xref: /dragonfly/sys/kern/lwkt_thread.c (revision 60e242c5)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/malloc.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
56 #include <sys/indefinite.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <sys/indefinite2.h>
61 
62 #include <sys/dsched.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_pager.h>
71 #include <vm/vm_extern.h>
72 
73 #include <machine/stdarg.h>
74 #include <machine/smp.h>
75 #include <machine/clock.h>
76 
77 #define LOOPMASK
78 
79 #if !defined(KTR_CTXSW)
80 #define KTR_CTXSW KTR_ALL
81 #endif
82 KTR_INFO_MASTER(ctxsw);
83 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
84 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
85 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
86 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
87 
88 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
89 MALLOC_DEFINE(M_FPUCTX, "fpuctx", "kernel FPU contexts");
90 
91 #ifdef	INVARIANTS
92 static int panic_on_cscount = 0;
93 #endif
94 #ifdef DEBUG_LWKT_THREAD
95 static int64_t switch_count = 0;
96 static int64_t preempt_hit = 0;
97 static int64_t preempt_miss = 0;
98 static int64_t preempt_weird = 0;
99 #endif
100 static int lwkt_use_spin_port;
101 __read_mostly static struct objcache *thread_cache;
102 int cpu_mwait_spin = 0;
103 
104 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
105 static void lwkt_setcpu_remote(void *arg);
106 
107 /*
108  * We can make all thread ports use the spin backend instead of the thread
109  * backend.  This should only be set to debug the spin backend.
110  */
111 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
112 
113 #ifdef	INVARIANTS
114 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
115     "Panic if attempting to switch lwkt's while mastering cpusync");
116 #endif
117 #ifdef DEBUG_LWKT_THREAD
118 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
119     "Number of switched threads");
120 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
121     "Successful preemption events");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
123     "Failed preemption events");
124 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
125     "Number of preempted threads.");
126 #endif
127 extern int lwkt_sched_debug;
128 int lwkt_sched_debug = 0;
129 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
130 	&lwkt_sched_debug, 0, "Scheduler debug");
131 __read_mostly static u_int lwkt_spin_loops = 10;
132 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
133 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
134 __read_mostly static int preempt_enable = 1;
135 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
136 	&preempt_enable, 0, "Enable preemption");
137 static int lwkt_cache_threads = 0;
138 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
139 	&lwkt_cache_threads, 0, "thread+kstack cache");
140 
141 /*
142  * These helper procedures handle the runq, they can only be called from
143  * within a critical section.
144  *
145  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
146  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
147  * instead of 'mycpu' when referencing the globaldata structure.   Once
148  * SMP live enqueuing and dequeueing only occurs on the current cpu.
149  */
150 static __inline
151 void
152 _lwkt_dequeue(thread_t td)
153 {
154     if (td->td_flags & TDF_RUNQ) {
155 	struct globaldata *gd = td->td_gd;
156 
157 	td->td_flags &= ~TDF_RUNQ;
158 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
159 	--gd->gd_tdrunqcount;
160 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
161 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
162     }
163 }
164 
165 /*
166  * Priority enqueue.
167  *
168  * There are a limited number of lwkt threads runnable since user
169  * processes only schedule one at a time per cpu.  However, there can
170  * be many user processes in kernel mode exiting from a tsleep() which
171  * become runnable.
172  *
173  * We scan the queue in both directions to help deal with degenerate
174  * situations when hundreds or thousands (or more) threads are runnable.
175  *
176  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
177  *	 will ignore user priority.  This is to ensure that user threads in
178  *	 kernel mode get cpu at some point regardless of what the user
179  *	 scheduler thinks.
180  */
181 static __inline
182 void
183 _lwkt_enqueue(thread_t td)
184 {
185     thread_t xtd;	/* forward scan */
186     thread_t rtd;	/* reverse scan */
187 
188     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
189 	struct globaldata *gd = td->td_gd;
190 
191 	td->td_flags |= TDF_RUNQ;
192 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
193 	if (xtd == NULL) {
194 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
195 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
196 	} else {
197 	    /*
198 	     * NOTE: td_upri - higher numbers more desireable, same sense
199 	     *	     as td_pri (typically reversed from lwp_upri).
200 	     *
201 	     *	     In the equal priority case we want the best selection
202 	     *	     at the beginning so the less desireable selections know
203 	     *	     that they have to setrunqueue/go-to-another-cpu, even
204 	     *	     though it means switching back to the 'best' selection.
205 	     *	     This also avoids degenerate situations when many threads
206 	     *	     are runnable or waking up at the same time.
207 	     *
208 	     *	     If upri matches exactly place at end/round-robin.
209 	     */
210 	    rtd = TAILQ_LAST(&gd->gd_tdrunq, lwkt_queue);
211 
212 	    while (xtd &&
213 		   (xtd->td_pri > td->td_pri ||
214 		    (xtd->td_pri == td->td_pri &&
215 		     xtd->td_upri >= td->td_upri))) {
216 		xtd = TAILQ_NEXT(xtd, td_threadq);
217 
218 		/*
219 		 * Doing a reverse scan at the same time is an optimization
220 		 * for the insert-closer-to-tail case that avoids having to
221 		 * scan the entire list.  This situation can occur when
222 		 * thousands of threads are woken up at the same time.
223 		 */
224 		if (rtd->td_pri > td->td_pri ||
225 		    (rtd->td_pri == td->td_pri &&
226 		    rtd->td_upri >= td->td_upri)) {
227 			TAILQ_INSERT_AFTER(&gd->gd_tdrunq, rtd, td, td_threadq);
228 			goto skip;
229 		}
230 		rtd = TAILQ_PREV(rtd, lwkt_queue, td_threadq);
231 	    }
232 	    if (xtd)
233 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
234 	    else
235 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
236 	}
237 skip:
238 	++gd->gd_tdrunqcount;
239 
240 	/*
241 	 * Request a LWKT reschedule if we are now at the head of the queue.
242 	 */
243 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
244 	    need_lwkt_resched();
245     }
246 }
247 
248 static boolean_t
249 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
250 {
251     struct thread *td = (struct thread *)obj;
252 
253     td->td_kstack = NULL;
254     td->td_kstack_size = 0;
255     td->td_flags = TDF_ALLOCATED_THREAD;
256     td->td_mpflags = 0;
257     return (1);
258 }
259 
260 static void
261 _lwkt_thread_dtor(void *obj, void *privdata)
262 {
263     struct thread *td = (struct thread *)obj;
264 
265     KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
266 	("_lwkt_thread_dtor: not allocated from objcache"));
267     KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
268 	    td->td_kstack_size > 0,
269 	("_lwkt_thread_dtor: corrupted stack"));
270     kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
271     td->td_kstack = NULL;
272     td->td_flags = 0;
273 }
274 
275 /*
276  * Initialize the lwkt s/system.
277  *
278  * Nominally cache up to 32 thread + kstack structures.  Cache more on
279  * systems with a lot of cpu cores.
280  */
281 static void
282 lwkt_init(void)
283 {
284     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
285     if (lwkt_cache_threads == 0) {
286 	lwkt_cache_threads = ncpus * 4;
287 	if (lwkt_cache_threads < 32)
288 	    lwkt_cache_threads = 32;
289     }
290     thread_cache = objcache_create_mbacked(
291 				M_THREAD, sizeof(struct thread),
292 				0, lwkt_cache_threads,
293 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
294 }
295 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
296 
297 /*
298  * Schedule a thread to run.  As the current thread we can always safely
299  * schedule ourselves, and a shortcut procedure is provided for that
300  * function.
301  *
302  * (non-blocking, self contained on a per cpu basis)
303  */
304 void
305 lwkt_schedule_self(thread_t td)
306 {
307     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
308     crit_enter_quick(td);
309     KASSERT(td != &td->td_gd->gd_idlethread,
310 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
311     KKASSERT(td->td_lwp == NULL ||
312 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
313     _lwkt_enqueue(td);
314     crit_exit_quick(td);
315 }
316 
317 /*
318  * Deschedule a thread.
319  *
320  * (non-blocking, self contained on a per cpu basis)
321  */
322 void
323 lwkt_deschedule_self(thread_t td)
324 {
325     crit_enter_quick(td);
326     _lwkt_dequeue(td);
327     crit_exit_quick(td);
328 }
329 
330 /*
331  * LWKTs operate on a per-cpu basis
332  *
333  * WARNING!  Called from early boot, 'mycpu' may not work yet.
334  */
335 void
336 lwkt_gdinit(struct globaldata *gd)
337 {
338     TAILQ_INIT(&gd->gd_tdrunq);
339     TAILQ_INIT(&gd->gd_tdallq);
340     lockinit(&gd->gd_sysctllock, "sysctl", 0, LK_CANRECURSE);
341 }
342 
343 /*
344  * Create a new thread.  The thread must be associated with a process context
345  * or LWKT start address before it can be scheduled.  If the target cpu is
346  * -1 the thread will be created on the current cpu.
347  *
348  * If you intend to create a thread without a process context this function
349  * does everything except load the startup and switcher function.
350  */
351 thread_t
352 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
353 {
354     static int cpu_rotator;
355     globaldata_t gd = mycpu;
356     void *stack;
357 
358     /*
359      * If static thread storage is not supplied allocate a thread.  Reuse
360      * a cached free thread if possible.  gd_freetd is used to keep an exiting
361      * thread intact through the exit.
362      */
363     if (td == NULL) {
364 	crit_enter_gd(gd);
365 	if ((td = gd->gd_freetd) != NULL) {
366 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
367 				      TDF_RUNQ)) == 0);
368 	    gd->gd_freetd = NULL;
369 	} else {
370 	    td = objcache_get(thread_cache, M_WAITOK);
371 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
372 				      TDF_RUNQ)) == 0);
373 	}
374 	crit_exit_gd(gd);
375     	KASSERT((td->td_flags &
376 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
377 		 TDF_ALLOCATED_THREAD,
378 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
379     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
380     }
381 
382     /*
383      * Try to reuse cached stack.
384      */
385     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
386 	if (flags & TDF_ALLOCATED_STACK) {
387 	    kmem_free(kernel_map, (vm_offset_t)stack, td->td_kstack_size);
388 	    stack = NULL;
389 	}
390     }
391     if (stack == NULL) {
392 	if (cpu < 0) {
393 		stack = (void *)kmem_alloc_stack(kernel_map, stksize, 0);
394 	} else {
395 		stack = (void *)kmem_alloc_stack(kernel_map, stksize,
396 						 KM_CPU(cpu));
397 	}
398 	flags |= TDF_ALLOCATED_STACK;
399     }
400     if (cpu < 0) {
401 	cpu = ++cpu_rotator;
402 	cpu_ccfence();
403 	cpu = (uint32_t)cpu % (uint32_t)ncpus;
404     }
405     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
406     return(td);
407 }
408 
409 /*
410  * Initialize a preexisting thread structure.  This function is used by
411  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
412  *
413  * All threads start out in a critical section at a priority of
414  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
415  * appropriate.  This function may send an IPI message when the
416  * requested cpu is not the current cpu and consequently gd_tdallq may
417  * not be initialized synchronously from the point of view of the originating
418  * cpu.
419  *
420  * NOTE! we have to be careful in regards to creating threads for other cpus
421  * if SMP has not yet been activated.
422  */
423 static void
424 lwkt_init_thread_remote(void *arg)
425 {
426     thread_t td = arg;
427 
428     /*
429      * Protected by critical section held by IPI dispatch
430      */
431     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
432 }
433 
434 /*
435  * lwkt core thread structural initialization.
436  *
437  * NOTE: All threads are initialized as mpsafe threads.
438  */
439 void
440 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
441 		struct globaldata *gd)
442 {
443     globaldata_t mygd = mycpu;
444 
445     bzero(td, sizeof(struct thread));
446     td->td_kstack = stack;
447     td->td_kstack_size = stksize;
448     td->td_flags = flags;
449     td->td_mpflags = 0;
450     td->td_type = TD_TYPE_GENERIC;
451     td->td_gd = gd;
452     td->td_pri = TDPRI_KERN_DAEMON;
453     td->td_critcount = 1;
454     td->td_toks_have = NULL;
455     td->td_toks_stop = &td->td_toks_base;
456     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
457 	lwkt_initport_spin(&td->td_msgport, td,
458 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
459     } else {
460 	lwkt_initport_thread(&td->td_msgport, td);
461     }
462     pmap_init_thread(td);
463 
464     /*
465      * Normally initializing a thread for a remote cpu requires sending an
466      * IPI.  However, the idlethread is setup before the other cpus are
467      * activated so we have to treat it as a special case.  XXX manipulation
468      * of gd_tdallq requires the BGL.
469      */
470     if (gd == mygd || td == &gd->gd_idlethread) {
471 	crit_enter_gd(mygd);
472 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
473 	crit_exit_gd(mygd);
474     } else {
475 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
476     }
477     dsched_enter_thread(td);
478 }
479 
480 void
481 lwkt_set_comm(thread_t td, const char *ctl, ...)
482 {
483     __va_list va;
484 
485     __va_start(va, ctl);
486     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
487     __va_end(va);
488     KTR_LOG(ctxsw_newtd, td, td->td_comm);
489 }
490 
491 /*
492  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
493  * this does not prevent the thread from migrating to another cpu so the
494  * gd_tdallq state is not protected by this.
495  */
496 void
497 lwkt_hold(thread_t td)
498 {
499     atomic_add_int(&td->td_refs, 1);
500 }
501 
502 void
503 lwkt_rele(thread_t td)
504 {
505     KKASSERT(td->td_refs > 0);
506     atomic_add_int(&td->td_refs, -1);
507 }
508 
509 void
510 lwkt_free_thread(thread_t td)
511 {
512     KKASSERT(td->td_refs == 0);
513     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
514 			      TDF_RUNQ | TDF_TSLEEPQ | TDF_KERNELFP)) == 0);
515 
516     if (td->td_kfpuctx) {
517 	kfree(td->td_kfpuctx, M_FPUCTX);
518 	td->td_kfpuctx = NULL;
519     }
520 
521     if (td->td_flags & TDF_ALLOCATED_THREAD) {
522     	objcache_put(thread_cache, td);
523     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
524 	/* client-allocated struct with internally allocated stack */
525 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
526 	    ("lwkt_free_thread: corrupted stack"));
527 	kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
528 	td->td_kstack = NULL;
529 	td->td_kstack_size = 0;
530     }
531 
532     KTR_LOG(ctxsw_deadtd, td);
533 }
534 
535 
536 /*
537  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
538  * switch to the idlethread.  Switching must occur within a critical
539  * section to avoid races with the scheduling queue.
540  *
541  * We always have full control over our cpu's run queue.  Other cpus
542  * that wish to manipulate our queue must use the cpu_*msg() calls to
543  * talk to our cpu, so a critical section is all that is needed and
544  * the result is very, very fast thread switching.
545  *
546  * The LWKT scheduler uses a fixed priority model and round-robins at
547  * each priority level.  User process scheduling is a totally
548  * different beast and LWKT priorities should not be confused with
549  * user process priorities.
550  *
551  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
552  * is not called by the current thread in the preemption case, only when
553  * the preempting thread blocks (in order to return to the original thread).
554  *
555  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
556  * migration and tsleep deschedule the current lwkt thread and call
557  * lwkt_switch().  In particular, the target cpu of the migration fully
558  * expects the thread to become non-runnable and can deadlock against
559  * cpusync operations if we run any IPIs prior to switching the thread out.
560  *
561  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
562  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
563  */
564 void
565 lwkt_switch(void)
566 {
567     globaldata_t gd = mycpu;
568     thread_t td = gd->gd_curthread;
569     thread_t ntd;
570     thread_t xtd;
571     int upri;
572 #ifdef LOOPMASK
573     uint64_t tsc_base = rdtsc();
574 #endif
575 
576     KKASSERT(gd->gd_processing_ipiq == 0);
577     KKASSERT(td->td_flags & TDF_RUNNING);
578 
579     /*
580      * Switching from within a 'fast' (non thread switched) interrupt or IPI
581      * is illegal.  However, we may have to do it anyway if we hit a fatal
582      * kernel trap or we have paniced.
583      *
584      * If this case occurs save and restore the interrupt nesting level.
585      */
586     if (gd->gd_intr_nesting_level) {
587 	int savegdnest;
588 	int savegdtrap;
589 
590 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
591 	    panic("lwkt_switch: Attempt to switch from a "
592 		  "fast interrupt, ipi, or hard code section, "
593 		  "td %p\n",
594 		  td);
595 	} else {
596 	    savegdnest = gd->gd_intr_nesting_level;
597 	    savegdtrap = gd->gd_trap_nesting_level;
598 	    gd->gd_intr_nesting_level = 0;
599 	    gd->gd_trap_nesting_level = 0;
600 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
601 		td->td_flags |= TDF_PANICWARN;
602 		kprintf("Warning: thread switch from interrupt, IPI, "
603 			"or hard code section.\n"
604 			"thread %p (%s)\n", td, td->td_comm);
605 		print_backtrace(-1);
606 	    }
607 	    lwkt_switch();
608 	    gd->gd_intr_nesting_level = savegdnest;
609 	    gd->gd_trap_nesting_level = savegdtrap;
610 	    return;
611 	}
612     }
613 
614     /*
615      * Release our current user process designation if we are blocking
616      * or if a user reschedule was requested.
617      *
618      * NOTE: This function is NOT called if we are switching into or
619      *	     returning from a preemption.
620      *
621      * NOTE: Releasing our current user process designation may cause
622      *	     it to be assigned to another thread, which in turn will
623      *	     cause us to block in the usched acquire code when we attempt
624      *	     to return to userland.
625      *
626      * NOTE: On SMP systems this can be very nasty when heavy token
627      *	     contention is present so we want to be careful not to
628      *	     release the designation gratuitously.
629      */
630     if (td->td_release &&
631 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
632 	    td->td_release(td);
633     }
634 
635     /*
636      * Release all tokens.  Once we do this we must remain in the critical
637      * section and cannot run IPIs or other interrupts until we switch away
638      * because they may implode if they try to get a token using our thread
639      * context.
640      */
641     crit_enter_gd(gd);
642     if (TD_TOKS_HELD(td))
643 	    lwkt_relalltokens(td);
644 
645     /*
646      * We had better not be holding any spin locks, but don't get into an
647      * endless panic loop.
648      */
649     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
650 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
651 	     gd->gd_spinlocks));
652 
653 #ifdef	INVARIANTS
654     if (td->td_cscount) {
655 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
656 		td);
657 	if (panic_on_cscount)
658 	    panic("switching while mastering cpusync");
659     }
660 #endif
661 
662     /*
663      * If we had preempted another thread on this cpu, resume the preempted
664      * thread.  This occurs transparently, whether the preempted thread
665      * was scheduled or not (it may have been preempted after descheduling
666      * itself).
667      *
668      * We have to setup the MP lock for the original thread after backing
669      * out the adjustment that was made to curthread when the original
670      * was preempted.
671      */
672     if ((ntd = td->td_preempted) != NULL) {
673 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
674 	ntd->td_flags |= TDF_PREEMPT_DONE;
675 	ntd->td_contended = 0;		/* reset contended */
676 
677 	/*
678 	 * The interrupt may have woken a thread up, we need to properly
679 	 * set the reschedule flag if the originally interrupted thread is
680 	 * at a lower priority.
681 	 *
682 	 * NOTE: The interrupt may not have descheduled ntd.
683 	 *
684 	 * NOTE: We do not reschedule if there are no threads on the runq.
685 	 *	 (ntd could be the idlethread).
686 	 */
687 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
688 	if (xtd && xtd != ntd)
689 	    need_lwkt_resched();
690 	goto havethread_preempted;
691     }
692 
693     /*
694      * Figure out switch target.  If we cannot switch to our desired target
695      * look for a thread that we can switch to.
696      *
697      * NOTE! The limited spin loop and related parameters are extremely
698      *	     important for system performance, particularly for pipes and
699      *	     concurrent conflicting VM faults.
700      */
701     clear_lwkt_resched();
702     ntd = TAILQ_FIRST(&gd->gd_tdrunq);
703 
704     if (ntd) {
705 	do {
706 	    if (TD_TOKS_NOT_HELD(ntd) ||
707 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
708 	    {
709 		goto havethread;
710 	    }
711 	    ++ntd->td_contended;	/* overflow ok */
712 	    if (gd->gd_indefinite.type == 0)
713 		indefinite_init(&gd->gd_indefinite, NULL, NULL, 0, 't');
714 #ifdef LOOPMASK
715 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
716 		    kprintf("lwkt_switch: WARNING, excessive token contention "
717 			    "cpu %d, %d sec, "
718 			    "td %p (%s)\n",
719 			    gd->gd_cpuid,
720 			    ntd->td_contended,
721 			    ntd,
722 			    ntd->td_comm);
723 		    tsc_base = rdtsc();
724 	    }
725 #endif
726 	} while (ntd->td_contended < (lwkt_spin_loops >> 1));
727 	upri = ntd->td_upri;
728 
729 	/*
730 	 * Bleh, the thread we wanted to switch to has a contended token.
731 	 * See if we can switch to another thread.
732 	 *
733 	 * We generally don't want to do this because it represents a
734 	 * priority inversion, but contending tokens on the same cpu can
735 	 * cause real problems if we don't now that we have an exclusive
736 	 * priority mechanism over shared for tokens.
737 	 *
738 	 * The solution is to allow threads with pending tokens to compete
739 	 * for them (a lower priority thread will get less cpu once it
740 	 * returns from the kernel anyway).  If a thread does not have
741 	 * any contending tokens, we go by td_pri and upri.
742 	 */
743 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
744 	    if (TD_TOKS_NOT_HELD(ntd) &&
745 		ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri) {
746 		    continue;
747 	    }
748 	    if (upri < ntd->td_upri)
749 		upri = ntd->td_upri;
750 
751 	    /*
752 	     * Try this one.
753 	     */
754 	    if (TD_TOKS_NOT_HELD(ntd) ||
755 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
756 		    goto havethread;
757 	    }
758 	    ++ntd->td_contended;	/* overflow ok */
759 	}
760 
761 	/*
762 	 * Fall through, switch to idle thread to get us out of the current
763 	 * context.  Since we were contended, prevent HLT by flagging a
764 	 * LWKT reschedule.
765 	 */
766 	need_lwkt_resched();
767     }
768 
769     /*
770      * We either contended on ntd or the runq is empty.  We must switch
771      * through the idle thread to get out of the current context.
772      */
773     ntd = &gd->gd_idlethread;
774     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
775 	ASSERT_NO_TOKENS_HELD(ntd);
776     cpu_time.cp_msg[0] = 0;
777     goto haveidle;
778 
779 havethread:
780     /*
781      * Clear gd_idle_repeat when doing a normal switch to a non-idle
782      * thread.
783      */
784     ntd->td_wmesg = NULL;
785     ntd->td_contended = 0;	/* reset once scheduled */
786     ++gd->gd_cnt.v_swtch;
787     gd->gd_idle_repeat = 0;
788 
789     /*
790      * If we were busy waiting record final disposition
791      */
792     if (gd->gd_indefinite.type)
793 	    indefinite_done(&gd->gd_indefinite);
794 
795 havethread_preempted:
796     /*
797      * If the new target does not need the MP lock and we are holding it,
798      * release the MP lock.  If the new target requires the MP lock we have
799      * already acquired it for the target.
800      */
801     ;
802 haveidle:
803     KASSERT(ntd->td_critcount,
804 	    ("priority problem in lwkt_switch %d %d",
805 	    td->td_critcount, ntd->td_critcount));
806 
807     if (td != ntd) {
808 	/*
809 	 * Execute the actual thread switch operation.  This function
810 	 * returns to the current thread and returns the previous thread
811 	 * (which may be different from the thread we switched to).
812 	 *
813 	 * We are responsible for marking ntd as TDF_RUNNING.
814 	 */
815 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
816 #ifdef DEBUG_LWKT_THREAD
817 	++switch_count;
818 #endif
819 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
820 	ntd->td_flags |= TDF_RUNNING;
821 	lwkt_switch_return(td->td_switch(ntd));
822 	/* ntd invalid, td_switch() can return a different thread_t */
823     }
824 
825     /*
826      * catch-all.  XXX is this strictly needed?
827      */
828     splz_check();
829 
830     /* NOTE: current cpu may have changed after switch */
831     crit_exit_quick(td);
832 }
833 
834 /*
835  * Called by assembly in the td_switch (thread restore path) for thread
836  * bootstrap cases which do not 'return' to lwkt_switch().
837  */
838 void
839 lwkt_switch_return(thread_t otd)
840 {
841 	globaldata_t rgd;
842 #ifdef LOOPMASK
843 	uint64_t tsc_base = rdtsc();
844 #endif
845 	int exiting;
846 
847 	exiting = otd->td_flags & TDF_EXITING;
848 	cpu_ccfence();
849 
850 	/*
851 	 * Check if otd was migrating.  Now that we are on ntd we can finish
852 	 * up the migration.  This is a bit messy but it is the only place
853 	 * where td is known to be fully descheduled.
854 	 *
855 	 * We can only activate the migration if otd was migrating but not
856 	 * held on the cpu due to a preemption chain.  We still have to
857 	 * clear TDF_RUNNING on the old thread either way.
858 	 *
859 	 * We are responsible for clearing the previously running thread's
860 	 * TDF_RUNNING.
861 	 */
862 	if ((rgd = otd->td_migrate_gd) != NULL &&
863 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
864 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
865 			 (TDF_MIGRATING | TDF_RUNNING));
866 		otd->td_migrate_gd = NULL;
867 		otd->td_flags &= ~TDF_RUNNING;
868 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
869 	} else {
870 		otd->td_flags &= ~TDF_RUNNING;
871 	}
872 
873 	/*
874 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
875 	 * invalid the *instant* we set TDF_MP_EXITSIG.
876 	 *
877 	 * Use the EXITING status loaded from before we clear TDF_RUNNING,
878 	 * because if it is not set otd becomes invalid the instant we clear
879 	 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
880 	 * might 'steal' TDF_EXITING from another switch-return!).
881 	 */
882 	while (exiting) {
883 		u_int mpflags;
884 
885 		mpflags = otd->td_mpflags;
886 		cpu_ccfence();
887 
888 		if (mpflags & TDF_MP_EXITWAIT) {
889 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
890 					      mpflags | TDF_MP_EXITSIG)) {
891 				wakeup(otd);
892 				break;
893 			}
894 		} else {
895 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
896 					      mpflags | TDF_MP_EXITSIG)) {
897 				wakeup(otd);
898 				break;
899 			}
900 		}
901 
902 #ifdef LOOPMASK
903 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
904 			kprintf("lwkt_switch_return: excessive TDF_EXITING "
905 				"thread %p\n", otd);
906 			tsc_base = rdtsc();
907 		}
908 #endif
909 	}
910 }
911 
912 /*
913  * Request that the target thread preempt the current thread.  Preemption
914  * can only occur only:
915  *
916  *	- If our critical section is the one that we were called with
917  *	- The relative priority of the target thread is higher
918  *	- The target is not excessively interrupt-nested via td_nest_count
919  *	- The target thread holds no tokens.
920  *	- The target thread is not already scheduled and belongs to the
921  *	  current cpu.
922  *	- The current thread is not holding any spin-locks.
923  *
924  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
925  * this is called via lwkt_schedule() through the td_preemptable callback.
926  * critcount is the managed critical priority that we should ignore in order
927  * to determine whether preemption is possible (aka usually just the crit
928  * priority of lwkt_schedule() itself).
929  *
930  * Preemption is typically limited to interrupt threads.
931  *
932  * Operation works in a fairly straight-forward manner.  The normal
933  * scheduling code is bypassed and we switch directly to the target
934  * thread.  When the target thread attempts to block or switch away
935  * code at the base of lwkt_switch() will switch directly back to our
936  * thread.  Our thread is able to retain whatever tokens it holds and
937  * if the target needs one of them the target will switch back to us
938  * and reschedule itself normally.
939  */
940 void
941 lwkt_preempt(thread_t ntd, int critcount)
942 {
943     struct globaldata *gd = mycpu;
944     thread_t xtd;
945     thread_t td;
946     int save_gd_intr_nesting_level;
947 
948     /*
949      * The caller has put us in a critical section.  We can only preempt
950      * if the caller of the caller was not in a critical section (basically
951      * a local interrupt), as determined by the 'critcount' parameter.  We
952      * also can't preempt if the caller is holding any spinlocks (even if
953      * he isn't in a critical section).  This also handles the tokens test.
954      *
955      * YYY The target thread must be in a critical section (else it must
956      * inherit our critical section?  I dunno yet).
957      */
958     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
959 
960     td = gd->gd_curthread;
961     if (preempt_enable == 0) {
962 #ifdef DEBUG_LWKT_THREAD
963 	++preempt_miss;
964 #endif
965 	return;
966     }
967     if (ntd->td_pri <= td->td_pri) {
968 #ifdef DEBUG_LWKT_THREAD
969 	++preempt_miss;
970 #endif
971 	return;
972     }
973     if (td->td_critcount > critcount) {
974 #ifdef DEBUG_LWKT_THREAD
975 	++preempt_miss;
976 #endif
977 	return;
978     }
979     if (td->td_nest_count >= 2) {
980 #ifdef DEBUG_LWKT_THREAD
981 	++preempt_miss;
982 #endif
983 	return;
984     }
985     if (td->td_cscount) {
986 #ifdef DEBUG_LWKT_THREAD
987 	++preempt_miss;
988 #endif
989 	return;
990     }
991     if (ntd->td_gd != gd) {
992 #ifdef DEBUG_LWKT_THREAD
993 	++preempt_miss;
994 #endif
995 	return;
996     }
997 
998     /*
999      * We don't have to check spinlocks here as they will also bump
1000      * td_critcount.
1001      *
1002      * Do not try to preempt if the target thread is holding any tokens.
1003      * We could try to acquire the tokens but this case is so rare there
1004      * is no need to support it.
1005      */
1006     KKASSERT(gd->gd_spinlocks == 0);
1007 
1008     if (TD_TOKS_HELD(ntd)) {
1009 #ifdef DEBUG_LWKT_THREAD
1010 	++preempt_miss;
1011 #endif
1012 	return;
1013     }
1014     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1015 #ifdef DEBUG_LWKT_THREAD
1016 	++preempt_weird;
1017 #endif
1018 	return;
1019     }
1020     if (ntd->td_preempted) {
1021 #ifdef DEBUG_LWKT_THREAD
1022 	++preempt_hit;
1023 #endif
1024 	return;
1025     }
1026     KKASSERT(gd->gd_processing_ipiq == 0);
1027 
1028     /*
1029      * Since we are able to preempt the current thread, there is no need to
1030      * call need_lwkt_resched().
1031      *
1032      * We must temporarily clear gd_intr_nesting_level around the switch
1033      * since switchouts from the target thread are allowed (they will just
1034      * return to our thread), and since the target thread has its own stack.
1035      *
1036      * A preemption must switch back to the original thread, assert the
1037      * case.
1038      */
1039 #ifdef DEBUG_LWKT_THREAD
1040     ++preempt_hit;
1041 #endif
1042     ntd->td_preempted = td;
1043     td->td_flags |= TDF_PREEMPT_LOCK;
1044     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1045     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1046     gd->gd_intr_nesting_level = 0;
1047 
1048     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1049     ntd->td_flags |= TDF_RUNNING;
1050     xtd = td->td_switch(ntd);
1051     KKASSERT(xtd == ntd);
1052     lwkt_switch_return(xtd);
1053     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1054 
1055     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1056     ntd->td_preempted = NULL;
1057     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1058 }
1059 
1060 /*
1061  * Conditionally call splz() if gd_reqflags indicates work is pending.
1062  * This will work inside a critical section but not inside a hard code
1063  * section.
1064  *
1065  * (self contained on a per cpu basis)
1066  */
1067 void
1068 splz_check(void)
1069 {
1070     globaldata_t gd = mycpu;
1071     thread_t td = gd->gd_curthread;
1072 
1073     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1074 	gd->gd_intr_nesting_level == 0 &&
1075 	td->td_nest_count < 2)
1076     {
1077 	splz();
1078     }
1079 }
1080 
1081 /*
1082  * This version is integrated into crit_exit, reqflags has already
1083  * been tested but td_critcount has not.
1084  *
1085  * We only want to execute the splz() on the 1->0 transition of
1086  * critcount and not in a hard code section or if too deeply nested.
1087  *
1088  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1089  */
1090 void
1091 lwkt_maybe_splz(thread_t td)
1092 {
1093     globaldata_t gd = td->td_gd;
1094 
1095     if (td->td_critcount == 0 &&
1096 	gd->gd_intr_nesting_level == 0 &&
1097 	td->td_nest_count < 2)
1098     {
1099 	splz();
1100     }
1101 }
1102 
1103 /*
1104  * Drivers which set up processing co-threads can call this function to
1105  * run the co-thread at a higher priority and to allow it to preempt
1106  * normal threads.
1107  */
1108 void
1109 lwkt_set_interrupt_support_thread(void)
1110 {
1111 	thread_t td = curthread;
1112 
1113         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1114 	td->td_flags |= TDF_INTTHREAD;
1115 	td->td_preemptable = lwkt_preempt;
1116 }
1117 
1118 
1119 /*
1120  * This function is used to negotiate a passive release of the current
1121  * process/lwp designation with the user scheduler, allowing the user
1122  * scheduler to schedule another user thread.  The related kernel thread
1123  * (curthread) continues running in the released state.
1124  */
1125 void
1126 lwkt_passive_release(struct thread *td)
1127 {
1128     struct lwp *lp = td->td_lwp;
1129 
1130     td->td_release = NULL;
1131     lwkt_setpri_self(TDPRI_KERN_USER);
1132 
1133     lp->lwp_proc->p_usched->release_curproc(lp);
1134 }
1135 
1136 
1137 /*
1138  * This implements a LWKT yield, allowing a kernel thread to yield to other
1139  * kernel threads at the same or higher priority.  This function can be
1140  * called in a tight loop and will typically only yield once per tick.
1141  *
1142  * Most kernel threads run at the same priority in order to allow equal
1143  * sharing.
1144  *
1145  * (self contained on a per cpu basis)
1146  */
1147 void
1148 lwkt_yield(void)
1149 {
1150     globaldata_t gd = mycpu;
1151     thread_t td = gd->gd_curthread;
1152 
1153     /*
1154      * Should never be called with spinlocks held but there is a path
1155      * via ACPI where it might happen.
1156      */
1157     if (gd->gd_spinlocks)
1158 	return;
1159 
1160     /*
1161      * Safe to call splz if we are not too-heavily nested.
1162      */
1163     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1164 	splz();
1165 
1166     /*
1167      * Caller allows switching
1168      */
1169     if (lwkt_resched_wanted()) {
1170 	atomic_set_int(&td->td_mpflags, TDF_MP_DIDYIELD);
1171 	lwkt_schedule_self(td);
1172 	lwkt_switch();
1173     }
1174 }
1175 
1176 /*
1177  * The quick version processes pending interrupts and higher-priority
1178  * LWKT threads but will not round-robin same-priority LWKT threads.
1179  *
1180  * When called while attempting to return to userland the only same-pri
1181  * threads are the ones which have already tried to become the current
1182  * user process.
1183  */
1184 void
1185 lwkt_yield_quick(void)
1186 {
1187     globaldata_t gd = mycpu;
1188     thread_t td = gd->gd_curthread;
1189 
1190     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1191 	splz();
1192     if (lwkt_resched_wanted()) {
1193 	crit_enter();
1194 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1195 	    clear_lwkt_resched();
1196 	} else {
1197 	    atomic_set_int(&td->td_mpflags, TDF_MP_DIDYIELD);
1198 	    lwkt_schedule_self(curthread);
1199 	    lwkt_switch();
1200 	}
1201 	crit_exit();
1202     }
1203 }
1204 
1205 /*
1206  * This yield is designed for kernel threads with a user context.
1207  *
1208  * The kernel acting on behalf of the user is potentially cpu-bound,
1209  * this function will efficiently allow other threads to run and also
1210  * switch to other processes by releasing.
1211  *
1212  * The lwkt_user_yield() function is designed to have very low overhead
1213  * if no yield is determined to be needed.
1214  */
1215 void
1216 lwkt_user_yield(void)
1217 {
1218     globaldata_t gd = mycpu;
1219     thread_t td = gd->gd_curthread;
1220 
1221     /*
1222      * Should never be called with spinlocks held but there is a path
1223      * via ACPI where it might happen.
1224      */
1225     if (gd->gd_spinlocks)
1226 	return;
1227 
1228     /*
1229      * Always run any pending interrupts in case we are in a critical
1230      * section.
1231      */
1232     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1233 	splz();
1234 
1235     /*
1236      * Switch (which forces a release) if another kernel thread needs
1237      * the cpu, if userland wants us to resched, or if our kernel
1238      * quantum has run out.
1239      */
1240     if (lwkt_resched_wanted() ||
1241 	user_resched_wanted())
1242     {
1243 	lwkt_switch();
1244     }
1245 
1246 #if 0
1247     /*
1248      * Reacquire the current process if we are released.
1249      *
1250      * XXX not implemented atm.  The kernel may be holding locks and such,
1251      *     so we want the thread to continue to receive cpu.
1252      */
1253     if (td->td_release == NULL && lp) {
1254 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1255 	td->td_release = lwkt_passive_release;
1256 	lwkt_setpri_self(TDPRI_USER_NORM);
1257     }
1258 #endif
1259 }
1260 
1261 /*
1262  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1263  * deal with threads that might be blocked on a wait queue.
1264  *
1265  * We have a little helper inline function which does additional work after
1266  * the thread has been enqueued, including dealing with preemption and
1267  * setting need_lwkt_resched() (which prevents the kernel from returning
1268  * to userland until it has processed higher priority threads).
1269  *
1270  * It is possible for this routine to be called after a failed _enqueue
1271  * (due to the target thread migrating, sleeping, or otherwise blocked).
1272  * We have to check that the thread is actually on the run queue!
1273  */
1274 static __inline
1275 void
1276 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1277 {
1278     if (ntd->td_flags & TDF_RUNQ) {
1279 	if (ntd->td_preemptable) {
1280 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1281 	}
1282     }
1283 }
1284 
1285 static __inline
1286 void
1287 _lwkt_schedule(thread_t td)
1288 {
1289     globaldata_t mygd = mycpu;
1290 
1291     KASSERT(td != &td->td_gd->gd_idlethread,
1292 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1293     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1294     crit_enter_gd(mygd);
1295     KKASSERT(td->td_lwp == NULL ||
1296 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1297 
1298     if (td == mygd->gd_curthread) {
1299 	_lwkt_enqueue(td);
1300     } else {
1301 	/*
1302 	 * If we own the thread, there is no race (since we are in a
1303 	 * critical section).  If we do not own the thread there might
1304 	 * be a race but the target cpu will deal with it.
1305 	 */
1306 	if (td->td_gd == mygd) {
1307 	    _lwkt_enqueue(td);
1308 	    _lwkt_schedule_post(mygd, td, 1);
1309 	} else {
1310 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1311 	}
1312     }
1313     crit_exit_gd(mygd);
1314 }
1315 
1316 void
1317 lwkt_schedule(thread_t td)
1318 {
1319     _lwkt_schedule(td);
1320 }
1321 
1322 void
1323 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1324 {
1325     _lwkt_schedule(td);
1326 }
1327 
1328 /*
1329  * When scheduled remotely if frame != NULL the IPIQ is being
1330  * run via doreti or an interrupt then preemption can be allowed.
1331  *
1332  * To allow preemption we have to drop the critical section so only
1333  * one is present in _lwkt_schedule_post.
1334  */
1335 static void
1336 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1337 {
1338     thread_t td = curthread;
1339     thread_t ntd = arg;
1340 
1341     if (frame && ntd->td_preemptable) {
1342 	crit_exit_noyield(td);
1343 	_lwkt_schedule(ntd);
1344 	crit_enter_quick(td);
1345     } else {
1346 	_lwkt_schedule(ntd);
1347     }
1348 }
1349 
1350 /*
1351  * Thread migration using a 'Pull' method.  The thread may or may not be
1352  * the current thread.  It MUST be descheduled and in a stable state.
1353  * lwkt_giveaway() must be called on the cpu owning the thread.
1354  *
1355  * At any point after lwkt_giveaway() is called, the target cpu may
1356  * 'pull' the thread by calling lwkt_acquire().
1357  *
1358  * We have to make sure the thread is not sitting on a per-cpu tsleep
1359  * queue or it will blow up when it moves to another cpu.
1360  *
1361  * MPSAFE - must be called under very specific conditions.
1362  */
1363 void
1364 lwkt_giveaway(thread_t td)
1365 {
1366     globaldata_t gd = mycpu;
1367 
1368     crit_enter_gd(gd);
1369     if (td->td_flags & TDF_TSLEEPQ)
1370 	tsleep_remove(td);
1371     KKASSERT(td->td_gd == gd);
1372     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1373     td->td_flags |= TDF_MIGRATING;
1374     crit_exit_gd(gd);
1375 }
1376 
1377 void
1378 lwkt_acquire(thread_t td)
1379 {
1380     globaldata_t gd;
1381     globaldata_t mygd;
1382 
1383     KKASSERT(td->td_flags & TDF_MIGRATING);
1384     gd = td->td_gd;
1385     mygd = mycpu;
1386     if (gd != mycpu) {
1387 #ifdef LOOPMASK
1388 	uint64_t tsc_base = rdtsc();
1389 #endif
1390 	cpu_lfence();
1391 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1392 	crit_enter_gd(mygd);
1393 	DEBUG_PUSH_INFO("lwkt_acquire");
1394 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1395 	    lwkt_process_ipiq();
1396 	    cpu_lfence();
1397 #ifdef _KERNEL_VIRTUAL
1398 	    vkernel_yield();
1399 #endif
1400 #ifdef LOOPMASK
1401 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1402 		    kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1403 			    td, td->td_flags);
1404 		    tsc_base = rdtsc();
1405 	    }
1406 #endif
1407 	}
1408 	DEBUG_POP_INFO();
1409 	cpu_mfence();
1410 	td->td_gd = mygd;
1411 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1412 	td->td_flags &= ~TDF_MIGRATING;
1413 	crit_exit_gd(mygd);
1414     } else {
1415 	crit_enter_gd(mygd);
1416 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1417 	td->td_flags &= ~TDF_MIGRATING;
1418 	crit_exit_gd(mygd);
1419     }
1420 }
1421 
1422 /*
1423  * Generic deschedule.  Descheduling threads other then your own should be
1424  * done only in carefully controlled circumstances.  Descheduling is
1425  * asynchronous.
1426  *
1427  * This function may block if the cpu has run out of messages.
1428  */
1429 void
1430 lwkt_deschedule(thread_t td)
1431 {
1432     crit_enter();
1433     if (td == curthread) {
1434 	_lwkt_dequeue(td);
1435     } else {
1436 	if (td->td_gd == mycpu) {
1437 	    _lwkt_dequeue(td);
1438 	} else {
1439 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1440 	}
1441     }
1442     crit_exit();
1443 }
1444 
1445 /*
1446  * Set the target thread's priority.  This routine does not automatically
1447  * switch to a higher priority thread, LWKT threads are not designed for
1448  * continuous priority changes.  Yield if you want to switch.
1449  */
1450 void
1451 lwkt_setpri(thread_t td, int pri)
1452 {
1453     if (td->td_pri != pri) {
1454 	KKASSERT(pri >= 0);
1455 	crit_enter();
1456 	if (td->td_flags & TDF_RUNQ) {
1457 	    KKASSERT(td->td_gd == mycpu);
1458 	    _lwkt_dequeue(td);
1459 	    td->td_pri = pri;
1460 	    _lwkt_enqueue(td);
1461 	} else {
1462 	    td->td_pri = pri;
1463 	}
1464 	crit_exit();
1465     }
1466 }
1467 
1468 /*
1469  * Set the initial priority for a thread prior to it being scheduled for
1470  * the first time.  The thread MUST NOT be scheduled before or during
1471  * this call.  The thread may be assigned to a cpu other then the current
1472  * cpu.
1473  *
1474  * Typically used after a thread has been created with TDF_STOPPREQ,
1475  * and before the thread is initially scheduled.
1476  */
1477 void
1478 lwkt_setpri_initial(thread_t td, int pri)
1479 {
1480     KKASSERT(pri >= 0);
1481     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1482     td->td_pri = pri;
1483 }
1484 
1485 void
1486 lwkt_setpri_self(int pri)
1487 {
1488     thread_t td = curthread;
1489 
1490     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1491     crit_enter();
1492     if (td->td_flags & TDF_RUNQ) {
1493 	_lwkt_dequeue(td);
1494 	td->td_pri = pri;
1495 	_lwkt_enqueue(td);
1496     } else {
1497 	td->td_pri = pri;
1498     }
1499     crit_exit();
1500 }
1501 
1502 /*
1503  * hz tick scheduler clock for LWKT threads
1504  */
1505 void
1506 lwkt_schedulerclock(thread_t td)
1507 {
1508     globaldata_t gd = td->td_gd;
1509     thread_t xtd;
1510 
1511     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1512     if (xtd == td) {
1513 	/*
1514 	 * If the current thread is at the head of the runq shift it to the
1515 	 * end of any equal-priority threads and request a LWKT reschedule
1516 	 * if it moved.
1517 	 *
1518 	 * Ignore upri in this situation.  There will only be one user thread
1519 	 * in user mode, all others will be user threads running in kernel
1520 	 * mode and we have to make sure they get some cpu.
1521 	 */
1522 	xtd = TAILQ_NEXT(td, td_threadq);
1523 	if (xtd && xtd->td_pri == td->td_pri) {
1524 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1525 	    while (xtd && xtd->td_pri == td->td_pri)
1526 		xtd = TAILQ_NEXT(xtd, td_threadq);
1527 	    if (xtd)
1528 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1529 	    else
1530 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1531 	    need_lwkt_resched();
1532 	}
1533     } else if (xtd) {
1534 	/*
1535 	 * If we scheduled a thread other than the one at the head of the
1536 	 * queue always request a reschedule every tick.
1537 	 */
1538 	need_lwkt_resched();
1539     }
1540     /* else curthread probably the idle thread, no need to reschedule */
1541 }
1542 
1543 /*
1544  * Migrate the current thread to the specified cpu.
1545  *
1546  * This is accomplished by descheduling ourselves from the current cpu
1547  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1548  * 'old' thread wants to migrate after it has been completely switched out
1549  * and will complete the migration.
1550  *
1551  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1552  *
1553  * We must be sure to release our current process designation (if a user
1554  * process) before clearing out any tsleepq we are on because the release
1555  * code may re-add us.
1556  *
1557  * We must be sure to remove ourselves from the current cpu's tsleepq
1558  * before potentially moving to another queue.  The thread can be on
1559  * a tsleepq due to a left-over tsleep_interlock().
1560  */
1561 
1562 void
1563 lwkt_setcpu_self(globaldata_t rgd)
1564 {
1565     thread_t td = curthread;
1566 
1567     if (td->td_gd != rgd) {
1568 	crit_enter_quick(td);
1569 
1570 	if (td->td_release)
1571 	    td->td_release(td);
1572 	if (td->td_flags & TDF_TSLEEPQ)
1573 	    tsleep_remove(td);
1574 
1575 	/*
1576 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1577 	 * trying to deschedule ourselves and switch away, then deschedule
1578 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1579 	 * call lwkt_switch() to complete the operation.
1580 	 */
1581 	td->td_flags |= TDF_MIGRATING;
1582 	lwkt_deschedule_self(td);
1583 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1584 	td->td_migrate_gd = rgd;
1585 	lwkt_switch();
1586 
1587 	/*
1588 	 * We are now on the target cpu
1589 	 */
1590 	KKASSERT(rgd == mycpu);
1591 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1592 	crit_exit_quick(td);
1593     }
1594 }
1595 
1596 void
1597 lwkt_migratecpu(int cpuid)
1598 {
1599 	globaldata_t rgd;
1600 
1601 	rgd = globaldata_find(cpuid);
1602 	lwkt_setcpu_self(rgd);
1603 }
1604 
1605 /*
1606  * Remote IPI for cpu migration (called while in a critical section so we
1607  * do not have to enter another one).
1608  *
1609  * The thread (td) has already been completely descheduled from the
1610  * originating cpu and we can simply assert the case.  The thread is
1611  * assigned to the new cpu and enqueued.
1612  *
1613  * The thread will re-add itself to tdallq when it resumes execution.
1614  */
1615 static void
1616 lwkt_setcpu_remote(void *arg)
1617 {
1618     thread_t td = arg;
1619     globaldata_t gd = mycpu;
1620 
1621     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1622     td->td_gd = gd;
1623     cpu_mfence();
1624     td->td_flags &= ~TDF_MIGRATING;
1625     KKASSERT(td->td_migrate_gd == NULL);
1626     KKASSERT(td->td_lwp == NULL ||
1627 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1628     _lwkt_enqueue(td);
1629 }
1630 
1631 struct lwp *
1632 lwkt_preempted_proc(void)
1633 {
1634     thread_t td = curthread;
1635     while (td->td_preempted)
1636 	td = td->td_preempted;
1637     return(td->td_lwp);
1638 }
1639 
1640 /*
1641  * Create a kernel process/thread/whatever.  It shares it's address space
1642  * with proc0 - ie: kernel only.
1643  *
1644  * If the cpu is not specified one will be selected.  In the future
1645  * specifying a cpu of -1 will enable kernel thread migration between
1646  * cpus.
1647  */
1648 int
1649 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1650 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1651 {
1652     thread_t td;
1653     __va_list ap;
1654 
1655     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1656 			   tdflags);
1657     if (tdp)
1658 	*tdp = td;
1659     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1660 
1661     /*
1662      * Set up arg0 for 'ps' etc
1663      */
1664     __va_start(ap, fmt);
1665     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1666     __va_end(ap);
1667 
1668     /*
1669      * Schedule the thread to run
1670      */
1671     if (td->td_flags & TDF_NOSTART)
1672 	td->td_flags &= ~TDF_NOSTART;
1673     else
1674 	lwkt_schedule(td);
1675     return 0;
1676 }
1677 
1678 /*
1679  * Destroy an LWKT thread.   Warning!  This function is not called when
1680  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1681  * uses a different reaping mechanism.
1682  */
1683 void
1684 lwkt_exit(void)
1685 {
1686     thread_t td = curthread;
1687     thread_t std;
1688     globaldata_t gd;
1689 
1690     /*
1691      * Do any cleanup that might block here
1692      */
1693     biosched_done(td);
1694     dsched_exit_thread(td);
1695 
1696     /*
1697      * Get us into a critical section to interlock gd_freetd and loop
1698      * until we can get it freed.
1699      *
1700      * We have to cache the current td in gd_freetd because objcache_put()ing
1701      * it would rip it out from under us while our thread is still active.
1702      *
1703      * We are the current thread so of course our own TDF_RUNNING bit will
1704      * be set, so unlike the lwp reap code we don't wait for it to clear.
1705      */
1706     gd = mycpu;
1707     crit_enter_quick(td);
1708     for (;;) {
1709 	if (td->td_refs) {
1710 	    tsleep(td, 0, "tdreap", 1);
1711 	    continue;
1712 	}
1713 	if ((std = gd->gd_freetd) != NULL) {
1714 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1715 	    gd->gd_freetd = NULL;
1716 	    objcache_put(thread_cache, std);
1717 	    continue;
1718 	}
1719 	break;
1720     }
1721 
1722     /*
1723      * Remove thread resources from kernel lists and deschedule us for
1724      * the last time.  We cannot block after this point or we may end
1725      * up with a stale td on the tsleepq.
1726      *
1727      * None of this may block, the critical section is the only thing
1728      * protecting tdallq and the only thing preventing new lwkt_hold()
1729      * thread refs now.
1730      */
1731     if (td->td_flags & TDF_TSLEEPQ)
1732 	tsleep_remove(td);
1733     lwkt_deschedule_self(td);
1734     lwkt_remove_tdallq(td);
1735     KKASSERT(td->td_refs == 0);
1736 
1737     /*
1738      * Final cleanup
1739      */
1740     KKASSERT(gd->gd_freetd == NULL);
1741     if (td->td_flags & TDF_ALLOCATED_THREAD)
1742 	gd->gd_freetd = td;
1743     cpu_thread_exit();
1744 }
1745 
1746 void
1747 lwkt_remove_tdallq(thread_t td)
1748 {
1749     KKASSERT(td->td_gd == mycpu);
1750     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1751 }
1752 
1753 /*
1754  * Code reduction and branch prediction improvements.  Call/return
1755  * overhead on modern cpus often degenerates into 0 cycles due to
1756  * the cpu's branch prediction hardware and return pc cache.  We
1757  * can take advantage of this by not inlining medium-complexity
1758  * functions and we can also reduce the branch prediction impact
1759  * by collapsing perfectly predictable branches into a single
1760  * procedure instead of duplicating it.
1761  *
1762  * Is any of this noticeable?  Probably not, so I'll take the
1763  * smaller code size.
1764  */
1765 void
1766 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1767 {
1768     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1769 }
1770 
1771 void
1772 crit_panic(void)
1773 {
1774     thread_t td = curthread;
1775     int lcrit = td->td_critcount;
1776 
1777     td->td_critcount = 0;
1778     cpu_ccfence();
1779     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1780     /* NOT REACHED */
1781 }
1782 
1783 /*
1784  * Called from debugger/panic on cpus which have been stopped.  We must still
1785  * process the IPIQ while stopped.
1786  *
1787  * If we are dumping also try to process any pending interrupts.  This may
1788  * or may not work depending on the state of the cpu at the point it was
1789  * stopped.
1790  */
1791 void
1792 lwkt_smp_stopped(void)
1793 {
1794     globaldata_t gd = mycpu;
1795 
1796     if (dumping) {
1797 	lwkt_process_ipiq();
1798 	--gd->gd_intr_nesting_level;
1799 	splz();
1800 	++gd->gd_intr_nesting_level;
1801     } else {
1802 	lwkt_process_ipiq();
1803     }
1804     cpu_smp_stopped();
1805 }
1806