xref: /dragonfly/sys/kern/lwkt_thread.c (revision 7ff0fc30)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/malloc.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
56 #include <sys/indefinite.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <sys/indefinite2.h>
61 
62 #include <sys/dsched.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_pager.h>
71 #include <vm/vm_extern.h>
72 
73 #include <machine/stdarg.h>
74 #include <machine/smp.h>
75 #include <machine/clock.h>
76 
77 #define LOOPMASK
78 
79 #if !defined(KTR_CTXSW)
80 #define KTR_CTXSW KTR_ALL
81 #endif
82 KTR_INFO_MASTER(ctxsw);
83 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
84 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
85 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
86 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
87 
88 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
89 
90 #ifdef	INVARIANTS
91 static int panic_on_cscount = 0;
92 #endif
93 #ifdef DEBUG_LWKT_THREAD
94 static int64_t switch_count = 0;
95 static int64_t preempt_hit = 0;
96 static int64_t preempt_miss = 0;
97 static int64_t preempt_weird = 0;
98 #endif
99 static int lwkt_use_spin_port;
100 __read_mostly static struct objcache *thread_cache;
101 int cpu_mwait_spin = 0;
102 
103 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
104 static void lwkt_setcpu_remote(void *arg);
105 
106 /*
107  * We can make all thread ports use the spin backend instead of the thread
108  * backend.  This should only be set to debug the spin backend.
109  */
110 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
111 
112 #ifdef	INVARIANTS
113 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
114     "Panic if attempting to switch lwkt's while mastering cpusync");
115 #endif
116 #ifdef DEBUG_LWKT_THREAD
117 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
118     "Number of switched threads");
119 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
120     "Successful preemption events");
121 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
122     "Failed preemption events");
123 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
124     "Number of preempted threads.");
125 #endif
126 extern int lwkt_sched_debug;
127 int lwkt_sched_debug = 0;
128 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
129 	&lwkt_sched_debug, 0, "Scheduler debug");
130 __read_mostly static u_int lwkt_spin_loops = 10;
131 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
132 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
133 __read_mostly static int preempt_enable = 1;
134 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
135 	&preempt_enable, 0, "Enable preemption");
136 static int lwkt_cache_threads = 0;
137 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
138 	&lwkt_cache_threads, 0, "thread+kstack cache");
139 
140 /*
141  * These helper procedures handle the runq, they can only be called from
142  * within a critical section.
143  *
144  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
145  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
146  * instead of 'mycpu' when referencing the globaldata structure.   Once
147  * SMP live enqueuing and dequeueing only occurs on the current cpu.
148  */
149 static __inline
150 void
151 _lwkt_dequeue(thread_t td)
152 {
153     if (td->td_flags & TDF_RUNQ) {
154 	struct globaldata *gd = td->td_gd;
155 
156 	td->td_flags &= ~TDF_RUNQ;
157 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
158 	--gd->gd_tdrunqcount;
159 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
160 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
161     }
162 }
163 
164 /*
165  * Priority enqueue.
166  *
167  * There are a limited number of lwkt threads runnable since user
168  * processes only schedule one at a time per cpu.  However, there can
169  * be many user processes in kernel mode exiting from a tsleep() which
170  * become runnable.
171  *
172  * We scan the queue in both directions to help deal with degenerate
173  * situations when hundreds or thousands (or more) threads are runnable.
174  *
175  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
176  *	 will ignore user priority.  This is to ensure that user threads in
177  *	 kernel mode get cpu at some point regardless of what the user
178  *	 scheduler thinks.
179  */
180 static __inline
181 void
182 _lwkt_enqueue(thread_t td)
183 {
184     thread_t xtd;	/* forward scan */
185     thread_t rtd;	/* reverse scan */
186 
187     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
188 	struct globaldata *gd = td->td_gd;
189 
190 	td->td_flags |= TDF_RUNQ;
191 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
192 	if (xtd == NULL) {
193 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
194 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
195 	} else {
196 	    /*
197 	     * NOTE: td_upri - higher numbers more desireable, same sense
198 	     *	     as td_pri (typically reversed from lwp_upri).
199 	     *
200 	     *	     In the equal priority case we want the best selection
201 	     *	     at the beginning so the less desireable selections know
202 	     *	     that they have to setrunqueue/go-to-another-cpu, even
203 	     *	     though it means switching back to the 'best' selection.
204 	     *	     This also avoids degenerate situations when many threads
205 	     *	     are runnable or waking up at the same time.
206 	     *
207 	     *	     If upri matches exactly place at end/round-robin.
208 	     */
209 	    rtd = TAILQ_LAST(&gd->gd_tdrunq, lwkt_queue);
210 
211 	    while (xtd &&
212 		   (xtd->td_pri > td->td_pri ||
213 		    (xtd->td_pri == td->td_pri &&
214 		     xtd->td_upri >= td->td_upri))) {
215 		xtd = TAILQ_NEXT(xtd, td_threadq);
216 
217 		/*
218 		 * Doing a reverse scan at the same time is an optimization
219 		 * for the insert-closer-to-tail case that avoids having to
220 		 * scan the entire list.  This situation can occur when
221 		 * thousands of threads are woken up at the same time.
222 		 */
223 		if (rtd->td_pri > td->td_pri ||
224 		    (rtd->td_pri == td->td_pri &&
225 		    rtd->td_upri >= td->td_upri)) {
226 			TAILQ_INSERT_AFTER(&gd->gd_tdrunq, rtd, td, td_threadq);
227 			goto skip;
228 		}
229 		rtd = TAILQ_PREV(rtd, lwkt_queue, td_threadq);
230 	    }
231 	    if (xtd)
232 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
233 	    else
234 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
235 	}
236 skip:
237 	++gd->gd_tdrunqcount;
238 
239 	/*
240 	 * Request a LWKT reschedule if we are now at the head of the queue.
241 	 */
242 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
243 	    need_lwkt_resched();
244     }
245 }
246 
247 static boolean_t
248 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
249 {
250 	struct thread *td = (struct thread *)obj;
251 
252 	td->td_kstack = NULL;
253 	td->td_kstack_size = 0;
254 	td->td_flags = TDF_ALLOCATED_THREAD;
255 	td->td_mpflags = 0;
256 	return (1);
257 }
258 
259 static void
260 _lwkt_thread_dtor(void *obj, void *privdata)
261 {
262 	struct thread *td = (struct thread *)obj;
263 
264 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
265 	    ("_lwkt_thread_dtor: not allocated from objcache"));
266 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
267 		td->td_kstack_size > 0,
268 	    ("_lwkt_thread_dtor: corrupted stack"));
269 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
270 	td->td_kstack = NULL;
271 	td->td_flags = 0;
272 }
273 
274 /*
275  * Initialize the lwkt s/system.
276  *
277  * Nominally cache up to 32 thread + kstack structures.  Cache more on
278  * systems with a lot of cpu cores.
279  */
280 static void
281 lwkt_init(void)
282 {
283     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
284     if (lwkt_cache_threads == 0) {
285 	lwkt_cache_threads = ncpus * 4;
286 	if (lwkt_cache_threads < 32)
287 	    lwkt_cache_threads = 32;
288     }
289     thread_cache = objcache_create_mbacked(
290 				M_THREAD, sizeof(struct thread),
291 				0, lwkt_cache_threads,
292 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
293 }
294 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
295 
296 /*
297  * Schedule a thread to run.  As the current thread we can always safely
298  * schedule ourselves, and a shortcut procedure is provided for that
299  * function.
300  *
301  * (non-blocking, self contained on a per cpu basis)
302  */
303 void
304 lwkt_schedule_self(thread_t td)
305 {
306     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
307     crit_enter_quick(td);
308     KASSERT(td != &td->td_gd->gd_idlethread,
309 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
310     KKASSERT(td->td_lwp == NULL ||
311 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
312     _lwkt_enqueue(td);
313     crit_exit_quick(td);
314 }
315 
316 /*
317  * Deschedule a thread.
318  *
319  * (non-blocking, self contained on a per cpu basis)
320  */
321 void
322 lwkt_deschedule_self(thread_t td)
323 {
324     crit_enter_quick(td);
325     _lwkt_dequeue(td);
326     crit_exit_quick(td);
327 }
328 
329 /*
330  * LWKTs operate on a per-cpu basis
331  *
332  * WARNING!  Called from early boot, 'mycpu' may not work yet.
333  */
334 void
335 lwkt_gdinit(struct globaldata *gd)
336 {
337     TAILQ_INIT(&gd->gd_tdrunq);
338     TAILQ_INIT(&gd->gd_tdallq);
339     lockinit(&gd->gd_sysctllock, "sysctl", 0, LK_CANRECURSE);
340 }
341 
342 /*
343  * Create a new thread.  The thread must be associated with a process context
344  * or LWKT start address before it can be scheduled.  If the target cpu is
345  * -1 the thread will be created on the current cpu.
346  *
347  * If you intend to create a thread without a process context this function
348  * does everything except load the startup and switcher function.
349  */
350 thread_t
351 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
352 {
353     static int cpu_rotator;
354     globaldata_t gd = mycpu;
355     void *stack;
356 
357     /*
358      * If static thread storage is not supplied allocate a thread.  Reuse
359      * a cached free thread if possible.  gd_freetd is used to keep an exiting
360      * thread intact through the exit.
361      */
362     if (td == NULL) {
363 	crit_enter_gd(gd);
364 	if ((td = gd->gd_freetd) != NULL) {
365 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
366 				      TDF_RUNQ)) == 0);
367 	    gd->gd_freetd = NULL;
368 	} else {
369 	    td = objcache_get(thread_cache, M_WAITOK);
370 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
371 				      TDF_RUNQ)) == 0);
372 	}
373 	crit_exit_gd(gd);
374     	KASSERT((td->td_flags &
375 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
376 		 TDF_ALLOCATED_THREAD,
377 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
378     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
379     }
380 
381     /*
382      * Try to reuse cached stack.
383      */
384     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
385 	if (flags & TDF_ALLOCATED_STACK) {
386 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
387 	    stack = NULL;
388 	}
389     }
390     if (stack == NULL) {
391 	if (cpu < 0)
392 		stack = (void *)kmem_alloc_stack(&kernel_map, stksize, 0);
393 	else
394 		stack = (void *)kmem_alloc_stack(&kernel_map, stksize,
395 						 KM_CPU(cpu));
396 	flags |= TDF_ALLOCATED_STACK;
397     }
398     if (cpu < 0) {
399 	cpu = ++cpu_rotator;
400 	cpu_ccfence();
401 	cpu = (uint32_t)cpu % (uint32_t)ncpus;
402     }
403     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
404     return(td);
405 }
406 
407 /*
408  * Initialize a preexisting thread structure.  This function is used by
409  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
410  *
411  * All threads start out in a critical section at a priority of
412  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
413  * appropriate.  This function may send an IPI message when the
414  * requested cpu is not the current cpu and consequently gd_tdallq may
415  * not be initialized synchronously from the point of view of the originating
416  * cpu.
417  *
418  * NOTE! we have to be careful in regards to creating threads for other cpus
419  * if SMP has not yet been activated.
420  */
421 static void
422 lwkt_init_thread_remote(void *arg)
423 {
424     thread_t td = arg;
425 
426     /*
427      * Protected by critical section held by IPI dispatch
428      */
429     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
430 }
431 
432 /*
433  * lwkt core thread structural initialization.
434  *
435  * NOTE: All threads are initialized as mpsafe threads.
436  */
437 void
438 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
439 		struct globaldata *gd)
440 {
441     globaldata_t mygd = mycpu;
442 
443     bzero(td, sizeof(struct thread));
444     td->td_kstack = stack;
445     td->td_kstack_size = stksize;
446     td->td_flags = flags;
447     td->td_mpflags = 0;
448     td->td_type = TD_TYPE_GENERIC;
449     td->td_gd = gd;
450     td->td_pri = TDPRI_KERN_DAEMON;
451     td->td_critcount = 1;
452     td->td_toks_have = NULL;
453     td->td_toks_stop = &td->td_toks_base;
454     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
455 	lwkt_initport_spin(&td->td_msgport, td,
456 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
457     } else {
458 	lwkt_initport_thread(&td->td_msgport, td);
459     }
460     pmap_init_thread(td);
461     /*
462      * Normally initializing a thread for a remote cpu requires sending an
463      * IPI.  However, the idlethread is setup before the other cpus are
464      * activated so we have to treat it as a special case.  XXX manipulation
465      * of gd_tdallq requires the BGL.
466      */
467     if (gd == mygd || td == &gd->gd_idlethread) {
468 	crit_enter_gd(mygd);
469 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
470 	crit_exit_gd(mygd);
471     } else {
472 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
473     }
474     dsched_enter_thread(td);
475 }
476 
477 void
478 lwkt_set_comm(thread_t td, const char *ctl, ...)
479 {
480     __va_list va;
481 
482     __va_start(va, ctl);
483     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
484     __va_end(va);
485     KTR_LOG(ctxsw_newtd, td, td->td_comm);
486 }
487 
488 /*
489  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
490  * this does not prevent the thread from migrating to another cpu so the
491  * gd_tdallq state is not protected by this.
492  */
493 void
494 lwkt_hold(thread_t td)
495 {
496     atomic_add_int(&td->td_refs, 1);
497 }
498 
499 void
500 lwkt_rele(thread_t td)
501 {
502     KKASSERT(td->td_refs > 0);
503     atomic_add_int(&td->td_refs, -1);
504 }
505 
506 void
507 lwkt_free_thread(thread_t td)
508 {
509     KKASSERT(td->td_refs == 0);
510     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
511 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
512     if (td->td_flags & TDF_ALLOCATED_THREAD) {
513     	objcache_put(thread_cache, td);
514     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
515 	/* client-allocated struct with internally allocated stack */
516 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
517 	    ("lwkt_free_thread: corrupted stack"));
518 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
519 	td->td_kstack = NULL;
520 	td->td_kstack_size = 0;
521     }
522 
523     KTR_LOG(ctxsw_deadtd, td);
524 }
525 
526 
527 /*
528  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
529  * switch to the idlethread.  Switching must occur within a critical
530  * section to avoid races with the scheduling queue.
531  *
532  * We always have full control over our cpu's run queue.  Other cpus
533  * that wish to manipulate our queue must use the cpu_*msg() calls to
534  * talk to our cpu, so a critical section is all that is needed and
535  * the result is very, very fast thread switching.
536  *
537  * The LWKT scheduler uses a fixed priority model and round-robins at
538  * each priority level.  User process scheduling is a totally
539  * different beast and LWKT priorities should not be confused with
540  * user process priorities.
541  *
542  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
543  * is not called by the current thread in the preemption case, only when
544  * the preempting thread blocks (in order to return to the original thread).
545  *
546  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
547  * migration and tsleep deschedule the current lwkt thread and call
548  * lwkt_switch().  In particular, the target cpu of the migration fully
549  * expects the thread to become non-runnable and can deadlock against
550  * cpusync operations if we run any IPIs prior to switching the thread out.
551  *
552  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
553  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
554  */
555 void
556 lwkt_switch(void)
557 {
558     globaldata_t gd = mycpu;
559     thread_t td = gd->gd_curthread;
560     thread_t ntd;
561     thread_t xtd;
562     int upri;
563 #ifdef LOOPMASK
564     uint64_t tsc_base = rdtsc();
565 #endif
566 
567     KKASSERT(gd->gd_processing_ipiq == 0);
568     KKASSERT(td->td_flags & TDF_RUNNING);
569 
570     /*
571      * Switching from within a 'fast' (non thread switched) interrupt or IPI
572      * is illegal.  However, we may have to do it anyway if we hit a fatal
573      * kernel trap or we have paniced.
574      *
575      * If this case occurs save and restore the interrupt nesting level.
576      */
577     if (gd->gd_intr_nesting_level) {
578 	int savegdnest;
579 	int savegdtrap;
580 
581 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
582 	    panic("lwkt_switch: Attempt to switch from a "
583 		  "fast interrupt, ipi, or hard code section, "
584 		  "td %p\n",
585 		  td);
586 	} else {
587 	    savegdnest = gd->gd_intr_nesting_level;
588 	    savegdtrap = gd->gd_trap_nesting_level;
589 	    gd->gd_intr_nesting_level = 0;
590 	    gd->gd_trap_nesting_level = 0;
591 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
592 		td->td_flags |= TDF_PANICWARN;
593 		kprintf("Warning: thread switch from interrupt, IPI, "
594 			"or hard code section.\n"
595 			"thread %p (%s)\n", td, td->td_comm);
596 		print_backtrace(-1);
597 	    }
598 	    lwkt_switch();
599 	    gd->gd_intr_nesting_level = savegdnest;
600 	    gd->gd_trap_nesting_level = savegdtrap;
601 	    return;
602 	}
603     }
604 
605     /*
606      * Release our current user process designation if we are blocking
607      * or if a user reschedule was requested.
608      *
609      * NOTE: This function is NOT called if we are switching into or
610      *	     returning from a preemption.
611      *
612      * NOTE: Releasing our current user process designation may cause
613      *	     it to be assigned to another thread, which in turn will
614      *	     cause us to block in the usched acquire code when we attempt
615      *	     to return to userland.
616      *
617      * NOTE: On SMP systems this can be very nasty when heavy token
618      *	     contention is present so we want to be careful not to
619      *	     release the designation gratuitously.
620      */
621     if (td->td_release &&
622 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
623 	    td->td_release(td);
624     }
625 
626     /*
627      * Release all tokens.  Once we do this we must remain in the critical
628      * section and cannot run IPIs or other interrupts until we switch away
629      * because they may implode if they try to get a token using our thread
630      * context.
631      */
632     crit_enter_gd(gd);
633     if (TD_TOKS_HELD(td))
634 	    lwkt_relalltokens(td);
635 
636     /*
637      * We had better not be holding any spin locks, but don't get into an
638      * endless panic loop.
639      */
640     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
641 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
642 	     gd->gd_spinlocks));
643 
644 #ifdef	INVARIANTS
645     if (td->td_cscount) {
646 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
647 		td);
648 	if (panic_on_cscount)
649 	    panic("switching while mastering cpusync");
650     }
651 #endif
652 
653     /*
654      * If we had preempted another thread on this cpu, resume the preempted
655      * thread.  This occurs transparently, whether the preempted thread
656      * was scheduled or not (it may have been preempted after descheduling
657      * itself).
658      *
659      * We have to setup the MP lock for the original thread after backing
660      * out the adjustment that was made to curthread when the original
661      * was preempted.
662      */
663     if ((ntd = td->td_preempted) != NULL) {
664 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
665 	ntd->td_flags |= TDF_PREEMPT_DONE;
666 	ntd->td_contended = 0;		/* reset contended */
667 
668 	/*
669 	 * The interrupt may have woken a thread up, we need to properly
670 	 * set the reschedule flag if the originally interrupted thread is
671 	 * at a lower priority.
672 	 *
673 	 * NOTE: The interrupt may not have descheduled ntd.
674 	 *
675 	 * NOTE: We do not reschedule if there are no threads on the runq.
676 	 *	 (ntd could be the idlethread).
677 	 */
678 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
679 	if (xtd && xtd != ntd)
680 	    need_lwkt_resched();
681 	goto havethread_preempted;
682     }
683 
684     /*
685      * Figure out switch target.  If we cannot switch to our desired target
686      * look for a thread that we can switch to.
687      *
688      * NOTE! The limited spin loop and related parameters are extremely
689      *	     important for system performance, particularly for pipes and
690      *	     concurrent conflicting VM faults.
691      */
692     clear_lwkt_resched();
693     ntd = TAILQ_FIRST(&gd->gd_tdrunq);
694 
695     if (ntd) {
696 	do {
697 	    if (TD_TOKS_NOT_HELD(ntd) ||
698 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
699 	    {
700 		goto havethread;
701 	    }
702 	    ++ntd->td_contended;	/* overflow ok */
703 	    if (gd->gd_indefinite.type == 0)
704 		indefinite_init(&gd->gd_indefinite, NULL, 0, 't');
705 #ifdef LOOPMASK
706 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
707 		    kprintf("lwkt_switch: excessive contended %d "
708 			    "thread %p\n", ntd->td_contended, ntd);
709 		    tsc_base = rdtsc();
710 	    }
711 #endif
712 	} while (ntd->td_contended < (lwkt_spin_loops >> 1));
713 	upri = ntd->td_upri;
714 
715 	/*
716 	 * Bleh, the thread we wanted to switch to has a contended token.
717 	 * See if we can switch to another thread.
718 	 *
719 	 * We generally don't want to do this because it represents a
720 	 * priority inversion, but contending tokens on the same cpu can
721 	 * cause real problems if we don't now that we have an exclusive
722 	 * priority mechanism over shared for tokens.
723 	 *
724 	 * The solution is to allow threads with pending tokens to compete
725 	 * for them (a lower priority thread will get less cpu once it
726 	 * returns from the kernel anyway).  If a thread does not have
727 	 * any contending tokens, we go by td_pri and upri.
728 	 */
729 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
730 	    if (TD_TOKS_NOT_HELD(ntd) &&
731 		ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri) {
732 		    continue;
733 	    }
734 	    if (upri < ntd->td_upri)
735 		upri = ntd->td_upri;
736 
737 	    /*
738 	     * Try this one.
739 	     */
740 	    if (TD_TOKS_NOT_HELD(ntd) ||
741 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
742 		    goto havethread;
743 	    }
744 	    ++ntd->td_contended;	/* overflow ok */
745 	}
746 
747 	/*
748 	 * Fall through, switch to idle thread to get us out of the current
749 	 * context.  Since we were contended, prevent HLT by flagging a
750 	 * LWKT reschedule.
751 	 */
752 	need_lwkt_resched();
753     }
754 
755     /*
756      * We either contended on ntd or the runq is empty.  We must switch
757      * through the idle thread to get out of the current context.
758      */
759     ntd = &gd->gd_idlethread;
760     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
761 	ASSERT_NO_TOKENS_HELD(ntd);
762     cpu_time.cp_msg[0] = 0;
763     goto haveidle;
764 
765 havethread:
766     /*
767      * Clear gd_idle_repeat when doing a normal switch to a non-idle
768      * thread.
769      */
770     ntd->td_wmesg = NULL;
771     ntd->td_contended = 0;	/* reset once scheduled */
772     ++gd->gd_cnt.v_swtch;
773     gd->gd_idle_repeat = 0;
774 
775     /*
776      * If we were busy waiting record final disposition
777      */
778     if (gd->gd_indefinite.type)
779 	    indefinite_done(&gd->gd_indefinite);
780 
781 havethread_preempted:
782     /*
783      * If the new target does not need the MP lock and we are holding it,
784      * release the MP lock.  If the new target requires the MP lock we have
785      * already acquired it for the target.
786      */
787     ;
788 haveidle:
789     KASSERT(ntd->td_critcount,
790 	    ("priority problem in lwkt_switch %d %d",
791 	    td->td_critcount, ntd->td_critcount));
792 
793     if (td != ntd) {
794 	/*
795 	 * Execute the actual thread switch operation.  This function
796 	 * returns to the current thread and returns the previous thread
797 	 * (which may be different from the thread we switched to).
798 	 *
799 	 * We are responsible for marking ntd as TDF_RUNNING.
800 	 */
801 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
802 #ifdef DEBUG_LWKT_THREAD
803 	++switch_count;
804 #endif
805 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
806 	ntd->td_flags |= TDF_RUNNING;
807 	lwkt_switch_return(td->td_switch(ntd));
808 	/* ntd invalid, td_switch() can return a different thread_t */
809     }
810 
811     /*
812      * catch-all.  XXX is this strictly needed?
813      */
814     splz_check();
815 
816     /* NOTE: current cpu may have changed after switch */
817     crit_exit_quick(td);
818 }
819 
820 /*
821  * Called by assembly in the td_switch (thread restore path) for thread
822  * bootstrap cases which do not 'return' to lwkt_switch().
823  */
824 void
825 lwkt_switch_return(thread_t otd)
826 {
827 	globaldata_t rgd;
828 #ifdef LOOPMASK
829 	uint64_t tsc_base = rdtsc();
830 #endif
831 	int exiting;
832 
833 	exiting = otd->td_flags & TDF_EXITING;
834 	cpu_ccfence();
835 
836 	/*
837 	 * Check if otd was migrating.  Now that we are on ntd we can finish
838 	 * up the migration.  This is a bit messy but it is the only place
839 	 * where td is known to be fully descheduled.
840 	 *
841 	 * We can only activate the migration if otd was migrating but not
842 	 * held on the cpu due to a preemption chain.  We still have to
843 	 * clear TDF_RUNNING on the old thread either way.
844 	 *
845 	 * We are responsible for clearing the previously running thread's
846 	 * TDF_RUNNING.
847 	 */
848 	if ((rgd = otd->td_migrate_gd) != NULL &&
849 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
850 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
851 			 (TDF_MIGRATING | TDF_RUNNING));
852 		otd->td_migrate_gd = NULL;
853 		otd->td_flags &= ~TDF_RUNNING;
854 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
855 	} else {
856 		otd->td_flags &= ~TDF_RUNNING;
857 	}
858 
859 	/*
860 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
861 	 * invalid the *instant* we set TDF_MP_EXITSIG.
862 	 *
863 	 * Use the EXITING status loaded from before we clear TDF_RUNNING,
864 	 * because if it is not set otd becomes invalid the instant we clear
865 	 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
866 	 * might 'steal' TDF_EXITING from another switch-return!).
867 	 */
868 	while (exiting) {
869 		u_int mpflags;
870 
871 		mpflags = otd->td_mpflags;
872 		cpu_ccfence();
873 
874 		if (mpflags & TDF_MP_EXITWAIT) {
875 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
876 					      mpflags | TDF_MP_EXITSIG)) {
877 				wakeup(otd);
878 				break;
879 			}
880 		} else {
881 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
882 					      mpflags | TDF_MP_EXITSIG)) {
883 				wakeup(otd);
884 				break;
885 			}
886 		}
887 
888 #ifdef LOOPMASK
889 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
890 			kprintf("lwkt_switch_return: excessive TDF_EXITING "
891 				"thread %p\n", otd);
892 			tsc_base = rdtsc();
893 		}
894 #endif
895 	}
896 }
897 
898 /*
899  * Request that the target thread preempt the current thread.  Preemption
900  * can only occur only:
901  *
902  *	- If our critical section is the one that we were called with
903  *	- The relative priority of the target thread is higher
904  *	- The target is not excessively interrupt-nested via td_nest_count
905  *	- The target thread holds no tokens.
906  *	- The target thread is not already scheduled and belongs to the
907  *	  current cpu.
908  *	- The current thread is not holding any spin-locks.
909  *
910  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
911  * this is called via lwkt_schedule() through the td_preemptable callback.
912  * critcount is the managed critical priority that we should ignore in order
913  * to determine whether preemption is possible (aka usually just the crit
914  * priority of lwkt_schedule() itself).
915  *
916  * Preemption is typically limited to interrupt threads.
917  *
918  * Operation works in a fairly straight-forward manner.  The normal
919  * scheduling code is bypassed and we switch directly to the target
920  * thread.  When the target thread attempts to block or switch away
921  * code at the base of lwkt_switch() will switch directly back to our
922  * thread.  Our thread is able to retain whatever tokens it holds and
923  * if the target needs one of them the target will switch back to us
924  * and reschedule itself normally.
925  */
926 void
927 lwkt_preempt(thread_t ntd, int critcount)
928 {
929     struct globaldata *gd = mycpu;
930     thread_t xtd;
931     thread_t td;
932     int save_gd_intr_nesting_level;
933 
934     /*
935      * The caller has put us in a critical section.  We can only preempt
936      * if the caller of the caller was not in a critical section (basically
937      * a local interrupt), as determined by the 'critcount' parameter.  We
938      * also can't preempt if the caller is holding any spinlocks (even if
939      * he isn't in a critical section).  This also handles the tokens test.
940      *
941      * YYY The target thread must be in a critical section (else it must
942      * inherit our critical section?  I dunno yet).
943      */
944     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
945 
946     td = gd->gd_curthread;
947     if (preempt_enable == 0) {
948 #ifdef DEBUG_LWKT_THREAD
949 	++preempt_miss;
950 #endif
951 	return;
952     }
953     if (ntd->td_pri <= td->td_pri) {
954 #ifdef DEBUG_LWKT_THREAD
955 	++preempt_miss;
956 #endif
957 	return;
958     }
959     if (td->td_critcount > critcount) {
960 #ifdef DEBUG_LWKT_THREAD
961 	++preempt_miss;
962 #endif
963 	return;
964     }
965     if (td->td_nest_count >= 2) {
966 #ifdef DEBUG_LWKT_THREAD
967 	++preempt_miss;
968 #endif
969 	return;
970     }
971     if (td->td_cscount) {
972 #ifdef DEBUG_LWKT_THREAD
973 	++preempt_miss;
974 #endif
975 	return;
976     }
977     if (ntd->td_gd != gd) {
978 #ifdef DEBUG_LWKT_THREAD
979 	++preempt_miss;
980 #endif
981 	return;
982     }
983 
984     /*
985      * We don't have to check spinlocks here as they will also bump
986      * td_critcount.
987      *
988      * Do not try to preempt if the target thread is holding any tokens.
989      * We could try to acquire the tokens but this case is so rare there
990      * is no need to support it.
991      */
992     KKASSERT(gd->gd_spinlocks == 0);
993 
994     if (TD_TOKS_HELD(ntd)) {
995 #ifdef DEBUG_LWKT_THREAD
996 	++preempt_miss;
997 #endif
998 	return;
999     }
1000     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1001 #ifdef DEBUG_LWKT_THREAD
1002 	++preempt_weird;
1003 #endif
1004 	return;
1005     }
1006     if (ntd->td_preempted) {
1007 #ifdef DEBUG_LWKT_THREAD
1008 	++preempt_hit;
1009 #endif
1010 	return;
1011     }
1012     KKASSERT(gd->gd_processing_ipiq == 0);
1013 
1014     /*
1015      * Since we are able to preempt the current thread, there is no need to
1016      * call need_lwkt_resched().
1017      *
1018      * We must temporarily clear gd_intr_nesting_level around the switch
1019      * since switchouts from the target thread are allowed (they will just
1020      * return to our thread), and since the target thread has its own stack.
1021      *
1022      * A preemption must switch back to the original thread, assert the
1023      * case.
1024      */
1025 #ifdef DEBUG_LWKT_THREAD
1026     ++preempt_hit;
1027 #endif
1028     ntd->td_preempted = td;
1029     td->td_flags |= TDF_PREEMPT_LOCK;
1030     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1031     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1032     gd->gd_intr_nesting_level = 0;
1033 
1034     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1035     ntd->td_flags |= TDF_RUNNING;
1036     xtd = td->td_switch(ntd);
1037     KKASSERT(xtd == ntd);
1038     lwkt_switch_return(xtd);
1039     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1040 
1041     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1042     ntd->td_preempted = NULL;
1043     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1044 }
1045 
1046 /*
1047  * Conditionally call splz() if gd_reqflags indicates work is pending.
1048  * This will work inside a critical section but not inside a hard code
1049  * section.
1050  *
1051  * (self contained on a per cpu basis)
1052  */
1053 void
1054 splz_check(void)
1055 {
1056     globaldata_t gd = mycpu;
1057     thread_t td = gd->gd_curthread;
1058 
1059     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1060 	gd->gd_intr_nesting_level == 0 &&
1061 	td->td_nest_count < 2)
1062     {
1063 	splz();
1064     }
1065 }
1066 
1067 /*
1068  * This version is integrated into crit_exit, reqflags has already
1069  * been tested but td_critcount has not.
1070  *
1071  * We only want to execute the splz() on the 1->0 transition of
1072  * critcount and not in a hard code section or if too deeply nested.
1073  *
1074  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1075  */
1076 void
1077 lwkt_maybe_splz(thread_t td)
1078 {
1079     globaldata_t gd = td->td_gd;
1080 
1081     if (td->td_critcount == 0 &&
1082 	gd->gd_intr_nesting_level == 0 &&
1083 	td->td_nest_count < 2)
1084     {
1085 	splz();
1086     }
1087 }
1088 
1089 /*
1090  * Drivers which set up processing co-threads can call this function to
1091  * run the co-thread at a higher priority and to allow it to preempt
1092  * normal threads.
1093  */
1094 void
1095 lwkt_set_interrupt_support_thread(void)
1096 {
1097 	thread_t td = curthread;
1098 
1099         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1100 	td->td_flags |= TDF_INTTHREAD;
1101 	td->td_preemptable = lwkt_preempt;
1102 }
1103 
1104 
1105 /*
1106  * This function is used to negotiate a passive release of the current
1107  * process/lwp designation with the user scheduler, allowing the user
1108  * scheduler to schedule another user thread.  The related kernel thread
1109  * (curthread) continues running in the released state.
1110  */
1111 void
1112 lwkt_passive_release(struct thread *td)
1113 {
1114     struct lwp *lp = td->td_lwp;
1115 
1116     td->td_release = NULL;
1117     lwkt_setpri_self(TDPRI_KERN_USER);
1118 
1119     lp->lwp_proc->p_usched->release_curproc(lp);
1120 }
1121 
1122 
1123 /*
1124  * This implements a LWKT yield, allowing a kernel thread to yield to other
1125  * kernel threads at the same or higher priority.  This function can be
1126  * called in a tight loop and will typically only yield once per tick.
1127  *
1128  * Most kernel threads run at the same priority in order to allow equal
1129  * sharing.
1130  *
1131  * (self contained on a per cpu basis)
1132  */
1133 void
1134 lwkt_yield(void)
1135 {
1136     globaldata_t gd = mycpu;
1137     thread_t td = gd->gd_curthread;
1138 
1139     /*
1140      * Should never be called with spinlocks held but there is a path
1141      * via ACPI where it might happen.
1142      */
1143     if (gd->gd_spinlocks)
1144 	return;
1145 
1146     /*
1147      * Safe to call splz if we are not too-heavily nested.
1148      */
1149     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1150 	splz();
1151 
1152     /*
1153      * Caller allows switching
1154      */
1155     if (lwkt_resched_wanted()) {
1156 	atomic_set_int(&td->td_mpflags, TDF_MP_DIDYIELD);
1157 	lwkt_schedule_self(td);
1158 	lwkt_switch();
1159     }
1160 }
1161 
1162 /*
1163  * The quick version processes pending interrupts and higher-priority
1164  * LWKT threads but will not round-robin same-priority LWKT threads.
1165  *
1166  * When called while attempting to return to userland the only same-pri
1167  * threads are the ones which have already tried to become the current
1168  * user process.
1169  */
1170 void
1171 lwkt_yield_quick(void)
1172 {
1173     globaldata_t gd = mycpu;
1174     thread_t td = gd->gd_curthread;
1175 
1176     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1177 	splz();
1178     if (lwkt_resched_wanted()) {
1179 	crit_enter();
1180 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1181 	    clear_lwkt_resched();
1182 	} else {
1183 	    atomic_set_int(&td->td_mpflags, TDF_MP_DIDYIELD);
1184 	    lwkt_schedule_self(curthread);
1185 	    lwkt_switch();
1186 	}
1187 	crit_exit();
1188     }
1189 }
1190 
1191 /*
1192  * This yield is designed for kernel threads with a user context.
1193  *
1194  * The kernel acting on behalf of the user is potentially cpu-bound,
1195  * this function will efficiently allow other threads to run and also
1196  * switch to other processes by releasing.
1197  *
1198  * The lwkt_user_yield() function is designed to have very low overhead
1199  * if no yield is determined to be needed.
1200  */
1201 void
1202 lwkt_user_yield(void)
1203 {
1204     globaldata_t gd = mycpu;
1205     thread_t td = gd->gd_curthread;
1206 
1207     /*
1208      * Should never be called with spinlocks held but there is a path
1209      * via ACPI where it might happen.
1210      */
1211     if (gd->gd_spinlocks)
1212 	return;
1213 
1214     /*
1215      * Always run any pending interrupts in case we are in a critical
1216      * section.
1217      */
1218     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1219 	splz();
1220 
1221     /*
1222      * Switch (which forces a release) if another kernel thread needs
1223      * the cpu, if userland wants us to resched, or if our kernel
1224      * quantum has run out.
1225      */
1226     if (lwkt_resched_wanted() ||
1227 	user_resched_wanted())
1228     {
1229 	lwkt_switch();
1230     }
1231 
1232 #if 0
1233     /*
1234      * Reacquire the current process if we are released.
1235      *
1236      * XXX not implemented atm.  The kernel may be holding locks and such,
1237      *     so we want the thread to continue to receive cpu.
1238      */
1239     if (td->td_release == NULL && lp) {
1240 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1241 	td->td_release = lwkt_passive_release;
1242 	lwkt_setpri_self(TDPRI_USER_NORM);
1243     }
1244 #endif
1245 }
1246 
1247 /*
1248  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1249  * deal with threads that might be blocked on a wait queue.
1250  *
1251  * We have a little helper inline function which does additional work after
1252  * the thread has been enqueued, including dealing with preemption and
1253  * setting need_lwkt_resched() (which prevents the kernel from returning
1254  * to userland until it has processed higher priority threads).
1255  *
1256  * It is possible for this routine to be called after a failed _enqueue
1257  * (due to the target thread migrating, sleeping, or otherwise blocked).
1258  * We have to check that the thread is actually on the run queue!
1259  */
1260 static __inline
1261 void
1262 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1263 {
1264     if (ntd->td_flags & TDF_RUNQ) {
1265 	if (ntd->td_preemptable) {
1266 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1267 	}
1268     }
1269 }
1270 
1271 static __inline
1272 void
1273 _lwkt_schedule(thread_t td)
1274 {
1275     globaldata_t mygd = mycpu;
1276 
1277     KASSERT(td != &td->td_gd->gd_idlethread,
1278 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1279     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1280     crit_enter_gd(mygd);
1281     KKASSERT(td->td_lwp == NULL ||
1282 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1283 
1284     if (td == mygd->gd_curthread) {
1285 	_lwkt_enqueue(td);
1286     } else {
1287 	/*
1288 	 * If we own the thread, there is no race (since we are in a
1289 	 * critical section).  If we do not own the thread there might
1290 	 * be a race but the target cpu will deal with it.
1291 	 */
1292 	if (td->td_gd == mygd) {
1293 	    _lwkt_enqueue(td);
1294 	    _lwkt_schedule_post(mygd, td, 1);
1295 	} else {
1296 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1297 	}
1298     }
1299     crit_exit_gd(mygd);
1300 }
1301 
1302 void
1303 lwkt_schedule(thread_t td)
1304 {
1305     _lwkt_schedule(td);
1306 }
1307 
1308 void
1309 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1310 {
1311     _lwkt_schedule(td);
1312 }
1313 
1314 /*
1315  * When scheduled remotely if frame != NULL the IPIQ is being
1316  * run via doreti or an interrupt then preemption can be allowed.
1317  *
1318  * To allow preemption we have to drop the critical section so only
1319  * one is present in _lwkt_schedule_post.
1320  */
1321 static void
1322 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1323 {
1324     thread_t td = curthread;
1325     thread_t ntd = arg;
1326 
1327     if (frame && ntd->td_preemptable) {
1328 	crit_exit_noyield(td);
1329 	_lwkt_schedule(ntd);
1330 	crit_enter_quick(td);
1331     } else {
1332 	_lwkt_schedule(ntd);
1333     }
1334 }
1335 
1336 /*
1337  * Thread migration using a 'Pull' method.  The thread may or may not be
1338  * the current thread.  It MUST be descheduled and in a stable state.
1339  * lwkt_giveaway() must be called on the cpu owning the thread.
1340  *
1341  * At any point after lwkt_giveaway() is called, the target cpu may
1342  * 'pull' the thread by calling lwkt_acquire().
1343  *
1344  * We have to make sure the thread is not sitting on a per-cpu tsleep
1345  * queue or it will blow up when it moves to another cpu.
1346  *
1347  * MPSAFE - must be called under very specific conditions.
1348  */
1349 void
1350 lwkt_giveaway(thread_t td)
1351 {
1352     globaldata_t gd = mycpu;
1353 
1354     crit_enter_gd(gd);
1355     if (td->td_flags & TDF_TSLEEPQ)
1356 	tsleep_remove(td);
1357     KKASSERT(td->td_gd == gd);
1358     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1359     td->td_flags |= TDF_MIGRATING;
1360     crit_exit_gd(gd);
1361 }
1362 
1363 void
1364 lwkt_acquire(thread_t td)
1365 {
1366     globaldata_t gd;
1367     globaldata_t mygd;
1368 
1369     KKASSERT(td->td_flags & TDF_MIGRATING);
1370     gd = td->td_gd;
1371     mygd = mycpu;
1372     if (gd != mycpu) {
1373 #ifdef LOOPMASK
1374 	uint64_t tsc_base = rdtsc();
1375 #endif
1376 	cpu_lfence();
1377 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1378 	crit_enter_gd(mygd);
1379 	DEBUG_PUSH_INFO("lwkt_acquire");
1380 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1381 	    lwkt_process_ipiq();
1382 	    cpu_lfence();
1383 #ifdef _KERNEL_VIRTUAL
1384 	    vkernel_yield();
1385 #endif
1386 #ifdef LOOPMASK
1387 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1388 		    kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1389 			    td, td->td_flags);
1390 		    tsc_base = rdtsc();
1391 	    }
1392 #endif
1393 	}
1394 	DEBUG_POP_INFO();
1395 	cpu_mfence();
1396 	td->td_gd = mygd;
1397 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1398 	td->td_flags &= ~TDF_MIGRATING;
1399 	crit_exit_gd(mygd);
1400     } else {
1401 	crit_enter_gd(mygd);
1402 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1403 	td->td_flags &= ~TDF_MIGRATING;
1404 	crit_exit_gd(mygd);
1405     }
1406 }
1407 
1408 /*
1409  * Generic deschedule.  Descheduling threads other then your own should be
1410  * done only in carefully controlled circumstances.  Descheduling is
1411  * asynchronous.
1412  *
1413  * This function may block if the cpu has run out of messages.
1414  */
1415 void
1416 lwkt_deschedule(thread_t td)
1417 {
1418     crit_enter();
1419     if (td == curthread) {
1420 	_lwkt_dequeue(td);
1421     } else {
1422 	if (td->td_gd == mycpu) {
1423 	    _lwkt_dequeue(td);
1424 	} else {
1425 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1426 	}
1427     }
1428     crit_exit();
1429 }
1430 
1431 /*
1432  * Set the target thread's priority.  This routine does not automatically
1433  * switch to a higher priority thread, LWKT threads are not designed for
1434  * continuous priority changes.  Yield if you want to switch.
1435  */
1436 void
1437 lwkt_setpri(thread_t td, int pri)
1438 {
1439     if (td->td_pri != pri) {
1440 	KKASSERT(pri >= 0);
1441 	crit_enter();
1442 	if (td->td_flags & TDF_RUNQ) {
1443 	    KKASSERT(td->td_gd == mycpu);
1444 	    _lwkt_dequeue(td);
1445 	    td->td_pri = pri;
1446 	    _lwkt_enqueue(td);
1447 	} else {
1448 	    td->td_pri = pri;
1449 	}
1450 	crit_exit();
1451     }
1452 }
1453 
1454 /*
1455  * Set the initial priority for a thread prior to it being scheduled for
1456  * the first time.  The thread MUST NOT be scheduled before or during
1457  * this call.  The thread may be assigned to a cpu other then the current
1458  * cpu.
1459  *
1460  * Typically used after a thread has been created with TDF_STOPPREQ,
1461  * and before the thread is initially scheduled.
1462  */
1463 void
1464 lwkt_setpri_initial(thread_t td, int pri)
1465 {
1466     KKASSERT(pri >= 0);
1467     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1468     td->td_pri = pri;
1469 }
1470 
1471 void
1472 lwkt_setpri_self(int pri)
1473 {
1474     thread_t td = curthread;
1475 
1476     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1477     crit_enter();
1478     if (td->td_flags & TDF_RUNQ) {
1479 	_lwkt_dequeue(td);
1480 	td->td_pri = pri;
1481 	_lwkt_enqueue(td);
1482     } else {
1483 	td->td_pri = pri;
1484     }
1485     crit_exit();
1486 }
1487 
1488 /*
1489  * hz tick scheduler clock for LWKT threads
1490  */
1491 void
1492 lwkt_schedulerclock(thread_t td)
1493 {
1494     globaldata_t gd = td->td_gd;
1495     thread_t xtd;
1496 
1497     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1498     if (xtd == td) {
1499 	/*
1500 	 * If the current thread is at the head of the runq shift it to the
1501 	 * end of any equal-priority threads and request a LWKT reschedule
1502 	 * if it moved.
1503 	 *
1504 	 * Ignore upri in this situation.  There will only be one user thread
1505 	 * in user mode, all others will be user threads running in kernel
1506 	 * mode and we have to make sure they get some cpu.
1507 	 */
1508 	xtd = TAILQ_NEXT(td, td_threadq);
1509 	if (xtd && xtd->td_pri == td->td_pri) {
1510 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1511 	    while (xtd && xtd->td_pri == td->td_pri)
1512 		xtd = TAILQ_NEXT(xtd, td_threadq);
1513 	    if (xtd)
1514 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1515 	    else
1516 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1517 	    need_lwkt_resched();
1518 	}
1519     } else if (xtd) {
1520 	/*
1521 	 * If we scheduled a thread other than the one at the head of the
1522 	 * queue always request a reschedule every tick.
1523 	 */
1524 	need_lwkt_resched();
1525     }
1526     /* else curthread probably the idle thread, no need to reschedule */
1527 }
1528 
1529 /*
1530  * Migrate the current thread to the specified cpu.
1531  *
1532  * This is accomplished by descheduling ourselves from the current cpu
1533  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1534  * 'old' thread wants to migrate after it has been completely switched out
1535  * and will complete the migration.
1536  *
1537  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1538  *
1539  * We must be sure to release our current process designation (if a user
1540  * process) before clearing out any tsleepq we are on because the release
1541  * code may re-add us.
1542  *
1543  * We must be sure to remove ourselves from the current cpu's tsleepq
1544  * before potentially moving to another queue.  The thread can be on
1545  * a tsleepq due to a left-over tsleep_interlock().
1546  */
1547 
1548 void
1549 lwkt_setcpu_self(globaldata_t rgd)
1550 {
1551     thread_t td = curthread;
1552 
1553     if (td->td_gd != rgd) {
1554 	crit_enter_quick(td);
1555 
1556 	if (td->td_release)
1557 	    td->td_release(td);
1558 	if (td->td_flags & TDF_TSLEEPQ)
1559 	    tsleep_remove(td);
1560 
1561 	/*
1562 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1563 	 * trying to deschedule ourselves and switch away, then deschedule
1564 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1565 	 * call lwkt_switch() to complete the operation.
1566 	 */
1567 	td->td_flags |= TDF_MIGRATING;
1568 	lwkt_deschedule_self(td);
1569 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1570 	td->td_migrate_gd = rgd;
1571 	lwkt_switch();
1572 
1573 	/*
1574 	 * We are now on the target cpu
1575 	 */
1576 	KKASSERT(rgd == mycpu);
1577 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1578 	crit_exit_quick(td);
1579     }
1580 }
1581 
1582 void
1583 lwkt_migratecpu(int cpuid)
1584 {
1585 	globaldata_t rgd;
1586 
1587 	rgd = globaldata_find(cpuid);
1588 	lwkt_setcpu_self(rgd);
1589 }
1590 
1591 /*
1592  * Remote IPI for cpu migration (called while in a critical section so we
1593  * do not have to enter another one).
1594  *
1595  * The thread (td) has already been completely descheduled from the
1596  * originating cpu and we can simply assert the case.  The thread is
1597  * assigned to the new cpu and enqueued.
1598  *
1599  * The thread will re-add itself to tdallq when it resumes execution.
1600  */
1601 static void
1602 lwkt_setcpu_remote(void *arg)
1603 {
1604     thread_t td = arg;
1605     globaldata_t gd = mycpu;
1606 
1607     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1608     td->td_gd = gd;
1609     cpu_mfence();
1610     td->td_flags &= ~TDF_MIGRATING;
1611     KKASSERT(td->td_migrate_gd == NULL);
1612     KKASSERT(td->td_lwp == NULL ||
1613 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1614     _lwkt_enqueue(td);
1615 }
1616 
1617 struct lwp *
1618 lwkt_preempted_proc(void)
1619 {
1620     thread_t td = curthread;
1621     while (td->td_preempted)
1622 	td = td->td_preempted;
1623     return(td->td_lwp);
1624 }
1625 
1626 /*
1627  * Create a kernel process/thread/whatever.  It shares it's address space
1628  * with proc0 - ie: kernel only.
1629  *
1630  * If the cpu is not specified one will be selected.  In the future
1631  * specifying a cpu of -1 will enable kernel thread migration between
1632  * cpus.
1633  */
1634 int
1635 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1636 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1637 {
1638     thread_t td;
1639     __va_list ap;
1640 
1641     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1642 			   tdflags);
1643     if (tdp)
1644 	*tdp = td;
1645     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1646 
1647     /*
1648      * Set up arg0 for 'ps' etc
1649      */
1650     __va_start(ap, fmt);
1651     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1652     __va_end(ap);
1653 
1654     /*
1655      * Schedule the thread to run
1656      */
1657     if (td->td_flags & TDF_NOSTART)
1658 	td->td_flags &= ~TDF_NOSTART;
1659     else
1660 	lwkt_schedule(td);
1661     return 0;
1662 }
1663 
1664 /*
1665  * Destroy an LWKT thread.   Warning!  This function is not called when
1666  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1667  * uses a different reaping mechanism.
1668  */
1669 void
1670 lwkt_exit(void)
1671 {
1672     thread_t td = curthread;
1673     thread_t std;
1674     globaldata_t gd;
1675 
1676     /*
1677      * Do any cleanup that might block here
1678      */
1679     biosched_done(td);
1680     dsched_exit_thread(td);
1681 
1682     /*
1683      * Get us into a critical section to interlock gd_freetd and loop
1684      * until we can get it freed.
1685      *
1686      * We have to cache the current td in gd_freetd because objcache_put()ing
1687      * it would rip it out from under us while our thread is still active.
1688      *
1689      * We are the current thread so of course our own TDF_RUNNING bit will
1690      * be set, so unlike the lwp reap code we don't wait for it to clear.
1691      */
1692     gd = mycpu;
1693     crit_enter_quick(td);
1694     for (;;) {
1695 	if (td->td_refs) {
1696 	    tsleep(td, 0, "tdreap", 1);
1697 	    continue;
1698 	}
1699 	if ((std = gd->gd_freetd) != NULL) {
1700 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1701 	    gd->gd_freetd = NULL;
1702 	    objcache_put(thread_cache, std);
1703 	    continue;
1704 	}
1705 	break;
1706     }
1707 
1708     /*
1709      * Remove thread resources from kernel lists and deschedule us for
1710      * the last time.  We cannot block after this point or we may end
1711      * up with a stale td on the tsleepq.
1712      *
1713      * None of this may block, the critical section is the only thing
1714      * protecting tdallq and the only thing preventing new lwkt_hold()
1715      * thread refs now.
1716      */
1717     if (td->td_flags & TDF_TSLEEPQ)
1718 	tsleep_remove(td);
1719     lwkt_deschedule_self(td);
1720     lwkt_remove_tdallq(td);
1721     KKASSERT(td->td_refs == 0);
1722 
1723     /*
1724      * Final cleanup
1725      */
1726     KKASSERT(gd->gd_freetd == NULL);
1727     if (td->td_flags & TDF_ALLOCATED_THREAD)
1728 	gd->gd_freetd = td;
1729     cpu_thread_exit();
1730 }
1731 
1732 void
1733 lwkt_remove_tdallq(thread_t td)
1734 {
1735     KKASSERT(td->td_gd == mycpu);
1736     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1737 }
1738 
1739 /*
1740  * Code reduction and branch prediction improvements.  Call/return
1741  * overhead on modern cpus often degenerates into 0 cycles due to
1742  * the cpu's branch prediction hardware and return pc cache.  We
1743  * can take advantage of this by not inlining medium-complexity
1744  * functions and we can also reduce the branch prediction impact
1745  * by collapsing perfectly predictable branches into a single
1746  * procedure instead of duplicating it.
1747  *
1748  * Is any of this noticeable?  Probably not, so I'll take the
1749  * smaller code size.
1750  */
1751 void
1752 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1753 {
1754     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1755 }
1756 
1757 void
1758 crit_panic(void)
1759 {
1760     thread_t td = curthread;
1761     int lcrit = td->td_critcount;
1762 
1763     td->td_critcount = 0;
1764     cpu_ccfence();
1765     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1766     /* NOT REACHED */
1767 }
1768 
1769 /*
1770  * Called from debugger/panic on cpus which have been stopped.  We must still
1771  * process the IPIQ while stopped.
1772  *
1773  * If we are dumping also try to process any pending interrupts.  This may
1774  * or may not work depending on the state of the cpu at the point it was
1775  * stopped.
1776  */
1777 void
1778 lwkt_smp_stopped(void)
1779 {
1780     globaldata_t gd = mycpu;
1781 
1782     if (dumping) {
1783 	lwkt_process_ipiq();
1784 	--gd->gd_intr_nesting_level;
1785 	splz();
1786 	++gd->gd_intr_nesting_level;
1787     } else {
1788 	lwkt_process_ipiq();
1789     }
1790     cpu_smp_stopped();
1791 }
1792