xref: /dragonfly/sys/kern/lwkt_thread.c (revision 634ba020)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/malloc.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
56 #include <sys/indefinite.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <sys/indefinite2.h>
61 
62 #include <sys/dsched.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_pager.h>
71 #include <vm/vm_extern.h>
72 
73 #include <machine/stdarg.h>
74 #include <machine/smp.h>
75 #include <machine/clock.h>
76 
77 #define LOOPMASK
78 
79 #if !defined(KTR_CTXSW)
80 #define KTR_CTXSW KTR_ALL
81 #endif
82 KTR_INFO_MASTER(ctxsw);
83 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
84 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
85 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
86 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
87 
88 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
89 
90 #ifdef	INVARIANTS
91 static int panic_on_cscount = 0;
92 #endif
93 #ifdef DEBUG_LWKT_THREAD
94 static int64_t switch_count = 0;
95 static int64_t preempt_hit = 0;
96 static int64_t preempt_miss = 0;
97 static int64_t preempt_weird = 0;
98 #endif
99 static int lwkt_use_spin_port;
100 __read_mostly static struct objcache *thread_cache;
101 int cpu_mwait_spin = 0;
102 
103 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
104 static void lwkt_setcpu_remote(void *arg);
105 
106 /*
107  * We can make all thread ports use the spin backend instead of the thread
108  * backend.  This should only be set to debug the spin backend.
109  */
110 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
111 
112 #ifdef	INVARIANTS
113 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
114     "Panic if attempting to switch lwkt's while mastering cpusync");
115 #endif
116 #ifdef DEBUG_LWKT_THREAD
117 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
118     "Number of switched threads");
119 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
120     "Successful preemption events");
121 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
122     "Failed preemption events");
123 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
124     "Number of preempted threads.");
125 #endif
126 extern int lwkt_sched_debug;
127 int lwkt_sched_debug = 0;
128 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
129 	&lwkt_sched_debug, 0, "Scheduler debug");
130 __read_mostly static u_int lwkt_spin_loops = 10;
131 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
132 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
133 __read_mostly static int preempt_enable = 1;
134 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
135 	&preempt_enable, 0, "Enable preemption");
136 static int lwkt_cache_threads = 0;
137 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
138 	&lwkt_cache_threads, 0, "thread+kstack cache");
139 
140 /*
141  * These helper procedures handle the runq, they can only be called from
142  * within a critical section.
143  *
144  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
145  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
146  * instead of 'mycpu' when referencing the globaldata structure.   Once
147  * SMP live enqueuing and dequeueing only occurs on the current cpu.
148  */
149 static __inline
150 void
151 _lwkt_dequeue(thread_t td)
152 {
153     if (td->td_flags & TDF_RUNQ) {
154 	struct globaldata *gd = td->td_gd;
155 
156 	td->td_flags &= ~TDF_RUNQ;
157 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
158 	--gd->gd_tdrunqcount;
159 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
160 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
161     }
162 }
163 
164 /*
165  * Priority enqueue.
166  *
167  * There are a limited number of lwkt threads runnable since user
168  * processes only schedule one at a time per cpu.  However, there can
169  * be many user processes in kernel mode exiting from a tsleep() which
170  * become runnable.
171  *
172  * We scan the queue in both directions to help deal with degenerate
173  * situations when hundreds or thousands (or more) threads are runnable.
174  *
175  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
176  *	 will ignore user priority.  This is to ensure that user threads in
177  *	 kernel mode get cpu at some point regardless of what the user
178  *	 scheduler thinks.
179  */
180 static __inline
181 void
182 _lwkt_enqueue(thread_t td)
183 {
184     thread_t xtd;	/* forward scan */
185     thread_t rtd;	/* reverse scan */
186 
187     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
188 	struct globaldata *gd = td->td_gd;
189 
190 	td->td_flags |= TDF_RUNQ;
191 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
192 	if (xtd == NULL) {
193 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
194 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
195 	} else {
196 	    /*
197 	     * NOTE: td_upri - higher numbers more desireable, same sense
198 	     *	     as td_pri (typically reversed from lwp_upri).
199 	     *
200 	     *	     In the equal priority case we want the best selection
201 	     *	     at the beginning so the less desireable selections know
202 	     *	     that they have to setrunqueue/go-to-another-cpu, even
203 	     *	     though it means switching back to the 'best' selection.
204 	     *	     This also avoids degenerate situations when many threads
205 	     *	     are runnable or waking up at the same time.
206 	     *
207 	     *	     If upri matches exactly place at end/round-robin.
208 	     */
209 	    rtd = TAILQ_LAST(&gd->gd_tdrunq, lwkt_queue);
210 
211 	    while (xtd &&
212 		   (xtd->td_pri > td->td_pri ||
213 		    (xtd->td_pri == td->td_pri &&
214 		     xtd->td_upri >= td->td_upri))) {
215 		xtd = TAILQ_NEXT(xtd, td_threadq);
216 
217 		/*
218 		 * Doing a reverse scan at the same time is an optimization
219 		 * for the insert-closer-to-tail case that avoids having to
220 		 * scan the entire list.  This situation can occur when
221 		 * thousands of threads are woken up at the same time.
222 		 */
223 		if (rtd->td_pri > td->td_pri ||
224 		    (rtd->td_pri == td->td_pri &&
225 		    rtd->td_upri >= td->td_upri)) {
226 			TAILQ_INSERT_AFTER(&gd->gd_tdrunq, rtd, td, td_threadq);
227 			goto skip;
228 		}
229 		rtd = TAILQ_PREV(rtd, lwkt_queue, td_threadq);
230 	    }
231 	    if (xtd)
232 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
233 	    else
234 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
235 	}
236 skip:
237 	++gd->gd_tdrunqcount;
238 
239 	/*
240 	 * Request a LWKT reschedule if we are now at the head of the queue.
241 	 */
242 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
243 	    need_lwkt_resched();
244     }
245 }
246 
247 static boolean_t
248 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
249 {
250 	struct thread *td = (struct thread *)obj;
251 
252 	td->td_kstack = NULL;
253 	td->td_kstack_size = 0;
254 	td->td_flags = TDF_ALLOCATED_THREAD;
255 	td->td_mpflags = 0;
256 	return (1);
257 }
258 
259 static void
260 _lwkt_thread_dtor(void *obj, void *privdata)
261 {
262 	struct thread *td = (struct thread *)obj;
263 
264 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
265 	    ("_lwkt_thread_dtor: not allocated from objcache"));
266 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
267 		td->td_kstack_size > 0,
268 	    ("_lwkt_thread_dtor: corrupted stack"));
269 	kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
270 	td->td_kstack = NULL;
271 	td->td_flags = 0;
272 }
273 
274 /*
275  * Initialize the lwkt s/system.
276  *
277  * Nominally cache up to 32 thread + kstack structures.  Cache more on
278  * systems with a lot of cpu cores.
279  */
280 static void
281 lwkt_init(void)
282 {
283     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
284     if (lwkt_cache_threads == 0) {
285 	lwkt_cache_threads = ncpus * 4;
286 	if (lwkt_cache_threads < 32)
287 	    lwkt_cache_threads = 32;
288     }
289     thread_cache = objcache_create_mbacked(
290 				M_THREAD, sizeof(struct thread),
291 				0, lwkt_cache_threads,
292 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
293 }
294 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
295 
296 /*
297  * Schedule a thread to run.  As the current thread we can always safely
298  * schedule ourselves, and a shortcut procedure is provided for that
299  * function.
300  *
301  * (non-blocking, self contained on a per cpu basis)
302  */
303 void
304 lwkt_schedule_self(thread_t td)
305 {
306     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
307     crit_enter_quick(td);
308     KASSERT(td != &td->td_gd->gd_idlethread,
309 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
310     KKASSERT(td->td_lwp == NULL ||
311 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
312     _lwkt_enqueue(td);
313     crit_exit_quick(td);
314 }
315 
316 /*
317  * Deschedule a thread.
318  *
319  * (non-blocking, self contained on a per cpu basis)
320  */
321 void
322 lwkt_deschedule_self(thread_t td)
323 {
324     crit_enter_quick(td);
325     _lwkt_dequeue(td);
326     crit_exit_quick(td);
327 }
328 
329 /*
330  * LWKTs operate on a per-cpu basis
331  *
332  * WARNING!  Called from early boot, 'mycpu' may not work yet.
333  */
334 void
335 lwkt_gdinit(struct globaldata *gd)
336 {
337     TAILQ_INIT(&gd->gd_tdrunq);
338     TAILQ_INIT(&gd->gd_tdallq);
339     lockinit(&gd->gd_sysctllock, "sysctl", 0, LK_CANRECURSE);
340 }
341 
342 /*
343  * Create a new thread.  The thread must be associated with a process context
344  * or LWKT start address before it can be scheduled.  If the target cpu is
345  * -1 the thread will be created on the current cpu.
346  *
347  * If you intend to create a thread without a process context this function
348  * does everything except load the startup and switcher function.
349  */
350 thread_t
351 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
352 {
353     static int cpu_rotator;
354     globaldata_t gd = mycpu;
355     void *stack;
356 
357     /*
358      * If static thread storage is not supplied allocate a thread.  Reuse
359      * a cached free thread if possible.  gd_freetd is used to keep an exiting
360      * thread intact through the exit.
361      */
362     if (td == NULL) {
363 	crit_enter_gd(gd);
364 	if ((td = gd->gd_freetd) != NULL) {
365 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
366 				      TDF_RUNQ)) == 0);
367 	    gd->gd_freetd = NULL;
368 	} else {
369 	    td = objcache_get(thread_cache, M_WAITOK);
370 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
371 				      TDF_RUNQ)) == 0);
372 	}
373 	crit_exit_gd(gd);
374     	KASSERT((td->td_flags &
375 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
376 		 TDF_ALLOCATED_THREAD,
377 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
378     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
379     }
380 
381     /*
382      * Try to reuse cached stack.
383      */
384     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
385 	if (flags & TDF_ALLOCATED_STACK) {
386 	    kmem_free(kernel_map, (vm_offset_t)stack, td->td_kstack_size);
387 	    stack = NULL;
388 	}
389     }
390     if (stack == NULL) {
391 	if (cpu < 0) {
392 		stack = (void *)kmem_alloc_stack(kernel_map, stksize, 0);
393 	} else {
394 		stack = (void *)kmem_alloc_stack(kernel_map, stksize,
395 						 KM_CPU(cpu));
396 	}
397 	flags |= TDF_ALLOCATED_STACK;
398     }
399     if (cpu < 0) {
400 	cpu = ++cpu_rotator;
401 	cpu_ccfence();
402 	cpu = (uint32_t)cpu % (uint32_t)ncpus;
403     }
404     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
405     return(td);
406 }
407 
408 /*
409  * Initialize a preexisting thread structure.  This function is used by
410  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
411  *
412  * All threads start out in a critical section at a priority of
413  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
414  * appropriate.  This function may send an IPI message when the
415  * requested cpu is not the current cpu and consequently gd_tdallq may
416  * not be initialized synchronously from the point of view of the originating
417  * cpu.
418  *
419  * NOTE! we have to be careful in regards to creating threads for other cpus
420  * if SMP has not yet been activated.
421  */
422 static void
423 lwkt_init_thread_remote(void *arg)
424 {
425     thread_t td = arg;
426 
427     /*
428      * Protected by critical section held by IPI dispatch
429      */
430     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
431 }
432 
433 /*
434  * lwkt core thread structural initialization.
435  *
436  * NOTE: All threads are initialized as mpsafe threads.
437  */
438 void
439 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
440 		struct globaldata *gd)
441 {
442     globaldata_t mygd = mycpu;
443 
444     bzero(td, sizeof(struct thread));
445     td->td_kstack = stack;
446     td->td_kstack_size = stksize;
447     td->td_flags = flags;
448     td->td_mpflags = 0;
449     td->td_type = TD_TYPE_GENERIC;
450     td->td_gd = gd;
451     td->td_pri = TDPRI_KERN_DAEMON;
452     td->td_critcount = 1;
453     td->td_toks_have = NULL;
454     td->td_toks_stop = &td->td_toks_base;
455     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
456 	lwkt_initport_spin(&td->td_msgport, td,
457 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
458     } else {
459 	lwkt_initport_thread(&td->td_msgport, td);
460     }
461     pmap_init_thread(td);
462     /*
463      * Normally initializing a thread for a remote cpu requires sending an
464      * IPI.  However, the idlethread is setup before the other cpus are
465      * activated so we have to treat it as a special case.  XXX manipulation
466      * of gd_tdallq requires the BGL.
467      */
468     if (gd == mygd || td == &gd->gd_idlethread) {
469 	crit_enter_gd(mygd);
470 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
471 	crit_exit_gd(mygd);
472     } else {
473 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
474     }
475     dsched_enter_thread(td);
476 }
477 
478 void
479 lwkt_set_comm(thread_t td, const char *ctl, ...)
480 {
481     __va_list va;
482 
483     __va_start(va, ctl);
484     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
485     __va_end(va);
486     KTR_LOG(ctxsw_newtd, td, td->td_comm);
487 }
488 
489 /*
490  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
491  * this does not prevent the thread from migrating to another cpu so the
492  * gd_tdallq state is not protected by this.
493  */
494 void
495 lwkt_hold(thread_t td)
496 {
497     atomic_add_int(&td->td_refs, 1);
498 }
499 
500 void
501 lwkt_rele(thread_t td)
502 {
503     KKASSERT(td->td_refs > 0);
504     atomic_add_int(&td->td_refs, -1);
505 }
506 
507 void
508 lwkt_free_thread(thread_t td)
509 {
510     KKASSERT(td->td_refs == 0);
511     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
512 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
513     if (td->td_flags & TDF_ALLOCATED_THREAD) {
514     	objcache_put(thread_cache, td);
515     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
516 	/* client-allocated struct with internally allocated stack */
517 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
518 	    ("lwkt_free_thread: corrupted stack"));
519 	kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
520 	td->td_kstack = NULL;
521 	td->td_kstack_size = 0;
522     }
523 
524     KTR_LOG(ctxsw_deadtd, td);
525 }
526 
527 
528 /*
529  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
530  * switch to the idlethread.  Switching must occur within a critical
531  * section to avoid races with the scheduling queue.
532  *
533  * We always have full control over our cpu's run queue.  Other cpus
534  * that wish to manipulate our queue must use the cpu_*msg() calls to
535  * talk to our cpu, so a critical section is all that is needed and
536  * the result is very, very fast thread switching.
537  *
538  * The LWKT scheduler uses a fixed priority model and round-robins at
539  * each priority level.  User process scheduling is a totally
540  * different beast and LWKT priorities should not be confused with
541  * user process priorities.
542  *
543  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
544  * is not called by the current thread in the preemption case, only when
545  * the preempting thread blocks (in order to return to the original thread).
546  *
547  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
548  * migration and tsleep deschedule the current lwkt thread and call
549  * lwkt_switch().  In particular, the target cpu of the migration fully
550  * expects the thread to become non-runnable and can deadlock against
551  * cpusync operations if we run any IPIs prior to switching the thread out.
552  *
553  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
554  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
555  */
556 void
557 lwkt_switch(void)
558 {
559     globaldata_t gd = mycpu;
560     thread_t td = gd->gd_curthread;
561     thread_t ntd;
562     thread_t xtd;
563     int upri;
564 #ifdef LOOPMASK
565     uint64_t tsc_base = rdtsc();
566 #endif
567 
568     KKASSERT(gd->gd_processing_ipiq == 0);
569     KKASSERT(td->td_flags & TDF_RUNNING);
570 
571     /*
572      * Switching from within a 'fast' (non thread switched) interrupt or IPI
573      * is illegal.  However, we may have to do it anyway if we hit a fatal
574      * kernel trap or we have paniced.
575      *
576      * If this case occurs save and restore the interrupt nesting level.
577      */
578     if (gd->gd_intr_nesting_level) {
579 	int savegdnest;
580 	int savegdtrap;
581 
582 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
583 	    panic("lwkt_switch: Attempt to switch from a "
584 		  "fast interrupt, ipi, or hard code section, "
585 		  "td %p\n",
586 		  td);
587 	} else {
588 	    savegdnest = gd->gd_intr_nesting_level;
589 	    savegdtrap = gd->gd_trap_nesting_level;
590 	    gd->gd_intr_nesting_level = 0;
591 	    gd->gd_trap_nesting_level = 0;
592 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
593 		td->td_flags |= TDF_PANICWARN;
594 		kprintf("Warning: thread switch from interrupt, IPI, "
595 			"or hard code section.\n"
596 			"thread %p (%s)\n", td, td->td_comm);
597 		print_backtrace(-1);
598 	    }
599 	    lwkt_switch();
600 	    gd->gd_intr_nesting_level = savegdnest;
601 	    gd->gd_trap_nesting_level = savegdtrap;
602 	    return;
603 	}
604     }
605 
606     /*
607      * Release our current user process designation if we are blocking
608      * or if a user reschedule was requested.
609      *
610      * NOTE: This function is NOT called if we are switching into or
611      *	     returning from a preemption.
612      *
613      * NOTE: Releasing our current user process designation may cause
614      *	     it to be assigned to another thread, which in turn will
615      *	     cause us to block in the usched acquire code when we attempt
616      *	     to return to userland.
617      *
618      * NOTE: On SMP systems this can be very nasty when heavy token
619      *	     contention is present so we want to be careful not to
620      *	     release the designation gratuitously.
621      */
622     if (td->td_release &&
623 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
624 	    td->td_release(td);
625     }
626 
627     /*
628      * Release all tokens.  Once we do this we must remain in the critical
629      * section and cannot run IPIs or other interrupts until we switch away
630      * because they may implode if they try to get a token using our thread
631      * context.
632      */
633     crit_enter_gd(gd);
634     if (TD_TOKS_HELD(td))
635 	    lwkt_relalltokens(td);
636 
637     /*
638      * We had better not be holding any spin locks, but don't get into an
639      * endless panic loop.
640      */
641     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
642 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
643 	     gd->gd_spinlocks));
644 
645 #ifdef	INVARIANTS
646     if (td->td_cscount) {
647 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
648 		td);
649 	if (panic_on_cscount)
650 	    panic("switching while mastering cpusync");
651     }
652 #endif
653 
654     /*
655      * If we had preempted another thread on this cpu, resume the preempted
656      * thread.  This occurs transparently, whether the preempted thread
657      * was scheduled or not (it may have been preempted after descheduling
658      * itself).
659      *
660      * We have to setup the MP lock for the original thread after backing
661      * out the adjustment that was made to curthread when the original
662      * was preempted.
663      */
664     if ((ntd = td->td_preempted) != NULL) {
665 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
666 	ntd->td_flags |= TDF_PREEMPT_DONE;
667 	ntd->td_contended = 0;		/* reset contended */
668 
669 	/*
670 	 * The interrupt may have woken a thread up, we need to properly
671 	 * set the reschedule flag if the originally interrupted thread is
672 	 * at a lower priority.
673 	 *
674 	 * NOTE: The interrupt may not have descheduled ntd.
675 	 *
676 	 * NOTE: We do not reschedule if there are no threads on the runq.
677 	 *	 (ntd could be the idlethread).
678 	 */
679 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
680 	if (xtd && xtd != ntd)
681 	    need_lwkt_resched();
682 	goto havethread_preempted;
683     }
684 
685     /*
686      * Figure out switch target.  If we cannot switch to our desired target
687      * look for a thread that we can switch to.
688      *
689      * NOTE! The limited spin loop and related parameters are extremely
690      *	     important for system performance, particularly for pipes and
691      *	     concurrent conflicting VM faults.
692      */
693     clear_lwkt_resched();
694     ntd = TAILQ_FIRST(&gd->gd_tdrunq);
695 
696     if (ntd) {
697 	do {
698 	    if (TD_TOKS_NOT_HELD(ntd) ||
699 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
700 	    {
701 		goto havethread;
702 	    }
703 	    ++ntd->td_contended;	/* overflow ok */
704 	    if (gd->gd_indefinite.type == 0)
705 		indefinite_init(&gd->gd_indefinite, NULL, 0, 't');
706 #ifdef LOOPMASK
707 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
708 		    kprintf("lwkt_switch: excessive contended %d "
709 			    "thread %p\n", ntd->td_contended, ntd);
710 		    tsc_base = rdtsc();
711 	    }
712 #endif
713 	} while (ntd->td_contended < (lwkt_spin_loops >> 1));
714 	upri = ntd->td_upri;
715 
716 	/*
717 	 * Bleh, the thread we wanted to switch to has a contended token.
718 	 * See if we can switch to another thread.
719 	 *
720 	 * We generally don't want to do this because it represents a
721 	 * priority inversion, but contending tokens on the same cpu can
722 	 * cause real problems if we don't now that we have an exclusive
723 	 * priority mechanism over shared for tokens.
724 	 *
725 	 * The solution is to allow threads with pending tokens to compete
726 	 * for them (a lower priority thread will get less cpu once it
727 	 * returns from the kernel anyway).  If a thread does not have
728 	 * any contending tokens, we go by td_pri and upri.
729 	 */
730 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
731 	    if (TD_TOKS_NOT_HELD(ntd) &&
732 		ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri) {
733 		    continue;
734 	    }
735 	    if (upri < ntd->td_upri)
736 		upri = ntd->td_upri;
737 
738 	    /*
739 	     * Try this one.
740 	     */
741 	    if (TD_TOKS_NOT_HELD(ntd) ||
742 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
743 		    goto havethread;
744 	    }
745 	    ++ntd->td_contended;	/* overflow ok */
746 	}
747 
748 	/*
749 	 * Fall through, switch to idle thread to get us out of the current
750 	 * context.  Since we were contended, prevent HLT by flagging a
751 	 * LWKT reschedule.
752 	 */
753 	need_lwkt_resched();
754     }
755 
756     /*
757      * We either contended on ntd or the runq is empty.  We must switch
758      * through the idle thread to get out of the current context.
759      */
760     ntd = &gd->gd_idlethread;
761     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
762 	ASSERT_NO_TOKENS_HELD(ntd);
763     cpu_time.cp_msg[0] = 0;
764     goto haveidle;
765 
766 havethread:
767     /*
768      * Clear gd_idle_repeat when doing a normal switch to a non-idle
769      * thread.
770      */
771     ntd->td_wmesg = NULL;
772     ntd->td_contended = 0;	/* reset once scheduled */
773     ++gd->gd_cnt.v_swtch;
774     gd->gd_idle_repeat = 0;
775 
776     /*
777      * If we were busy waiting record final disposition
778      */
779     if (gd->gd_indefinite.type)
780 	    indefinite_done(&gd->gd_indefinite);
781 
782 havethread_preempted:
783     /*
784      * If the new target does not need the MP lock and we are holding it,
785      * release the MP lock.  If the new target requires the MP lock we have
786      * already acquired it for the target.
787      */
788     ;
789 haveidle:
790     KASSERT(ntd->td_critcount,
791 	    ("priority problem in lwkt_switch %d %d",
792 	    td->td_critcount, ntd->td_critcount));
793 
794     if (td != ntd) {
795 	/*
796 	 * Execute the actual thread switch operation.  This function
797 	 * returns to the current thread and returns the previous thread
798 	 * (which may be different from the thread we switched to).
799 	 *
800 	 * We are responsible for marking ntd as TDF_RUNNING.
801 	 */
802 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
803 #ifdef DEBUG_LWKT_THREAD
804 	++switch_count;
805 #endif
806 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
807 	ntd->td_flags |= TDF_RUNNING;
808 	lwkt_switch_return(td->td_switch(ntd));
809 	/* ntd invalid, td_switch() can return a different thread_t */
810     }
811 
812     /*
813      * catch-all.  XXX is this strictly needed?
814      */
815     splz_check();
816 
817     /* NOTE: current cpu may have changed after switch */
818     crit_exit_quick(td);
819 }
820 
821 /*
822  * Called by assembly in the td_switch (thread restore path) for thread
823  * bootstrap cases which do not 'return' to lwkt_switch().
824  */
825 void
826 lwkt_switch_return(thread_t otd)
827 {
828 	globaldata_t rgd;
829 #ifdef LOOPMASK
830 	uint64_t tsc_base = rdtsc();
831 #endif
832 	int exiting;
833 
834 	exiting = otd->td_flags & TDF_EXITING;
835 	cpu_ccfence();
836 
837 	/*
838 	 * Check if otd was migrating.  Now that we are on ntd we can finish
839 	 * up the migration.  This is a bit messy but it is the only place
840 	 * where td is known to be fully descheduled.
841 	 *
842 	 * We can only activate the migration if otd was migrating but not
843 	 * held on the cpu due to a preemption chain.  We still have to
844 	 * clear TDF_RUNNING on the old thread either way.
845 	 *
846 	 * We are responsible for clearing the previously running thread's
847 	 * TDF_RUNNING.
848 	 */
849 	if ((rgd = otd->td_migrate_gd) != NULL &&
850 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
851 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
852 			 (TDF_MIGRATING | TDF_RUNNING));
853 		otd->td_migrate_gd = NULL;
854 		otd->td_flags &= ~TDF_RUNNING;
855 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
856 	} else {
857 		otd->td_flags &= ~TDF_RUNNING;
858 	}
859 
860 	/*
861 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
862 	 * invalid the *instant* we set TDF_MP_EXITSIG.
863 	 *
864 	 * Use the EXITING status loaded from before we clear TDF_RUNNING,
865 	 * because if it is not set otd becomes invalid the instant we clear
866 	 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
867 	 * might 'steal' TDF_EXITING from another switch-return!).
868 	 */
869 	while (exiting) {
870 		u_int mpflags;
871 
872 		mpflags = otd->td_mpflags;
873 		cpu_ccfence();
874 
875 		if (mpflags & TDF_MP_EXITWAIT) {
876 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
877 					      mpflags | TDF_MP_EXITSIG)) {
878 				wakeup(otd);
879 				break;
880 			}
881 		} else {
882 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
883 					      mpflags | TDF_MP_EXITSIG)) {
884 				wakeup(otd);
885 				break;
886 			}
887 		}
888 
889 #ifdef LOOPMASK
890 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
891 			kprintf("lwkt_switch_return: excessive TDF_EXITING "
892 				"thread %p\n", otd);
893 			tsc_base = rdtsc();
894 		}
895 #endif
896 	}
897 }
898 
899 /*
900  * Request that the target thread preempt the current thread.  Preemption
901  * can only occur only:
902  *
903  *	- If our critical section is the one that we were called with
904  *	- The relative priority of the target thread is higher
905  *	- The target is not excessively interrupt-nested via td_nest_count
906  *	- The target thread holds no tokens.
907  *	- The target thread is not already scheduled and belongs to the
908  *	  current cpu.
909  *	- The current thread is not holding any spin-locks.
910  *
911  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
912  * this is called via lwkt_schedule() through the td_preemptable callback.
913  * critcount is the managed critical priority that we should ignore in order
914  * to determine whether preemption is possible (aka usually just the crit
915  * priority of lwkt_schedule() itself).
916  *
917  * Preemption is typically limited to interrupt threads.
918  *
919  * Operation works in a fairly straight-forward manner.  The normal
920  * scheduling code is bypassed and we switch directly to the target
921  * thread.  When the target thread attempts to block or switch away
922  * code at the base of lwkt_switch() will switch directly back to our
923  * thread.  Our thread is able to retain whatever tokens it holds and
924  * if the target needs one of them the target will switch back to us
925  * and reschedule itself normally.
926  */
927 void
928 lwkt_preempt(thread_t ntd, int critcount)
929 {
930     struct globaldata *gd = mycpu;
931     thread_t xtd;
932     thread_t td;
933     int save_gd_intr_nesting_level;
934 
935     /*
936      * The caller has put us in a critical section.  We can only preempt
937      * if the caller of the caller was not in a critical section (basically
938      * a local interrupt), as determined by the 'critcount' parameter.  We
939      * also can't preempt if the caller is holding any spinlocks (even if
940      * he isn't in a critical section).  This also handles the tokens test.
941      *
942      * YYY The target thread must be in a critical section (else it must
943      * inherit our critical section?  I dunno yet).
944      */
945     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
946 
947     td = gd->gd_curthread;
948     if (preempt_enable == 0) {
949 #ifdef DEBUG_LWKT_THREAD
950 	++preempt_miss;
951 #endif
952 	return;
953     }
954     if (ntd->td_pri <= td->td_pri) {
955 #ifdef DEBUG_LWKT_THREAD
956 	++preempt_miss;
957 #endif
958 	return;
959     }
960     if (td->td_critcount > critcount) {
961 #ifdef DEBUG_LWKT_THREAD
962 	++preempt_miss;
963 #endif
964 	return;
965     }
966     if (td->td_nest_count >= 2) {
967 #ifdef DEBUG_LWKT_THREAD
968 	++preempt_miss;
969 #endif
970 	return;
971     }
972     if (td->td_cscount) {
973 #ifdef DEBUG_LWKT_THREAD
974 	++preempt_miss;
975 #endif
976 	return;
977     }
978     if (ntd->td_gd != gd) {
979 #ifdef DEBUG_LWKT_THREAD
980 	++preempt_miss;
981 #endif
982 	return;
983     }
984 
985     /*
986      * We don't have to check spinlocks here as they will also bump
987      * td_critcount.
988      *
989      * Do not try to preempt if the target thread is holding any tokens.
990      * We could try to acquire the tokens but this case is so rare there
991      * is no need to support it.
992      */
993     KKASSERT(gd->gd_spinlocks == 0);
994 
995     if (TD_TOKS_HELD(ntd)) {
996 #ifdef DEBUG_LWKT_THREAD
997 	++preempt_miss;
998 #endif
999 	return;
1000     }
1001     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1002 #ifdef DEBUG_LWKT_THREAD
1003 	++preempt_weird;
1004 #endif
1005 	return;
1006     }
1007     if (ntd->td_preempted) {
1008 #ifdef DEBUG_LWKT_THREAD
1009 	++preempt_hit;
1010 #endif
1011 	return;
1012     }
1013     KKASSERT(gd->gd_processing_ipiq == 0);
1014 
1015     /*
1016      * Since we are able to preempt the current thread, there is no need to
1017      * call need_lwkt_resched().
1018      *
1019      * We must temporarily clear gd_intr_nesting_level around the switch
1020      * since switchouts from the target thread are allowed (they will just
1021      * return to our thread), and since the target thread has its own stack.
1022      *
1023      * A preemption must switch back to the original thread, assert the
1024      * case.
1025      */
1026 #ifdef DEBUG_LWKT_THREAD
1027     ++preempt_hit;
1028 #endif
1029     ntd->td_preempted = td;
1030     td->td_flags |= TDF_PREEMPT_LOCK;
1031     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1032     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1033     gd->gd_intr_nesting_level = 0;
1034 
1035     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1036     ntd->td_flags |= TDF_RUNNING;
1037     xtd = td->td_switch(ntd);
1038     KKASSERT(xtd == ntd);
1039     lwkt_switch_return(xtd);
1040     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1041 
1042     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1043     ntd->td_preempted = NULL;
1044     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1045 }
1046 
1047 /*
1048  * Conditionally call splz() if gd_reqflags indicates work is pending.
1049  * This will work inside a critical section but not inside a hard code
1050  * section.
1051  *
1052  * (self contained on a per cpu basis)
1053  */
1054 void
1055 splz_check(void)
1056 {
1057     globaldata_t gd = mycpu;
1058     thread_t td = gd->gd_curthread;
1059 
1060     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1061 	gd->gd_intr_nesting_level == 0 &&
1062 	td->td_nest_count < 2)
1063     {
1064 	splz();
1065     }
1066 }
1067 
1068 /*
1069  * This version is integrated into crit_exit, reqflags has already
1070  * been tested but td_critcount has not.
1071  *
1072  * We only want to execute the splz() on the 1->0 transition of
1073  * critcount and not in a hard code section or if too deeply nested.
1074  *
1075  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1076  */
1077 void
1078 lwkt_maybe_splz(thread_t td)
1079 {
1080     globaldata_t gd = td->td_gd;
1081 
1082     if (td->td_critcount == 0 &&
1083 	gd->gd_intr_nesting_level == 0 &&
1084 	td->td_nest_count < 2)
1085     {
1086 	splz();
1087     }
1088 }
1089 
1090 /*
1091  * Drivers which set up processing co-threads can call this function to
1092  * run the co-thread at a higher priority and to allow it to preempt
1093  * normal threads.
1094  */
1095 void
1096 lwkt_set_interrupt_support_thread(void)
1097 {
1098 	thread_t td = curthread;
1099 
1100         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1101 	td->td_flags |= TDF_INTTHREAD;
1102 	td->td_preemptable = lwkt_preempt;
1103 }
1104 
1105 
1106 /*
1107  * This function is used to negotiate a passive release of the current
1108  * process/lwp designation with the user scheduler, allowing the user
1109  * scheduler to schedule another user thread.  The related kernel thread
1110  * (curthread) continues running in the released state.
1111  */
1112 void
1113 lwkt_passive_release(struct thread *td)
1114 {
1115     struct lwp *lp = td->td_lwp;
1116 
1117     td->td_release = NULL;
1118     lwkt_setpri_self(TDPRI_KERN_USER);
1119 
1120     lp->lwp_proc->p_usched->release_curproc(lp);
1121 }
1122 
1123 
1124 /*
1125  * This implements a LWKT yield, allowing a kernel thread to yield to other
1126  * kernel threads at the same or higher priority.  This function can be
1127  * called in a tight loop and will typically only yield once per tick.
1128  *
1129  * Most kernel threads run at the same priority in order to allow equal
1130  * sharing.
1131  *
1132  * (self contained on a per cpu basis)
1133  */
1134 void
1135 lwkt_yield(void)
1136 {
1137     globaldata_t gd = mycpu;
1138     thread_t td = gd->gd_curthread;
1139 
1140     /*
1141      * Should never be called with spinlocks held but there is a path
1142      * via ACPI where it might happen.
1143      */
1144     if (gd->gd_spinlocks)
1145 	return;
1146 
1147     /*
1148      * Safe to call splz if we are not too-heavily nested.
1149      */
1150     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1151 	splz();
1152 
1153     /*
1154      * Caller allows switching
1155      */
1156     if (lwkt_resched_wanted()) {
1157 	atomic_set_int(&td->td_mpflags, TDF_MP_DIDYIELD);
1158 	lwkt_schedule_self(td);
1159 	lwkt_switch();
1160     }
1161 }
1162 
1163 /*
1164  * The quick version processes pending interrupts and higher-priority
1165  * LWKT threads but will not round-robin same-priority LWKT threads.
1166  *
1167  * When called while attempting to return to userland the only same-pri
1168  * threads are the ones which have already tried to become the current
1169  * user process.
1170  */
1171 void
1172 lwkt_yield_quick(void)
1173 {
1174     globaldata_t gd = mycpu;
1175     thread_t td = gd->gd_curthread;
1176 
1177     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1178 	splz();
1179     if (lwkt_resched_wanted()) {
1180 	crit_enter();
1181 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1182 	    clear_lwkt_resched();
1183 	} else {
1184 	    atomic_set_int(&td->td_mpflags, TDF_MP_DIDYIELD);
1185 	    lwkt_schedule_self(curthread);
1186 	    lwkt_switch();
1187 	}
1188 	crit_exit();
1189     }
1190 }
1191 
1192 /*
1193  * This yield is designed for kernel threads with a user context.
1194  *
1195  * The kernel acting on behalf of the user is potentially cpu-bound,
1196  * this function will efficiently allow other threads to run and also
1197  * switch to other processes by releasing.
1198  *
1199  * The lwkt_user_yield() function is designed to have very low overhead
1200  * if no yield is determined to be needed.
1201  */
1202 void
1203 lwkt_user_yield(void)
1204 {
1205     globaldata_t gd = mycpu;
1206     thread_t td = gd->gd_curthread;
1207 
1208     /*
1209      * Should never be called with spinlocks held but there is a path
1210      * via ACPI where it might happen.
1211      */
1212     if (gd->gd_spinlocks)
1213 	return;
1214 
1215     /*
1216      * Always run any pending interrupts in case we are in a critical
1217      * section.
1218      */
1219     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1220 	splz();
1221 
1222     /*
1223      * Switch (which forces a release) if another kernel thread needs
1224      * the cpu, if userland wants us to resched, or if our kernel
1225      * quantum has run out.
1226      */
1227     if (lwkt_resched_wanted() ||
1228 	user_resched_wanted())
1229     {
1230 	lwkt_switch();
1231     }
1232 
1233 #if 0
1234     /*
1235      * Reacquire the current process if we are released.
1236      *
1237      * XXX not implemented atm.  The kernel may be holding locks and such,
1238      *     so we want the thread to continue to receive cpu.
1239      */
1240     if (td->td_release == NULL && lp) {
1241 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1242 	td->td_release = lwkt_passive_release;
1243 	lwkt_setpri_self(TDPRI_USER_NORM);
1244     }
1245 #endif
1246 }
1247 
1248 /*
1249  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1250  * deal with threads that might be blocked on a wait queue.
1251  *
1252  * We have a little helper inline function which does additional work after
1253  * the thread has been enqueued, including dealing with preemption and
1254  * setting need_lwkt_resched() (which prevents the kernel from returning
1255  * to userland until it has processed higher priority threads).
1256  *
1257  * It is possible for this routine to be called after a failed _enqueue
1258  * (due to the target thread migrating, sleeping, or otherwise blocked).
1259  * We have to check that the thread is actually on the run queue!
1260  */
1261 static __inline
1262 void
1263 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1264 {
1265     if (ntd->td_flags & TDF_RUNQ) {
1266 	if (ntd->td_preemptable) {
1267 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1268 	}
1269     }
1270 }
1271 
1272 static __inline
1273 void
1274 _lwkt_schedule(thread_t td)
1275 {
1276     globaldata_t mygd = mycpu;
1277 
1278     KASSERT(td != &td->td_gd->gd_idlethread,
1279 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1280     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1281     crit_enter_gd(mygd);
1282     KKASSERT(td->td_lwp == NULL ||
1283 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1284 
1285     if (td == mygd->gd_curthread) {
1286 	_lwkt_enqueue(td);
1287     } else {
1288 	/*
1289 	 * If we own the thread, there is no race (since we are in a
1290 	 * critical section).  If we do not own the thread there might
1291 	 * be a race but the target cpu will deal with it.
1292 	 */
1293 	if (td->td_gd == mygd) {
1294 	    _lwkt_enqueue(td);
1295 	    _lwkt_schedule_post(mygd, td, 1);
1296 	} else {
1297 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1298 	}
1299     }
1300     crit_exit_gd(mygd);
1301 }
1302 
1303 void
1304 lwkt_schedule(thread_t td)
1305 {
1306     _lwkt_schedule(td);
1307 }
1308 
1309 void
1310 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1311 {
1312     _lwkt_schedule(td);
1313 }
1314 
1315 /*
1316  * When scheduled remotely if frame != NULL the IPIQ is being
1317  * run via doreti or an interrupt then preemption can be allowed.
1318  *
1319  * To allow preemption we have to drop the critical section so only
1320  * one is present in _lwkt_schedule_post.
1321  */
1322 static void
1323 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1324 {
1325     thread_t td = curthread;
1326     thread_t ntd = arg;
1327 
1328     if (frame && ntd->td_preemptable) {
1329 	crit_exit_noyield(td);
1330 	_lwkt_schedule(ntd);
1331 	crit_enter_quick(td);
1332     } else {
1333 	_lwkt_schedule(ntd);
1334     }
1335 }
1336 
1337 /*
1338  * Thread migration using a 'Pull' method.  The thread may or may not be
1339  * the current thread.  It MUST be descheduled and in a stable state.
1340  * lwkt_giveaway() must be called on the cpu owning the thread.
1341  *
1342  * At any point after lwkt_giveaway() is called, the target cpu may
1343  * 'pull' the thread by calling lwkt_acquire().
1344  *
1345  * We have to make sure the thread is not sitting on a per-cpu tsleep
1346  * queue or it will blow up when it moves to another cpu.
1347  *
1348  * MPSAFE - must be called under very specific conditions.
1349  */
1350 void
1351 lwkt_giveaway(thread_t td)
1352 {
1353     globaldata_t gd = mycpu;
1354 
1355     crit_enter_gd(gd);
1356     if (td->td_flags & TDF_TSLEEPQ)
1357 	tsleep_remove(td);
1358     KKASSERT(td->td_gd == gd);
1359     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1360     td->td_flags |= TDF_MIGRATING;
1361     crit_exit_gd(gd);
1362 }
1363 
1364 void
1365 lwkt_acquire(thread_t td)
1366 {
1367     globaldata_t gd;
1368     globaldata_t mygd;
1369 
1370     KKASSERT(td->td_flags & TDF_MIGRATING);
1371     gd = td->td_gd;
1372     mygd = mycpu;
1373     if (gd != mycpu) {
1374 #ifdef LOOPMASK
1375 	uint64_t tsc_base = rdtsc();
1376 #endif
1377 	cpu_lfence();
1378 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1379 	crit_enter_gd(mygd);
1380 	DEBUG_PUSH_INFO("lwkt_acquire");
1381 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1382 	    lwkt_process_ipiq();
1383 	    cpu_lfence();
1384 #ifdef _KERNEL_VIRTUAL
1385 	    vkernel_yield();
1386 #endif
1387 #ifdef LOOPMASK
1388 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1389 		    kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1390 			    td, td->td_flags);
1391 		    tsc_base = rdtsc();
1392 	    }
1393 #endif
1394 	}
1395 	DEBUG_POP_INFO();
1396 	cpu_mfence();
1397 	td->td_gd = mygd;
1398 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1399 	td->td_flags &= ~TDF_MIGRATING;
1400 	crit_exit_gd(mygd);
1401     } else {
1402 	crit_enter_gd(mygd);
1403 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1404 	td->td_flags &= ~TDF_MIGRATING;
1405 	crit_exit_gd(mygd);
1406     }
1407 }
1408 
1409 /*
1410  * Generic deschedule.  Descheduling threads other then your own should be
1411  * done only in carefully controlled circumstances.  Descheduling is
1412  * asynchronous.
1413  *
1414  * This function may block if the cpu has run out of messages.
1415  */
1416 void
1417 lwkt_deschedule(thread_t td)
1418 {
1419     crit_enter();
1420     if (td == curthread) {
1421 	_lwkt_dequeue(td);
1422     } else {
1423 	if (td->td_gd == mycpu) {
1424 	    _lwkt_dequeue(td);
1425 	} else {
1426 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1427 	}
1428     }
1429     crit_exit();
1430 }
1431 
1432 /*
1433  * Set the target thread's priority.  This routine does not automatically
1434  * switch to a higher priority thread, LWKT threads are not designed for
1435  * continuous priority changes.  Yield if you want to switch.
1436  */
1437 void
1438 lwkt_setpri(thread_t td, int pri)
1439 {
1440     if (td->td_pri != pri) {
1441 	KKASSERT(pri >= 0);
1442 	crit_enter();
1443 	if (td->td_flags & TDF_RUNQ) {
1444 	    KKASSERT(td->td_gd == mycpu);
1445 	    _lwkt_dequeue(td);
1446 	    td->td_pri = pri;
1447 	    _lwkt_enqueue(td);
1448 	} else {
1449 	    td->td_pri = pri;
1450 	}
1451 	crit_exit();
1452     }
1453 }
1454 
1455 /*
1456  * Set the initial priority for a thread prior to it being scheduled for
1457  * the first time.  The thread MUST NOT be scheduled before or during
1458  * this call.  The thread may be assigned to a cpu other then the current
1459  * cpu.
1460  *
1461  * Typically used after a thread has been created with TDF_STOPPREQ,
1462  * and before the thread is initially scheduled.
1463  */
1464 void
1465 lwkt_setpri_initial(thread_t td, int pri)
1466 {
1467     KKASSERT(pri >= 0);
1468     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1469     td->td_pri = pri;
1470 }
1471 
1472 void
1473 lwkt_setpri_self(int pri)
1474 {
1475     thread_t td = curthread;
1476 
1477     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1478     crit_enter();
1479     if (td->td_flags & TDF_RUNQ) {
1480 	_lwkt_dequeue(td);
1481 	td->td_pri = pri;
1482 	_lwkt_enqueue(td);
1483     } else {
1484 	td->td_pri = pri;
1485     }
1486     crit_exit();
1487 }
1488 
1489 /*
1490  * hz tick scheduler clock for LWKT threads
1491  */
1492 void
1493 lwkt_schedulerclock(thread_t td)
1494 {
1495     globaldata_t gd = td->td_gd;
1496     thread_t xtd;
1497 
1498     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1499     if (xtd == td) {
1500 	/*
1501 	 * If the current thread is at the head of the runq shift it to the
1502 	 * end of any equal-priority threads and request a LWKT reschedule
1503 	 * if it moved.
1504 	 *
1505 	 * Ignore upri in this situation.  There will only be one user thread
1506 	 * in user mode, all others will be user threads running in kernel
1507 	 * mode and we have to make sure they get some cpu.
1508 	 */
1509 	xtd = TAILQ_NEXT(td, td_threadq);
1510 	if (xtd && xtd->td_pri == td->td_pri) {
1511 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1512 	    while (xtd && xtd->td_pri == td->td_pri)
1513 		xtd = TAILQ_NEXT(xtd, td_threadq);
1514 	    if (xtd)
1515 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1516 	    else
1517 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1518 	    need_lwkt_resched();
1519 	}
1520     } else if (xtd) {
1521 	/*
1522 	 * If we scheduled a thread other than the one at the head of the
1523 	 * queue always request a reschedule every tick.
1524 	 */
1525 	need_lwkt_resched();
1526     }
1527     /* else curthread probably the idle thread, no need to reschedule */
1528 }
1529 
1530 /*
1531  * Migrate the current thread to the specified cpu.
1532  *
1533  * This is accomplished by descheduling ourselves from the current cpu
1534  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1535  * 'old' thread wants to migrate after it has been completely switched out
1536  * and will complete the migration.
1537  *
1538  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1539  *
1540  * We must be sure to release our current process designation (if a user
1541  * process) before clearing out any tsleepq we are on because the release
1542  * code may re-add us.
1543  *
1544  * We must be sure to remove ourselves from the current cpu's tsleepq
1545  * before potentially moving to another queue.  The thread can be on
1546  * a tsleepq due to a left-over tsleep_interlock().
1547  */
1548 
1549 void
1550 lwkt_setcpu_self(globaldata_t rgd)
1551 {
1552     thread_t td = curthread;
1553 
1554     if (td->td_gd != rgd) {
1555 	crit_enter_quick(td);
1556 
1557 	if (td->td_release)
1558 	    td->td_release(td);
1559 	if (td->td_flags & TDF_TSLEEPQ)
1560 	    tsleep_remove(td);
1561 
1562 	/*
1563 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1564 	 * trying to deschedule ourselves and switch away, then deschedule
1565 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1566 	 * call lwkt_switch() to complete the operation.
1567 	 */
1568 	td->td_flags |= TDF_MIGRATING;
1569 	lwkt_deschedule_self(td);
1570 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1571 	td->td_migrate_gd = rgd;
1572 	lwkt_switch();
1573 
1574 	/*
1575 	 * We are now on the target cpu
1576 	 */
1577 	KKASSERT(rgd == mycpu);
1578 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1579 	crit_exit_quick(td);
1580     }
1581 }
1582 
1583 void
1584 lwkt_migratecpu(int cpuid)
1585 {
1586 	globaldata_t rgd;
1587 
1588 	rgd = globaldata_find(cpuid);
1589 	lwkt_setcpu_self(rgd);
1590 }
1591 
1592 /*
1593  * Remote IPI for cpu migration (called while in a critical section so we
1594  * do not have to enter another one).
1595  *
1596  * The thread (td) has already been completely descheduled from the
1597  * originating cpu and we can simply assert the case.  The thread is
1598  * assigned to the new cpu and enqueued.
1599  *
1600  * The thread will re-add itself to tdallq when it resumes execution.
1601  */
1602 static void
1603 lwkt_setcpu_remote(void *arg)
1604 {
1605     thread_t td = arg;
1606     globaldata_t gd = mycpu;
1607 
1608     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1609     td->td_gd = gd;
1610     cpu_mfence();
1611     td->td_flags &= ~TDF_MIGRATING;
1612     KKASSERT(td->td_migrate_gd == NULL);
1613     KKASSERT(td->td_lwp == NULL ||
1614 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1615     _lwkt_enqueue(td);
1616 }
1617 
1618 struct lwp *
1619 lwkt_preempted_proc(void)
1620 {
1621     thread_t td = curthread;
1622     while (td->td_preempted)
1623 	td = td->td_preempted;
1624     return(td->td_lwp);
1625 }
1626 
1627 /*
1628  * Create a kernel process/thread/whatever.  It shares it's address space
1629  * with proc0 - ie: kernel only.
1630  *
1631  * If the cpu is not specified one will be selected.  In the future
1632  * specifying a cpu of -1 will enable kernel thread migration between
1633  * cpus.
1634  */
1635 int
1636 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1637 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1638 {
1639     thread_t td;
1640     __va_list ap;
1641 
1642     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1643 			   tdflags);
1644     if (tdp)
1645 	*tdp = td;
1646     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1647 
1648     /*
1649      * Set up arg0 for 'ps' etc
1650      */
1651     __va_start(ap, fmt);
1652     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1653     __va_end(ap);
1654 
1655     /*
1656      * Schedule the thread to run
1657      */
1658     if (td->td_flags & TDF_NOSTART)
1659 	td->td_flags &= ~TDF_NOSTART;
1660     else
1661 	lwkt_schedule(td);
1662     return 0;
1663 }
1664 
1665 /*
1666  * Destroy an LWKT thread.   Warning!  This function is not called when
1667  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1668  * uses a different reaping mechanism.
1669  */
1670 void
1671 lwkt_exit(void)
1672 {
1673     thread_t td = curthread;
1674     thread_t std;
1675     globaldata_t gd;
1676 
1677     /*
1678      * Do any cleanup that might block here
1679      */
1680     biosched_done(td);
1681     dsched_exit_thread(td);
1682 
1683     /*
1684      * Get us into a critical section to interlock gd_freetd and loop
1685      * until we can get it freed.
1686      *
1687      * We have to cache the current td in gd_freetd because objcache_put()ing
1688      * it would rip it out from under us while our thread is still active.
1689      *
1690      * We are the current thread so of course our own TDF_RUNNING bit will
1691      * be set, so unlike the lwp reap code we don't wait for it to clear.
1692      */
1693     gd = mycpu;
1694     crit_enter_quick(td);
1695     for (;;) {
1696 	if (td->td_refs) {
1697 	    tsleep(td, 0, "tdreap", 1);
1698 	    continue;
1699 	}
1700 	if ((std = gd->gd_freetd) != NULL) {
1701 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1702 	    gd->gd_freetd = NULL;
1703 	    objcache_put(thread_cache, std);
1704 	    continue;
1705 	}
1706 	break;
1707     }
1708 
1709     /*
1710      * Remove thread resources from kernel lists and deschedule us for
1711      * the last time.  We cannot block after this point or we may end
1712      * up with a stale td on the tsleepq.
1713      *
1714      * None of this may block, the critical section is the only thing
1715      * protecting tdallq and the only thing preventing new lwkt_hold()
1716      * thread refs now.
1717      */
1718     if (td->td_flags & TDF_TSLEEPQ)
1719 	tsleep_remove(td);
1720     lwkt_deschedule_self(td);
1721     lwkt_remove_tdallq(td);
1722     KKASSERT(td->td_refs == 0);
1723 
1724     /*
1725      * Final cleanup
1726      */
1727     KKASSERT(gd->gd_freetd == NULL);
1728     if (td->td_flags & TDF_ALLOCATED_THREAD)
1729 	gd->gd_freetd = td;
1730     cpu_thread_exit();
1731 }
1732 
1733 void
1734 lwkt_remove_tdallq(thread_t td)
1735 {
1736     KKASSERT(td->td_gd == mycpu);
1737     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1738 }
1739 
1740 /*
1741  * Code reduction and branch prediction improvements.  Call/return
1742  * overhead on modern cpus often degenerates into 0 cycles due to
1743  * the cpu's branch prediction hardware and return pc cache.  We
1744  * can take advantage of this by not inlining medium-complexity
1745  * functions and we can also reduce the branch prediction impact
1746  * by collapsing perfectly predictable branches into a single
1747  * procedure instead of duplicating it.
1748  *
1749  * Is any of this noticeable?  Probably not, so I'll take the
1750  * smaller code size.
1751  */
1752 void
1753 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1754 {
1755     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1756 }
1757 
1758 void
1759 crit_panic(void)
1760 {
1761     thread_t td = curthread;
1762     int lcrit = td->td_critcount;
1763 
1764     td->td_critcount = 0;
1765     cpu_ccfence();
1766     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1767     /* NOT REACHED */
1768 }
1769 
1770 /*
1771  * Called from debugger/panic on cpus which have been stopped.  We must still
1772  * process the IPIQ while stopped.
1773  *
1774  * If we are dumping also try to process any pending interrupts.  This may
1775  * or may not work depending on the state of the cpu at the point it was
1776  * stopped.
1777  */
1778 void
1779 lwkt_smp_stopped(void)
1780 {
1781     globaldata_t gd = mycpu;
1782 
1783     if (dumping) {
1784 	lwkt_process_ipiq();
1785 	--gd->gd_intr_nesting_level;
1786 	splz();
1787 	++gd->gd_intr_nesting_level;
1788     } else {
1789 	lwkt_process_ipiq();
1790     }
1791     cpu_smp_stopped();
1792 }
1793