
1036 	lwkt_switch();
1037     }
1038 }
1039 
1040 /*
1041  * The quick version processes pending interrupts and higher-priority
1042  * LWKT threads but will not round-robin same-priority LWKT threads.
1043  *
1044  * When called while attempting to return to userland the only same-pri
1045  * threads are the ones which have already tried to become the current
1046  * user process.
1047  */
1048 void
1049 lwkt_yield_quick(void)
1050 {
1051     globaldata_t gd = mycpu;
1052     thread_t td = gd->gd_curthread;
1053 
1054     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1055 	splz();
1056     if (lwkt_resched_wanted()) {
1057 	crit_enter();
1058 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1059 	    clear_lwkt_resched();
1060 	} else {
1061 	    lwkt_schedule_self(curthread);
1062 	    lwkt_switch();
1063 	}
1064 	crit_exit();
1065     }
1066 }
1067 
1068 /*
1069  * This yield is designed for kernel threads with a user context.
1070  *
1071  * The kernel acting on behalf of the user is potentially cpu-bound,
1072  * this function will efficiently allow other threads to run and also
1073  * switch to other processes by releasing.
1074  *
1075  * The lwkt_user_yield() function is designed to have very low overhead
1076  * if no yield is determined to be needed.
1077  */
1078 void
1079 lwkt_user_yield(void)
1080 {
1081     globaldata_t gd = mycpu;
1082     thread_t td = gd->gd_curthread;
1083 
1084     /*
1085      * Always run any pending interrupts in case we are in a critical
1086      * section.
1087      */
1088     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1089 	splz();
1090 
1091     /*
1092      * Switch (which forces a release) if another kernel thread needs
1093      * the cpu, if userland wants us to resched, or if our kernel
1094      * quantum has run out.
1095      */
1096     if (lwkt_resched_wanted() ||
1097 	user_resched_wanted())
1098     {
1099 	lwkt_switch();
1100     }
1101 
1102 #if 0
1103     /*
1104      * Reacquire the current process if we are released.
1105      *
1106      * XXX not implemented atm.  The kernel may be holding locks and such,
1107      *     so we want the thread to continue to receive cpu.
1108      */
1109     if (td->td_release == NULL && lp) {
1110 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1111 	td->td_release = lwkt_passive_release;
1112 	lwkt_setpri_self(TDPRI_USER_NORM);
1113     }
1114 #endif
1115 }
1116 
1117 /*
1118  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1119  * deal with threads that might be blocked on a wait queue.
1120  *
1121  * We have a little helper inline function which does additional work after
1122  * the thread has been enqueued, including dealing with preemption and
1123  * setting need_lwkt_resched() (which prevents the kernel from returning
1124  * to userland until it has processed higher priority threads).
1125  *
1126  * It is possible for this routine to be called after a failed _enqueue
1127  * (due to the target thread migrating, sleeping, or otherwise blocked).
1128  * We have to check that the thread is actually on the run queue!
1129  */
1130 static __inline
1131 void
1132 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1133 {
1134     if (ntd->td_flags & TDF_RUNQ) {
1135 	if (ntd->td_preemptable) {
1136 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1137 	}
1138     }
1139 }
1140 
1141 static __inline
1142 void
1143 _lwkt_schedule(thread_t td)
1144 {
1145     globaldata_t mygd = mycpu;
1146 
1147     KASSERT(td != &td->td_gd->gd_idlethread,
1148 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1149     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1150     crit_enter_gd(mygd);
1151     KKASSERT(td->td_lwp == NULL ||
1152 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1153 
1154     if (td == mygd->gd_curthread) {
1155 	_lwkt_enqueue(td);
1156     } else {
1157 	/*
1158 	 * If we own the thread, there is no race (since we are in a
1159 	 * critical section).  If we do not own the thread there might
1160 	 * be a race but the target cpu will deal with it.
1161 	 */
1162 	if (td->td_gd == mygd) {
1163 	    _lwkt_enqueue(td);
1164 	    _lwkt_schedule_post(mygd, td, 1);
1165 	} else {
1166 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1167 	}
1168     }
1169     crit_exit_gd(mygd);
1170 }
1171 
1172 void
1173 lwkt_schedule(thread_t td)
1174 {
1175     _lwkt_schedule(td);
1176 }
1177 
1178 void
1179 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1180 {
1181     _lwkt_schedule(td);
1182 }
1183 
1184 /*
1185  * When scheduled remotely if frame != NULL the IPIQ is being
1186  * run via doreti or an interrupt then preemption can be allowed.
1187  *
1188  * To allow preemption we have to drop the critical section so only
1189  * one is present in _lwkt_schedule_post.
1190  */
1191 static void
1192 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1193 {
1194     thread_t td = curthread;
1195     thread_t ntd = arg;
1196 
1197     if (frame && ntd->td_preemptable) {
1198 	crit_exit_noyield(td);
1199 	_lwkt_schedule(ntd);
1200 	crit_enter_quick(td);
1201     } else {
1202 	_lwkt_schedule(ntd);
1203     }
1204 }
1205 
1206 /*
1207  * Thread migration using a 'Pull' method.  The thread may or may not be
1208  * the current thread.  It MUST be descheduled and in a stable state.
1209  * lwkt_giveaway() must be called on the cpu owning the thread.
1210  *
1211  * At any point after lwkt_giveaway() is called, the target cpu may
1212  * 'pull' the thread by calling lwkt_acquire().
1213  *
1214  * We have to make sure the thread is not sitting on a per-cpu tsleep
1215  * queue or it will blow up when it moves to another cpu.
1216  *
1217  * MPSAFE - must be called under very specific conditions.
1218  */
1219 void
1220 lwkt_giveaway(thread_t td)
1221 {
1222     globaldata_t gd = mycpu;
1223 
1224     crit_enter_gd(gd);
1225     if (td->td_flags & TDF_TSLEEPQ)
1226 	tsleep_remove(td);
1227     KKASSERT(td->td_gd == gd);
1228     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1229     td->td_flags |= TDF_MIGRATING;
1230     crit_exit_gd(gd);
1231 }
1232 
1233 void
1234 lwkt_acquire(thread_t td)
1235 {
1236     globaldata_t gd;
1237     globaldata_t mygd;
1238     int retry = 10000000;
1239 
1240     KKASSERT(td->td_flags & TDF_MIGRATING);
1241     gd = td->td_gd;
1242     mygd = mycpu;
1243     if (gd != mycpu) {
1244 	cpu_lfence();
1245 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1246 	crit_enter_gd(mygd);
1247 	DEBUG_PUSH_INFO("lwkt_acquire");
1248 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1249 	    lwkt_process_ipiq();
1250 	    cpu_lfence();
1251 	    if (--retry == 0) {
1252 		kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1253 			td, td->td_flags);
1254 		retry = 10000000;
1255 	    }
1256 #ifdef _KERNEL_VIRTUAL
1257 	    pthread_yield();
1258 #endif
1259 	}
1260 	DEBUG_POP_INFO();
1261 	cpu_mfence();
1262 	td->td_gd = mygd;
1263 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1264 	td->td_flags &= ~TDF_MIGRATING;
1265 	crit_exit_gd(mygd);
1266     } else {
1267 	crit_enter_gd(mygd);
1268 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1269 	td->td_flags &= ~TDF_MIGRATING;
1270 	crit_exit_gd(mygd);
1271     }
1272 }
1273 
1274 /*
1275  * Generic deschedule.  Descheduling threads other then your own should be
1276  * done only in carefully controlled circumstances.  Descheduling is
1277  * asynchronous.
1278  *
1279  * This function may block if the cpu has run out of messages.
1280  */
1281 void
1282 lwkt_deschedule(thread_t td)
1283 {
1284     crit_enter();
1285     if (td == curthread) {
1286 	_lwkt_dequeue(td);
1287     } else {
1288 	if (td->td_gd == mycpu) {
1289 	    _lwkt_dequeue(td);
1290 	} else {
1291 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1292 	}
1293     }
1294     crit_exit();
1295 }
1296 
1297 /*
1298  * Set the target thread's priority.  This routine does not automatically
1299  * switch to a higher priority thread, LWKT threads are not designed for
1300  * continuous priority changes.  Yield if you want to switch.
1301  */
1302 void
1303 lwkt_setpri(thread_t td, int pri)
1304 {
1305     if (td->td_pri != pri) {
1306 	KKASSERT(pri >= 0);
1307 	crit_enter();
1308 	if (td->td_flags & TDF_RUNQ) {
1309 	    KKASSERT(td->td_gd == mycpu);
1310 	    _lwkt_dequeue(td);
1311 	    td->td_pri = pri;
1312 	    _lwkt_enqueue(td);
1313 	} else {
1314 	    td->td_pri = pri;
1315 	}
1316 	crit_exit();
1317     }
1318 }
1319 
1320 /*
1321  * Set the initial priority for a thread prior to it being scheduled for
1322  * the first time.  The thread MUST NOT be scheduled before or during
1323  * this call.  The thread may be assigned to a cpu other then the current
1324  * cpu.
1325  *
1326  * Typically used after a thread has been created with TDF_STOPPREQ,
1327  * and before the thread is initially scheduled.
1328  */
1329 void
1330 lwkt_setpri_initial(thread_t td, int pri)
1331 {
1332     KKASSERT(pri >= 0);
1333     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1334     td->td_pri = pri;
1335 }
1336 
1337 void
1338 lwkt_setpri_self(int pri)
1339 {
1340     thread_t td = curthread;
1341 
1342     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1343     crit_enter();
1344     if (td->td_flags & TDF_RUNQ) {
1345 	_lwkt_dequeue(td);
1346 	td->td_pri = pri;
1347 	_lwkt_enqueue(td);
1348     } else {
1349 	td->td_pri = pri;
1350     }
1351     crit_exit();
1352 }
1353 
1354 /*
1355  * hz tick scheduler clock for LWKT threads
1356  */
1357 void
1358 lwkt_schedulerclock(thread_t td)
1359 {
1360     globaldata_t gd = td->td_gd;
1361     thread_t xtd;
1362 
1363     if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1364 	/*
1365 	 * If the current thread is at the head of the runq shift it to the
1366 	 * end of any equal-priority threads and request a LWKT reschedule
1367 	 * if it moved.
1368 	 *
1369 	 * Ignore upri in this situation.  There will only be one user thread
1370 	 * in user mode, all others will be user threads running in kernel
1371 	 * mode and we have to make sure they get some cpu.
1372 	 */
1373 	xtd = TAILQ_NEXT(td, td_threadq);
1374 	if (xtd && xtd->td_pri == td->td_pri) {
1375 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1376 	    while (xtd && xtd->td_pri == td->td_pri)
1377 		xtd = TAILQ_NEXT(xtd, td_threadq);
1378 	    if (xtd)
1379 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1380 	    else
1381 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1382 	    need_lwkt_resched();
1383 	}
1384     } else {
1385 	/*
1386 	 * If we scheduled a thread other than the one at the head of the
1387 	 * queue always request a reschedule every tick.
1388 	 */
1389 	need_lwkt_resched();
1390     }
1391 }
1392 
1393 /*
1394  * Migrate the current thread to the specified cpu.
1395  *
1396  * This is accomplished by descheduling ourselves from the current cpu
1397  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1398  * 'old' thread wants to migrate after it has been completely switched out
1399  * and will complete the migration.
1400  *
1401  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1402  *
1403  * We must be sure to release our current process designation (if a user
1404  * process) before clearing out any tsleepq we are on because the release
1405  * code may re-add us.
1406  *
1407  * We must be sure to remove ourselves from the current cpu's tsleepq
1408  * before potentially moving to another queue.  The thread can be on
1409  * a tsleepq due to a left-over tsleep_interlock().
1410  */
1411 
1412 void
1413 lwkt_setcpu_self(globaldata_t rgd)
1414 {
1415     thread_t td = curthread;
1416 
1417     if (td->td_gd != rgd) {
1418 	crit_enter_quick(td);
1419 
1420 	if (td->td_release)
1421 	    td->td_release(td);
1422 	if (td->td_flags & TDF_TSLEEPQ)
1423 	    tsleep_remove(td);
1424 
1425 	/*
1426 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1427 	 * trying to deschedule ourselves and switch away, then deschedule
1428 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1429 	 * call lwkt_switch() to complete the operation.
1430 	 */
1431 	td->td_flags |= TDF_MIGRATING;
1432 	lwkt_deschedule_self(td);
1433 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1434 	td->td_migrate_gd = rgd;
1435 	lwkt_switch();
1436 
1437 	/*
1438 	 * We are now on the target cpu
1439 	 */
1440 	KKASSERT(rgd == mycpu);
1441 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1442 	crit_exit_quick(td);
1443     }
1444 }
1445 
1446 void
1447 lwkt_migratecpu(int cpuid)
1448 {
1449 	globaldata_t rgd;
1450 
1451 	rgd = globaldata_find(cpuid);
1452 	lwkt_setcpu_self(rgd);
1453 }
1454 
1455 /*
1456  * Remote IPI for cpu migration (called while in a critical section so we
1457  * do not have to enter another one).
1458  *
1459  * The thread (td) has already been completely descheduled from the
1460  * originating cpu and we can simply assert the case.  The thread is
1461  * assigned to the new cpu and enqueued.
1462  *
1463  * The thread will re-add itself to tdallq when it resumes execution.
1464  */
1465 static void
1466 lwkt_setcpu_remote(void *arg)
1467 {
1468     thread_t td = arg;
1469     globaldata_t gd = mycpu;
1470 
1471     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1472     td->td_gd = gd;
1473     cpu_mfence();
1474     td->td_flags &= ~TDF_MIGRATING;
1475     KKASSERT(td->td_migrate_gd == NULL);
1476     KKASSERT(td->td_lwp == NULL ||
1477 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1478     _lwkt_enqueue(td);
1479 }
1480 
1481 struct lwp *
1482 lwkt_preempted_proc(void)
1483 {
1484     thread_t td = curthread;
1485     while (td->td_preempted)
1486 	td = td->td_preempted;
1487     return(td->td_lwp);
1488 }
1489 
1490 /*
1491  * Create a kernel process/thread/whatever.  It shares it's address space
1492  * with proc0 - ie: kernel only.
1493  *
1494  * If the cpu is not specified one will be selected.  In the future
1495  * specifying a cpu of -1 will enable kernel thread migration between
1496  * cpus.
1497  */
1498 int
1499 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1500 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1501 {
1502     thread_t td;
1503     __va_list ap;
1504 
1505     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1506 			   tdflags);
1507     if (tdp)
1508 	*tdp = td;
1509     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1510 
1511     /*
1512      * Set up arg0 for 'ps' etc
1513      */
1514     __va_start(ap, fmt);
1515     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1516     __va_end(ap);
1517 
1518     /*
1519      * Schedule the thread to run
1520      */
1521     if (td->td_flags & TDF_NOSTART)
1522 	td->td_flags &= ~TDF_NOSTART;
1523     else
1524 	lwkt_schedule(td);
1525     return 0;
1526 }
1527 
1528 /*
1529  * Destroy an LWKT thread.   Warning!  This function is not called when
1530  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1531  * uses a different reaping mechanism.
1532  */
1533 void
1534 lwkt_exit(void)
1535 {
1536     thread_t td = curthread;
1537     thread_t std;
1538     globaldata_t gd;
1539 
1540     /*
1541      * Do any cleanup that might block here
1542      */
1543     if (td->td_flags & TDF_VERBOSE)
1544 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1545     biosched_done(td);
1546     dsched_exit_thread(td);
1547 
1548     /*
1549      * Get us into a critical section to interlock gd_freetd and loop
1550      * until we can get it freed.
1551      *
1552      * We have to cache the current td in gd_freetd because objcache_put()ing
1553      * it would rip it out from under us while our thread is still active.
1554      *
1555      * We are the current thread so of course our own TDF_RUNNING bit will
1556      * be set, so unlike the lwp reap code we don't wait for it to clear.
1557      */
1558     gd = mycpu;
1559     crit_enter_quick(td);
1560     for (;;) {
1561 	if (td->td_refs) {
1562 	    tsleep(td, 0, "tdreap", 1);
1563 	    continue;
1564 	}
1565 	if ((std = gd->gd_freetd) != NULL) {
1566 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1567 	    gd->gd_freetd = NULL;
1568 	    objcache_put(thread_cache, std);
1569 	    continue;
1570 	}
1571 	break;
1572     }
1573 
1574     /*
1575      * Remove thread resources from kernel lists and deschedule us for
1576      * the last time.  We cannot block after this point or we may end
1577      * up with a stale td on the tsleepq.
1578      *
1579      * None of this may block, the critical section is the only thing
1580      * protecting tdallq and the only thing preventing new lwkt_hold()
1581      * thread refs now.
1582      */
1583     if (td->td_flags & TDF_TSLEEPQ)
1584 	tsleep_remove(td);
1585     lwkt_deschedule_self(td);
1586     lwkt_remove_tdallq(td);
1587     KKASSERT(td->td_refs == 0);
1588 
1589     /*
1590      * Final cleanup
1591      */
1592     KKASSERT(gd->gd_freetd == NULL);
1593     if (td->td_flags & TDF_ALLOCATED_THREAD)
1594 	gd->gd_freetd = td;
1595     cpu_thread_exit();
1596 }
1597 
1598 void
1599 lwkt_remove_tdallq(thread_t td)
1600 {
1601     KKASSERT(td->td_gd == mycpu);
1602     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1603 }
1604 
1605 /*
1606  * Code reduction and branch prediction improvements.  Call/return
1607  * overhead on modern cpus often degenerates into 0 cycles due to
1608  * the cpu's branch prediction hardware and return pc cache.  We
1609  * can take advantage of this by not inlining medium-complexity
1610  * functions and we can also reduce the branch prediction impact
1611  * by collapsing perfectly predictable branches into a single
1612  * procedure instead of duplicating it.
1613  *
1614  * Is any of this noticeable?  Probably not, so I'll take the
1615  * smaller code size.
1616  */
1617 void
1618 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1619 {
1620     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1621 }
1622 
1623 void
1624 crit_panic(void)
1625 {
1626     thread_t td = curthread;
1627     int lcrit = td->td_critcount;
1628 
1629     td->td_critcount = 0;
1630     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1631     /* NOT REACHED */
1632 }
1633 
1634 /*
1635  * Called from debugger/panic on cpus which have been stopped.  We must still
1636  * process the IPIQ while stopped.
1637  *
1638  * If we are dumping also try to process any pending interrupts.  This may
1639  * or may not work depending on the state of the cpu at the point it was
1640  * stopped.
1641  */
1642 void
1643 lwkt_smp_stopped(void)
1644 {
1645     globaldata_t gd = mycpu;
1646 
1647     if (dumping) {
1648 	lwkt_process_ipiq();
1649 	--gd->gd_intr_nesting_level;
1650 	splz();
1651 	++gd->gd_intr_nesting_level;
1652     } else {
1653 	lwkt_process_ipiq();
1654     }
1655 }
1656