xref: /dragonfly/sys/kern/lwkt_thread.c (revision 81c11cd3)
1 /*
2  * Copyright (c) 2003-2010 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/caps.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
56 
57 #include <sys/thread2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/mplock2.h>
60 
61 #include <sys/dsched.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71 
72 #include <machine/stdarg.h>
73 #include <machine/smp.h>
74 
75 #if !defined(KTR_CTXSW)
76 #define KTR_CTXSW KTR_ALL
77 #endif
78 KTR_INFO_MASTER(ctxsw);
79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p",
80 	 sizeof(int) + sizeof(struct thread *));
81 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p",
82 	 sizeof(int) + sizeof(struct thread *));
83 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s",
84 	 sizeof (struct thread *) + sizeof(char *));
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *));
86 
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88 
89 #ifdef	INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static __int64_t switch_count = 0;
93 static __int64_t preempt_hit = 0;
94 static __int64_t preempt_miss = 0;
95 static __int64_t preempt_weird = 0;
96 static __int64_t token_contention_count __debugvar = 0;
97 static int lwkt_use_spin_port;
98 static struct objcache *thread_cache;
99 
100 #ifdef SMP
101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
102 #endif
103 static void lwkt_fairq_accumulate(globaldata_t gd, thread_t td);
104 
105 extern void cpu_heavy_restore(void);
106 extern void cpu_lwkt_restore(void);
107 extern void cpu_kthread_restore(void);
108 extern void cpu_idle_restore(void);
109 
110 /*
111  * We can make all thread ports use the spin backend instead of the thread
112  * backend.  This should only be set to debug the spin backend.
113  */
114 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
115 
116 #ifdef	INVARIANTS
117 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
118     "Panic if attempting to switch lwkt's while mastering cpusync");
119 #endif
120 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
121     "Number of switched threads");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
123     "Successful preemption events");
124 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
125     "Failed preemption events");
126 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
127     "Number of preempted threads.");
128 #ifdef	INVARIANTS
129 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
130 	&token_contention_count, 0, "spinning due to token contention");
131 #endif
132 static int fairq_enable = 1;
133 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
134 	&fairq_enable, 0, "Turn on fairq priority accumulators");
135 static int lwkt_spin_loops = 10;
136 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
137 	&lwkt_spin_loops, 0, "");
138 static int lwkt_spin_delay = 1;
139 SYSCTL_INT(_lwkt, OID_AUTO, spin_delay, CTLFLAG_RW,
140 	&lwkt_spin_delay, 0, "Scheduler spin delay in microseconds 0=auto");
141 static int lwkt_spin_method = 1;
142 SYSCTL_INT(_lwkt, OID_AUTO, spin_method, CTLFLAG_RW,
143 	&lwkt_spin_method, 0, "LWKT scheduler behavior when contended");
144 static int lwkt_spin_fatal = 0;	/* disabled */
145 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
146 	&lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
147 static int preempt_enable = 1;
148 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
149 	&preempt_enable, 0, "Enable preemption");
150 
151 static __cachealign int lwkt_cseq_rindex;
152 static __cachealign int lwkt_cseq_windex;
153 
154 /*
155  * These helper procedures handle the runq, they can only be called from
156  * within a critical section.
157  *
158  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
159  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
160  * instead of 'mycpu' when referencing the globaldata structure.   Once
161  * SMP live enqueuing and dequeueing only occurs on the current cpu.
162  */
163 static __inline
164 void
165 _lwkt_dequeue(thread_t td)
166 {
167     if (td->td_flags & TDF_RUNQ) {
168 	struct globaldata *gd = td->td_gd;
169 
170 	td->td_flags &= ~TDF_RUNQ;
171 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
172 	gd->gd_fairq_total_pri -= td->td_pri;
173 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
174 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
175     }
176 }
177 
178 /*
179  * Priority enqueue.
180  *
181  * NOTE: There are a limited number of lwkt threads runnable since user
182  *	 processes only schedule one at a time per cpu.
183  */
184 static __inline
185 void
186 _lwkt_enqueue(thread_t td)
187 {
188     thread_t xtd;
189 
190     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
191 	struct globaldata *gd = td->td_gd;
192 
193 	td->td_flags |= TDF_RUNQ;
194 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
195 	if (xtd == NULL) {
196 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
197 		atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
198 	} else {
199 		while (xtd && xtd->td_pri > td->td_pri)
200 			xtd = TAILQ_NEXT(xtd, td_threadq);
201 		if (xtd)
202 			TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
203 		else
204 			TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
205 	}
206 	gd->gd_fairq_total_pri += td->td_pri;
207     }
208 }
209 
210 static __boolean_t
211 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
212 {
213 	struct thread *td = (struct thread *)obj;
214 
215 	td->td_kstack = NULL;
216 	td->td_kstack_size = 0;
217 	td->td_flags = TDF_ALLOCATED_THREAD;
218 	return (1);
219 }
220 
221 static void
222 _lwkt_thread_dtor(void *obj, void *privdata)
223 {
224 	struct thread *td = (struct thread *)obj;
225 
226 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
227 	    ("_lwkt_thread_dtor: not allocated from objcache"));
228 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
229 		td->td_kstack_size > 0,
230 	    ("_lwkt_thread_dtor: corrupted stack"));
231 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
232 }
233 
234 /*
235  * Initialize the lwkt s/system.
236  */
237 void
238 lwkt_init(void)
239 {
240     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
241     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
242 			NULL, CACHE_NTHREADS/2,
243 			_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
244 }
245 
246 /*
247  * Schedule a thread to run.  As the current thread we can always safely
248  * schedule ourselves, and a shortcut procedure is provided for that
249  * function.
250  *
251  * (non-blocking, self contained on a per cpu basis)
252  */
253 void
254 lwkt_schedule_self(thread_t td)
255 {
256     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
257     crit_enter_quick(td);
258     KASSERT(td != &td->td_gd->gd_idlethread,
259 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
260     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
261     _lwkt_enqueue(td);
262     crit_exit_quick(td);
263 }
264 
265 /*
266  * Deschedule a thread.
267  *
268  * (non-blocking, self contained on a per cpu basis)
269  */
270 void
271 lwkt_deschedule_self(thread_t td)
272 {
273     crit_enter_quick(td);
274     _lwkt_dequeue(td);
275     crit_exit_quick(td);
276 }
277 
278 /*
279  * LWKTs operate on a per-cpu basis
280  *
281  * WARNING!  Called from early boot, 'mycpu' may not work yet.
282  */
283 void
284 lwkt_gdinit(struct globaldata *gd)
285 {
286     TAILQ_INIT(&gd->gd_tdrunq);
287     TAILQ_INIT(&gd->gd_tdallq);
288 }
289 
290 /*
291  * Create a new thread.  The thread must be associated with a process context
292  * or LWKT start address before it can be scheduled.  If the target cpu is
293  * -1 the thread will be created on the current cpu.
294  *
295  * If you intend to create a thread without a process context this function
296  * does everything except load the startup and switcher function.
297  */
298 thread_t
299 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
300 {
301     globaldata_t gd = mycpu;
302     void *stack;
303 
304     /*
305      * If static thread storage is not supplied allocate a thread.  Reuse
306      * a cached free thread if possible.  gd_freetd is used to keep an exiting
307      * thread intact through the exit.
308      */
309     if (td == NULL) {
310 	crit_enter_gd(gd);
311 	if ((td = gd->gd_freetd) != NULL) {
312 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
313 				      TDF_RUNQ)) == 0);
314 	    gd->gd_freetd = NULL;
315 	} else {
316 	    td = objcache_get(thread_cache, M_WAITOK);
317 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
318 				      TDF_RUNQ)) == 0);
319 	}
320 	crit_exit_gd(gd);
321     	KASSERT((td->td_flags &
322 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
323 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
324     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
325     }
326 
327     /*
328      * Try to reuse cached stack.
329      */
330     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
331 	if (flags & TDF_ALLOCATED_STACK) {
332 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
333 	    stack = NULL;
334 	}
335     }
336     if (stack == NULL) {
337 	stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
338 	flags |= TDF_ALLOCATED_STACK;
339     }
340     if (cpu < 0)
341 	lwkt_init_thread(td, stack, stksize, flags, gd);
342     else
343 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
344     return(td);
345 }
346 
347 /*
348  * Initialize a preexisting thread structure.  This function is used by
349  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
350  *
351  * All threads start out in a critical section at a priority of
352  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
353  * appropriate.  This function may send an IPI message when the
354  * requested cpu is not the current cpu and consequently gd_tdallq may
355  * not be initialized synchronously from the point of view of the originating
356  * cpu.
357  *
358  * NOTE! we have to be careful in regards to creating threads for other cpus
359  * if SMP has not yet been activated.
360  */
361 #ifdef SMP
362 
363 static void
364 lwkt_init_thread_remote(void *arg)
365 {
366     thread_t td = arg;
367 
368     /*
369      * Protected by critical section held by IPI dispatch
370      */
371     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
372 }
373 
374 #endif
375 
376 /*
377  * lwkt core thread structural initialization.
378  *
379  * NOTE: All threads are initialized as mpsafe threads.
380  */
381 void
382 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
383 		struct globaldata *gd)
384 {
385     globaldata_t mygd = mycpu;
386 
387     bzero(td, sizeof(struct thread));
388     td->td_kstack = stack;
389     td->td_kstack_size = stksize;
390     td->td_flags = flags;
391     td->td_gd = gd;
392     td->td_pri = TDPRI_KERN_DAEMON;
393     td->td_critcount = 1;
394     td->td_toks_stop = &td->td_toks_base;
395     if (lwkt_use_spin_port)
396 	lwkt_initport_spin(&td->td_msgport);
397     else
398 	lwkt_initport_thread(&td->td_msgport, td);
399     pmap_init_thread(td);
400 #ifdef SMP
401     /*
402      * Normally initializing a thread for a remote cpu requires sending an
403      * IPI.  However, the idlethread is setup before the other cpus are
404      * activated so we have to treat it as a special case.  XXX manipulation
405      * of gd_tdallq requires the BGL.
406      */
407     if (gd == mygd || td == &gd->gd_idlethread) {
408 	crit_enter_gd(mygd);
409 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
410 	crit_exit_gd(mygd);
411     } else {
412 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
413     }
414 #else
415     crit_enter_gd(mygd);
416     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
417     crit_exit_gd(mygd);
418 #endif
419 
420     dsched_new_thread(td);
421 }
422 
423 void
424 lwkt_set_comm(thread_t td, const char *ctl, ...)
425 {
426     __va_list va;
427 
428     __va_start(va, ctl);
429     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
430     __va_end(va);
431     KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
432 }
433 
434 void
435 lwkt_hold(thread_t td)
436 {
437     atomic_add_int(&td->td_refs, 1);
438 }
439 
440 void
441 lwkt_rele(thread_t td)
442 {
443     KKASSERT(td->td_refs > 0);
444     atomic_add_int(&td->td_refs, -1);
445 }
446 
447 void
448 lwkt_wait_free(thread_t td)
449 {
450     while (td->td_refs)
451 	tsleep(td, 0, "tdreap", hz);
452 }
453 
454 void
455 lwkt_free_thread(thread_t td)
456 {
457     KKASSERT(td->td_refs == 0);
458     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_RUNQ)) == 0);
459     if (td->td_flags & TDF_ALLOCATED_THREAD) {
460     	objcache_put(thread_cache, td);
461     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
462 	/* client-allocated struct with internally allocated stack */
463 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
464 	    ("lwkt_free_thread: corrupted stack"));
465 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
466 	td->td_kstack = NULL;
467 	td->td_kstack_size = 0;
468     }
469     KTR_LOG(ctxsw_deadtd, td);
470 }
471 
472 
473 /*
474  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
475  * switch to the idlethread.  Switching must occur within a critical
476  * section to avoid races with the scheduling queue.
477  *
478  * We always have full control over our cpu's run queue.  Other cpus
479  * that wish to manipulate our queue must use the cpu_*msg() calls to
480  * talk to our cpu, so a critical section is all that is needed and
481  * the result is very, very fast thread switching.
482  *
483  * The LWKT scheduler uses a fixed priority model and round-robins at
484  * each priority level.  User process scheduling is a totally
485  * different beast and LWKT priorities should not be confused with
486  * user process priorities.
487  *
488  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
489  * is not called by the current thread in the preemption case, only when
490  * the preempting thread blocks (in order to return to the original thread).
491  *
492  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
493  * migration and tsleep deschedule the current lwkt thread and call
494  * lwkt_switch().  In particular, the target cpu of the migration fully
495  * expects the thread to become non-runnable and can deadlock against
496  * cpusync operations if we run any IPIs prior to switching the thread out.
497  *
498  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
499  * THE CURRENET THREAD HAS BEEN DESCHEDULED!
500  */
501 void
502 lwkt_switch(void)
503 {
504     globaldata_t gd = mycpu;
505     thread_t td = gd->gd_curthread;
506     thread_t ntd;
507     thread_t xtd;
508     int spinning = lwkt_spin_loops;	/* loops before HLTing */
509     int reqflags;
510     int cseq;
511     int oseq;
512     int fatal_count;
513 
514     /*
515      * Switching from within a 'fast' (non thread switched) interrupt or IPI
516      * is illegal.  However, we may have to do it anyway if we hit a fatal
517      * kernel trap or we have paniced.
518      *
519      * If this case occurs save and restore the interrupt nesting level.
520      */
521     if (gd->gd_intr_nesting_level) {
522 	int savegdnest;
523 	int savegdtrap;
524 
525 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
526 	    panic("lwkt_switch: Attempt to switch from a "
527 		  "a fast interrupt, ipi, or hard code section, "
528 		  "td %p\n",
529 		  td);
530 	} else {
531 	    savegdnest = gd->gd_intr_nesting_level;
532 	    savegdtrap = gd->gd_trap_nesting_level;
533 	    gd->gd_intr_nesting_level = 0;
534 	    gd->gd_trap_nesting_level = 0;
535 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
536 		td->td_flags |= TDF_PANICWARN;
537 		kprintf("Warning: thread switch from interrupt, IPI, "
538 			"or hard code section.\n"
539 			"thread %p (%s)\n", td, td->td_comm);
540 		print_backtrace(-1);
541 	    }
542 	    lwkt_switch();
543 	    gd->gd_intr_nesting_level = savegdnest;
544 	    gd->gd_trap_nesting_level = savegdtrap;
545 	    return;
546 	}
547     }
548 
549     /*
550      * Passive release (used to transition from user to kernel mode
551      * when we block or switch rather then when we enter the kernel).
552      * This function is NOT called if we are switching into a preemption
553      * or returning from a preemption.  Typically this causes us to lose
554      * our current process designation (if we have one) and become a true
555      * LWKT thread, and may also hand the current process designation to
556      * another process and schedule thread.
557      */
558     if (td->td_release)
559 	    td->td_release(td);
560 
561     crit_enter_gd(gd);
562     if (TD_TOKS_HELD(td))
563 	    lwkt_relalltokens(td);
564 
565     /*
566      * We had better not be holding any spin locks, but don't get into an
567      * endless panic loop.
568      */
569     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
570 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
571 	     gd->gd_spinlocks_wr));
572 
573 
574 #ifdef SMP
575 #ifdef	INVARIANTS
576     if (td->td_cscount) {
577 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
578 		td);
579 	if (panic_on_cscount)
580 	    panic("switching while mastering cpusync");
581     }
582 #endif
583 #endif
584 
585     /*
586      * If we had preempted another thread on this cpu, resume the preempted
587      * thread.  This occurs transparently, whether the preempted thread
588      * was scheduled or not (it may have been preempted after descheduling
589      * itself).
590      *
591      * We have to setup the MP lock for the original thread after backing
592      * out the adjustment that was made to curthread when the original
593      * was preempted.
594      */
595     if ((ntd = td->td_preempted) != NULL) {
596 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
597 	ntd->td_flags |= TDF_PREEMPT_DONE;
598 
599 	/*
600 	 * The interrupt may have woken a thread up, we need to properly
601 	 * set the reschedule flag if the originally interrupted thread is
602 	 * at a lower priority.
603 	 */
604 	if (TAILQ_FIRST(&gd->gd_tdrunq) &&
605 	    TAILQ_FIRST(&gd->gd_tdrunq)->td_pri > ntd->td_pri) {
606 	    need_lwkt_resched();
607 	}
608 	/* YYY release mp lock on switchback if original doesn't need it */
609 	goto havethread_preempted;
610     }
611 
612     /*
613      * Implement round-robin fairq with priority insertion.  The priority
614      * insertion is handled by _lwkt_enqueue()
615      *
616      * If we cannot obtain ownership of the tokens we cannot immediately
617      * schedule the target thread.
618      *
619      * Reminder: Again, we cannot afford to run any IPIs in this path if
620      * the current thread has been descheduled.
621      */
622     for (;;) {
623 	/*
624 	 * Clear RQF_AST_LWKT_RESCHED (we handle the reschedule request)
625 	 * and set RQF_WAKEUP (prevent unnecessary IPIs from being
626 	 * received).
627 	 */
628 	for (;;) {
629 	    reqflags = gd->gd_reqflags;
630 	    if (atomic_cmpset_int(&gd->gd_reqflags, reqflags,
631 				  (reqflags & ~RQF_AST_LWKT_RESCHED) |
632 				  RQF_WAKEUP)) {
633 		break;
634 	    }
635 	}
636 
637 	/*
638 	 * Hotpath - pull the head of the run queue and attempt to schedule
639 	 * it.  Fairq exhaustion moves the task to the end of the list.  If
640 	 * no threads are runnable we switch to the idle thread.
641 	 */
642 	for (;;) {
643 	    ntd = TAILQ_FIRST(&gd->gd_tdrunq);
644 
645 	    if (ntd == NULL) {
646 		/*
647 		 * Runq is empty, switch to idle and clear RQF_WAKEUP
648 		 * to allow it to halt.
649 		 */
650 		ntd = &gd->gd_idlethread;
651 #ifdef SMP
652 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
653 		    ASSERT_NO_TOKENS_HELD(ntd);
654 #endif
655 		cpu_time.cp_msg[0] = 0;
656 		cpu_time.cp_stallpc = 0;
657 		atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP);
658 		goto haveidle;
659 	    }
660 
661 	    if (ntd->td_fairq_accum >= 0)
662 		    break;
663 
664 	    /*splz_check(); cannot do this here, see above */
665 	    lwkt_fairq_accumulate(gd, ntd);
666 	    TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
667 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, ntd, td_threadq);
668 	}
669 
670 	/*
671 	 * Hotpath - schedule ntd.  Leaves RQF_WAKEUP set to prevent
672 	 *	     unwanted decontention IPIs.
673 	 *
674 	 * NOTE: For UP there is no mplock and lwkt_getalltokens()
675 	 *	     always succeeds.
676 	 */
677 	if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd))
678 	    goto havethread;
679 
680 	/*
681 	 * Coldpath (SMP only since tokens always succeed on UP)
682 	 *
683 	 * We had some contention on the thread we wanted to schedule.
684 	 * What we do now is try to find a thread that we can schedule
685 	 * in its stead until decontention reschedules on our cpu.
686 	 *
687 	 * The coldpath scan does NOT rearrange threads in the run list
688 	 * and it also ignores the accumulator.
689 	 *
690 	 * We do not immediately schedule a user priority thread, instead
691 	 * we record it in xtd and continue looking for kernel threads.
692 	 * A cpu can only have one user priority thread (normally) so just
693 	 * record the first one.
694 	 *
695 	 * NOTE: This scan will also include threads whos fairq's were
696 	 *	 accumulated in the first loop.
697 	 */
698 	++token_contention_count;
699 	xtd = NULL;
700 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
701 	    /*
702 	     * Try to switch to this thread.  If the thread is running at
703 	     * user priority we clear WAKEUP to allow decontention IPIs
704 	     * (since this thread is simply running until the one we wanted
705 	     * decontends), and we make sure that LWKT_RESCHED is not set.
706 	     *
707 	     * Otherwise for kernel threads we leave WAKEUP set to avoid
708 	     * unnecessary decontention IPIs.
709 	     */
710 	    if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
711 		if (xtd == NULL)
712 		    xtd = ntd;
713 		continue;
714 	    }
715 
716 	    /*
717 	     * Do not let the fairq get too negative.  Even though we are
718 	     * ignoring it atm once the scheduler decontends a very negative
719 	     * thread will get moved to the end of the queue.
720 	     */
721 	    if (TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd)) {
722 		if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd))
723 		    ntd->td_fairq_accum = -TDFAIRQ_MAX(gd);
724 		goto havethread;
725 	    }
726 
727 	    /*
728 	     * Well fubar, this thread is contended as well, loop
729 	     */
730 	    /* */
731 	}
732 
733 	/*
734 	 * We exhausted the run list but we may have recorded a user
735 	 * thread to try.  We have three choices based on
736 	 * lwkt.decontention_method.
737 	 *
738 	 * (0) Atomically clear RQF_WAKEUP in order to receive decontention
739 	 *     IPIs (to interrupt the user process) and test
740 	 *     RQF_AST_LWKT_RESCHED at the same time.
741 	 *
742 	 *     This results in significant decontention IPI traffic but may
743 	 *     be more responsive.
744 	 *
745 	 * (1) Leave RQF_WAKEUP set so we do not receive a decontention IPI.
746 	 *     An automatic LWKT reschedule will occur on the next hardclock
747 	 *     (typically 100hz).
748 	 *
749 	 *     This results in no decontention IPI traffic but may be less
750 	 *     responsive.  This is the default.
751 	 *
752 	 * (2) Refuse to schedule the user process at this time.
753 	 *
754 	 *     This is highly experimental and should not be used under
755 	 *     normal circumstances.  This can cause a user process to
756 	 *     get starved out in situations where kernel threads are
757 	 *     fighting each other for tokens.
758 	 */
759 	if (xtd) {
760 	    ntd = xtd;
761 
762 	    switch(lwkt_spin_method) {
763 	    case 0:
764 		for (;;) {
765 		    reqflags = gd->gd_reqflags;
766 		    if (atomic_cmpset_int(&gd->gd_reqflags,
767 					  reqflags,
768 					  reqflags & ~RQF_WAKEUP)) {
769 			break;
770 		    }
771 		}
772 		break;
773 	    case 1:
774 		reqflags = gd->gd_reqflags;
775 		break;
776 	    default:
777 		goto skip;
778 		break;
779 	    }
780 	    if ((reqflags & RQF_AST_LWKT_RESCHED) == 0 &&
781 		(TD_TOKS_NOT_HELD(ntd) || lwkt_getalltokens(ntd))
782 	    ) {
783 		if (ntd->td_fairq_accum < -TDFAIRQ_MAX(gd))
784 		    ntd->td_fairq_accum = -TDFAIRQ_MAX(gd);
785 		goto havethread;
786 	    }
787 
788 skip:
789 	    /*
790 	     * Make sure RQF_WAKEUP is set if we failed to schedule the
791 	     * user thread to prevent the idle thread from halting.
792 	     */
793 	    atomic_set_int(&gd->gd_reqflags, RQF_WAKEUP);
794 	}
795 
796 	/*
797 	 * We exhausted the run list, meaning that all runnable threads
798 	 * are contended.
799 	 */
800 	cpu_pause();
801 	ntd = &gd->gd_idlethread;
802 #ifdef SMP
803 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
804 	    ASSERT_NO_TOKENS_HELD(ntd);
805 	/* contention case, do not clear contention mask */
806 #endif
807 
808 	/*
809 	 * Ok, we might want to spin a few times as some tokens are held for
810 	 * very short periods of time and IPI overhead is 1uS or worse
811 	 * (meaning it is usually better to spin).  Regardless we have to
812 	 * call splz_check() to be sure to service any interrupts blocked
813 	 * by our critical section, otherwise we could livelock e.g. IPIs.
814 	 *
815 	 * The IPI mechanic is really a last resort.  In nearly all other
816 	 * cases RQF_WAKEUP is left set to prevent decontention IPIs.
817 	 *
818 	 * When we decide not to spin we clear RQF_WAKEUP and switch to
819 	 * the idle thread.  Clearing RQF_WEAKEUP allows the idle thread
820 	 * to halt and decontended tokens will issue an IPI to us.  The
821 	 * idle thread will check for pending reschedules already set
822 	 * (RQF_AST_LWKT_RESCHED) before actually halting so we don't have
823 	 * to here.
824 	 *
825 	 * Also, if TDF_RUNQ is not set the current thread is trying to
826 	 * deschedule, possibly in an atomic fashion.  We cannot afford to
827 	 * stay here.
828 	 */
829 	if (spinning <= 0 || (td->td_flags & TDF_RUNQ) == 0) {
830 	    atomic_clear_int(&gd->gd_reqflags, RQF_WAKEUP);
831 	    goto haveidle;
832 	}
833 	--spinning;
834 
835 	/*
836 	 * When spinning a delay is required both to avoid livelocks from
837 	 * token order reversals (a thread may be trying to acquire multiple
838 	 * tokens), and also to reduce cpu cache management traffic.
839 	 *
840 	 * In order to scale to a large number of CPUs we use a time slot
841 	 * resequencer to force contending cpus into non-contending
842 	 * time-slots.  The scheduler may still contend with the lock holder
843 	 * but will not (generally) contend with all the other cpus trying
844 	 * trying to get the same token.
845 	 *
846 	 * The resequencer uses a FIFO counter mechanic.  The owner of the
847 	 * rindex at the head of the FIFO is allowed to pull itself off
848 	 * the FIFO and fetchadd is used to enter into the FIFO.  This bit
849 	 * of code is VERY cache friendly and forces all spinning schedulers
850 	 * into their own time slots.
851 	 *
852 	 * This code has been tested to 48-cpus and caps the cache
853 	 * contention load at ~1uS intervals regardless of the number of
854 	 * cpus.  Scaling beyond 64 cpus might require additional smarts
855 	 * (such as separate FIFOs for specific token cases).
856 	 *
857 	 * WARNING!  We can't call splz_check() or anything else here as
858 	 *	     it could cause a deadlock.
859 	 */
860 #ifdef __amd64__
861 	if ((read_rflags() & PSL_I) == 0) {
862 		cpu_enable_intr();
863 		panic("lwkt_switch() called with interrupts disabled");
864 	}
865 #endif
866 	cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
867 	fatal_count = lwkt_spin_fatal;
868 	while ((oseq = lwkt_cseq_rindex) != cseq) {
869 	    cpu_ccfence();
870 #if !defined(_KERNEL_VIRTUAL)
871 	    if (cpu_mi_feature & CPU_MI_MONITOR) {
872 		cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq);
873 	    } else
874 #endif
875 	    {
876 		DELAY(1);
877 		cpu_lfence();
878 	    }
879 	    if (fatal_count && --fatal_count == 0)
880 		panic("lwkt_switch: fatal spin wait");
881 	}
882 	cseq = lwkt_spin_delay;	/* don't trust the system operator */
883 	cpu_ccfence();
884 	if (cseq < 1)
885 	    cseq = 1;
886 	if (cseq > 1000)
887 	    cseq = 1000;
888 	DELAY(cseq);
889 	atomic_add_int(&lwkt_cseq_rindex, 1);
890 	splz_check();	/* ok, we already checked that td is still scheduled */
891 	/* highest level for(;;) loop */
892     }
893 
894 havethread:
895     /*
896      * We must always decrement td_fairq_accum on non-idle threads just
897      * in case a thread never gets a tick due to being in a continuous
898      * critical section.  The page-zeroing code does this, for example.
899      *
900      * If the thread we came up with is a higher or equal priority verses
901      * the thread at the head of the queue we move our thread to the
902      * front.  This way we can always check the front of the queue.
903      *
904      * Clear gd_idle_repeat when doing a normal switch to a non-idle
905      * thread.
906      */
907     ++gd->gd_cnt.v_swtch;
908     --ntd->td_fairq_accum;
909     ntd->td_wmesg = NULL;
910     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
911     if (ntd != xtd && ntd->td_pri >= xtd->td_pri) {
912 	TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
913 	TAILQ_INSERT_HEAD(&gd->gd_tdrunq, ntd, td_threadq);
914     }
915     gd->gd_idle_repeat = 0;
916 
917 havethread_preempted:
918     /*
919      * If the new target does not need the MP lock and we are holding it,
920      * release the MP lock.  If the new target requires the MP lock we have
921      * already acquired it for the target.
922      */
923     ;
924 haveidle:
925     KASSERT(ntd->td_critcount,
926 	    ("priority problem in lwkt_switch %d %d",
927 	    td->td_critcount, ntd->td_critcount));
928 
929     if (td != ntd) {
930 	++switch_count;
931 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
932 	td->td_switch(ntd);
933     }
934     /* NOTE: current cpu may have changed after switch */
935     crit_exit_quick(td);
936 }
937 
938 /*
939  * Request that the target thread preempt the current thread.  Preemption
940  * only works under a specific set of conditions:
941  *
942  *	- We are not preempting ourselves
943  *	- The target thread is owned by the current cpu
944  *	- We are not currently being preempted
945  *	- The target is not currently being preempted
946  *	- We are not holding any spin locks
947  *	- The target thread is not holding any tokens
948  *	- We are able to satisfy the target's MP lock requirements (if any).
949  *
950  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
951  * this is called via lwkt_schedule() through the td_preemptable callback.
952  * critcount is the managed critical priority that we should ignore in order
953  * to determine whether preemption is possible (aka usually just the crit
954  * priority of lwkt_schedule() itself).
955  *
956  * XXX at the moment we run the target thread in a critical section during
957  * the preemption in order to prevent the target from taking interrupts
958  * that *WE* can't.  Preemption is strictly limited to interrupt threads
959  * and interrupt-like threads, outside of a critical section, and the
960  * preempted source thread will be resumed the instant the target blocks
961  * whether or not the source is scheduled (i.e. preemption is supposed to
962  * be as transparent as possible).
963  */
964 void
965 lwkt_preempt(thread_t ntd, int critcount)
966 {
967     struct globaldata *gd = mycpu;
968     thread_t td;
969     int save_gd_intr_nesting_level;
970 
971     /*
972      * The caller has put us in a critical section.  We can only preempt
973      * if the caller of the caller was not in a critical section (basically
974      * a local interrupt), as determined by the 'critcount' parameter.  We
975      * also can't preempt if the caller is holding any spinlocks (even if
976      * he isn't in a critical section).  This also handles the tokens test.
977      *
978      * YYY The target thread must be in a critical section (else it must
979      * inherit our critical section?  I dunno yet).
980      *
981      * Set need_lwkt_resched() unconditionally for now YYY.
982      */
983     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
984 
985     if (preempt_enable == 0) {
986 	++preempt_miss;
987 	return;
988     }
989 
990     td = gd->gd_curthread;
991     if (ntd->td_pri <= td->td_pri) {
992 	++preempt_miss;
993 	return;
994     }
995     if (td->td_critcount > critcount) {
996 	++preempt_miss;
997 	need_lwkt_resched();
998 	return;
999     }
1000 #ifdef SMP
1001     if (ntd->td_gd != gd) {
1002 	++preempt_miss;
1003 	need_lwkt_resched();
1004 	return;
1005     }
1006 #endif
1007     /*
1008      * We don't have to check spinlocks here as they will also bump
1009      * td_critcount.
1010      *
1011      * Do not try to preempt if the target thread is holding any tokens.
1012      * We could try to acquire the tokens but this case is so rare there
1013      * is no need to support it.
1014      */
1015     KKASSERT(gd->gd_spinlocks_wr == 0);
1016 
1017     if (TD_TOKS_HELD(ntd)) {
1018 	++preempt_miss;
1019 	need_lwkt_resched();
1020 	return;
1021     }
1022     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1023 	++preempt_weird;
1024 	need_lwkt_resched();
1025 	return;
1026     }
1027     if (ntd->td_preempted) {
1028 	++preempt_hit;
1029 	need_lwkt_resched();
1030 	return;
1031     }
1032 
1033     /*
1034      * Since we are able to preempt the current thread, there is no need to
1035      * call need_lwkt_resched().
1036      *
1037      * We must temporarily clear gd_intr_nesting_level around the switch
1038      * since switchouts from the target thread are allowed (they will just
1039      * return to our thread), and since the target thread has its own stack.
1040      */
1041     ++preempt_hit;
1042     ntd->td_preempted = td;
1043     td->td_flags |= TDF_PREEMPT_LOCK;
1044     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1045     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1046     gd->gd_intr_nesting_level = 0;
1047     td->td_switch(ntd);
1048     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1049 
1050     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1051     ntd->td_preempted = NULL;
1052     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1053 }
1054 
1055 /*
1056  * Conditionally call splz() if gd_reqflags indicates work is pending.
1057  * This will work inside a critical section but not inside a hard code
1058  * section.
1059  *
1060  * (self contained on a per cpu basis)
1061  */
1062 void
1063 splz_check(void)
1064 {
1065     globaldata_t gd = mycpu;
1066     thread_t td = gd->gd_curthread;
1067 
1068     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1069 	gd->gd_intr_nesting_level == 0 &&
1070 	td->td_nest_count < 2)
1071     {
1072 	splz();
1073     }
1074 }
1075 
1076 /*
1077  * This version is integrated into crit_exit, reqflags has already
1078  * been tested but td_critcount has not.
1079  *
1080  * We only want to execute the splz() on the 1->0 transition of
1081  * critcount and not in a hard code section or if too deeply nested.
1082  */
1083 void
1084 lwkt_maybe_splz(thread_t td)
1085 {
1086     globaldata_t gd = td->td_gd;
1087 
1088     if (td->td_critcount == 0 &&
1089 	gd->gd_intr_nesting_level == 0 &&
1090 	td->td_nest_count < 2)
1091     {
1092 	splz();
1093     }
1094 }
1095 
1096 /*
1097  * This function is used to negotiate a passive release of the current
1098  * process/lwp designation with the user scheduler, allowing the user
1099  * scheduler to schedule another user thread.  The related kernel thread
1100  * (curthread) continues running in the released state.
1101  */
1102 void
1103 lwkt_passive_release(struct thread *td)
1104 {
1105     struct lwp *lp = td->td_lwp;
1106 
1107     td->td_release = NULL;
1108     lwkt_setpri_self(TDPRI_KERN_USER);
1109     lp->lwp_proc->p_usched->release_curproc(lp);
1110 }
1111 
1112 
1113 /*
1114  * This implements a normal yield.  This routine is virtually a nop if
1115  * there is nothing to yield to but it will always run any pending interrupts
1116  * if called from a critical section.
1117  *
1118  * This yield is designed for kernel threads without a user context.
1119  *
1120  * (self contained on a per cpu basis)
1121  */
1122 void
1123 lwkt_yield(void)
1124 {
1125     globaldata_t gd = mycpu;
1126     thread_t td = gd->gd_curthread;
1127     thread_t xtd;
1128 
1129     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1130 	splz();
1131     if (td->td_fairq_accum < 0) {
1132 	lwkt_schedule_self(curthread);
1133 	lwkt_switch();
1134     } else {
1135 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1136 	if (xtd && xtd->td_pri > td->td_pri) {
1137 	    lwkt_schedule_self(curthread);
1138 	    lwkt_switch();
1139 	}
1140     }
1141 }
1142 
1143 /*
1144  * This yield is designed for kernel threads with a user context.
1145  *
1146  * The kernel acting on behalf of the user is potentially cpu-bound,
1147  * this function will efficiently allow other threads to run and also
1148  * switch to other processes by releasing.
1149  *
1150  * The lwkt_user_yield() function is designed to have very low overhead
1151  * if no yield is determined to be needed.
1152  */
1153 void
1154 lwkt_user_yield(void)
1155 {
1156     globaldata_t gd = mycpu;
1157     thread_t td = gd->gd_curthread;
1158 
1159     /*
1160      * Always run any pending interrupts in case we are in a critical
1161      * section.
1162      */
1163     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1164 	splz();
1165 
1166     /*
1167      * Switch (which forces a release) if another kernel thread needs
1168      * the cpu, if userland wants us to resched, or if our kernel
1169      * quantum has run out.
1170      */
1171     if (lwkt_resched_wanted() ||
1172 	user_resched_wanted() ||
1173 	td->td_fairq_accum < 0)
1174     {
1175 	lwkt_switch();
1176     }
1177 
1178 #if 0
1179     /*
1180      * Reacquire the current process if we are released.
1181      *
1182      * XXX not implemented atm.  The kernel may be holding locks and such,
1183      *     so we want the thread to continue to receive cpu.
1184      */
1185     if (td->td_release == NULL && lp) {
1186 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1187 	td->td_release = lwkt_passive_release;
1188 	lwkt_setpri_self(TDPRI_USER_NORM);
1189     }
1190 #endif
1191 }
1192 
1193 /*
1194  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1195  * deal with threads that might be blocked on a wait queue.
1196  *
1197  * We have a little helper inline function which does additional work after
1198  * the thread has been enqueued, including dealing with preemption and
1199  * setting need_lwkt_resched() (which prevents the kernel from returning
1200  * to userland until it has processed higher priority threads).
1201  *
1202  * It is possible for this routine to be called after a failed _enqueue
1203  * (due to the target thread migrating, sleeping, or otherwise blocked).
1204  * We have to check that the thread is actually on the run queue!
1205  *
1206  * reschedok is an optimized constant propagated from lwkt_schedule() or
1207  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1208  * reschedule to be requested if the target thread has a higher priority.
1209  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1210  * be 0, prevented undesired reschedules.
1211  */
1212 static __inline
1213 void
1214 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount, int reschedok)
1215 {
1216     thread_t otd;
1217 
1218     if (ntd->td_flags & TDF_RUNQ) {
1219 	if (ntd->td_preemptable && reschedok) {
1220 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1221 	} else if (reschedok) {
1222 	    otd = curthread;
1223 	    if (ntd->td_pri > otd->td_pri)
1224 		need_lwkt_resched();
1225 	}
1226 
1227 	/*
1228 	 * Give the thread a little fair share scheduler bump if it
1229 	 * has been asleep for a while.  This is primarily to avoid
1230 	 * a degenerate case for interrupt threads where accumulator
1231 	 * crosses into negative territory unnecessarily.
1232 	 */
1233 	if (ntd->td_fairq_lticks != ticks) {
1234 	    ntd->td_fairq_lticks = ticks;
1235 	    ntd->td_fairq_accum += gd->gd_fairq_total_pri;
1236 	    if (ntd->td_fairq_accum > TDFAIRQ_MAX(gd))
1237 		    ntd->td_fairq_accum = TDFAIRQ_MAX(gd);
1238 	}
1239     }
1240 }
1241 
1242 static __inline
1243 void
1244 _lwkt_schedule(thread_t td, int reschedok)
1245 {
1246     globaldata_t mygd = mycpu;
1247 
1248     KASSERT(td != &td->td_gd->gd_idlethread,
1249 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1250     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1251     crit_enter_gd(mygd);
1252     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1253     if (td == mygd->gd_curthread) {
1254 	_lwkt_enqueue(td);
1255     } else {
1256 	/*
1257 	 * If we own the thread, there is no race (since we are in a
1258 	 * critical section).  If we do not own the thread there might
1259 	 * be a race but the target cpu will deal with it.
1260 	 */
1261 #ifdef SMP
1262 	if (td->td_gd == mygd) {
1263 	    _lwkt_enqueue(td);
1264 	    _lwkt_schedule_post(mygd, td, 1, reschedok);
1265 	} else {
1266 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1267 	}
1268 #else
1269 	_lwkt_enqueue(td);
1270 	_lwkt_schedule_post(mygd, td, 1, reschedok);
1271 #endif
1272     }
1273     crit_exit_gd(mygd);
1274 }
1275 
1276 void
1277 lwkt_schedule(thread_t td)
1278 {
1279     _lwkt_schedule(td, 1);
1280 }
1281 
1282 void
1283 lwkt_schedule_noresched(thread_t td)
1284 {
1285     _lwkt_schedule(td, 0);
1286 }
1287 
1288 #ifdef SMP
1289 
1290 /*
1291  * When scheduled remotely if frame != NULL the IPIQ is being
1292  * run via doreti or an interrupt then preemption can be allowed.
1293  *
1294  * To allow preemption we have to drop the critical section so only
1295  * one is present in _lwkt_schedule_post.
1296  */
1297 static void
1298 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1299 {
1300     thread_t td = curthread;
1301     thread_t ntd = arg;
1302 
1303     if (frame && ntd->td_preemptable) {
1304 	crit_exit_noyield(td);
1305 	_lwkt_schedule(ntd, 1);
1306 	crit_enter_quick(td);
1307     } else {
1308 	_lwkt_schedule(ntd, 1);
1309     }
1310 }
1311 
1312 /*
1313  * Thread migration using a 'Pull' method.  The thread may or may not be
1314  * the current thread.  It MUST be descheduled and in a stable state.
1315  * lwkt_giveaway() must be called on the cpu owning the thread.
1316  *
1317  * At any point after lwkt_giveaway() is called, the target cpu may
1318  * 'pull' the thread by calling lwkt_acquire().
1319  *
1320  * We have to make sure the thread is not sitting on a per-cpu tsleep
1321  * queue or it will blow up when it moves to another cpu.
1322  *
1323  * MPSAFE - must be called under very specific conditions.
1324  */
1325 void
1326 lwkt_giveaway(thread_t td)
1327 {
1328     globaldata_t gd = mycpu;
1329 
1330     crit_enter_gd(gd);
1331     if (td->td_flags & TDF_TSLEEPQ)
1332 	tsleep_remove(td);
1333     KKASSERT(td->td_gd == gd);
1334     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1335     td->td_flags |= TDF_MIGRATING;
1336     crit_exit_gd(gd);
1337 }
1338 
1339 void
1340 lwkt_acquire(thread_t td)
1341 {
1342     globaldata_t gd;
1343     globaldata_t mygd;
1344 
1345     KKASSERT(td->td_flags & TDF_MIGRATING);
1346     gd = td->td_gd;
1347     mygd = mycpu;
1348     if (gd != mycpu) {
1349 	cpu_lfence();
1350 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1351 	crit_enter_gd(mygd);
1352 	DEBUG_PUSH_INFO("lwkt_acquire");
1353 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1354 #ifdef SMP
1355 	    lwkt_process_ipiq();
1356 #endif
1357 	    cpu_lfence();
1358 	}
1359 	DEBUG_POP_INFO();
1360 	cpu_mfence();
1361 	td->td_gd = mygd;
1362 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1363 	td->td_flags &= ~TDF_MIGRATING;
1364 	crit_exit_gd(mygd);
1365     } else {
1366 	crit_enter_gd(mygd);
1367 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1368 	td->td_flags &= ~TDF_MIGRATING;
1369 	crit_exit_gd(mygd);
1370     }
1371 }
1372 
1373 #endif
1374 
1375 /*
1376  * Generic deschedule.  Descheduling threads other then your own should be
1377  * done only in carefully controlled circumstances.  Descheduling is
1378  * asynchronous.
1379  *
1380  * This function may block if the cpu has run out of messages.
1381  */
1382 void
1383 lwkt_deschedule(thread_t td)
1384 {
1385     crit_enter();
1386 #ifdef SMP
1387     if (td == curthread) {
1388 	_lwkt_dequeue(td);
1389     } else {
1390 	if (td->td_gd == mycpu) {
1391 	    _lwkt_dequeue(td);
1392 	} else {
1393 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1394 	}
1395     }
1396 #else
1397     _lwkt_dequeue(td);
1398 #endif
1399     crit_exit();
1400 }
1401 
1402 /*
1403  * Set the target thread's priority.  This routine does not automatically
1404  * switch to a higher priority thread, LWKT threads are not designed for
1405  * continuous priority changes.  Yield if you want to switch.
1406  */
1407 void
1408 lwkt_setpri(thread_t td, int pri)
1409 {
1410     KKASSERT(td->td_gd == mycpu);
1411     if (td->td_pri != pri) {
1412 	KKASSERT(pri >= 0);
1413 	crit_enter();
1414 	if (td->td_flags & TDF_RUNQ) {
1415 	    _lwkt_dequeue(td);
1416 	    td->td_pri = pri;
1417 	    _lwkt_enqueue(td);
1418 	} else {
1419 	    td->td_pri = pri;
1420 	}
1421 	crit_exit();
1422     }
1423 }
1424 
1425 /*
1426  * Set the initial priority for a thread prior to it being scheduled for
1427  * the first time.  The thread MUST NOT be scheduled before or during
1428  * this call.  The thread may be assigned to a cpu other then the current
1429  * cpu.
1430  *
1431  * Typically used after a thread has been created with TDF_STOPPREQ,
1432  * and before the thread is initially scheduled.
1433  */
1434 void
1435 lwkt_setpri_initial(thread_t td, int pri)
1436 {
1437     KKASSERT(pri >= 0);
1438     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1439     td->td_pri = pri;
1440 }
1441 
1442 void
1443 lwkt_setpri_self(int pri)
1444 {
1445     thread_t td = curthread;
1446 
1447     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1448     crit_enter();
1449     if (td->td_flags & TDF_RUNQ) {
1450 	_lwkt_dequeue(td);
1451 	td->td_pri = pri;
1452 	_lwkt_enqueue(td);
1453     } else {
1454 	td->td_pri = pri;
1455     }
1456     crit_exit();
1457 }
1458 
1459 /*
1460  * 1/hz tick (typically 10ms) x TDFAIRQ_SCALE (typ 8) = 80ms full cycle.
1461  *
1462  * Example: two competing threads, same priority N.  decrement by (2*N)
1463  * increment by N*8, each thread will get 4 ticks.
1464  */
1465 void
1466 lwkt_fairq_schedulerclock(thread_t td)
1467 {
1468     globaldata_t gd;
1469 
1470     if (fairq_enable) {
1471 	while (td) {
1472 	    gd = td->td_gd;
1473 	    if (td != &gd->gd_idlethread) {
1474 		td->td_fairq_accum -= gd->gd_fairq_total_pri;
1475 		if (td->td_fairq_accum < -TDFAIRQ_MAX(gd))
1476 			td->td_fairq_accum = -TDFAIRQ_MAX(gd);
1477 		if (td->td_fairq_accum < 0)
1478 			need_lwkt_resched();
1479 		td->td_fairq_lticks = ticks;
1480 	    }
1481 	    td = td->td_preempted;
1482 	}
1483     }
1484 }
1485 
1486 static void
1487 lwkt_fairq_accumulate(globaldata_t gd, thread_t td)
1488 {
1489 	td->td_fairq_accum += td->td_pri * TDFAIRQ_SCALE;
1490 	if (td->td_fairq_accum > TDFAIRQ_MAX(td->td_gd))
1491 		td->td_fairq_accum = TDFAIRQ_MAX(td->td_gd);
1492 }
1493 
1494 /*
1495  * Migrate the current thread to the specified cpu.
1496  *
1497  * This is accomplished by descheduling ourselves from the current cpu,
1498  * moving our thread to the tdallq of the target cpu, IPI messaging the
1499  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1500  * races while the thread is being migrated.
1501  *
1502  * We must be sure to remove ourselves from the current cpu's tsleepq
1503  * before potentially moving to another queue.  The thread can be on
1504  * a tsleepq due to a left-over tsleep_interlock().
1505  */
1506 #ifdef SMP
1507 static void lwkt_setcpu_remote(void *arg);
1508 #endif
1509 
1510 void
1511 lwkt_setcpu_self(globaldata_t rgd)
1512 {
1513 #ifdef SMP
1514     thread_t td = curthread;
1515 
1516     if (td->td_gd != rgd) {
1517 	crit_enter_quick(td);
1518 	if (td->td_flags & TDF_TSLEEPQ)
1519 	    tsleep_remove(td);
1520 	td->td_flags |= TDF_MIGRATING;
1521 	lwkt_deschedule_self(td);
1522 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1523 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1524 	lwkt_switch();
1525 	/* we are now on the target cpu */
1526 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1527 	crit_exit_quick(td);
1528     }
1529 #endif
1530 }
1531 
1532 void
1533 lwkt_migratecpu(int cpuid)
1534 {
1535 #ifdef SMP
1536 	globaldata_t rgd;
1537 
1538 	rgd = globaldata_find(cpuid);
1539 	lwkt_setcpu_self(rgd);
1540 #endif
1541 }
1542 
1543 /*
1544  * Remote IPI for cpu migration (called while in a critical section so we
1545  * do not have to enter another one).  The thread has already been moved to
1546  * our cpu's allq, but we must wait for the thread to be completely switched
1547  * out on the originating cpu before we schedule it on ours or the stack
1548  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1549  * change to main memory.
1550  *
1551  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1552  * against wakeups.  It is best if this interface is used only when there
1553  * are no pending events that might try to schedule the thread.
1554  */
1555 #ifdef SMP
1556 static void
1557 lwkt_setcpu_remote(void *arg)
1558 {
1559     thread_t td = arg;
1560     globaldata_t gd = mycpu;
1561     int retry = 10000000;
1562 
1563     DEBUG_PUSH_INFO("lwkt_setcpu_remote");
1564     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1565 #ifdef SMP
1566 	lwkt_process_ipiq();
1567 #endif
1568 	cpu_lfence();
1569 	cpu_pause();
1570 	if (--retry == 0) {
1571 		kprintf("lwkt_setcpu_remote: td->td_flags %08x\n",
1572 			td->td_flags);
1573 		retry = 10000000;
1574 	}
1575     }
1576     DEBUG_POP_INFO();
1577     td->td_gd = gd;
1578     cpu_mfence();
1579     td->td_flags &= ~TDF_MIGRATING;
1580     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1581     _lwkt_enqueue(td);
1582 }
1583 #endif
1584 
1585 struct lwp *
1586 lwkt_preempted_proc(void)
1587 {
1588     thread_t td = curthread;
1589     while (td->td_preempted)
1590 	td = td->td_preempted;
1591     return(td->td_lwp);
1592 }
1593 
1594 /*
1595  * Create a kernel process/thread/whatever.  It shares it's address space
1596  * with proc0 - ie: kernel only.
1597  *
1598  * NOTE!  By default new threads are created with the MP lock held.  A
1599  * thread which does not require the MP lock should release it by calling
1600  * rel_mplock() at the start of the new thread.
1601  */
1602 int
1603 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1604 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1605 {
1606     thread_t td;
1607     __va_list ap;
1608 
1609     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1610 			   tdflags);
1611     if (tdp)
1612 	*tdp = td;
1613     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1614 
1615     /*
1616      * Set up arg0 for 'ps' etc
1617      */
1618     __va_start(ap, fmt);
1619     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1620     __va_end(ap);
1621 
1622     /*
1623      * Schedule the thread to run
1624      */
1625     if ((td->td_flags & TDF_STOPREQ) == 0)
1626 	lwkt_schedule(td);
1627     else
1628 	td->td_flags &= ~TDF_STOPREQ;
1629     return 0;
1630 }
1631 
1632 /*
1633  * Destroy an LWKT thread.   Warning!  This function is not called when
1634  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1635  * uses a different reaping mechanism.
1636  */
1637 void
1638 lwkt_exit(void)
1639 {
1640     thread_t td = curthread;
1641     thread_t std;
1642     globaldata_t gd;
1643 
1644     /*
1645      * Do any cleanup that might block here
1646      */
1647     if (td->td_flags & TDF_VERBOSE)
1648 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1649     caps_exit(td);
1650     biosched_done(td);
1651     dsched_exit_thread(td);
1652 
1653     /*
1654      * Get us into a critical section to interlock gd_freetd and loop
1655      * until we can get it freed.
1656      *
1657      * We have to cache the current td in gd_freetd because objcache_put()ing
1658      * it would rip it out from under us while our thread is still active.
1659      */
1660     gd = mycpu;
1661     crit_enter_quick(td);
1662     while ((std = gd->gd_freetd) != NULL) {
1663 	KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1664 	gd->gd_freetd = NULL;
1665 	objcache_put(thread_cache, std);
1666     }
1667 
1668     /*
1669      * Remove thread resources from kernel lists and deschedule us for
1670      * the last time.  We cannot block after this point or we may end
1671      * up with a stale td on the tsleepq.
1672      */
1673     if (td->td_flags & TDF_TSLEEPQ)
1674 	tsleep_remove(td);
1675     lwkt_deschedule_self(td);
1676     lwkt_remove_tdallq(td);
1677     KKASSERT(td->td_refs == 0);
1678 
1679     /*
1680      * Final cleanup
1681      */
1682     KKASSERT(gd->gd_freetd == NULL);
1683     if (td->td_flags & TDF_ALLOCATED_THREAD)
1684 	gd->gd_freetd = td;
1685     cpu_thread_exit();
1686 }
1687 
1688 void
1689 lwkt_remove_tdallq(thread_t td)
1690 {
1691     KKASSERT(td->td_gd == mycpu);
1692     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1693 }
1694 
1695 /*
1696  * Code reduction and branch prediction improvements.  Call/return
1697  * overhead on modern cpus often degenerates into 0 cycles due to
1698  * the cpu's branch prediction hardware and return pc cache.  We
1699  * can take advantage of this by not inlining medium-complexity
1700  * functions and we can also reduce the branch prediction impact
1701  * by collapsing perfectly predictable branches into a single
1702  * procedure instead of duplicating it.
1703  *
1704  * Is any of this noticeable?  Probably not, so I'll take the
1705  * smaller code size.
1706  */
1707 void
1708 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1709 {
1710     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1711 }
1712 
1713 void
1714 crit_panic(void)
1715 {
1716     thread_t td = curthread;
1717     int lcrit = td->td_critcount;
1718 
1719     td->td_critcount = 0;
1720     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1721     /* NOT REACHED */
1722 }
1723 
1724 #ifdef SMP
1725 
1726 /*
1727  * Called from debugger/panic on cpus which have been stopped.  We must still
1728  * process the IPIQ while stopped, even if we were stopped while in a critical
1729  * section (XXX).
1730  *
1731  * If we are dumping also try to process any pending interrupts.  This may
1732  * or may not work depending on the state of the cpu at the point it was
1733  * stopped.
1734  */
1735 void
1736 lwkt_smp_stopped(void)
1737 {
1738     globaldata_t gd = mycpu;
1739 
1740     crit_enter_gd(gd);
1741     if (dumping) {
1742 	lwkt_process_ipiq();
1743 	splz();
1744     } else {
1745 	lwkt_process_ipiq();
1746     }
1747     crit_exit_gd(gd);
1748 }
1749 
1750 #endif
1751