xref: /dragonfly/sys/kern/lwkt_thread.c (revision 655933d6)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/malloc.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
56 #include <sys/indefinite.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <sys/indefinite2.h>
61 
62 #include <sys/dsched.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_pager.h>
71 #include <vm/vm_extern.h>
72 
73 #include <machine/stdarg.h>
74 #include <machine/smp.h>
75 #include <machine/clock.h>
76 
77 #define LOOPMASK
78 
79 #if !defined(KTR_CTXSW)
80 #define KTR_CTXSW KTR_ALL
81 #endif
82 KTR_INFO_MASTER(ctxsw);
83 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
84 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
85 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
86 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
87 
88 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
89 MALLOC_DEFINE(M_FPUCTX, "fpuctx", "kernel FPU contexts");
90 
91 #ifdef	INVARIANTS
92 static int panic_on_cscount = 0;
93 #endif
94 #ifdef DEBUG_LWKT_THREAD
95 static int64_t switch_count = 0;
96 static int64_t preempt_hit = 0;
97 static int64_t preempt_miss = 0;
98 static int64_t preempt_weird = 0;
99 #endif
100 static int lwkt_use_spin_port;
101 __read_mostly static struct objcache *thread_cache;
102 int cpu_mwait_spin = 0;
103 
104 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
105 static void lwkt_setcpu_remote(void *arg);
106 
107 /*
108  * We can make all thread ports use the spin backend instead of the thread
109  * backend.  This should only be set to debug the spin backend.
110  */
111 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
112 
113 #ifdef	INVARIANTS
114 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
115     "Panic if attempting to switch lwkt's while mastering cpusync");
116 #endif
117 #ifdef DEBUG_LWKT_THREAD
118 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
119     "Number of switched threads");
120 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
121     "Successful preemption events");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
123     "Failed preemption events");
124 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
125     "Number of preempted threads.");
126 #endif
127 extern int lwkt_sched_debug;
128 int lwkt_sched_debug = 0;
129 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
130 	&lwkt_sched_debug, 0, "Scheduler debug");
131 __read_mostly static u_int lwkt_spin_loops = 10;
132 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
133 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
134 __read_mostly static int preempt_enable = 1;
135 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
136 	&preempt_enable, 0, "Enable preemption");
137 static int lwkt_cache_threads = 0;
138 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
139 	&lwkt_cache_threads, 0, "thread+kstack cache");
140 
141 /*
142  * These helper procedures handle the runq, they can only be called from
143  * within a critical section.
144  *
145  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
146  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
147  * instead of 'mycpu' when referencing the globaldata structure.   Once
148  * SMP live enqueuing and dequeueing only occurs on the current cpu.
149  */
150 static __inline
151 void
152 _lwkt_dequeue(thread_t td)
153 {
154     if (td->td_flags & TDF_RUNQ) {
155 	struct globaldata *gd = td->td_gd;
156 
157 	td->td_flags &= ~TDF_RUNQ;
158 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
159 	--gd->gd_tdrunqcount;
160 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
161 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
162     }
163 }
164 
165 /*
166  * Priority enqueue.
167  *
168  * There are a limited number of lwkt threads runnable since user
169  * processes only schedule one at a time per cpu.  However, there can
170  * be many user processes in kernel mode exiting from a tsleep() which
171  * become runnable.
172  *
173  * We scan the queue in both directions to help deal with degenerate
174  * situations when hundreds or thousands (or more) threads are runnable.
175  *
176  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
177  *	 will ignore user priority.  This is to ensure that user threads in
178  *	 kernel mode get cpu at some point regardless of what the user
179  *	 scheduler thinks.
180  */
181 static __inline
182 void
183 _lwkt_enqueue(thread_t td)
184 {
185     thread_t xtd;	/* forward scan */
186     thread_t rtd;	/* reverse scan */
187 
188     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
189 	struct globaldata *gd = td->td_gd;
190 
191 	td->td_flags |= TDF_RUNQ;
192 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
193 	if (xtd == NULL) {
194 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
195 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
196 	} else {
197 	    /*
198 	     * NOTE: td_upri - higher numbers more desireable, same sense
199 	     *	     as td_pri (typically reversed from lwp_upri).
200 	     *
201 	     *	     In the equal priority case we want the best selection
202 	     *	     at the beginning so the less desireable selections know
203 	     *	     that they have to setrunqueue/go-to-another-cpu, even
204 	     *	     though it means switching back to the 'best' selection.
205 	     *	     This also avoids degenerate situations when many threads
206 	     *	     are runnable or waking up at the same time.
207 	     *
208 	     *	     If upri matches exactly place at end/round-robin.
209 	     */
210 	    rtd = TAILQ_LAST(&gd->gd_tdrunq, lwkt_queue);
211 
212 	    while (xtd &&
213 		   (xtd->td_pri > td->td_pri ||
214 		    (xtd->td_pri == td->td_pri &&
215 		     xtd->td_upri >= td->td_upri))) {
216 		xtd = TAILQ_NEXT(xtd, td_threadq);
217 
218 		/*
219 		 * Doing a reverse scan at the same time is an optimization
220 		 * for the insert-closer-to-tail case that avoids having to
221 		 * scan the entire list.  This situation can occur when
222 		 * thousands of threads are woken up at the same time.
223 		 */
224 		if (rtd->td_pri > td->td_pri ||
225 		    (rtd->td_pri == td->td_pri &&
226 		    rtd->td_upri >= td->td_upri)) {
227 			TAILQ_INSERT_AFTER(&gd->gd_tdrunq, rtd, td, td_threadq);
228 			goto skip;
229 		}
230 		rtd = TAILQ_PREV(rtd, lwkt_queue, td_threadq);
231 	    }
232 	    if (xtd)
233 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
234 	    else
235 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
236 	}
237 skip:
238 	++gd->gd_tdrunqcount;
239 
240 	/*
241 	 * Request a LWKT reschedule if we are now at the head of the queue.
242 	 */
243 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
244 	    need_lwkt_resched();
245     }
246 }
247 
248 static boolean_t
249 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
250 {
251 	struct thread *td = (struct thread *)obj;
252 
253 	td->td_kstack = NULL;
254 	td->td_kstack_size = 0;
255 	td->td_flags = TDF_ALLOCATED_THREAD;
256 	td->td_mpflags = 0;
257 	return (1);
258 }
259 
260 static void
261 _lwkt_thread_dtor(void *obj, void *privdata)
262 {
263 	struct thread *td = (struct thread *)obj;
264 
265 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
266 	    ("_lwkt_thread_dtor: not allocated from objcache"));
267 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
268 		td->td_kstack_size > 0,
269 	    ("_lwkt_thread_dtor: corrupted stack"));
270 	kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
271 	td->td_kstack = NULL;
272 	td->td_flags = 0;
273 }
274 
275 /*
276  * Initialize the lwkt s/system.
277  *
278  * Nominally cache up to 32 thread + kstack structures.  Cache more on
279  * systems with a lot of cpu cores.
280  */
281 static void
282 lwkt_init(void)
283 {
284     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
285     if (lwkt_cache_threads == 0) {
286 	lwkt_cache_threads = ncpus * 4;
287 	if (lwkt_cache_threads < 32)
288 	    lwkt_cache_threads = 32;
289     }
290     thread_cache = objcache_create_mbacked(
291 				M_THREAD, sizeof(struct thread),
292 				0, lwkt_cache_threads,
293 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
294 }
295 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
296 
297 /*
298  * Schedule a thread to run.  As the current thread we can always safely
299  * schedule ourselves, and a shortcut procedure is provided for that
300  * function.
301  *
302  * (non-blocking, self contained on a per cpu basis)
303  */
304 void
305 lwkt_schedule_self(thread_t td)
306 {
307     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
308     crit_enter_quick(td);
309     KASSERT(td != &td->td_gd->gd_idlethread,
310 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
311     KKASSERT(td->td_lwp == NULL ||
312 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
313     _lwkt_enqueue(td);
314     crit_exit_quick(td);
315 }
316 
317 /*
318  * Deschedule a thread.
319  *
320  * (non-blocking, self contained on a per cpu basis)
321  */
322 void
323 lwkt_deschedule_self(thread_t td)
324 {
325     crit_enter_quick(td);
326     _lwkt_dequeue(td);
327     crit_exit_quick(td);
328 }
329 
330 /*
331  * LWKTs operate on a per-cpu basis
332  *
333  * WARNING!  Called from early boot, 'mycpu' may not work yet.
334  */
335 void
336 lwkt_gdinit(struct globaldata *gd)
337 {
338     TAILQ_INIT(&gd->gd_tdrunq);
339     TAILQ_INIT(&gd->gd_tdallq);
340     lockinit(&gd->gd_sysctllock, "sysctl", 0, LK_CANRECURSE);
341 }
342 
343 /*
344  * Create a new thread.  The thread must be associated with a process context
345  * or LWKT start address before it can be scheduled.  If the target cpu is
346  * -1 the thread will be created on the current cpu.
347  *
348  * If you intend to create a thread without a process context this function
349  * does everything except load the startup and switcher function.
350  */
351 thread_t
352 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
353 {
354     static int cpu_rotator;
355     globaldata_t gd = mycpu;
356     void *stack;
357 
358     /*
359      * If static thread storage is not supplied allocate a thread.  Reuse
360      * a cached free thread if possible.  gd_freetd is used to keep an exiting
361      * thread intact through the exit.
362      */
363     if (td == NULL) {
364 	crit_enter_gd(gd);
365 	if ((td = gd->gd_freetd) != NULL) {
366 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
367 				      TDF_RUNQ)) == 0);
368 	    gd->gd_freetd = NULL;
369 	} else {
370 	    td = objcache_get(thread_cache, M_WAITOK);
371 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
372 				      TDF_RUNQ)) == 0);
373 	}
374 	crit_exit_gd(gd);
375     	KASSERT((td->td_flags &
376 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
377 		 TDF_ALLOCATED_THREAD,
378 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
379     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
380     }
381 
382     /*
383      * Try to reuse cached stack.
384      */
385     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
386 	if (flags & TDF_ALLOCATED_STACK) {
387 	    kmem_free(kernel_map, (vm_offset_t)stack, td->td_kstack_size);
388 	    stack = NULL;
389 	}
390     }
391     if (stack == NULL) {
392 	if (cpu < 0) {
393 		stack = (void *)kmem_alloc_stack(kernel_map, stksize, 0);
394 	} else {
395 		stack = (void *)kmem_alloc_stack(kernel_map, stksize,
396 						 KM_CPU(cpu));
397 	}
398 	flags |= TDF_ALLOCATED_STACK;
399     }
400     if (cpu < 0) {
401 	cpu = ++cpu_rotator;
402 	cpu_ccfence();
403 	cpu = (uint32_t)cpu % (uint32_t)ncpus;
404     }
405     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
406     return(td);
407 }
408 
409 /*
410  * Initialize a preexisting thread structure.  This function is used by
411  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
412  *
413  * All threads start out in a critical section at a priority of
414  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
415  * appropriate.  This function may send an IPI message when the
416  * requested cpu is not the current cpu and consequently gd_tdallq may
417  * not be initialized synchronously from the point of view of the originating
418  * cpu.
419  *
420  * NOTE! we have to be careful in regards to creating threads for other cpus
421  * if SMP has not yet been activated.
422  */
423 static void
424 lwkt_init_thread_remote(void *arg)
425 {
426     thread_t td = arg;
427 
428     /*
429      * Protected by critical section held by IPI dispatch
430      */
431     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
432 }
433 
434 /*
435  * lwkt core thread structural initialization.
436  *
437  * NOTE: All threads are initialized as mpsafe threads.
438  */
439 void
440 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
441 		struct globaldata *gd)
442 {
443     globaldata_t mygd = mycpu;
444 
445     bzero(td, sizeof(struct thread));
446     td->td_kstack = stack;
447     td->td_kstack_size = stksize;
448     td->td_flags = flags;
449     td->td_mpflags = 0;
450     td->td_type = TD_TYPE_GENERIC;
451     td->td_gd = gd;
452     td->td_pri = TDPRI_KERN_DAEMON;
453     td->td_critcount = 1;
454     td->td_toks_have = NULL;
455     td->td_toks_stop = &td->td_toks_base;
456     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
457 	lwkt_initport_spin(&td->td_msgport, td,
458 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
459     } else {
460 	lwkt_initport_thread(&td->td_msgport, td);
461     }
462     pmap_init_thread(td);
463     /*
464      * Normally initializing a thread for a remote cpu requires sending an
465      * IPI.  However, the idlethread is setup before the other cpus are
466      * activated so we have to treat it as a special case.  XXX manipulation
467      * of gd_tdallq requires the BGL.
468      */
469     if (gd == mygd || td == &gd->gd_idlethread) {
470 	crit_enter_gd(mygd);
471 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
472 	crit_exit_gd(mygd);
473     } else {
474 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
475     }
476     dsched_enter_thread(td);
477 }
478 
479 void
480 lwkt_set_comm(thread_t td, const char *ctl, ...)
481 {
482     __va_list va;
483 
484     __va_start(va, ctl);
485     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
486     __va_end(va);
487     KTR_LOG(ctxsw_newtd, td, td->td_comm);
488 }
489 
490 /*
491  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
492  * this does not prevent the thread from migrating to another cpu so the
493  * gd_tdallq state is not protected by this.
494  */
495 void
496 lwkt_hold(thread_t td)
497 {
498     atomic_add_int(&td->td_refs, 1);
499 }
500 
501 void
502 lwkt_rele(thread_t td)
503 {
504     KKASSERT(td->td_refs > 0);
505     atomic_add_int(&td->td_refs, -1);
506 }
507 
508 void
509 lwkt_free_thread(thread_t td)
510 {
511     KKASSERT(td->td_refs == 0);
512     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
513 			      TDF_RUNQ | TDF_TSLEEPQ | TDF_KERNELFP)) == 0);
514 
515     if (td->td_kfpuctx) {
516 	kfree(td->td_kfpuctx, M_FPUCTX);
517 	td->td_kfpuctx = NULL;
518     }
519 
520     if (td->td_flags & TDF_ALLOCATED_THREAD) {
521     	objcache_put(thread_cache, td);
522     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
523 	/* client-allocated struct with internally allocated stack */
524 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
525 	    ("lwkt_free_thread: corrupted stack"));
526 	kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
527 	td->td_kstack = NULL;
528 	td->td_kstack_size = 0;
529     }
530 
531     KTR_LOG(ctxsw_deadtd, td);
532 }
533 
534 
535 /*
536  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
537  * switch to the idlethread.  Switching must occur within a critical
538  * section to avoid races with the scheduling queue.
539  *
540  * We always have full control over our cpu's run queue.  Other cpus
541  * that wish to manipulate our queue must use the cpu_*msg() calls to
542  * talk to our cpu, so a critical section is all that is needed and
543  * the result is very, very fast thread switching.
544  *
545  * The LWKT scheduler uses a fixed priority model and round-robins at
546  * each priority level.  User process scheduling is a totally
547  * different beast and LWKT priorities should not be confused with
548  * user process priorities.
549  *
550  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
551  * is not called by the current thread in the preemption case, only when
552  * the preempting thread blocks (in order to return to the original thread).
553  *
554  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
555  * migration and tsleep deschedule the current lwkt thread and call
556  * lwkt_switch().  In particular, the target cpu of the migration fully
557  * expects the thread to become non-runnable and can deadlock against
558  * cpusync operations if we run any IPIs prior to switching the thread out.
559  *
560  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
561  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
562  */
563 void
564 lwkt_switch(void)
565 {
566     globaldata_t gd = mycpu;
567     thread_t td = gd->gd_curthread;
568     thread_t ntd;
569     thread_t xtd;
570     int upri;
571 #ifdef LOOPMASK
572     uint64_t tsc_base = rdtsc();
573 #endif
574 
575     KKASSERT(gd->gd_processing_ipiq == 0);
576     KKASSERT(td->td_flags & TDF_RUNNING);
577 
578     /*
579      * Switching from within a 'fast' (non thread switched) interrupt or IPI
580      * is illegal.  However, we may have to do it anyway if we hit a fatal
581      * kernel trap or we have paniced.
582      *
583      * If this case occurs save and restore the interrupt nesting level.
584      */
585     if (gd->gd_intr_nesting_level) {
586 	int savegdnest;
587 	int savegdtrap;
588 
589 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
590 	    panic("lwkt_switch: Attempt to switch from a "
591 		  "fast interrupt, ipi, or hard code section, "
592 		  "td %p\n",
593 		  td);
594 	} else {
595 	    savegdnest = gd->gd_intr_nesting_level;
596 	    savegdtrap = gd->gd_trap_nesting_level;
597 	    gd->gd_intr_nesting_level = 0;
598 	    gd->gd_trap_nesting_level = 0;
599 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
600 		td->td_flags |= TDF_PANICWARN;
601 		kprintf("Warning: thread switch from interrupt, IPI, "
602 			"or hard code section.\n"
603 			"thread %p (%s)\n", td, td->td_comm);
604 		print_backtrace(-1);
605 	    }
606 	    lwkt_switch();
607 	    gd->gd_intr_nesting_level = savegdnest;
608 	    gd->gd_trap_nesting_level = savegdtrap;
609 	    return;
610 	}
611     }
612 
613     /*
614      * Release our current user process designation if we are blocking
615      * or if a user reschedule was requested.
616      *
617      * NOTE: This function is NOT called if we are switching into or
618      *	     returning from a preemption.
619      *
620      * NOTE: Releasing our current user process designation may cause
621      *	     it to be assigned to another thread, which in turn will
622      *	     cause us to block in the usched acquire code when we attempt
623      *	     to return to userland.
624      *
625      * NOTE: On SMP systems this can be very nasty when heavy token
626      *	     contention is present so we want to be careful not to
627      *	     release the designation gratuitously.
628      */
629     if (td->td_release &&
630 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
631 	    td->td_release(td);
632     }
633 
634     /*
635      * Release all tokens.  Once we do this we must remain in the critical
636      * section and cannot run IPIs or other interrupts until we switch away
637      * because they may implode if they try to get a token using our thread
638      * context.
639      */
640     crit_enter_gd(gd);
641     if (TD_TOKS_HELD(td))
642 	    lwkt_relalltokens(td);
643 
644     /*
645      * We had better not be holding any spin locks, but don't get into an
646      * endless panic loop.
647      */
648     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
649 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
650 	     gd->gd_spinlocks));
651 
652 #ifdef	INVARIANTS
653     if (td->td_cscount) {
654 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
655 		td);
656 	if (panic_on_cscount)
657 	    panic("switching while mastering cpusync");
658     }
659 #endif
660 
661     /*
662      * If we had preempted another thread on this cpu, resume the preempted
663      * thread.  This occurs transparently, whether the preempted thread
664      * was scheduled or not (it may have been preempted after descheduling
665      * itself).
666      *
667      * We have to setup the MP lock for the original thread after backing
668      * out the adjustment that was made to curthread when the original
669      * was preempted.
670      */
671     if ((ntd = td->td_preempted) != NULL) {
672 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
673 	ntd->td_flags |= TDF_PREEMPT_DONE;
674 	ntd->td_contended = 0;		/* reset contended */
675 
676 	/*
677 	 * The interrupt may have woken a thread up, we need to properly
678 	 * set the reschedule flag if the originally interrupted thread is
679 	 * at a lower priority.
680 	 *
681 	 * NOTE: The interrupt may not have descheduled ntd.
682 	 *
683 	 * NOTE: We do not reschedule if there are no threads on the runq.
684 	 *	 (ntd could be the idlethread).
685 	 */
686 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
687 	if (xtd && xtd != ntd)
688 	    need_lwkt_resched();
689 	goto havethread_preempted;
690     }
691 
692     /*
693      * Figure out switch target.  If we cannot switch to our desired target
694      * look for a thread that we can switch to.
695      *
696      * NOTE! The limited spin loop and related parameters are extremely
697      *	     important for system performance, particularly for pipes and
698      *	     concurrent conflicting VM faults.
699      */
700     clear_lwkt_resched();
701     ntd = TAILQ_FIRST(&gd->gd_tdrunq);
702 
703     if (ntd) {
704 	do {
705 	    if (TD_TOKS_NOT_HELD(ntd) ||
706 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
707 	    {
708 		goto havethread;
709 	    }
710 	    ++ntd->td_contended;	/* overflow ok */
711 	    if (gd->gd_indefinite.type == 0)
712 		indefinite_init(&gd->gd_indefinite, NULL, 0, 't');
713 #ifdef LOOPMASK
714 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
715 		    kprintf("lwkt_switch: WARNING, excessive token contention "
716 			    "cpu %d, %d sec, "
717 			    "td %p (%s)\n",
718 			    gd->gd_cpuid,
719 			    ntd->td_contended,
720 			    ntd,
721 			    ntd->td_comm);
722 		    tsc_base = rdtsc();
723 	    }
724 #endif
725 	} while (ntd->td_contended < (lwkt_spin_loops >> 1));
726 	upri = ntd->td_upri;
727 
728 	/*
729 	 * Bleh, the thread we wanted to switch to has a contended token.
730 	 * See if we can switch to another thread.
731 	 *
732 	 * We generally don't want to do this because it represents a
733 	 * priority inversion, but contending tokens on the same cpu can
734 	 * cause real problems if we don't now that we have an exclusive
735 	 * priority mechanism over shared for tokens.
736 	 *
737 	 * The solution is to allow threads with pending tokens to compete
738 	 * for them (a lower priority thread will get less cpu once it
739 	 * returns from the kernel anyway).  If a thread does not have
740 	 * any contending tokens, we go by td_pri and upri.
741 	 */
742 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
743 	    if (TD_TOKS_NOT_HELD(ntd) &&
744 		ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri) {
745 		    continue;
746 	    }
747 	    if (upri < ntd->td_upri)
748 		upri = ntd->td_upri;
749 
750 	    /*
751 	     * Try this one.
752 	     */
753 	    if (TD_TOKS_NOT_HELD(ntd) ||
754 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
755 		    goto havethread;
756 	    }
757 	    ++ntd->td_contended;	/* overflow ok */
758 	}
759 
760 	/*
761 	 * Fall through, switch to idle thread to get us out of the current
762 	 * context.  Since we were contended, prevent HLT by flagging a
763 	 * LWKT reschedule.
764 	 */
765 	need_lwkt_resched();
766     }
767 
768     /*
769      * We either contended on ntd or the runq is empty.  We must switch
770      * through the idle thread to get out of the current context.
771      */
772     ntd = &gd->gd_idlethread;
773     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
774 	ASSERT_NO_TOKENS_HELD(ntd);
775     cpu_time.cp_msg[0] = 0;
776     goto haveidle;
777 
778 havethread:
779     /*
780      * Clear gd_idle_repeat when doing a normal switch to a non-idle
781      * thread.
782      */
783     ntd->td_wmesg = NULL;
784     ntd->td_contended = 0;	/* reset once scheduled */
785     ++gd->gd_cnt.v_swtch;
786     gd->gd_idle_repeat = 0;
787 
788     /*
789      * If we were busy waiting record final disposition
790      */
791     if (gd->gd_indefinite.type)
792 	    indefinite_done(&gd->gd_indefinite);
793 
794 havethread_preempted:
795     /*
796      * If the new target does not need the MP lock and we are holding it,
797      * release the MP lock.  If the new target requires the MP lock we have
798      * already acquired it for the target.
799      */
800     ;
801 haveidle:
802     KASSERT(ntd->td_critcount,
803 	    ("priority problem in lwkt_switch %d %d",
804 	    td->td_critcount, ntd->td_critcount));
805 
806     if (td != ntd) {
807 	/*
808 	 * Execute the actual thread switch operation.  This function
809 	 * returns to the current thread and returns the previous thread
810 	 * (which may be different from the thread we switched to).
811 	 *
812 	 * We are responsible for marking ntd as TDF_RUNNING.
813 	 */
814 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
815 #ifdef DEBUG_LWKT_THREAD
816 	++switch_count;
817 #endif
818 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
819 	ntd->td_flags |= TDF_RUNNING;
820 	lwkt_switch_return(td->td_switch(ntd));
821 	/* ntd invalid, td_switch() can return a different thread_t */
822     }
823 
824     /*
825      * catch-all.  XXX is this strictly needed?
826      */
827     splz_check();
828 
829     /* NOTE: current cpu may have changed after switch */
830     crit_exit_quick(td);
831 }
832 
833 /*
834  * Called by assembly in the td_switch (thread restore path) for thread
835  * bootstrap cases which do not 'return' to lwkt_switch().
836  */
837 void
838 lwkt_switch_return(thread_t otd)
839 {
840 	globaldata_t rgd;
841 #ifdef LOOPMASK
842 	uint64_t tsc_base = rdtsc();
843 #endif
844 	int exiting;
845 
846 	exiting = otd->td_flags & TDF_EXITING;
847 	cpu_ccfence();
848 
849 	/*
850 	 * Check if otd was migrating.  Now that we are on ntd we can finish
851 	 * up the migration.  This is a bit messy but it is the only place
852 	 * where td is known to be fully descheduled.
853 	 *
854 	 * We can only activate the migration if otd was migrating but not
855 	 * held on the cpu due to a preemption chain.  We still have to
856 	 * clear TDF_RUNNING on the old thread either way.
857 	 *
858 	 * We are responsible for clearing the previously running thread's
859 	 * TDF_RUNNING.
860 	 */
861 	if ((rgd = otd->td_migrate_gd) != NULL &&
862 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
863 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
864 			 (TDF_MIGRATING | TDF_RUNNING));
865 		otd->td_migrate_gd = NULL;
866 		otd->td_flags &= ~TDF_RUNNING;
867 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
868 	} else {
869 		otd->td_flags &= ~TDF_RUNNING;
870 	}
871 
872 	/*
873 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
874 	 * invalid the *instant* we set TDF_MP_EXITSIG.
875 	 *
876 	 * Use the EXITING status loaded from before we clear TDF_RUNNING,
877 	 * because if it is not set otd becomes invalid the instant we clear
878 	 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
879 	 * might 'steal' TDF_EXITING from another switch-return!).
880 	 */
881 	while (exiting) {
882 		u_int mpflags;
883 
884 		mpflags = otd->td_mpflags;
885 		cpu_ccfence();
886 
887 		if (mpflags & TDF_MP_EXITWAIT) {
888 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
889 					      mpflags | TDF_MP_EXITSIG)) {
890 				wakeup(otd);
891 				break;
892 			}
893 		} else {
894 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
895 					      mpflags | TDF_MP_EXITSIG)) {
896 				wakeup(otd);
897 				break;
898 			}
899 		}
900 
901 #ifdef LOOPMASK
902 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
903 			kprintf("lwkt_switch_return: excessive TDF_EXITING "
904 				"thread %p\n", otd);
905 			tsc_base = rdtsc();
906 		}
907 #endif
908 	}
909 }
910 
911 /*
912  * Request that the target thread preempt the current thread.  Preemption
913  * can only occur only:
914  *
915  *	- If our critical section is the one that we were called with
916  *	- The relative priority of the target thread is higher
917  *	- The target is not excessively interrupt-nested via td_nest_count
918  *	- The target thread holds no tokens.
919  *	- The target thread is not already scheduled and belongs to the
920  *	  current cpu.
921  *	- The current thread is not holding any spin-locks.
922  *
923  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
924  * this is called via lwkt_schedule() through the td_preemptable callback.
925  * critcount is the managed critical priority that we should ignore in order
926  * to determine whether preemption is possible (aka usually just the crit
927  * priority of lwkt_schedule() itself).
928  *
929  * Preemption is typically limited to interrupt threads.
930  *
931  * Operation works in a fairly straight-forward manner.  The normal
932  * scheduling code is bypassed and we switch directly to the target
933  * thread.  When the target thread attempts to block or switch away
934  * code at the base of lwkt_switch() will switch directly back to our
935  * thread.  Our thread is able to retain whatever tokens it holds and
936  * if the target needs one of them the target will switch back to us
937  * and reschedule itself normally.
938  */
939 void
940 lwkt_preempt(thread_t ntd, int critcount)
941 {
942     struct globaldata *gd = mycpu;
943     thread_t xtd;
944     thread_t td;
945     int save_gd_intr_nesting_level;
946 
947     /*
948      * The caller has put us in a critical section.  We can only preempt
949      * if the caller of the caller was not in a critical section (basically
950      * a local interrupt), as determined by the 'critcount' parameter.  We
951      * also can't preempt if the caller is holding any spinlocks (even if
952      * he isn't in a critical section).  This also handles the tokens test.
953      *
954      * YYY The target thread must be in a critical section (else it must
955      * inherit our critical section?  I dunno yet).
956      */
957     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
958 
959     td = gd->gd_curthread;
960     if (preempt_enable == 0) {
961 #ifdef DEBUG_LWKT_THREAD
962 	++preempt_miss;
963 #endif
964 	return;
965     }
966     if (ntd->td_pri <= td->td_pri) {
967 #ifdef DEBUG_LWKT_THREAD
968 	++preempt_miss;
969 #endif
970 	return;
971     }
972     if (td->td_critcount > critcount) {
973 #ifdef DEBUG_LWKT_THREAD
974 	++preempt_miss;
975 #endif
976 	return;
977     }
978     if (td->td_nest_count >= 2) {
979 #ifdef DEBUG_LWKT_THREAD
980 	++preempt_miss;
981 #endif
982 	return;
983     }
984     if (td->td_cscount) {
985 #ifdef DEBUG_LWKT_THREAD
986 	++preempt_miss;
987 #endif
988 	return;
989     }
990     if (ntd->td_gd != gd) {
991 #ifdef DEBUG_LWKT_THREAD
992 	++preempt_miss;
993 #endif
994 	return;
995     }
996 
997     /*
998      * We don't have to check spinlocks here as they will also bump
999      * td_critcount.
1000      *
1001      * Do not try to preempt if the target thread is holding any tokens.
1002      * We could try to acquire the tokens but this case is so rare there
1003      * is no need to support it.
1004      */
1005     KKASSERT(gd->gd_spinlocks == 0);
1006 
1007     if (TD_TOKS_HELD(ntd)) {
1008 #ifdef DEBUG_LWKT_THREAD
1009 	++preempt_miss;
1010 #endif
1011 	return;
1012     }
1013     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1014 #ifdef DEBUG_LWKT_THREAD
1015 	++preempt_weird;
1016 #endif
1017 	return;
1018     }
1019     if (ntd->td_preempted) {
1020 #ifdef DEBUG_LWKT_THREAD
1021 	++preempt_hit;
1022 #endif
1023 	return;
1024     }
1025     KKASSERT(gd->gd_processing_ipiq == 0);
1026 
1027     /*
1028      * Since we are able to preempt the current thread, there is no need to
1029      * call need_lwkt_resched().
1030      *
1031      * We must temporarily clear gd_intr_nesting_level around the switch
1032      * since switchouts from the target thread are allowed (they will just
1033      * return to our thread), and since the target thread has its own stack.
1034      *
1035      * A preemption must switch back to the original thread, assert the
1036      * case.
1037      */
1038 #ifdef DEBUG_LWKT_THREAD
1039     ++preempt_hit;
1040 #endif
1041     ntd->td_preempted = td;
1042     td->td_flags |= TDF_PREEMPT_LOCK;
1043     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1044     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1045     gd->gd_intr_nesting_level = 0;
1046 
1047     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1048     ntd->td_flags |= TDF_RUNNING;
1049     xtd = td->td_switch(ntd);
1050     KKASSERT(xtd == ntd);
1051     lwkt_switch_return(xtd);
1052     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1053 
1054     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1055     ntd->td_preempted = NULL;
1056     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1057 }
1058 
1059 /*
1060  * Conditionally call splz() if gd_reqflags indicates work is pending.
1061  * This will work inside a critical section but not inside a hard code
1062  * section.
1063  *
1064  * (self contained on a per cpu basis)
1065  */
1066 void
1067 splz_check(void)
1068 {
1069     globaldata_t gd = mycpu;
1070     thread_t td = gd->gd_curthread;
1071 
1072     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1073 	gd->gd_intr_nesting_level == 0 &&
1074 	td->td_nest_count < 2)
1075     {
1076 	splz();
1077     }
1078 }
1079 
1080 /*
1081  * This version is integrated into crit_exit, reqflags has already
1082  * been tested but td_critcount has not.
1083  *
1084  * We only want to execute the splz() on the 1->0 transition of
1085  * critcount and not in a hard code section or if too deeply nested.
1086  *
1087  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1088  */
1089 void
1090 lwkt_maybe_splz(thread_t td)
1091 {
1092     globaldata_t gd = td->td_gd;
1093 
1094     if (td->td_critcount == 0 &&
1095 	gd->gd_intr_nesting_level == 0 &&
1096 	td->td_nest_count < 2)
1097     {
1098 	splz();
1099     }
1100 }
1101 
1102 /*
1103  * Drivers which set up processing co-threads can call this function to
1104  * run the co-thread at a higher priority and to allow it to preempt
1105  * normal threads.
1106  */
1107 void
1108 lwkt_set_interrupt_support_thread(void)
1109 {
1110 	thread_t td = curthread;
1111 
1112         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1113 	td->td_flags |= TDF_INTTHREAD;
1114 	td->td_preemptable = lwkt_preempt;
1115 }
1116 
1117 
1118 /*
1119  * This function is used to negotiate a passive release of the current
1120  * process/lwp designation with the user scheduler, allowing the user
1121  * scheduler to schedule another user thread.  The related kernel thread
1122  * (curthread) continues running in the released state.
1123  */
1124 void
1125 lwkt_passive_release(struct thread *td)
1126 {
1127     struct lwp *lp = td->td_lwp;
1128 
1129     td->td_release = NULL;
1130     lwkt_setpri_self(TDPRI_KERN_USER);
1131 
1132     lp->lwp_proc->p_usched->release_curproc(lp);
1133 }
1134 
1135 
1136 /*
1137  * This implements a LWKT yield, allowing a kernel thread to yield to other
1138  * kernel threads at the same or higher priority.  This function can be
1139  * called in a tight loop and will typically only yield once per tick.
1140  *
1141  * Most kernel threads run at the same priority in order to allow equal
1142  * sharing.
1143  *
1144  * (self contained on a per cpu basis)
1145  */
1146 void
1147 lwkt_yield(void)
1148 {
1149     globaldata_t gd = mycpu;
1150     thread_t td = gd->gd_curthread;
1151 
1152     /*
1153      * Should never be called with spinlocks held but there is a path
1154      * via ACPI where it might happen.
1155      */
1156     if (gd->gd_spinlocks)
1157 	return;
1158 
1159     /*
1160      * Safe to call splz if we are not too-heavily nested.
1161      */
1162     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1163 	splz();
1164 
1165     /*
1166      * Caller allows switching
1167      */
1168     if (lwkt_resched_wanted()) {
1169 	atomic_set_int(&td->td_mpflags, TDF_MP_DIDYIELD);
1170 	lwkt_schedule_self(td);
1171 	lwkt_switch();
1172     }
1173 }
1174 
1175 /*
1176  * The quick version processes pending interrupts and higher-priority
1177  * LWKT threads but will not round-robin same-priority LWKT threads.
1178  *
1179  * When called while attempting to return to userland the only same-pri
1180  * threads are the ones which have already tried to become the current
1181  * user process.
1182  */
1183 void
1184 lwkt_yield_quick(void)
1185 {
1186     globaldata_t gd = mycpu;
1187     thread_t td = gd->gd_curthread;
1188 
1189     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1190 	splz();
1191     if (lwkt_resched_wanted()) {
1192 	crit_enter();
1193 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1194 	    clear_lwkt_resched();
1195 	} else {
1196 	    atomic_set_int(&td->td_mpflags, TDF_MP_DIDYIELD);
1197 	    lwkt_schedule_self(curthread);
1198 	    lwkt_switch();
1199 	}
1200 	crit_exit();
1201     }
1202 }
1203 
1204 /*
1205  * This yield is designed for kernel threads with a user context.
1206  *
1207  * The kernel acting on behalf of the user is potentially cpu-bound,
1208  * this function will efficiently allow other threads to run and also
1209  * switch to other processes by releasing.
1210  *
1211  * The lwkt_user_yield() function is designed to have very low overhead
1212  * if no yield is determined to be needed.
1213  */
1214 void
1215 lwkt_user_yield(void)
1216 {
1217     globaldata_t gd = mycpu;
1218     thread_t td = gd->gd_curthread;
1219 
1220     /*
1221      * Should never be called with spinlocks held but there is a path
1222      * via ACPI where it might happen.
1223      */
1224     if (gd->gd_spinlocks)
1225 	return;
1226 
1227     /*
1228      * Always run any pending interrupts in case we are in a critical
1229      * section.
1230      */
1231     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1232 	splz();
1233 
1234     /*
1235      * Switch (which forces a release) if another kernel thread needs
1236      * the cpu, if userland wants us to resched, or if our kernel
1237      * quantum has run out.
1238      */
1239     if (lwkt_resched_wanted() ||
1240 	user_resched_wanted())
1241     {
1242 	lwkt_switch();
1243     }
1244 
1245 #if 0
1246     /*
1247      * Reacquire the current process if we are released.
1248      *
1249      * XXX not implemented atm.  The kernel may be holding locks and such,
1250      *     so we want the thread to continue to receive cpu.
1251      */
1252     if (td->td_release == NULL && lp) {
1253 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1254 	td->td_release = lwkt_passive_release;
1255 	lwkt_setpri_self(TDPRI_USER_NORM);
1256     }
1257 #endif
1258 }
1259 
1260 /*
1261  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1262  * deal with threads that might be blocked on a wait queue.
1263  *
1264  * We have a little helper inline function which does additional work after
1265  * the thread has been enqueued, including dealing with preemption and
1266  * setting need_lwkt_resched() (which prevents the kernel from returning
1267  * to userland until it has processed higher priority threads).
1268  *
1269  * It is possible for this routine to be called after a failed _enqueue
1270  * (due to the target thread migrating, sleeping, or otherwise blocked).
1271  * We have to check that the thread is actually on the run queue!
1272  */
1273 static __inline
1274 void
1275 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1276 {
1277     if (ntd->td_flags & TDF_RUNQ) {
1278 	if (ntd->td_preemptable) {
1279 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1280 	}
1281     }
1282 }
1283 
1284 static __inline
1285 void
1286 _lwkt_schedule(thread_t td)
1287 {
1288     globaldata_t mygd = mycpu;
1289 
1290     KASSERT(td != &td->td_gd->gd_idlethread,
1291 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1292     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1293     crit_enter_gd(mygd);
1294     KKASSERT(td->td_lwp == NULL ||
1295 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1296 
1297     if (td == mygd->gd_curthread) {
1298 	_lwkt_enqueue(td);
1299     } else {
1300 	/*
1301 	 * If we own the thread, there is no race (since we are in a
1302 	 * critical section).  If we do not own the thread there might
1303 	 * be a race but the target cpu will deal with it.
1304 	 */
1305 	if (td->td_gd == mygd) {
1306 	    _lwkt_enqueue(td);
1307 	    _lwkt_schedule_post(mygd, td, 1);
1308 	} else {
1309 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1310 	}
1311     }
1312     crit_exit_gd(mygd);
1313 }
1314 
1315 void
1316 lwkt_schedule(thread_t td)
1317 {
1318     _lwkt_schedule(td);
1319 }
1320 
1321 void
1322 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1323 {
1324     _lwkt_schedule(td);
1325 }
1326 
1327 /*
1328  * When scheduled remotely if frame != NULL the IPIQ is being
1329  * run via doreti or an interrupt then preemption can be allowed.
1330  *
1331  * To allow preemption we have to drop the critical section so only
1332  * one is present in _lwkt_schedule_post.
1333  */
1334 static void
1335 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1336 {
1337     thread_t td = curthread;
1338     thread_t ntd = arg;
1339 
1340     if (frame && ntd->td_preemptable) {
1341 	crit_exit_noyield(td);
1342 	_lwkt_schedule(ntd);
1343 	crit_enter_quick(td);
1344     } else {
1345 	_lwkt_schedule(ntd);
1346     }
1347 }
1348 
1349 /*
1350  * Thread migration using a 'Pull' method.  The thread may or may not be
1351  * the current thread.  It MUST be descheduled and in a stable state.
1352  * lwkt_giveaway() must be called on the cpu owning the thread.
1353  *
1354  * At any point after lwkt_giveaway() is called, the target cpu may
1355  * 'pull' the thread by calling lwkt_acquire().
1356  *
1357  * We have to make sure the thread is not sitting on a per-cpu tsleep
1358  * queue or it will blow up when it moves to another cpu.
1359  *
1360  * MPSAFE - must be called under very specific conditions.
1361  */
1362 void
1363 lwkt_giveaway(thread_t td)
1364 {
1365     globaldata_t gd = mycpu;
1366 
1367     crit_enter_gd(gd);
1368     if (td->td_flags & TDF_TSLEEPQ)
1369 	tsleep_remove(td);
1370     KKASSERT(td->td_gd == gd);
1371     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1372     td->td_flags |= TDF_MIGRATING;
1373     crit_exit_gd(gd);
1374 }
1375 
1376 void
1377 lwkt_acquire(thread_t td)
1378 {
1379     globaldata_t gd;
1380     globaldata_t mygd;
1381 
1382     KKASSERT(td->td_flags & TDF_MIGRATING);
1383     gd = td->td_gd;
1384     mygd = mycpu;
1385     if (gd != mycpu) {
1386 #ifdef LOOPMASK
1387 	uint64_t tsc_base = rdtsc();
1388 #endif
1389 	cpu_lfence();
1390 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1391 	crit_enter_gd(mygd);
1392 	DEBUG_PUSH_INFO("lwkt_acquire");
1393 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1394 	    lwkt_process_ipiq();
1395 	    cpu_lfence();
1396 #ifdef _KERNEL_VIRTUAL
1397 	    vkernel_yield();
1398 #endif
1399 #ifdef LOOPMASK
1400 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1401 		    kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1402 			    td, td->td_flags);
1403 		    tsc_base = rdtsc();
1404 	    }
1405 #endif
1406 	}
1407 	DEBUG_POP_INFO();
1408 	cpu_mfence();
1409 	td->td_gd = mygd;
1410 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1411 	td->td_flags &= ~TDF_MIGRATING;
1412 	crit_exit_gd(mygd);
1413     } else {
1414 	crit_enter_gd(mygd);
1415 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1416 	td->td_flags &= ~TDF_MIGRATING;
1417 	crit_exit_gd(mygd);
1418     }
1419 }
1420 
1421 /*
1422  * Generic deschedule.  Descheduling threads other then your own should be
1423  * done only in carefully controlled circumstances.  Descheduling is
1424  * asynchronous.
1425  *
1426  * This function may block if the cpu has run out of messages.
1427  */
1428 void
1429 lwkt_deschedule(thread_t td)
1430 {
1431     crit_enter();
1432     if (td == curthread) {
1433 	_lwkt_dequeue(td);
1434     } else {
1435 	if (td->td_gd == mycpu) {
1436 	    _lwkt_dequeue(td);
1437 	} else {
1438 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1439 	}
1440     }
1441     crit_exit();
1442 }
1443 
1444 /*
1445  * Set the target thread's priority.  This routine does not automatically
1446  * switch to a higher priority thread, LWKT threads are not designed for
1447  * continuous priority changes.  Yield if you want to switch.
1448  */
1449 void
1450 lwkt_setpri(thread_t td, int pri)
1451 {
1452     if (td->td_pri != pri) {
1453 	KKASSERT(pri >= 0);
1454 	crit_enter();
1455 	if (td->td_flags & TDF_RUNQ) {
1456 	    KKASSERT(td->td_gd == mycpu);
1457 	    _lwkt_dequeue(td);
1458 	    td->td_pri = pri;
1459 	    _lwkt_enqueue(td);
1460 	} else {
1461 	    td->td_pri = pri;
1462 	}
1463 	crit_exit();
1464     }
1465 }
1466 
1467 /*
1468  * Set the initial priority for a thread prior to it being scheduled for
1469  * the first time.  The thread MUST NOT be scheduled before or during
1470  * this call.  The thread may be assigned to a cpu other then the current
1471  * cpu.
1472  *
1473  * Typically used after a thread has been created with TDF_STOPPREQ,
1474  * and before the thread is initially scheduled.
1475  */
1476 void
1477 lwkt_setpri_initial(thread_t td, int pri)
1478 {
1479     KKASSERT(pri >= 0);
1480     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1481     td->td_pri = pri;
1482 }
1483 
1484 void
1485 lwkt_setpri_self(int pri)
1486 {
1487     thread_t td = curthread;
1488 
1489     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1490     crit_enter();
1491     if (td->td_flags & TDF_RUNQ) {
1492 	_lwkt_dequeue(td);
1493 	td->td_pri = pri;
1494 	_lwkt_enqueue(td);
1495     } else {
1496 	td->td_pri = pri;
1497     }
1498     crit_exit();
1499 }
1500 
1501 /*
1502  * hz tick scheduler clock for LWKT threads
1503  */
1504 void
1505 lwkt_schedulerclock(thread_t td)
1506 {
1507     globaldata_t gd = td->td_gd;
1508     thread_t xtd;
1509 
1510     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1511     if (xtd == td) {
1512 	/*
1513 	 * If the current thread is at the head of the runq shift it to the
1514 	 * end of any equal-priority threads and request a LWKT reschedule
1515 	 * if it moved.
1516 	 *
1517 	 * Ignore upri in this situation.  There will only be one user thread
1518 	 * in user mode, all others will be user threads running in kernel
1519 	 * mode and we have to make sure they get some cpu.
1520 	 */
1521 	xtd = TAILQ_NEXT(td, td_threadq);
1522 	if (xtd && xtd->td_pri == td->td_pri) {
1523 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1524 	    while (xtd && xtd->td_pri == td->td_pri)
1525 		xtd = TAILQ_NEXT(xtd, td_threadq);
1526 	    if (xtd)
1527 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1528 	    else
1529 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1530 	    need_lwkt_resched();
1531 	}
1532     } else if (xtd) {
1533 	/*
1534 	 * If we scheduled a thread other than the one at the head of the
1535 	 * queue always request a reschedule every tick.
1536 	 */
1537 	need_lwkt_resched();
1538     }
1539     /* else curthread probably the idle thread, no need to reschedule */
1540 }
1541 
1542 /*
1543  * Migrate the current thread to the specified cpu.
1544  *
1545  * This is accomplished by descheduling ourselves from the current cpu
1546  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1547  * 'old' thread wants to migrate after it has been completely switched out
1548  * and will complete the migration.
1549  *
1550  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1551  *
1552  * We must be sure to release our current process designation (if a user
1553  * process) before clearing out any tsleepq we are on because the release
1554  * code may re-add us.
1555  *
1556  * We must be sure to remove ourselves from the current cpu's tsleepq
1557  * before potentially moving to another queue.  The thread can be on
1558  * a tsleepq due to a left-over tsleep_interlock().
1559  */
1560 
1561 void
1562 lwkt_setcpu_self(globaldata_t rgd)
1563 {
1564     thread_t td = curthread;
1565 
1566     if (td->td_gd != rgd) {
1567 	crit_enter_quick(td);
1568 
1569 	if (td->td_release)
1570 	    td->td_release(td);
1571 	if (td->td_flags & TDF_TSLEEPQ)
1572 	    tsleep_remove(td);
1573 
1574 	/*
1575 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1576 	 * trying to deschedule ourselves and switch away, then deschedule
1577 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1578 	 * call lwkt_switch() to complete the operation.
1579 	 */
1580 	td->td_flags |= TDF_MIGRATING;
1581 	lwkt_deschedule_self(td);
1582 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1583 	td->td_migrate_gd = rgd;
1584 	lwkt_switch();
1585 
1586 	/*
1587 	 * We are now on the target cpu
1588 	 */
1589 	KKASSERT(rgd == mycpu);
1590 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1591 	crit_exit_quick(td);
1592     }
1593 }
1594 
1595 void
1596 lwkt_migratecpu(int cpuid)
1597 {
1598 	globaldata_t rgd;
1599 
1600 	rgd = globaldata_find(cpuid);
1601 	lwkt_setcpu_self(rgd);
1602 }
1603 
1604 /*
1605  * Remote IPI for cpu migration (called while in a critical section so we
1606  * do not have to enter another one).
1607  *
1608  * The thread (td) has already been completely descheduled from the
1609  * originating cpu and we can simply assert the case.  The thread is
1610  * assigned to the new cpu and enqueued.
1611  *
1612  * The thread will re-add itself to tdallq when it resumes execution.
1613  */
1614 static void
1615 lwkt_setcpu_remote(void *arg)
1616 {
1617     thread_t td = arg;
1618     globaldata_t gd = mycpu;
1619 
1620     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1621     td->td_gd = gd;
1622     cpu_mfence();
1623     td->td_flags &= ~TDF_MIGRATING;
1624     KKASSERT(td->td_migrate_gd == NULL);
1625     KKASSERT(td->td_lwp == NULL ||
1626 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1627     _lwkt_enqueue(td);
1628 }
1629 
1630 struct lwp *
1631 lwkt_preempted_proc(void)
1632 {
1633     thread_t td = curthread;
1634     while (td->td_preempted)
1635 	td = td->td_preempted;
1636     return(td->td_lwp);
1637 }
1638 
1639 /*
1640  * Create a kernel process/thread/whatever.  It shares it's address space
1641  * with proc0 - ie: kernel only.
1642  *
1643  * If the cpu is not specified one will be selected.  In the future
1644  * specifying a cpu of -1 will enable kernel thread migration between
1645  * cpus.
1646  */
1647 int
1648 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1649 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1650 {
1651     thread_t td;
1652     __va_list ap;
1653 
1654     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1655 			   tdflags);
1656     if (tdp)
1657 	*tdp = td;
1658     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1659 
1660     /*
1661      * Set up arg0 for 'ps' etc
1662      */
1663     __va_start(ap, fmt);
1664     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1665     __va_end(ap);
1666 
1667     /*
1668      * Schedule the thread to run
1669      */
1670     if (td->td_flags & TDF_NOSTART)
1671 	td->td_flags &= ~TDF_NOSTART;
1672     else
1673 	lwkt_schedule(td);
1674     return 0;
1675 }
1676 
1677 /*
1678  * Destroy an LWKT thread.   Warning!  This function is not called when
1679  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1680  * uses a different reaping mechanism.
1681  */
1682 void
1683 lwkt_exit(void)
1684 {
1685     thread_t td = curthread;
1686     thread_t std;
1687     globaldata_t gd;
1688 
1689     /*
1690      * Do any cleanup that might block here
1691      */
1692     biosched_done(td);
1693     dsched_exit_thread(td);
1694 
1695     /*
1696      * Get us into a critical section to interlock gd_freetd and loop
1697      * until we can get it freed.
1698      *
1699      * We have to cache the current td in gd_freetd because objcache_put()ing
1700      * it would rip it out from under us while our thread is still active.
1701      *
1702      * We are the current thread so of course our own TDF_RUNNING bit will
1703      * be set, so unlike the lwp reap code we don't wait for it to clear.
1704      */
1705     gd = mycpu;
1706     crit_enter_quick(td);
1707     for (;;) {
1708 	if (td->td_refs) {
1709 	    tsleep(td, 0, "tdreap", 1);
1710 	    continue;
1711 	}
1712 	if ((std = gd->gd_freetd) != NULL) {
1713 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1714 	    gd->gd_freetd = NULL;
1715 	    objcache_put(thread_cache, std);
1716 	    continue;
1717 	}
1718 	break;
1719     }
1720 
1721     /*
1722      * Remove thread resources from kernel lists and deschedule us for
1723      * the last time.  We cannot block after this point or we may end
1724      * up with a stale td on the tsleepq.
1725      *
1726      * None of this may block, the critical section is the only thing
1727      * protecting tdallq and the only thing preventing new lwkt_hold()
1728      * thread refs now.
1729      */
1730     if (td->td_flags & TDF_TSLEEPQ)
1731 	tsleep_remove(td);
1732     lwkt_deschedule_self(td);
1733     lwkt_remove_tdallq(td);
1734     KKASSERT(td->td_refs == 0);
1735 
1736     /*
1737      * Final cleanup
1738      */
1739     KKASSERT(gd->gd_freetd == NULL);
1740     if (td->td_flags & TDF_ALLOCATED_THREAD)
1741 	gd->gd_freetd = td;
1742     cpu_thread_exit();
1743 }
1744 
1745 void
1746 lwkt_remove_tdallq(thread_t td)
1747 {
1748     KKASSERT(td->td_gd == mycpu);
1749     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1750 }
1751 
1752 /*
1753  * Code reduction and branch prediction improvements.  Call/return
1754  * overhead on modern cpus often degenerates into 0 cycles due to
1755  * the cpu's branch prediction hardware and return pc cache.  We
1756  * can take advantage of this by not inlining medium-complexity
1757  * functions and we can also reduce the branch prediction impact
1758  * by collapsing perfectly predictable branches into a single
1759  * procedure instead of duplicating it.
1760  *
1761  * Is any of this noticeable?  Probably not, so I'll take the
1762  * smaller code size.
1763  */
1764 void
1765 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1766 {
1767     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1768 }
1769 
1770 void
1771 crit_panic(void)
1772 {
1773     thread_t td = curthread;
1774     int lcrit = td->td_critcount;
1775 
1776     td->td_critcount = 0;
1777     cpu_ccfence();
1778     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1779     /* NOT REACHED */
1780 }
1781 
1782 /*
1783  * Called from debugger/panic on cpus which have been stopped.  We must still
1784  * process the IPIQ while stopped.
1785  *
1786  * If we are dumping also try to process any pending interrupts.  This may
1787  * or may not work depending on the state of the cpu at the point it was
1788  * stopped.
1789  */
1790 void
1791 lwkt_smp_stopped(void)
1792 {
1793     globaldata_t gd = mycpu;
1794 
1795     if (dumping) {
1796 	lwkt_process_ipiq();
1797 	--gd->gd_intr_nesting_level;
1798 	splz();
1799 	++gd->gd_intr_nesting_level;
1800     } else {
1801 	lwkt_process_ipiq();
1802     }
1803     cpu_smp_stopped();
1804 }
1805