xref: /dragonfly/sys/kern/lwkt_thread.c (revision 666e46d7)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59 
60 #include <sys/dsched.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70 
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 
74 #if !defined(KTR_CTXSW)
75 #define KTR_CTXSW KTR_ALL
76 #endif
77 KTR_INFO_MASTER(ctxsw);
78 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
79 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
80 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
81 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
82 
83 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
84 
85 #ifdef	INVARIANTS
86 static int panic_on_cscount = 0;
87 #endif
88 static __int64_t switch_count = 0;
89 static __int64_t preempt_hit = 0;
90 static __int64_t preempt_miss = 0;
91 static __int64_t preempt_weird = 0;
92 static int lwkt_use_spin_port;
93 static struct objcache *thread_cache;
94 
95 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
96 static void lwkt_setcpu_remote(void *arg);
97 
98 extern void cpu_heavy_restore(void);
99 extern void cpu_lwkt_restore(void);
100 extern void cpu_kthread_restore(void);
101 extern void cpu_idle_restore(void);
102 
103 /*
104  * We can make all thread ports use the spin backend instead of the thread
105  * backend.  This should only be set to debug the spin backend.
106  */
107 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
108 
109 #ifdef	INVARIANTS
110 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
111     "Panic if attempting to switch lwkt's while mastering cpusync");
112 #endif
113 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
114     "Number of switched threads");
115 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
116     "Successful preemption events");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
118     "Failed preemption events");
119 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
120     "Number of preempted threads.");
121 static int fairq_enable = 0;
122 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
123 	&fairq_enable, 0, "Turn on fairq priority accumulators");
124 static int fairq_bypass = -1;
125 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
126 	&fairq_bypass, 0, "Allow fairq to bypass td on token failure");
127 extern int lwkt_sched_debug;
128 int lwkt_sched_debug = 0;
129 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
130 	&lwkt_sched_debug, 0, "Scheduler debug");
131 static int lwkt_spin_loops = 10;
132 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
133 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
134 static int lwkt_spin_reseq = 0;
135 SYSCTL_INT(_lwkt, OID_AUTO, spin_reseq, CTLFLAG_RW,
136 	&lwkt_spin_reseq, 0, "Scheduler resequencer enable");
137 static int lwkt_spin_monitor = 0;
138 SYSCTL_INT(_lwkt, OID_AUTO, spin_monitor, CTLFLAG_RW,
139 	&lwkt_spin_monitor, 0, "Scheduler uses monitor/mwait");
140 static int lwkt_spin_fatal = 0;	/* disabled */
141 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
142 	&lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
143 static int preempt_enable = 1;
144 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
145 	&preempt_enable, 0, "Enable preemption");
146 static int lwkt_cache_threads = 0;
147 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
148 	&lwkt_cache_threads, 0, "thread+kstack cache");
149 
150 static __cachealign int lwkt_cseq_rindex;
151 static __cachealign int lwkt_cseq_windex;
152 
153 /*
154  * These helper procedures handle the runq, they can only be called from
155  * within a critical section.
156  *
157  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
158  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
159  * instead of 'mycpu' when referencing the globaldata structure.   Once
160  * SMP live enqueuing and dequeueing only occurs on the current cpu.
161  */
162 static __inline
163 void
164 _lwkt_dequeue(thread_t td)
165 {
166     if (td->td_flags & TDF_RUNQ) {
167 	struct globaldata *gd = td->td_gd;
168 
169 	td->td_flags &= ~TDF_RUNQ;
170 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
171 	--gd->gd_tdrunqcount;
172 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
173 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
174     }
175 }
176 
177 /*
178  * Priority enqueue.
179  *
180  * There are a limited number of lwkt threads runnable since user
181  * processes only schedule one at a time per cpu.  However, there can
182  * be many user processes in kernel mode exiting from a tsleep() which
183  * become runnable.
184  *
185  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
186  *	 will ignore user priority.  This is to ensure that user threads in
187  *	 kernel mode get cpu at some point regardless of what the user
188  *	 scheduler thinks.
189  */
190 static __inline
191 void
192 _lwkt_enqueue(thread_t td)
193 {
194     thread_t xtd;
195 
196     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
197 	struct globaldata *gd = td->td_gd;
198 
199 	td->td_flags |= TDF_RUNQ;
200 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
201 	if (xtd == NULL) {
202 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
203 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
204 	} else {
205 	    /*
206 	     * NOTE: td_upri - higher numbers more desireable, same sense
207 	     *	     as td_pri (typically reversed from lwp_upri).
208 	     *
209 	     *	     In the equal priority case we want the best selection
210 	     *	     at the beginning so the less desireable selections know
211 	     *	     that they have to setrunqueue/go-to-another-cpu, even
212 	     *	     though it means switching back to the 'best' selection.
213 	     *	     This also avoids degenerate situations when many threads
214 	     *	     are runnable or waking up at the same time.
215 	     *
216 	     *	     If upri matches exactly place at end/round-robin.
217 	     */
218 	    while (xtd &&
219 		   (xtd->td_pri >= td->td_pri ||
220 		    (xtd->td_pri == td->td_pri &&
221 		     xtd->td_upri >= td->td_upri))) {
222 		xtd = TAILQ_NEXT(xtd, td_threadq);
223 	    }
224 	    if (xtd)
225 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
226 	    else
227 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
228 	}
229 	++gd->gd_tdrunqcount;
230 
231 	/*
232 	 * Request a LWKT reschedule if we are now at the head of the queue.
233 	 */
234 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
235 	    need_lwkt_resched();
236     }
237 }
238 
239 static __boolean_t
240 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
241 {
242 	struct thread *td = (struct thread *)obj;
243 
244 	td->td_kstack = NULL;
245 	td->td_kstack_size = 0;
246 	td->td_flags = TDF_ALLOCATED_THREAD;
247 	td->td_mpflags = 0;
248 	return (1);
249 }
250 
251 static void
252 _lwkt_thread_dtor(void *obj, void *privdata)
253 {
254 	struct thread *td = (struct thread *)obj;
255 
256 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
257 	    ("_lwkt_thread_dtor: not allocated from objcache"));
258 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
259 		td->td_kstack_size > 0,
260 	    ("_lwkt_thread_dtor: corrupted stack"));
261 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
262 	td->td_kstack = NULL;
263 	td->td_flags = 0;
264 }
265 
266 /*
267  * Initialize the lwkt s/system.
268  *
269  * Nominally cache up to 32 thread + kstack structures.  Cache more on
270  * systems with a lot of cpu cores.
271  */
272 void
273 lwkt_init(void)
274 {
275     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
276     if (lwkt_cache_threads == 0) {
277 	lwkt_cache_threads = ncpus * 4;
278 	if (lwkt_cache_threads < 32)
279 	    lwkt_cache_threads = 32;
280     }
281     thread_cache = objcache_create_mbacked(
282 				M_THREAD, sizeof(struct thread),
283 				0, lwkt_cache_threads,
284 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
285 }
286 
287 /*
288  * Schedule a thread to run.  As the current thread we can always safely
289  * schedule ourselves, and a shortcut procedure is provided for that
290  * function.
291  *
292  * (non-blocking, self contained on a per cpu basis)
293  */
294 void
295 lwkt_schedule_self(thread_t td)
296 {
297     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
298     crit_enter_quick(td);
299     KASSERT(td != &td->td_gd->gd_idlethread,
300 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
301     KKASSERT(td->td_lwp == NULL ||
302 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
303     _lwkt_enqueue(td);
304     crit_exit_quick(td);
305 }
306 
307 /*
308  * Deschedule a thread.
309  *
310  * (non-blocking, self contained on a per cpu basis)
311  */
312 void
313 lwkt_deschedule_self(thread_t td)
314 {
315     crit_enter_quick(td);
316     _lwkt_dequeue(td);
317     crit_exit_quick(td);
318 }
319 
320 /*
321  * LWKTs operate on a per-cpu basis
322  *
323  * WARNING!  Called from early boot, 'mycpu' may not work yet.
324  */
325 void
326 lwkt_gdinit(struct globaldata *gd)
327 {
328     TAILQ_INIT(&gd->gd_tdrunq);
329     TAILQ_INIT(&gd->gd_tdallq);
330 }
331 
332 /*
333  * Create a new thread.  The thread must be associated with a process context
334  * or LWKT start address before it can be scheduled.  If the target cpu is
335  * -1 the thread will be created on the current cpu.
336  *
337  * If you intend to create a thread without a process context this function
338  * does everything except load the startup and switcher function.
339  */
340 thread_t
341 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
342 {
343     static int cpu_rotator;
344     globaldata_t gd = mycpu;
345     void *stack;
346 
347     /*
348      * If static thread storage is not supplied allocate a thread.  Reuse
349      * a cached free thread if possible.  gd_freetd is used to keep an exiting
350      * thread intact through the exit.
351      */
352     if (td == NULL) {
353 	crit_enter_gd(gd);
354 	if ((td = gd->gd_freetd) != NULL) {
355 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
356 				      TDF_RUNQ)) == 0);
357 	    gd->gd_freetd = NULL;
358 	} else {
359 	    td = objcache_get(thread_cache, M_WAITOK);
360 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
361 				      TDF_RUNQ)) == 0);
362 	}
363 	crit_exit_gd(gd);
364     	KASSERT((td->td_flags &
365 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
366 		 TDF_ALLOCATED_THREAD,
367 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
368     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
369     }
370 
371     /*
372      * Try to reuse cached stack.
373      */
374     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
375 	if (flags & TDF_ALLOCATED_STACK) {
376 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
377 	    stack = NULL;
378 	}
379     }
380     if (stack == NULL) {
381 	stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
382 	flags |= TDF_ALLOCATED_STACK;
383     }
384     if (cpu < 0) {
385 	cpu = ++cpu_rotator;
386 	cpu_ccfence();
387 	cpu %= ncpus;
388     }
389     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
390     return(td);
391 }
392 
393 /*
394  * Initialize a preexisting thread structure.  This function is used by
395  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
396  *
397  * All threads start out in a critical section at a priority of
398  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
399  * appropriate.  This function may send an IPI message when the
400  * requested cpu is not the current cpu and consequently gd_tdallq may
401  * not be initialized synchronously from the point of view of the originating
402  * cpu.
403  *
404  * NOTE! we have to be careful in regards to creating threads for other cpus
405  * if SMP has not yet been activated.
406  */
407 static void
408 lwkt_init_thread_remote(void *arg)
409 {
410     thread_t td = arg;
411 
412     /*
413      * Protected by critical section held by IPI dispatch
414      */
415     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
416 }
417 
418 /*
419  * lwkt core thread structural initialization.
420  *
421  * NOTE: All threads are initialized as mpsafe threads.
422  */
423 void
424 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
425 		struct globaldata *gd)
426 {
427     globaldata_t mygd = mycpu;
428 
429     bzero(td, sizeof(struct thread));
430     td->td_kstack = stack;
431     td->td_kstack_size = stksize;
432     td->td_flags = flags;
433     td->td_mpflags = 0;
434     td->td_gd = gd;
435     td->td_pri = TDPRI_KERN_DAEMON;
436     td->td_critcount = 1;
437     td->td_toks_have = NULL;
438     td->td_toks_stop = &td->td_toks_base;
439     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT))
440 	lwkt_initport_spin(&td->td_msgport, td);
441     else
442 	lwkt_initport_thread(&td->td_msgport, td);
443     pmap_init_thread(td);
444     /*
445      * Normally initializing a thread for a remote cpu requires sending an
446      * IPI.  However, the idlethread is setup before the other cpus are
447      * activated so we have to treat it as a special case.  XXX manipulation
448      * of gd_tdallq requires the BGL.
449      */
450     if (gd == mygd || td == &gd->gd_idlethread) {
451 	crit_enter_gd(mygd);
452 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
453 	crit_exit_gd(mygd);
454     } else {
455 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
456     }
457     dsched_new_thread(td);
458 }
459 
460 void
461 lwkt_set_comm(thread_t td, const char *ctl, ...)
462 {
463     __va_list va;
464 
465     __va_start(va, ctl);
466     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
467     __va_end(va);
468     KTR_LOG(ctxsw_newtd, td, td->td_comm);
469 }
470 
471 /*
472  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
473  * this does not prevent the thread from migrating to another cpu so the
474  * gd_tdallq state is not protected by this.
475  */
476 void
477 lwkt_hold(thread_t td)
478 {
479     atomic_add_int(&td->td_refs, 1);
480 }
481 
482 void
483 lwkt_rele(thread_t td)
484 {
485     KKASSERT(td->td_refs > 0);
486     atomic_add_int(&td->td_refs, -1);
487 }
488 
489 void
490 lwkt_free_thread(thread_t td)
491 {
492     KKASSERT(td->td_refs == 0);
493     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
494 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
495     if (td->td_flags & TDF_ALLOCATED_THREAD) {
496     	objcache_put(thread_cache, td);
497     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
498 	/* client-allocated struct with internally allocated stack */
499 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
500 	    ("lwkt_free_thread: corrupted stack"));
501 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
502 	td->td_kstack = NULL;
503 	td->td_kstack_size = 0;
504     }
505     KTR_LOG(ctxsw_deadtd, td);
506 }
507 
508 
509 /*
510  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
511  * switch to the idlethread.  Switching must occur within a critical
512  * section to avoid races with the scheduling queue.
513  *
514  * We always have full control over our cpu's run queue.  Other cpus
515  * that wish to manipulate our queue must use the cpu_*msg() calls to
516  * talk to our cpu, so a critical section is all that is needed and
517  * the result is very, very fast thread switching.
518  *
519  * The LWKT scheduler uses a fixed priority model and round-robins at
520  * each priority level.  User process scheduling is a totally
521  * different beast and LWKT priorities should not be confused with
522  * user process priorities.
523  *
524  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
525  * is not called by the current thread in the preemption case, only when
526  * the preempting thread blocks (in order to return to the original thread).
527  *
528  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
529  * migration and tsleep deschedule the current lwkt thread and call
530  * lwkt_switch().  In particular, the target cpu of the migration fully
531  * expects the thread to become non-runnable and can deadlock against
532  * cpusync operations if we run any IPIs prior to switching the thread out.
533  *
534  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
535  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
536  */
537 void
538 lwkt_switch(void)
539 {
540     globaldata_t gd = mycpu;
541     thread_t td = gd->gd_curthread;
542     thread_t ntd;
543     int spinning = 0;
544 
545     KKASSERT(gd->gd_processing_ipiq == 0);
546     KKASSERT(td->td_flags & TDF_RUNNING);
547 
548     /*
549      * Switching from within a 'fast' (non thread switched) interrupt or IPI
550      * is illegal.  However, we may have to do it anyway if we hit a fatal
551      * kernel trap or we have paniced.
552      *
553      * If this case occurs save and restore the interrupt nesting level.
554      */
555     if (gd->gd_intr_nesting_level) {
556 	int savegdnest;
557 	int savegdtrap;
558 
559 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
560 	    panic("lwkt_switch: Attempt to switch from a "
561 		  "fast interrupt, ipi, or hard code section, "
562 		  "td %p\n",
563 		  td);
564 	} else {
565 	    savegdnest = gd->gd_intr_nesting_level;
566 	    savegdtrap = gd->gd_trap_nesting_level;
567 	    gd->gd_intr_nesting_level = 0;
568 	    gd->gd_trap_nesting_level = 0;
569 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
570 		td->td_flags |= TDF_PANICWARN;
571 		kprintf("Warning: thread switch from interrupt, IPI, "
572 			"or hard code section.\n"
573 			"thread %p (%s)\n", td, td->td_comm);
574 		print_backtrace(-1);
575 	    }
576 	    lwkt_switch();
577 	    gd->gd_intr_nesting_level = savegdnest;
578 	    gd->gd_trap_nesting_level = savegdtrap;
579 	    return;
580 	}
581     }
582 
583     /*
584      * Release our current user process designation if we are blocking
585      * or if a user reschedule was requested.
586      *
587      * NOTE: This function is NOT called if we are switching into or
588      *	     returning from a preemption.
589      *
590      * NOTE: Releasing our current user process designation may cause
591      *	     it to be assigned to another thread, which in turn will
592      *	     cause us to block in the usched acquire code when we attempt
593      *	     to return to userland.
594      *
595      * NOTE: On SMP systems this can be very nasty when heavy token
596      *	     contention is present so we want to be careful not to
597      *	     release the designation gratuitously.
598      */
599     if (td->td_release &&
600 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
601 	    td->td_release(td);
602     }
603 
604     /*
605      * Release all tokens
606      */
607     crit_enter_gd(gd);
608     if (TD_TOKS_HELD(td))
609 	    lwkt_relalltokens(td);
610 
611     /*
612      * We had better not be holding any spin locks, but don't get into an
613      * endless panic loop.
614      */
615     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
616 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
617 	     gd->gd_spinlocks));
618 
619 
620 #ifdef	INVARIANTS
621     if (td->td_cscount) {
622 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
623 		td);
624 	if (panic_on_cscount)
625 	    panic("switching while mastering cpusync");
626     }
627 #endif
628 
629     /*
630      * If we had preempted another thread on this cpu, resume the preempted
631      * thread.  This occurs transparently, whether the preempted thread
632      * was scheduled or not (it may have been preempted after descheduling
633      * itself).
634      *
635      * We have to setup the MP lock for the original thread after backing
636      * out the adjustment that was made to curthread when the original
637      * was preempted.
638      */
639     if ((ntd = td->td_preempted) != NULL) {
640 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
641 	ntd->td_flags |= TDF_PREEMPT_DONE;
642 
643 	/*
644 	 * The interrupt may have woken a thread up, we need to properly
645 	 * set the reschedule flag if the originally interrupted thread is
646 	 * at a lower priority.
647 	 *
648 	 * The interrupt may not have descheduled.
649 	 */
650 	if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
651 	    need_lwkt_resched();
652 	goto havethread_preempted;
653     }
654 
655     /*
656      * If we cannot obtain ownership of the tokens we cannot immediately
657      * schedule the target thread.
658      *
659      * Reminder: Again, we cannot afford to run any IPIs in this path if
660      * the current thread has been descheduled.
661      */
662     for (;;) {
663 	clear_lwkt_resched();
664 
665 	/*
666 	 * Hotpath - pull the head of the run queue and attempt to schedule
667 	 * it.
668 	 */
669 	ntd = TAILQ_FIRST(&gd->gd_tdrunq);
670 
671 	if (ntd == NULL) {
672 	    /*
673 	     * Runq is empty, switch to idle to allow it to halt.
674 	     */
675 	    ntd = &gd->gd_idlethread;
676 	    if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
677 		ASSERT_NO_TOKENS_HELD(ntd);
678 	    cpu_time.cp_msg[0] = 0;
679 	    cpu_time.cp_stallpc = 0;
680 	    goto haveidle;
681 	}
682 
683 	/*
684 	 * Hotpath - schedule ntd.
685 	 *
686 	 * NOTE: For UP there is no mplock and lwkt_getalltokens()
687 	 *	     always succeeds.
688 	 */
689 	if (TD_TOKS_NOT_HELD(ntd) ||
690 	    lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops)))
691 	{
692 	    goto havethread;
693 	}
694 
695 	/*
696 	 * Coldpath (SMP only since tokens always succeed on UP)
697 	 *
698 	 * We had some contention on the thread we wanted to schedule.
699 	 * What we do now is try to find a thread that we can schedule
700 	 * in its stead.
701 	 *
702 	 * The coldpath scan does NOT rearrange threads in the run list.
703 	 * The lwkt_schedulerclock() will assert need_lwkt_resched() on
704 	 * the next tick whenever the current head is not the current thread.
705 	 */
706 #ifdef	INVARIANTS
707 	++ntd->td_contended;
708 #endif
709 	++gd->gd_cnt.v_token_colls;
710 
711 	if (fairq_bypass > 0)
712 		goto skip;
713 
714 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
715 #ifndef NO_LWKT_SPLIT_USERPRI
716 		/*
717 		 * Never schedule threads returning to userland or the
718 		 * user thread scheduler helper thread when higher priority
719 		 * threads are present.  The runq is sorted by priority
720 		 * so we can give up traversing it when we find the first
721 		 * low priority thread.
722 		 */
723 		if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
724 			ntd = NULL;
725 			break;
726 		}
727 #endif
728 
729 		/*
730 		 * Try this one.
731 		 */
732 		if (TD_TOKS_NOT_HELD(ntd) ||
733 		    lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops))) {
734 			goto havethread;
735 		}
736 #ifdef	INVARIANTS
737 		++ntd->td_contended;
738 #endif
739 		++gd->gd_cnt.v_token_colls;
740 	}
741 
742 skip:
743 	/*
744 	 * We exhausted the run list, meaning that all runnable threads
745 	 * are contested.
746 	 */
747 	cpu_pause();
748 	ntd = &gd->gd_idlethread;
749 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
750 	    ASSERT_NO_TOKENS_HELD(ntd);
751 	/* contention case, do not clear contention mask */
752 
753 	/*
754 	 * We are going to have to retry but if the current thread is not
755 	 * on the runq we instead switch through the idle thread to get away
756 	 * from the current thread.  We have to flag for lwkt reschedule
757 	 * to prevent the idle thread from halting.
758 	 *
759 	 * NOTE: A non-zero spinning is passed to lwkt_getalltokens() to
760 	 *	 instruct it to deal with the potential for deadlocks by
761 	 *	 ordering the tokens by address.
762 	 */
763 	if ((td->td_flags & TDF_RUNQ) == 0) {
764 	    need_lwkt_resched();	/* prevent hlt */
765 	    goto haveidle;
766 	}
767 #if defined(INVARIANTS) && defined(__amd64__)
768 	if ((read_rflags() & PSL_I) == 0) {
769 		cpu_enable_intr();
770 		panic("lwkt_switch() called with interrupts disabled");
771 	}
772 #endif
773 
774 	/*
775 	 * Number iterations so far.  After a certain point we switch to
776 	 * a sorted-address/monitor/mwait version of lwkt_getalltokens()
777 	 */
778 	if (spinning < 0x7FFFFFFF)
779 	    ++spinning;
780 
781 	/*
782 	 * lwkt_getalltokens() failed in sorted token mode, we can use
783 	 * monitor/mwait in this case.
784 	 */
785 	if (spinning >= lwkt_spin_loops &&
786 	    (cpu_mi_feature & CPU_MI_MONITOR) &&
787 	    lwkt_spin_monitor)
788 	{
789 	    cpu_mmw_pause_int(&gd->gd_reqflags,
790 			      (gd->gd_reqflags | RQF_SPINNING) &
791 			      ~RQF_IDLECHECK_WK_MASK);
792 	}
793 
794 	/*
795 	 * We already checked that td is still scheduled so this should be
796 	 * safe.
797 	 */
798 	splz_check();
799 
800 	/*
801 	 * This experimental resequencer is used as a fall-back to reduce
802 	 * hw cache line contention by placing each core's scheduler into a
803 	 * time-domain-multplexed slot.
804 	 *
805 	 * The resequencer is disabled by default.  It's functionality has
806 	 * largely been superceeded by the token algorithm which limits races
807 	 * to a subset of cores.
808 	 *
809 	 * The resequencer algorithm tends to break down when more than
810 	 * 20 cores are contending.  What appears to happen is that new
811 	 * tokens can be obtained out of address-sorted order by new cores
812 	 * while existing cores languish in long delays between retries and
813 	 * wind up being starved-out of the token acquisition.
814 	 */
815 	if (lwkt_spin_reseq && spinning >= lwkt_spin_reseq) {
816 	    int cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
817 	    int oseq;
818 
819 	    while ((oseq = lwkt_cseq_rindex) != cseq) {
820 		cpu_ccfence();
821 #if 1
822 		if (cpu_mi_feature & CPU_MI_MONITOR) {
823 		    cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq);
824 		} else {
825 #endif
826 		    cpu_pause();
827 		    cpu_lfence();
828 #if 1
829 		}
830 #endif
831 	    }
832 	    DELAY(1);
833 	    atomic_add_int(&lwkt_cseq_rindex, 1);
834 	}
835 	/* highest level for(;;) loop */
836     }
837 
838 havethread:
839     /*
840      * Clear gd_idle_repeat when doing a normal switch to a non-idle
841      * thread.
842      */
843     ntd->td_wmesg = NULL;
844     ++gd->gd_cnt.v_swtch;
845     gd->gd_idle_repeat = 0;
846 
847 havethread_preempted:
848     /*
849      * If the new target does not need the MP lock and we are holding it,
850      * release the MP lock.  If the new target requires the MP lock we have
851      * already acquired it for the target.
852      */
853     ;
854 haveidle:
855     KASSERT(ntd->td_critcount,
856 	    ("priority problem in lwkt_switch %d %d",
857 	    td->td_critcount, ntd->td_critcount));
858 
859     if (td != ntd) {
860 	/*
861 	 * Execute the actual thread switch operation.  This function
862 	 * returns to the current thread and returns the previous thread
863 	 * (which may be different from the thread we switched to).
864 	 *
865 	 * We are responsible for marking ntd as TDF_RUNNING.
866 	 */
867 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
868 	++switch_count;
869 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
870 	ntd->td_flags |= TDF_RUNNING;
871 	lwkt_switch_return(td->td_switch(ntd));
872 	/* ntd invalid, td_switch() can return a different thread_t */
873     }
874 
875     /*
876      * catch-all.  XXX is this strictly needed?
877      */
878     splz_check();
879 
880     /* NOTE: current cpu may have changed after switch */
881     crit_exit_quick(td);
882 }
883 
884 /*
885  * Called by assembly in the td_switch (thread restore path) for thread
886  * bootstrap cases which do not 'return' to lwkt_switch().
887  */
888 void
889 lwkt_switch_return(thread_t otd)
890 {
891 	globaldata_t rgd;
892 
893 	/*
894 	 * Check if otd was migrating.  Now that we are on ntd we can finish
895 	 * up the migration.  This is a bit messy but it is the only place
896 	 * where td is known to be fully descheduled.
897 	 *
898 	 * We can only activate the migration if otd was migrating but not
899 	 * held on the cpu due to a preemption chain.  We still have to
900 	 * clear TDF_RUNNING on the old thread either way.
901 	 *
902 	 * We are responsible for clearing the previously running thread's
903 	 * TDF_RUNNING.
904 	 */
905 	if ((rgd = otd->td_migrate_gd) != NULL &&
906 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
907 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
908 			 (TDF_MIGRATING | TDF_RUNNING));
909 		otd->td_migrate_gd = NULL;
910 		otd->td_flags &= ~TDF_RUNNING;
911 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
912 	} else {
913 		otd->td_flags &= ~TDF_RUNNING;
914 	}
915 
916 	/*
917 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
918 	 * invalid the *instant* we set TDF_MP_EXITSIG.
919 	 */
920 	while (otd->td_flags & TDF_EXITING) {
921 		u_int mpflags;
922 
923 		mpflags = otd->td_mpflags;
924 		cpu_ccfence();
925 
926 		if (mpflags & TDF_MP_EXITWAIT) {
927 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
928 					      mpflags | TDF_MP_EXITSIG)) {
929 				wakeup(otd);
930 				break;
931 			}
932 		} else {
933 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
934 					      mpflags | TDF_MP_EXITSIG)) {
935 				wakeup(otd);
936 				break;
937 			}
938 		}
939 	}
940 }
941 
942 /*
943  * Request that the target thread preempt the current thread.  Preemption
944  * can only occur if our only critical section is the one that we were called
945  * with, the relative priority of the target thread is higher, and the target
946  * thread holds no tokens.  This also only works if we are not holding any
947  * spinlocks (obviously).
948  *
949  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
950  * this is called via lwkt_schedule() through the td_preemptable callback.
951  * critcount is the managed critical priority that we should ignore in order
952  * to determine whether preemption is possible (aka usually just the crit
953  * priority of lwkt_schedule() itself).
954  *
955  * Preemption is typically limited to interrupt threads.
956  *
957  * Operation works in a fairly straight-forward manner.  The normal
958  * scheduling code is bypassed and we switch directly to the target
959  * thread.  When the target thread attempts to block or switch away
960  * code at the base of lwkt_switch() will switch directly back to our
961  * thread.  Our thread is able to retain whatever tokens it holds and
962  * if the target needs one of them the target will switch back to us
963  * and reschedule itself normally.
964  */
965 void
966 lwkt_preempt(thread_t ntd, int critcount)
967 {
968     struct globaldata *gd = mycpu;
969     thread_t xtd;
970     thread_t td;
971     int save_gd_intr_nesting_level;
972 
973     /*
974      * The caller has put us in a critical section.  We can only preempt
975      * if the caller of the caller was not in a critical section (basically
976      * a local interrupt), as determined by the 'critcount' parameter.  We
977      * also can't preempt if the caller is holding any spinlocks (even if
978      * he isn't in a critical section).  This also handles the tokens test.
979      *
980      * YYY The target thread must be in a critical section (else it must
981      * inherit our critical section?  I dunno yet).
982      */
983     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
984 
985     td = gd->gd_curthread;
986     if (preempt_enable == 0) {
987 	++preempt_miss;
988 	return;
989     }
990     if (ntd->td_pri <= td->td_pri) {
991 	++preempt_miss;
992 	return;
993     }
994     if (td->td_critcount > critcount) {
995 	++preempt_miss;
996 	return;
997     }
998     if (td->td_cscount) {
999 	++preempt_miss;
1000 	return;
1001     }
1002     if (ntd->td_gd != gd) {
1003 	++preempt_miss;
1004 	return;
1005     }
1006     /*
1007      * We don't have to check spinlocks here as they will also bump
1008      * td_critcount.
1009      *
1010      * Do not try to preempt if the target thread is holding any tokens.
1011      * We could try to acquire the tokens but this case is so rare there
1012      * is no need to support it.
1013      */
1014     KKASSERT(gd->gd_spinlocks == 0);
1015 
1016     if (TD_TOKS_HELD(ntd)) {
1017 	++preempt_miss;
1018 	return;
1019     }
1020     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1021 	++preempt_weird;
1022 	return;
1023     }
1024     if (ntd->td_preempted) {
1025 	++preempt_hit;
1026 	return;
1027     }
1028     KKASSERT(gd->gd_processing_ipiq == 0);
1029 
1030     /*
1031      * Since we are able to preempt the current thread, there is no need to
1032      * call need_lwkt_resched().
1033      *
1034      * We must temporarily clear gd_intr_nesting_level around the switch
1035      * since switchouts from the target thread are allowed (they will just
1036      * return to our thread), and since the target thread has its own stack.
1037      *
1038      * A preemption must switch back to the original thread, assert the
1039      * case.
1040      */
1041     ++preempt_hit;
1042     ntd->td_preempted = td;
1043     td->td_flags |= TDF_PREEMPT_LOCK;
1044     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1045     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1046     gd->gd_intr_nesting_level = 0;
1047 
1048     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1049     ntd->td_flags |= TDF_RUNNING;
1050     xtd = td->td_switch(ntd);
1051     KKASSERT(xtd == ntd);
1052     lwkt_switch_return(xtd);
1053     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1054 
1055     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1056     ntd->td_preempted = NULL;
1057     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1058 }
1059 
1060 /*
1061  * Conditionally call splz() if gd_reqflags indicates work is pending.
1062  * This will work inside a critical section but not inside a hard code
1063  * section.
1064  *
1065  * (self contained on a per cpu basis)
1066  */
1067 void
1068 splz_check(void)
1069 {
1070     globaldata_t gd = mycpu;
1071     thread_t td = gd->gd_curthread;
1072 
1073     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1074 	gd->gd_intr_nesting_level == 0 &&
1075 	td->td_nest_count < 2)
1076     {
1077 	splz();
1078     }
1079 }
1080 
1081 /*
1082  * This version is integrated into crit_exit, reqflags has already
1083  * been tested but td_critcount has not.
1084  *
1085  * We only want to execute the splz() on the 1->0 transition of
1086  * critcount and not in a hard code section or if too deeply nested.
1087  *
1088  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1089  */
1090 void
1091 lwkt_maybe_splz(thread_t td)
1092 {
1093     globaldata_t gd = td->td_gd;
1094 
1095     if (td->td_critcount == 0 &&
1096 	gd->gd_intr_nesting_level == 0 &&
1097 	td->td_nest_count < 2)
1098     {
1099 	splz();
1100     }
1101 }
1102 
1103 /*
1104  * Drivers which set up processing co-threads can call this function to
1105  * run the co-thread at a higher priority and to allow it to preempt
1106  * normal threads.
1107  */
1108 void
1109 lwkt_set_interrupt_support_thread(void)
1110 {
1111 	thread_t td = curthread;
1112 
1113         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1114 	td->td_flags |= TDF_INTTHREAD;
1115 	td->td_preemptable = lwkt_preempt;
1116 }
1117 
1118 
1119 /*
1120  * This function is used to negotiate a passive release of the current
1121  * process/lwp designation with the user scheduler, allowing the user
1122  * scheduler to schedule another user thread.  The related kernel thread
1123  * (curthread) continues running in the released state.
1124  */
1125 void
1126 lwkt_passive_release(struct thread *td)
1127 {
1128     struct lwp *lp = td->td_lwp;
1129 
1130 #ifndef NO_LWKT_SPLIT_USERPRI
1131     td->td_release = NULL;
1132     lwkt_setpri_self(TDPRI_KERN_USER);
1133 #endif
1134 
1135     lp->lwp_proc->p_usched->release_curproc(lp);
1136 }
1137 
1138 
1139 /*
1140  * This implements a LWKT yield, allowing a kernel thread to yield to other
1141  * kernel threads at the same or higher priority.  This function can be
1142  * called in a tight loop and will typically only yield once per tick.
1143  *
1144  * Most kernel threads run at the same priority in order to allow equal
1145  * sharing.
1146  *
1147  * (self contained on a per cpu basis)
1148  */
1149 void
1150 lwkt_yield(void)
1151 {
1152     globaldata_t gd = mycpu;
1153     thread_t td = gd->gd_curthread;
1154 
1155     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1156 	splz();
1157     if (lwkt_resched_wanted()) {
1158 	lwkt_schedule_self(curthread);
1159 	lwkt_switch();
1160     }
1161 }
1162 
1163 /*
1164  * The quick version processes pending interrupts and higher-priority
1165  * LWKT threads but will not round-robin same-priority LWKT threads.
1166  *
1167  * When called while attempting to return to userland the only same-pri
1168  * threads are the ones which have already tried to become the current
1169  * user process.
1170  */
1171 void
1172 lwkt_yield_quick(void)
1173 {
1174     globaldata_t gd = mycpu;
1175     thread_t td = gd->gd_curthread;
1176 
1177     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1178 	splz();
1179     if (lwkt_resched_wanted()) {
1180 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1181 	    clear_lwkt_resched();
1182 	} else {
1183 	    lwkt_schedule_self(curthread);
1184 	    lwkt_switch();
1185 	}
1186     }
1187 }
1188 
1189 /*
1190  * This yield is designed for kernel threads with a user context.
1191  *
1192  * The kernel acting on behalf of the user is potentially cpu-bound,
1193  * this function will efficiently allow other threads to run and also
1194  * switch to other processes by releasing.
1195  *
1196  * The lwkt_user_yield() function is designed to have very low overhead
1197  * if no yield is determined to be needed.
1198  */
1199 void
1200 lwkt_user_yield(void)
1201 {
1202     globaldata_t gd = mycpu;
1203     thread_t td = gd->gd_curthread;
1204 
1205     /*
1206      * Always run any pending interrupts in case we are in a critical
1207      * section.
1208      */
1209     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1210 	splz();
1211 
1212     /*
1213      * Switch (which forces a release) if another kernel thread needs
1214      * the cpu, if userland wants us to resched, or if our kernel
1215      * quantum has run out.
1216      */
1217     if (lwkt_resched_wanted() ||
1218 	user_resched_wanted())
1219     {
1220 	lwkt_switch();
1221     }
1222 
1223 #if 0
1224     /*
1225      * Reacquire the current process if we are released.
1226      *
1227      * XXX not implemented atm.  The kernel may be holding locks and such,
1228      *     so we want the thread to continue to receive cpu.
1229      */
1230     if (td->td_release == NULL && lp) {
1231 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1232 	td->td_release = lwkt_passive_release;
1233 	lwkt_setpri_self(TDPRI_USER_NORM);
1234     }
1235 #endif
1236 }
1237 
1238 /*
1239  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1240  * deal with threads that might be blocked on a wait queue.
1241  *
1242  * We have a little helper inline function which does additional work after
1243  * the thread has been enqueued, including dealing with preemption and
1244  * setting need_lwkt_resched() (which prevents the kernel from returning
1245  * to userland until it has processed higher priority threads).
1246  *
1247  * It is possible for this routine to be called after a failed _enqueue
1248  * (due to the target thread migrating, sleeping, or otherwise blocked).
1249  * We have to check that the thread is actually on the run queue!
1250  */
1251 static __inline
1252 void
1253 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1254 {
1255     if (ntd->td_flags & TDF_RUNQ) {
1256 	if (ntd->td_preemptable) {
1257 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1258 	}
1259     }
1260 }
1261 
1262 static __inline
1263 void
1264 _lwkt_schedule(thread_t td)
1265 {
1266     globaldata_t mygd = mycpu;
1267 
1268     KASSERT(td != &td->td_gd->gd_idlethread,
1269 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1270     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1271     crit_enter_gd(mygd);
1272     KKASSERT(td->td_lwp == NULL ||
1273 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1274 
1275     if (td == mygd->gd_curthread) {
1276 	_lwkt_enqueue(td);
1277     } else {
1278 	/*
1279 	 * If we own the thread, there is no race (since we are in a
1280 	 * critical section).  If we do not own the thread there might
1281 	 * be a race but the target cpu will deal with it.
1282 	 */
1283 	if (td->td_gd == mygd) {
1284 	    _lwkt_enqueue(td);
1285 	    _lwkt_schedule_post(mygd, td, 1);
1286 	} else {
1287 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1288 	}
1289     }
1290     crit_exit_gd(mygd);
1291 }
1292 
1293 void
1294 lwkt_schedule(thread_t td)
1295 {
1296     _lwkt_schedule(td);
1297 }
1298 
1299 void
1300 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1301 {
1302     _lwkt_schedule(td);
1303 }
1304 
1305 /*
1306  * When scheduled remotely if frame != NULL the IPIQ is being
1307  * run via doreti or an interrupt then preemption can be allowed.
1308  *
1309  * To allow preemption we have to drop the critical section so only
1310  * one is present in _lwkt_schedule_post.
1311  */
1312 static void
1313 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1314 {
1315     thread_t td = curthread;
1316     thread_t ntd = arg;
1317 
1318     if (frame && ntd->td_preemptable) {
1319 	crit_exit_noyield(td);
1320 	_lwkt_schedule(ntd);
1321 	crit_enter_quick(td);
1322     } else {
1323 	_lwkt_schedule(ntd);
1324     }
1325 }
1326 
1327 /*
1328  * Thread migration using a 'Pull' method.  The thread may or may not be
1329  * the current thread.  It MUST be descheduled and in a stable state.
1330  * lwkt_giveaway() must be called on the cpu owning the thread.
1331  *
1332  * At any point after lwkt_giveaway() is called, the target cpu may
1333  * 'pull' the thread by calling lwkt_acquire().
1334  *
1335  * We have to make sure the thread is not sitting on a per-cpu tsleep
1336  * queue or it will blow up when it moves to another cpu.
1337  *
1338  * MPSAFE - must be called under very specific conditions.
1339  */
1340 void
1341 lwkt_giveaway(thread_t td)
1342 {
1343     globaldata_t gd = mycpu;
1344 
1345     crit_enter_gd(gd);
1346     if (td->td_flags & TDF_TSLEEPQ)
1347 	tsleep_remove(td);
1348     KKASSERT(td->td_gd == gd);
1349     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1350     td->td_flags |= TDF_MIGRATING;
1351     crit_exit_gd(gd);
1352 }
1353 
1354 void
1355 lwkt_acquire(thread_t td)
1356 {
1357     globaldata_t gd;
1358     globaldata_t mygd;
1359     int retry = 10000000;
1360 
1361     KKASSERT(td->td_flags & TDF_MIGRATING);
1362     gd = td->td_gd;
1363     mygd = mycpu;
1364     if (gd != mycpu) {
1365 	cpu_lfence();
1366 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1367 	crit_enter_gd(mygd);
1368 	DEBUG_PUSH_INFO("lwkt_acquire");
1369 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1370 	    lwkt_process_ipiq();
1371 	    cpu_lfence();
1372 	    if (--retry == 0) {
1373 		kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1374 			td, td->td_flags);
1375 		retry = 10000000;
1376 	    }
1377 	}
1378 	DEBUG_POP_INFO();
1379 	cpu_mfence();
1380 	td->td_gd = mygd;
1381 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1382 	td->td_flags &= ~TDF_MIGRATING;
1383 	crit_exit_gd(mygd);
1384     } else {
1385 	crit_enter_gd(mygd);
1386 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1387 	td->td_flags &= ~TDF_MIGRATING;
1388 	crit_exit_gd(mygd);
1389     }
1390 }
1391 
1392 /*
1393  * Generic deschedule.  Descheduling threads other then your own should be
1394  * done only in carefully controlled circumstances.  Descheduling is
1395  * asynchronous.
1396  *
1397  * This function may block if the cpu has run out of messages.
1398  */
1399 void
1400 lwkt_deschedule(thread_t td)
1401 {
1402     crit_enter();
1403     if (td == curthread) {
1404 	_lwkt_dequeue(td);
1405     } else {
1406 	if (td->td_gd == mycpu) {
1407 	    _lwkt_dequeue(td);
1408 	} else {
1409 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1410 	}
1411     }
1412     crit_exit();
1413 }
1414 
1415 /*
1416  * Set the target thread's priority.  This routine does not automatically
1417  * switch to a higher priority thread, LWKT threads are not designed for
1418  * continuous priority changes.  Yield if you want to switch.
1419  */
1420 void
1421 lwkt_setpri(thread_t td, int pri)
1422 {
1423     if (td->td_pri != pri) {
1424 	KKASSERT(pri >= 0);
1425 	crit_enter();
1426 	if (td->td_flags & TDF_RUNQ) {
1427 	    KKASSERT(td->td_gd == mycpu);
1428 	    _lwkt_dequeue(td);
1429 	    td->td_pri = pri;
1430 	    _lwkt_enqueue(td);
1431 	} else {
1432 	    td->td_pri = pri;
1433 	}
1434 	crit_exit();
1435     }
1436 }
1437 
1438 /*
1439  * Set the initial priority for a thread prior to it being scheduled for
1440  * the first time.  The thread MUST NOT be scheduled before or during
1441  * this call.  The thread may be assigned to a cpu other then the current
1442  * cpu.
1443  *
1444  * Typically used after a thread has been created with TDF_STOPPREQ,
1445  * and before the thread is initially scheduled.
1446  */
1447 void
1448 lwkt_setpri_initial(thread_t td, int pri)
1449 {
1450     KKASSERT(pri >= 0);
1451     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1452     td->td_pri = pri;
1453 }
1454 
1455 void
1456 lwkt_setpri_self(int pri)
1457 {
1458     thread_t td = curthread;
1459 
1460     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1461     crit_enter();
1462     if (td->td_flags & TDF_RUNQ) {
1463 	_lwkt_dequeue(td);
1464 	td->td_pri = pri;
1465 	_lwkt_enqueue(td);
1466     } else {
1467 	td->td_pri = pri;
1468     }
1469     crit_exit();
1470 }
1471 
1472 /*
1473  * hz tick scheduler clock for LWKT threads
1474  */
1475 void
1476 lwkt_schedulerclock(thread_t td)
1477 {
1478     globaldata_t gd = td->td_gd;
1479     thread_t xtd;
1480 
1481     if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1482 	/*
1483 	 * If the current thread is at the head of the runq shift it to the
1484 	 * end of any equal-priority threads and request a LWKT reschedule
1485 	 * if it moved.
1486 	 *
1487 	 * Ignore upri in this situation.  There will only be one user thread
1488 	 * in user mode, all others will be user threads running in kernel
1489 	 * mode and we have to make sure they get some cpu.
1490 	 */
1491 	xtd = TAILQ_NEXT(td, td_threadq);
1492 	if (xtd && xtd->td_pri == td->td_pri) {
1493 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1494 	    while (xtd && xtd->td_pri == td->td_pri)
1495 		xtd = TAILQ_NEXT(xtd, td_threadq);
1496 	    if (xtd)
1497 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1498 	    else
1499 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1500 	    need_lwkt_resched();
1501 	}
1502     } else {
1503 	/*
1504 	 * If we scheduled a thread other than the one at the head of the
1505 	 * queue always request a reschedule every tick.
1506 	 */
1507 	need_lwkt_resched();
1508     }
1509 }
1510 
1511 /*
1512  * Migrate the current thread to the specified cpu.
1513  *
1514  * This is accomplished by descheduling ourselves from the current cpu
1515  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1516  * 'old' thread wants to migrate after it has been completely switched out
1517  * and will complete the migration.
1518  *
1519  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1520  *
1521  * We must be sure to release our current process designation (if a user
1522  * process) before clearing out any tsleepq we are on because the release
1523  * code may re-add us.
1524  *
1525  * We must be sure to remove ourselves from the current cpu's tsleepq
1526  * before potentially moving to another queue.  The thread can be on
1527  * a tsleepq due to a left-over tsleep_interlock().
1528  */
1529 
1530 void
1531 lwkt_setcpu_self(globaldata_t rgd)
1532 {
1533     thread_t td = curthread;
1534 
1535     if (td->td_gd != rgd) {
1536 	crit_enter_quick(td);
1537 
1538 	if (td->td_release)
1539 	    td->td_release(td);
1540 	if (td->td_flags & TDF_TSLEEPQ)
1541 	    tsleep_remove(td);
1542 
1543 	/*
1544 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1545 	 * trying to deschedule ourselves and switch away, then deschedule
1546 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1547 	 * call lwkt_switch() to complete the operation.
1548 	 */
1549 	td->td_flags |= TDF_MIGRATING;
1550 	lwkt_deschedule_self(td);
1551 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1552 	td->td_migrate_gd = rgd;
1553 	lwkt_switch();
1554 
1555 	/*
1556 	 * We are now on the target cpu
1557 	 */
1558 	KKASSERT(rgd == mycpu);
1559 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1560 	crit_exit_quick(td);
1561     }
1562 }
1563 
1564 void
1565 lwkt_migratecpu(int cpuid)
1566 {
1567 	globaldata_t rgd;
1568 
1569 	rgd = globaldata_find(cpuid);
1570 	lwkt_setcpu_self(rgd);
1571 }
1572 
1573 /*
1574  * Remote IPI for cpu migration (called while in a critical section so we
1575  * do not have to enter another one).
1576  *
1577  * The thread (td) has already been completely descheduled from the
1578  * originating cpu and we can simply assert the case.  The thread is
1579  * assigned to the new cpu and enqueued.
1580  *
1581  * The thread will re-add itself to tdallq when it resumes execution.
1582  */
1583 static void
1584 lwkt_setcpu_remote(void *arg)
1585 {
1586     thread_t td = arg;
1587     globaldata_t gd = mycpu;
1588 
1589     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1590     td->td_gd = gd;
1591     cpu_mfence();
1592     td->td_flags &= ~TDF_MIGRATING;
1593     KKASSERT(td->td_migrate_gd == NULL);
1594     KKASSERT(td->td_lwp == NULL ||
1595 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1596     _lwkt_enqueue(td);
1597 }
1598 
1599 struct lwp *
1600 lwkt_preempted_proc(void)
1601 {
1602     thread_t td = curthread;
1603     while (td->td_preempted)
1604 	td = td->td_preempted;
1605     return(td->td_lwp);
1606 }
1607 
1608 /*
1609  * Create a kernel process/thread/whatever.  It shares it's address space
1610  * with proc0 - ie: kernel only.
1611  *
1612  * If the cpu is not specified one will be selected.  In the future
1613  * specifying a cpu of -1 will enable kernel thread migration between
1614  * cpus.
1615  */
1616 int
1617 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1618 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1619 {
1620     thread_t td;
1621     __va_list ap;
1622 
1623     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1624 			   tdflags);
1625     if (tdp)
1626 	*tdp = td;
1627     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1628 
1629     /*
1630      * Set up arg0 for 'ps' etc
1631      */
1632     __va_start(ap, fmt);
1633     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1634     __va_end(ap);
1635 
1636     /*
1637      * Schedule the thread to run
1638      */
1639     if (td->td_flags & TDF_NOSTART)
1640 	td->td_flags &= ~TDF_NOSTART;
1641     else
1642 	lwkt_schedule(td);
1643     return 0;
1644 }
1645 
1646 /*
1647  * Destroy an LWKT thread.   Warning!  This function is not called when
1648  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1649  * uses a different reaping mechanism.
1650  */
1651 void
1652 lwkt_exit(void)
1653 {
1654     thread_t td = curthread;
1655     thread_t std;
1656     globaldata_t gd;
1657 
1658     /*
1659      * Do any cleanup that might block here
1660      */
1661     if (td->td_flags & TDF_VERBOSE)
1662 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1663     biosched_done(td);
1664     dsched_exit_thread(td);
1665 
1666     /*
1667      * Get us into a critical section to interlock gd_freetd and loop
1668      * until we can get it freed.
1669      *
1670      * We have to cache the current td in gd_freetd because objcache_put()ing
1671      * it would rip it out from under us while our thread is still active.
1672      *
1673      * We are the current thread so of course our own TDF_RUNNING bit will
1674      * be set, so unlike the lwp reap code we don't wait for it to clear.
1675      */
1676     gd = mycpu;
1677     crit_enter_quick(td);
1678     for (;;) {
1679 	if (td->td_refs) {
1680 	    tsleep(td, 0, "tdreap", 1);
1681 	    continue;
1682 	}
1683 	if ((std = gd->gd_freetd) != NULL) {
1684 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1685 	    gd->gd_freetd = NULL;
1686 	    objcache_put(thread_cache, std);
1687 	    continue;
1688 	}
1689 	break;
1690     }
1691 
1692     /*
1693      * Remove thread resources from kernel lists and deschedule us for
1694      * the last time.  We cannot block after this point or we may end
1695      * up with a stale td on the tsleepq.
1696      *
1697      * None of this may block, the critical section is the only thing
1698      * protecting tdallq and the only thing preventing new lwkt_hold()
1699      * thread refs now.
1700      */
1701     if (td->td_flags & TDF_TSLEEPQ)
1702 	tsleep_remove(td);
1703     lwkt_deschedule_self(td);
1704     lwkt_remove_tdallq(td);
1705     KKASSERT(td->td_refs == 0);
1706 
1707     /*
1708      * Final cleanup
1709      */
1710     KKASSERT(gd->gd_freetd == NULL);
1711     if (td->td_flags & TDF_ALLOCATED_THREAD)
1712 	gd->gd_freetd = td;
1713     cpu_thread_exit();
1714 }
1715 
1716 void
1717 lwkt_remove_tdallq(thread_t td)
1718 {
1719     KKASSERT(td->td_gd == mycpu);
1720     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1721 }
1722 
1723 /*
1724  * Code reduction and branch prediction improvements.  Call/return
1725  * overhead on modern cpus often degenerates into 0 cycles due to
1726  * the cpu's branch prediction hardware and return pc cache.  We
1727  * can take advantage of this by not inlining medium-complexity
1728  * functions and we can also reduce the branch prediction impact
1729  * by collapsing perfectly predictable branches into a single
1730  * procedure instead of duplicating it.
1731  *
1732  * Is any of this noticeable?  Probably not, so I'll take the
1733  * smaller code size.
1734  */
1735 void
1736 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1737 {
1738     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1739 }
1740 
1741 void
1742 crit_panic(void)
1743 {
1744     thread_t td = curthread;
1745     int lcrit = td->td_critcount;
1746 
1747     td->td_critcount = 0;
1748     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1749     /* NOT REACHED */
1750 }
1751 
1752 /*
1753  * Called from debugger/panic on cpus which have been stopped.  We must still
1754  * process the IPIQ while stopped, even if we were stopped while in a critical
1755  * section (XXX).
1756  *
1757  * If we are dumping also try to process any pending interrupts.  This may
1758  * or may not work depending on the state of the cpu at the point it was
1759  * stopped.
1760  */
1761 void
1762 lwkt_smp_stopped(void)
1763 {
1764     globaldata_t gd = mycpu;
1765 
1766     crit_enter_gd(gd);
1767     if (dumping) {
1768 	lwkt_process_ipiq();
1769 	splz();
1770     } else {
1771 	lwkt_process_ipiq();
1772     }
1773     crit_exit_gd(gd);
1774 }
1775