xref: /dragonfly/sys/kern/lwkt_thread.c (revision 9e2a88e3)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59 
60 #include <sys/dsched.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70 
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 #include <machine/clock.h>
74 
75 #ifdef _KERNEL_VIRTUAL
76 #include <pthread.h>
77 #endif
78 
79 #define LOOPMASK
80 
81 #if !defined(KTR_CTXSW)
82 #define KTR_CTXSW KTR_ALL
83 #endif
84 KTR_INFO_MASTER(ctxsw);
85 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
86 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
87 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
88 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
89 
90 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
91 
92 #ifdef	INVARIANTS
93 static int panic_on_cscount = 0;
94 #endif
95 static int64_t switch_count = 0;
96 static int64_t preempt_hit = 0;
97 static int64_t preempt_miss = 0;
98 static int64_t preempt_weird = 0;
99 static int lwkt_use_spin_port;
100 static struct objcache *thread_cache;
101 int cpu_mwait_spin = 0;
102 
103 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
104 static void lwkt_setcpu_remote(void *arg);
105 
106 /*
107  * We can make all thread ports use the spin backend instead of the thread
108  * backend.  This should only be set to debug the spin backend.
109  */
110 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
111 
112 #ifdef	INVARIANTS
113 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
114     "Panic if attempting to switch lwkt's while mastering cpusync");
115 #endif
116 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
117     "Number of switched threads");
118 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
119     "Successful preemption events");
120 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
121     "Failed preemption events");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
123     "Number of preempted threads.");
124 static int fairq_enable = 0;
125 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
126 	&fairq_enable, 0, "Turn on fairq priority accumulators");
127 static int fairq_bypass = -1;
128 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
129 	&fairq_bypass, 0, "Allow fairq to bypass td on token failure");
130 extern int lwkt_sched_debug;
131 int lwkt_sched_debug = 0;
132 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
133 	&lwkt_sched_debug, 0, "Scheduler debug");
134 static u_int lwkt_spin_loops = 10;
135 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
136 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
137 static int preempt_enable = 1;
138 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
139 	&preempt_enable, 0, "Enable preemption");
140 static int lwkt_cache_threads = 0;
141 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
142 	&lwkt_cache_threads, 0, "thread+kstack cache");
143 
144 /*
145  * These helper procedures handle the runq, they can only be called from
146  * within a critical section.
147  *
148  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
149  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
150  * instead of 'mycpu' when referencing the globaldata structure.   Once
151  * SMP live enqueuing and dequeueing only occurs on the current cpu.
152  */
153 static __inline
154 void
155 _lwkt_dequeue(thread_t td)
156 {
157     if (td->td_flags & TDF_RUNQ) {
158 	struct globaldata *gd = td->td_gd;
159 
160 	td->td_flags &= ~TDF_RUNQ;
161 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
162 	--gd->gd_tdrunqcount;
163 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
164 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
165     }
166 }
167 
168 /*
169  * Priority enqueue.
170  *
171  * There are a limited number of lwkt threads runnable since user
172  * processes only schedule one at a time per cpu.  However, there can
173  * be many user processes in kernel mode exiting from a tsleep() which
174  * become runnable.
175  *
176  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
177  *	 will ignore user priority.  This is to ensure that user threads in
178  *	 kernel mode get cpu at some point regardless of what the user
179  *	 scheduler thinks.
180  */
181 static __inline
182 void
183 _lwkt_enqueue(thread_t td)
184 {
185     thread_t xtd;
186 
187     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
188 	struct globaldata *gd = td->td_gd;
189 
190 	td->td_flags |= TDF_RUNQ;
191 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
192 	if (xtd == NULL) {
193 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
194 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
195 	} else {
196 	    /*
197 	     * NOTE: td_upri - higher numbers more desireable, same sense
198 	     *	     as td_pri (typically reversed from lwp_upri).
199 	     *
200 	     *	     In the equal priority case we want the best selection
201 	     *	     at the beginning so the less desireable selections know
202 	     *	     that they have to setrunqueue/go-to-another-cpu, even
203 	     *	     though it means switching back to the 'best' selection.
204 	     *	     This also avoids degenerate situations when many threads
205 	     *	     are runnable or waking up at the same time.
206 	     *
207 	     *	     If upri matches exactly place at end/round-robin.
208 	     */
209 	    while (xtd &&
210 		   (xtd->td_pri >= td->td_pri ||
211 		    (xtd->td_pri == td->td_pri &&
212 		     xtd->td_upri >= td->td_upri))) {
213 		xtd = TAILQ_NEXT(xtd, td_threadq);
214 	    }
215 	    if (xtd)
216 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
217 	    else
218 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
219 	}
220 	++gd->gd_tdrunqcount;
221 
222 	/*
223 	 * Request a LWKT reschedule if we are now at the head of the queue.
224 	 */
225 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
226 	    need_lwkt_resched();
227     }
228 }
229 
230 static boolean_t
231 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
232 {
233 	struct thread *td = (struct thread *)obj;
234 
235 	td->td_kstack = NULL;
236 	td->td_kstack_size = 0;
237 	td->td_flags = TDF_ALLOCATED_THREAD;
238 	td->td_mpflags = 0;
239 	return (1);
240 }
241 
242 static void
243 _lwkt_thread_dtor(void *obj, void *privdata)
244 {
245 	struct thread *td = (struct thread *)obj;
246 
247 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
248 	    ("_lwkt_thread_dtor: not allocated from objcache"));
249 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
250 		td->td_kstack_size > 0,
251 	    ("_lwkt_thread_dtor: corrupted stack"));
252 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
253 	td->td_kstack = NULL;
254 	td->td_flags = 0;
255 }
256 
257 /*
258  * Initialize the lwkt s/system.
259  *
260  * Nominally cache up to 32 thread + kstack structures.  Cache more on
261  * systems with a lot of cpu cores.
262  */
263 static void
264 lwkt_init(void)
265 {
266     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
267     if (lwkt_cache_threads == 0) {
268 	lwkt_cache_threads = ncpus * 4;
269 	if (lwkt_cache_threads < 32)
270 	    lwkt_cache_threads = 32;
271     }
272     thread_cache = objcache_create_mbacked(
273 				M_THREAD, sizeof(struct thread),
274 				0, lwkt_cache_threads,
275 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
276 }
277 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
278 
279 /*
280  * Schedule a thread to run.  As the current thread we can always safely
281  * schedule ourselves, and a shortcut procedure is provided for that
282  * function.
283  *
284  * (non-blocking, self contained on a per cpu basis)
285  */
286 void
287 lwkt_schedule_self(thread_t td)
288 {
289     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
290     crit_enter_quick(td);
291     KASSERT(td != &td->td_gd->gd_idlethread,
292 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
293     KKASSERT(td->td_lwp == NULL ||
294 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
295     _lwkt_enqueue(td);
296     crit_exit_quick(td);
297 }
298 
299 /*
300  * Deschedule a thread.
301  *
302  * (non-blocking, self contained on a per cpu basis)
303  */
304 void
305 lwkt_deschedule_self(thread_t td)
306 {
307     crit_enter_quick(td);
308     _lwkt_dequeue(td);
309     crit_exit_quick(td);
310 }
311 
312 /*
313  * LWKTs operate on a per-cpu basis
314  *
315  * WARNING!  Called from early boot, 'mycpu' may not work yet.
316  */
317 void
318 lwkt_gdinit(struct globaldata *gd)
319 {
320     TAILQ_INIT(&gd->gd_tdrunq);
321     TAILQ_INIT(&gd->gd_tdallq);
322 }
323 
324 /*
325  * Create a new thread.  The thread must be associated with a process context
326  * or LWKT start address before it can be scheduled.  If the target cpu is
327  * -1 the thread will be created on the current cpu.
328  *
329  * If you intend to create a thread without a process context this function
330  * does everything except load the startup and switcher function.
331  */
332 thread_t
333 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
334 {
335     static int cpu_rotator;
336     globaldata_t gd = mycpu;
337     void *stack;
338 
339     /*
340      * If static thread storage is not supplied allocate a thread.  Reuse
341      * a cached free thread if possible.  gd_freetd is used to keep an exiting
342      * thread intact through the exit.
343      */
344     if (td == NULL) {
345 	crit_enter_gd(gd);
346 	if ((td = gd->gd_freetd) != NULL) {
347 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
348 				      TDF_RUNQ)) == 0);
349 	    gd->gd_freetd = NULL;
350 	} else {
351 	    td = objcache_get(thread_cache, M_WAITOK);
352 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
353 				      TDF_RUNQ)) == 0);
354 	}
355 	crit_exit_gd(gd);
356     	KASSERT((td->td_flags &
357 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
358 		 TDF_ALLOCATED_THREAD,
359 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
360     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
361     }
362 
363     /*
364      * Try to reuse cached stack.
365      */
366     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
367 	if (flags & TDF_ALLOCATED_STACK) {
368 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
369 	    stack = NULL;
370 	}
371     }
372     if (stack == NULL) {
373 	stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
374 	flags |= TDF_ALLOCATED_STACK;
375     }
376     if (cpu < 0) {
377 	cpu = ++cpu_rotator;
378 	cpu_ccfence();
379 	cpu %= ncpus;
380     }
381     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
382     return(td);
383 }
384 
385 /*
386  * Initialize a preexisting thread structure.  This function is used by
387  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
388  *
389  * All threads start out in a critical section at a priority of
390  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
391  * appropriate.  This function may send an IPI message when the
392  * requested cpu is not the current cpu and consequently gd_tdallq may
393  * not be initialized synchronously from the point of view of the originating
394  * cpu.
395  *
396  * NOTE! we have to be careful in regards to creating threads for other cpus
397  * if SMP has not yet been activated.
398  */
399 static void
400 lwkt_init_thread_remote(void *arg)
401 {
402     thread_t td = arg;
403 
404     /*
405      * Protected by critical section held by IPI dispatch
406      */
407     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
408 }
409 
410 /*
411  * lwkt core thread structural initialization.
412  *
413  * NOTE: All threads are initialized as mpsafe threads.
414  */
415 void
416 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
417 		struct globaldata *gd)
418 {
419     globaldata_t mygd = mycpu;
420 
421     bzero(td, sizeof(struct thread));
422     td->td_kstack = stack;
423     td->td_kstack_size = stksize;
424     td->td_flags = flags;
425     td->td_mpflags = 0;
426     td->td_type = TD_TYPE_GENERIC;
427     td->td_gd = gd;
428     td->td_pri = TDPRI_KERN_DAEMON;
429     td->td_critcount = 1;
430     td->td_toks_have = NULL;
431     td->td_toks_stop = &td->td_toks_base;
432     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
433 	lwkt_initport_spin(&td->td_msgport, td,
434 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
435     } else {
436 	lwkt_initport_thread(&td->td_msgport, td);
437     }
438     pmap_init_thread(td);
439     /*
440      * Normally initializing a thread for a remote cpu requires sending an
441      * IPI.  However, the idlethread is setup before the other cpus are
442      * activated so we have to treat it as a special case.  XXX manipulation
443      * of gd_tdallq requires the BGL.
444      */
445     if (gd == mygd || td == &gd->gd_idlethread) {
446 	crit_enter_gd(mygd);
447 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
448 	crit_exit_gd(mygd);
449     } else {
450 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
451     }
452     dsched_enter_thread(td);
453 }
454 
455 void
456 lwkt_set_comm(thread_t td, const char *ctl, ...)
457 {
458     __va_list va;
459 
460     __va_start(va, ctl);
461     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
462     __va_end(va);
463     KTR_LOG(ctxsw_newtd, td, td->td_comm);
464 }
465 
466 /*
467  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
468  * this does not prevent the thread from migrating to another cpu so the
469  * gd_tdallq state is not protected by this.
470  */
471 void
472 lwkt_hold(thread_t td)
473 {
474     atomic_add_int(&td->td_refs, 1);
475 }
476 
477 void
478 lwkt_rele(thread_t td)
479 {
480     KKASSERT(td->td_refs > 0);
481     atomic_add_int(&td->td_refs, -1);
482 }
483 
484 void
485 lwkt_free_thread(thread_t td)
486 {
487     KKASSERT(td->td_refs == 0);
488     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
489 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
490     if (td->td_flags & TDF_ALLOCATED_THREAD) {
491     	objcache_put(thread_cache, td);
492     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
493 	/* client-allocated struct with internally allocated stack */
494 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
495 	    ("lwkt_free_thread: corrupted stack"));
496 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
497 	td->td_kstack = NULL;
498 	td->td_kstack_size = 0;
499     }
500 
501     KTR_LOG(ctxsw_deadtd, td);
502 }
503 
504 
505 /*
506  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
507  * switch to the idlethread.  Switching must occur within a critical
508  * section to avoid races with the scheduling queue.
509  *
510  * We always have full control over our cpu's run queue.  Other cpus
511  * that wish to manipulate our queue must use the cpu_*msg() calls to
512  * talk to our cpu, so a critical section is all that is needed and
513  * the result is very, very fast thread switching.
514  *
515  * The LWKT scheduler uses a fixed priority model and round-robins at
516  * each priority level.  User process scheduling is a totally
517  * different beast and LWKT priorities should not be confused with
518  * user process priorities.
519  *
520  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
521  * is not called by the current thread in the preemption case, only when
522  * the preempting thread blocks (in order to return to the original thread).
523  *
524  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
525  * migration and tsleep deschedule the current lwkt thread and call
526  * lwkt_switch().  In particular, the target cpu of the migration fully
527  * expects the thread to become non-runnable and can deadlock against
528  * cpusync operations if we run any IPIs prior to switching the thread out.
529  *
530  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
531  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
532  */
533 void
534 lwkt_switch(void)
535 {
536     globaldata_t gd = mycpu;
537     thread_t td = gd->gd_curthread;
538     thread_t ntd;
539     int upri;
540 #ifdef LOOPMASK
541     uint64_t tsc_base = rdtsc();
542 #endif
543 
544     KKASSERT(gd->gd_processing_ipiq == 0);
545     KKASSERT(td->td_flags & TDF_RUNNING);
546 
547     /*
548      * Switching from within a 'fast' (non thread switched) interrupt or IPI
549      * is illegal.  However, we may have to do it anyway if we hit a fatal
550      * kernel trap or we have paniced.
551      *
552      * If this case occurs save and restore the interrupt nesting level.
553      */
554     if (gd->gd_intr_nesting_level) {
555 	int savegdnest;
556 	int savegdtrap;
557 
558 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
559 	    panic("lwkt_switch: Attempt to switch from a "
560 		  "fast interrupt, ipi, or hard code section, "
561 		  "td %p\n",
562 		  td);
563 	} else {
564 	    savegdnest = gd->gd_intr_nesting_level;
565 	    savegdtrap = gd->gd_trap_nesting_level;
566 	    gd->gd_intr_nesting_level = 0;
567 	    gd->gd_trap_nesting_level = 0;
568 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
569 		td->td_flags |= TDF_PANICWARN;
570 		kprintf("Warning: thread switch from interrupt, IPI, "
571 			"or hard code section.\n"
572 			"thread %p (%s)\n", td, td->td_comm);
573 		print_backtrace(-1);
574 	    }
575 	    lwkt_switch();
576 	    gd->gd_intr_nesting_level = savegdnest;
577 	    gd->gd_trap_nesting_level = savegdtrap;
578 	    return;
579 	}
580     }
581 
582     /*
583      * Release our current user process designation if we are blocking
584      * or if a user reschedule was requested.
585      *
586      * NOTE: This function is NOT called if we are switching into or
587      *	     returning from a preemption.
588      *
589      * NOTE: Releasing our current user process designation may cause
590      *	     it to be assigned to another thread, which in turn will
591      *	     cause us to block in the usched acquire code when we attempt
592      *	     to return to userland.
593      *
594      * NOTE: On SMP systems this can be very nasty when heavy token
595      *	     contention is present so we want to be careful not to
596      *	     release the designation gratuitously.
597      */
598     if (td->td_release &&
599 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
600 	    td->td_release(td);
601     }
602 
603     /*
604      * Release all tokens.  Once we do this we must remain in the critical
605      * section and cannot run IPIs or other interrupts until we switch away
606      * because they may implode if they try to get a token using our thread
607      * context.
608      */
609     crit_enter_gd(gd);
610     if (TD_TOKS_HELD(td))
611 	    lwkt_relalltokens(td);
612 
613     /*
614      * We had better not be holding any spin locks, but don't get into an
615      * endless panic loop.
616      */
617     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
618 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
619 	     gd->gd_spinlocks));
620 
621 #ifdef	INVARIANTS
622     if (td->td_cscount) {
623 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
624 		td);
625 	if (panic_on_cscount)
626 	    panic("switching while mastering cpusync");
627     }
628 #endif
629 
630     /*
631      * If we had preempted another thread on this cpu, resume the preempted
632      * thread.  This occurs transparently, whether the preempted thread
633      * was scheduled or not (it may have been preempted after descheduling
634      * itself).
635      *
636      * We have to setup the MP lock for the original thread after backing
637      * out the adjustment that was made to curthread when the original
638      * was preempted.
639      */
640     if ((ntd = td->td_preempted) != NULL) {
641 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
642 	ntd->td_flags |= TDF_PREEMPT_DONE;
643 	ntd->td_contended = 0;		/* reset contended */
644 
645 	/*
646 	 * The interrupt may have woken a thread up, we need to properly
647 	 * set the reschedule flag if the originally interrupted thread is
648 	 * at a lower priority.
649 	 *
650 	 * The interrupt may not have descheduled.
651 	 */
652 	if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
653 	    need_lwkt_resched();
654 	goto havethread_preempted;
655     }
656 
657     /*
658      * Figure out switch target.  If we cannot switch to our desired target
659      * look for a thread that we can switch to.
660      *
661      * NOTE! The limited spin loop and related parameters are extremely
662      *	     important for system performance, particularly for pipes and
663      *	     concurrent conflicting VM faults.
664      */
665     clear_lwkt_resched();
666     ntd = TAILQ_FIRST(&gd->gd_tdrunq);
667 
668     if (ntd) {
669 	do {
670 	    if (TD_TOKS_NOT_HELD(ntd) ||
671 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
672 	    {
673 		goto havethread;
674 	    }
675 	    ++gd->gd_cnt.v_lock_colls;
676 	    ++ntd->td_contended;	/* overflow ok */
677 #ifdef LOOPMASK
678 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
679 		    kprintf("lwkt_switch: excessive contended %d "
680 			    "thread %p\n", ntd->td_contended, ntd);
681 		    tsc_base = rdtsc();
682 	    }
683 #endif
684 	} while (ntd->td_contended < (lwkt_spin_loops >> 1));
685 	upri = ntd->td_upri;
686 
687 	/*
688 	 * Bleh, the thread we wanted to switch to has a contended token.
689 	 * See if we can switch to another thread.
690 	 *
691 	 * We generally don't want to do this because it represents a
692 	 * priority inversion.  Do not allow the case if the thread
693 	 * is returning to userland (not a kernel thread) AND the thread
694 	 * has a lower upri.
695 	 */
696 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
697 	    if (ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri)
698 		break;
699 	    upri = ntd->td_upri;
700 
701 	    /*
702 	     * Try this one.
703 	     */
704 	    if (TD_TOKS_NOT_HELD(ntd) ||
705 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
706 		    goto havethread;
707 	    }
708 	    ++ntd->td_contended;	/* overflow ok */
709 	    ++gd->gd_cnt.v_lock_colls;
710 	}
711 
712 	/*
713 	 * Fall through, switch to idle thread to get us out of the current
714 	 * context.  Since we were contended, prevent HLT by flagging a
715 	 * LWKT reschedule.
716 	 */
717 	need_lwkt_resched();
718     }
719 
720     /*
721      * We either contended on ntd or the runq is empty.  We must switch
722      * through the idle thread to get out of the current context.
723      */
724     ntd = &gd->gd_idlethread;
725     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
726 	ASSERT_NO_TOKENS_HELD(ntd);
727     cpu_time.cp_msg[0] = 0;
728     goto haveidle;
729 
730 havethread:
731     /*
732      * Clear gd_idle_repeat when doing a normal switch to a non-idle
733      * thread.
734      */
735     ntd->td_wmesg = NULL;
736     ntd->td_contended = 0;	/* reset once scheduled */
737     ++gd->gd_cnt.v_swtch;
738     gd->gd_idle_repeat = 0;
739 
740 havethread_preempted:
741     /*
742      * If the new target does not need the MP lock and we are holding it,
743      * release the MP lock.  If the new target requires the MP lock we have
744      * already acquired it for the target.
745      */
746     ;
747 haveidle:
748     KASSERT(ntd->td_critcount,
749 	    ("priority problem in lwkt_switch %d %d",
750 	    td->td_critcount, ntd->td_critcount));
751 
752     if (td != ntd) {
753 	/*
754 	 * Execute the actual thread switch operation.  This function
755 	 * returns to the current thread and returns the previous thread
756 	 * (which may be different from the thread we switched to).
757 	 *
758 	 * We are responsible for marking ntd as TDF_RUNNING.
759 	 */
760 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
761 	++switch_count;
762 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
763 	ntd->td_flags |= TDF_RUNNING;
764 	lwkt_switch_return(td->td_switch(ntd));
765 	/* ntd invalid, td_switch() can return a different thread_t */
766     }
767 
768     /*
769      * catch-all.  XXX is this strictly needed?
770      */
771     splz_check();
772 
773     /* NOTE: current cpu may have changed after switch */
774     crit_exit_quick(td);
775 }
776 
777 /*
778  * Called by assembly in the td_switch (thread restore path) for thread
779  * bootstrap cases which do not 'return' to lwkt_switch().
780  */
781 void
782 lwkt_switch_return(thread_t otd)
783 {
784 	globaldata_t rgd;
785 #ifdef LOOPMASK
786 	uint64_t tsc_base = rdtsc();
787 #endif
788 	int exiting;
789 
790 	exiting = otd->td_flags & TDF_EXITING;
791 	cpu_ccfence();
792 
793 	/*
794 	 * Check if otd was migrating.  Now that we are on ntd we can finish
795 	 * up the migration.  This is a bit messy but it is the only place
796 	 * where td is known to be fully descheduled.
797 	 *
798 	 * We can only activate the migration if otd was migrating but not
799 	 * held on the cpu due to a preemption chain.  We still have to
800 	 * clear TDF_RUNNING on the old thread either way.
801 	 *
802 	 * We are responsible for clearing the previously running thread's
803 	 * TDF_RUNNING.
804 	 */
805 	if ((rgd = otd->td_migrate_gd) != NULL &&
806 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
807 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
808 			 (TDF_MIGRATING | TDF_RUNNING));
809 		otd->td_migrate_gd = NULL;
810 		otd->td_flags &= ~TDF_RUNNING;
811 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
812 	} else {
813 		otd->td_flags &= ~TDF_RUNNING;
814 	}
815 
816 	/*
817 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
818 	 * invalid the *instant* we set TDF_MP_EXITSIG.
819 	 *
820 	 * Use the EXITING status loaded from before we clear TDF_RUNNING,
821 	 * because if it is not set otd becomes invalid the instant we clear
822 	 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
823 	 * might 'steal' TDF_EXITING from another switch-return!).
824 	 */
825 	while (exiting) {
826 		u_int mpflags;
827 
828 		mpflags = otd->td_mpflags;
829 		cpu_ccfence();
830 
831 		if (mpflags & TDF_MP_EXITWAIT) {
832 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
833 					      mpflags | TDF_MP_EXITSIG)) {
834 				wakeup(otd);
835 				break;
836 			}
837 		} else {
838 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
839 					      mpflags | TDF_MP_EXITSIG)) {
840 				wakeup(otd);
841 				break;
842 			}
843 		}
844 
845 #ifdef LOOPMASK
846 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
847 			kprintf("lwkt_switch_return: excessive TDF_EXITING "
848 				"thread %p\n", otd);
849 			tsc_base = rdtsc();
850 		}
851 #endif
852 	}
853 }
854 
855 /*
856  * Request that the target thread preempt the current thread.  Preemption
857  * can only occur if our only critical section is the one that we were called
858  * with, the relative priority of the target thread is higher, and the target
859  * thread holds no tokens.  This also only works if we are not holding any
860  * spinlocks (obviously).
861  *
862  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
863  * this is called via lwkt_schedule() through the td_preemptable callback.
864  * critcount is the managed critical priority that we should ignore in order
865  * to determine whether preemption is possible (aka usually just the crit
866  * priority of lwkt_schedule() itself).
867  *
868  * Preemption is typically limited to interrupt threads.
869  *
870  * Operation works in a fairly straight-forward manner.  The normal
871  * scheduling code is bypassed and we switch directly to the target
872  * thread.  When the target thread attempts to block or switch away
873  * code at the base of lwkt_switch() will switch directly back to our
874  * thread.  Our thread is able to retain whatever tokens it holds and
875  * if the target needs one of them the target will switch back to us
876  * and reschedule itself normally.
877  */
878 void
879 lwkt_preempt(thread_t ntd, int critcount)
880 {
881     struct globaldata *gd = mycpu;
882     thread_t xtd;
883     thread_t td;
884     int save_gd_intr_nesting_level;
885 
886     /*
887      * The caller has put us in a critical section.  We can only preempt
888      * if the caller of the caller was not in a critical section (basically
889      * a local interrupt), as determined by the 'critcount' parameter.  We
890      * also can't preempt if the caller is holding any spinlocks (even if
891      * he isn't in a critical section).  This also handles the tokens test.
892      *
893      * YYY The target thread must be in a critical section (else it must
894      * inherit our critical section?  I dunno yet).
895      */
896     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
897 
898     td = gd->gd_curthread;
899     if (preempt_enable == 0) {
900 	++preempt_miss;
901 	return;
902     }
903     if (ntd->td_pri <= td->td_pri) {
904 	++preempt_miss;
905 	return;
906     }
907     if (td->td_critcount > critcount) {
908 	++preempt_miss;
909 	return;
910     }
911     if (td->td_cscount) {
912 	++preempt_miss;
913 	return;
914     }
915     if (ntd->td_gd != gd) {
916 	++preempt_miss;
917 	return;
918     }
919 
920     /*
921      * We don't have to check spinlocks here as they will also bump
922      * td_critcount.
923      *
924      * Do not try to preempt if the target thread is holding any tokens.
925      * We could try to acquire the tokens but this case is so rare there
926      * is no need to support it.
927      */
928     KKASSERT(gd->gd_spinlocks == 0);
929 
930     if (TD_TOKS_HELD(ntd)) {
931 	++preempt_miss;
932 	return;
933     }
934     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
935 	++preempt_weird;
936 	return;
937     }
938     if (ntd->td_preempted) {
939 	++preempt_hit;
940 	return;
941     }
942     KKASSERT(gd->gd_processing_ipiq == 0);
943 
944     /*
945      * Since we are able to preempt the current thread, there is no need to
946      * call need_lwkt_resched().
947      *
948      * We must temporarily clear gd_intr_nesting_level around the switch
949      * since switchouts from the target thread are allowed (they will just
950      * return to our thread), and since the target thread has its own stack.
951      *
952      * A preemption must switch back to the original thread, assert the
953      * case.
954      */
955     ++preempt_hit;
956     ntd->td_preempted = td;
957     td->td_flags |= TDF_PREEMPT_LOCK;
958     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
959     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
960     gd->gd_intr_nesting_level = 0;
961 
962     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
963     ntd->td_flags |= TDF_RUNNING;
964     xtd = td->td_switch(ntd);
965     KKASSERT(xtd == ntd);
966     lwkt_switch_return(xtd);
967     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
968 
969     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
970     ntd->td_preempted = NULL;
971     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
972 }
973 
974 /*
975  * Conditionally call splz() if gd_reqflags indicates work is pending.
976  * This will work inside a critical section but not inside a hard code
977  * section.
978  *
979  * (self contained on a per cpu basis)
980  */
981 void
982 splz_check(void)
983 {
984     globaldata_t gd = mycpu;
985     thread_t td = gd->gd_curthread;
986 
987     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
988 	gd->gd_intr_nesting_level == 0 &&
989 	td->td_nest_count < 2)
990     {
991 	splz();
992     }
993 }
994 
995 /*
996  * This version is integrated into crit_exit, reqflags has already
997  * been tested but td_critcount has not.
998  *
999  * We only want to execute the splz() on the 1->0 transition of
1000  * critcount and not in a hard code section or if too deeply nested.
1001  *
1002  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1003  */
1004 void
1005 lwkt_maybe_splz(thread_t td)
1006 {
1007     globaldata_t gd = td->td_gd;
1008 
1009     if (td->td_critcount == 0 &&
1010 	gd->gd_intr_nesting_level == 0 &&
1011 	td->td_nest_count < 2)
1012     {
1013 	splz();
1014     }
1015 }
1016 
1017 /*
1018  * Drivers which set up processing co-threads can call this function to
1019  * run the co-thread at a higher priority and to allow it to preempt
1020  * normal threads.
1021  */
1022 void
1023 lwkt_set_interrupt_support_thread(void)
1024 {
1025 	thread_t td = curthread;
1026 
1027         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1028 	td->td_flags |= TDF_INTTHREAD;
1029 	td->td_preemptable = lwkt_preempt;
1030 }
1031 
1032 
1033 /*
1034  * This function is used to negotiate a passive release of the current
1035  * process/lwp designation with the user scheduler, allowing the user
1036  * scheduler to schedule another user thread.  The related kernel thread
1037  * (curthread) continues running in the released state.
1038  */
1039 void
1040 lwkt_passive_release(struct thread *td)
1041 {
1042     struct lwp *lp = td->td_lwp;
1043 
1044     td->td_release = NULL;
1045     lwkt_setpri_self(TDPRI_KERN_USER);
1046 
1047     lp->lwp_proc->p_usched->release_curproc(lp);
1048 }
1049 
1050 
1051 /*
1052  * This implements a LWKT yield, allowing a kernel thread to yield to other
1053  * kernel threads at the same or higher priority.  This function can be
1054  * called in a tight loop and will typically only yield once per tick.
1055  *
1056  * Most kernel threads run at the same priority in order to allow equal
1057  * sharing.
1058  *
1059  * (self contained on a per cpu basis)
1060  */
1061 void
1062 lwkt_yield(void)
1063 {
1064     globaldata_t gd = mycpu;
1065     thread_t td = gd->gd_curthread;
1066 
1067     /*
1068      * Should never be called with spinlocks held but there is a path
1069      * via ACPI where it might happen.
1070      */
1071     if (gd->gd_spinlocks)
1072 	return;
1073 
1074     /*
1075      * Safe to call splz if we are not too-heavily nested.
1076      */
1077     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1078 	splz();
1079 
1080     /*
1081      * Caller allows switching
1082      */
1083     if (lwkt_resched_wanted()) {
1084 	lwkt_schedule_self(curthread);
1085 	lwkt_switch();
1086     }
1087 }
1088 
1089 /*
1090  * The quick version processes pending interrupts and higher-priority
1091  * LWKT threads but will not round-robin same-priority LWKT threads.
1092  *
1093  * When called while attempting to return to userland the only same-pri
1094  * threads are the ones which have already tried to become the current
1095  * user process.
1096  */
1097 void
1098 lwkt_yield_quick(void)
1099 {
1100     globaldata_t gd = mycpu;
1101     thread_t td = gd->gd_curthread;
1102 
1103     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1104 	splz();
1105     if (lwkt_resched_wanted()) {
1106 	crit_enter();
1107 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1108 	    clear_lwkt_resched();
1109 	} else {
1110 	    lwkt_schedule_self(curthread);
1111 	    lwkt_switch();
1112 	}
1113 	crit_exit();
1114     }
1115 }
1116 
1117 /*
1118  * This yield is designed for kernel threads with a user context.
1119  *
1120  * The kernel acting on behalf of the user is potentially cpu-bound,
1121  * this function will efficiently allow other threads to run and also
1122  * switch to other processes by releasing.
1123  *
1124  * The lwkt_user_yield() function is designed to have very low overhead
1125  * if no yield is determined to be needed.
1126  */
1127 void
1128 lwkt_user_yield(void)
1129 {
1130     globaldata_t gd = mycpu;
1131     thread_t td = gd->gd_curthread;
1132 
1133     /*
1134      * Should never be called with spinlocks held but there is a path
1135      * via ACPI where it might happen.
1136      */
1137     if (gd->gd_spinlocks)
1138 	return;
1139 
1140     /*
1141      * Always run any pending interrupts in case we are in a critical
1142      * section.
1143      */
1144     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1145 	splz();
1146 
1147     /*
1148      * Switch (which forces a release) if another kernel thread needs
1149      * the cpu, if userland wants us to resched, or if our kernel
1150      * quantum has run out.
1151      */
1152     if (lwkt_resched_wanted() ||
1153 	user_resched_wanted())
1154     {
1155 	lwkt_switch();
1156     }
1157 
1158 #if 0
1159     /*
1160      * Reacquire the current process if we are released.
1161      *
1162      * XXX not implemented atm.  The kernel may be holding locks and such,
1163      *     so we want the thread to continue to receive cpu.
1164      */
1165     if (td->td_release == NULL && lp) {
1166 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1167 	td->td_release = lwkt_passive_release;
1168 	lwkt_setpri_self(TDPRI_USER_NORM);
1169     }
1170 #endif
1171 }
1172 
1173 /*
1174  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1175  * deal with threads that might be blocked on a wait queue.
1176  *
1177  * We have a little helper inline function which does additional work after
1178  * the thread has been enqueued, including dealing with preemption and
1179  * setting need_lwkt_resched() (which prevents the kernel from returning
1180  * to userland until it has processed higher priority threads).
1181  *
1182  * It is possible for this routine to be called after a failed _enqueue
1183  * (due to the target thread migrating, sleeping, or otherwise blocked).
1184  * We have to check that the thread is actually on the run queue!
1185  */
1186 static __inline
1187 void
1188 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1189 {
1190     if (ntd->td_flags & TDF_RUNQ) {
1191 	if (ntd->td_preemptable) {
1192 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1193 	}
1194     }
1195 }
1196 
1197 static __inline
1198 void
1199 _lwkt_schedule(thread_t td)
1200 {
1201     globaldata_t mygd = mycpu;
1202 
1203     KASSERT(td != &td->td_gd->gd_idlethread,
1204 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1205     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1206     crit_enter_gd(mygd);
1207     KKASSERT(td->td_lwp == NULL ||
1208 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1209 
1210     if (td == mygd->gd_curthread) {
1211 	_lwkt_enqueue(td);
1212     } else {
1213 	/*
1214 	 * If we own the thread, there is no race (since we are in a
1215 	 * critical section).  If we do not own the thread there might
1216 	 * be a race but the target cpu will deal with it.
1217 	 */
1218 	if (td->td_gd == mygd) {
1219 	    _lwkt_enqueue(td);
1220 	    _lwkt_schedule_post(mygd, td, 1);
1221 	} else {
1222 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1223 	}
1224     }
1225     crit_exit_gd(mygd);
1226 }
1227 
1228 void
1229 lwkt_schedule(thread_t td)
1230 {
1231     _lwkt_schedule(td);
1232 }
1233 
1234 void
1235 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1236 {
1237     _lwkt_schedule(td);
1238 }
1239 
1240 /*
1241  * When scheduled remotely if frame != NULL the IPIQ is being
1242  * run via doreti or an interrupt then preemption can be allowed.
1243  *
1244  * To allow preemption we have to drop the critical section so only
1245  * one is present in _lwkt_schedule_post.
1246  */
1247 static void
1248 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1249 {
1250     thread_t td = curthread;
1251     thread_t ntd = arg;
1252 
1253     if (frame && ntd->td_preemptable) {
1254 	crit_exit_noyield(td);
1255 	_lwkt_schedule(ntd);
1256 	crit_enter_quick(td);
1257     } else {
1258 	_lwkt_schedule(ntd);
1259     }
1260 }
1261 
1262 /*
1263  * Thread migration using a 'Pull' method.  The thread may or may not be
1264  * the current thread.  It MUST be descheduled and in a stable state.
1265  * lwkt_giveaway() must be called on the cpu owning the thread.
1266  *
1267  * At any point after lwkt_giveaway() is called, the target cpu may
1268  * 'pull' the thread by calling lwkt_acquire().
1269  *
1270  * We have to make sure the thread is not sitting on a per-cpu tsleep
1271  * queue or it will blow up when it moves to another cpu.
1272  *
1273  * MPSAFE - must be called under very specific conditions.
1274  */
1275 void
1276 lwkt_giveaway(thread_t td)
1277 {
1278     globaldata_t gd = mycpu;
1279 
1280     crit_enter_gd(gd);
1281     if (td->td_flags & TDF_TSLEEPQ)
1282 	tsleep_remove(td);
1283     KKASSERT(td->td_gd == gd);
1284     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1285     td->td_flags |= TDF_MIGRATING;
1286     crit_exit_gd(gd);
1287 }
1288 
1289 void
1290 lwkt_acquire(thread_t td)
1291 {
1292     globaldata_t gd;
1293     globaldata_t mygd;
1294 
1295     KKASSERT(td->td_flags & TDF_MIGRATING);
1296     gd = td->td_gd;
1297     mygd = mycpu;
1298     if (gd != mycpu) {
1299 #ifdef LOOPMASK
1300 	uint64_t tsc_base = rdtsc();
1301 #endif
1302 	cpu_lfence();
1303 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1304 	crit_enter_gd(mygd);
1305 	DEBUG_PUSH_INFO("lwkt_acquire");
1306 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1307 	    lwkt_process_ipiq();
1308 	    cpu_lfence();
1309 #ifdef _KERNEL_VIRTUAL
1310 	    pthread_yield();
1311 #endif
1312 #ifdef LOOPMASK
1313 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1314 		    kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1315 			    td, td->td_flags);
1316 		    tsc_base = rdtsc();
1317 	    }
1318 #endif
1319 	}
1320 	DEBUG_POP_INFO();
1321 	cpu_mfence();
1322 	td->td_gd = mygd;
1323 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1324 	td->td_flags &= ~TDF_MIGRATING;
1325 	crit_exit_gd(mygd);
1326     } else {
1327 	crit_enter_gd(mygd);
1328 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1329 	td->td_flags &= ~TDF_MIGRATING;
1330 	crit_exit_gd(mygd);
1331     }
1332 }
1333 
1334 /*
1335  * Generic deschedule.  Descheduling threads other then your own should be
1336  * done only in carefully controlled circumstances.  Descheduling is
1337  * asynchronous.
1338  *
1339  * This function may block if the cpu has run out of messages.
1340  */
1341 void
1342 lwkt_deschedule(thread_t td)
1343 {
1344     crit_enter();
1345     if (td == curthread) {
1346 	_lwkt_dequeue(td);
1347     } else {
1348 	if (td->td_gd == mycpu) {
1349 	    _lwkt_dequeue(td);
1350 	} else {
1351 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1352 	}
1353     }
1354     crit_exit();
1355 }
1356 
1357 /*
1358  * Set the target thread's priority.  This routine does not automatically
1359  * switch to a higher priority thread, LWKT threads are not designed for
1360  * continuous priority changes.  Yield if you want to switch.
1361  */
1362 void
1363 lwkt_setpri(thread_t td, int pri)
1364 {
1365     if (td->td_pri != pri) {
1366 	KKASSERT(pri >= 0);
1367 	crit_enter();
1368 	if (td->td_flags & TDF_RUNQ) {
1369 	    KKASSERT(td->td_gd == mycpu);
1370 	    _lwkt_dequeue(td);
1371 	    td->td_pri = pri;
1372 	    _lwkt_enqueue(td);
1373 	} else {
1374 	    td->td_pri = pri;
1375 	}
1376 	crit_exit();
1377     }
1378 }
1379 
1380 /*
1381  * Set the initial priority for a thread prior to it being scheduled for
1382  * the first time.  The thread MUST NOT be scheduled before or during
1383  * this call.  The thread may be assigned to a cpu other then the current
1384  * cpu.
1385  *
1386  * Typically used after a thread has been created with TDF_STOPPREQ,
1387  * and before the thread is initially scheduled.
1388  */
1389 void
1390 lwkt_setpri_initial(thread_t td, int pri)
1391 {
1392     KKASSERT(pri >= 0);
1393     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1394     td->td_pri = pri;
1395 }
1396 
1397 void
1398 lwkt_setpri_self(int pri)
1399 {
1400     thread_t td = curthread;
1401 
1402     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1403     crit_enter();
1404     if (td->td_flags & TDF_RUNQ) {
1405 	_lwkt_dequeue(td);
1406 	td->td_pri = pri;
1407 	_lwkt_enqueue(td);
1408     } else {
1409 	td->td_pri = pri;
1410     }
1411     crit_exit();
1412 }
1413 
1414 /*
1415  * hz tick scheduler clock for LWKT threads
1416  */
1417 void
1418 lwkt_schedulerclock(thread_t td)
1419 {
1420     globaldata_t gd = td->td_gd;
1421     thread_t xtd;
1422 
1423     if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1424 	/*
1425 	 * If the current thread is at the head of the runq shift it to the
1426 	 * end of any equal-priority threads and request a LWKT reschedule
1427 	 * if it moved.
1428 	 *
1429 	 * Ignore upri in this situation.  There will only be one user thread
1430 	 * in user mode, all others will be user threads running in kernel
1431 	 * mode and we have to make sure they get some cpu.
1432 	 */
1433 	xtd = TAILQ_NEXT(td, td_threadq);
1434 	if (xtd && xtd->td_pri == td->td_pri) {
1435 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1436 	    while (xtd && xtd->td_pri == td->td_pri)
1437 		xtd = TAILQ_NEXT(xtd, td_threadq);
1438 	    if (xtd)
1439 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1440 	    else
1441 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1442 	    need_lwkt_resched();
1443 	}
1444     } else {
1445 	/*
1446 	 * If we scheduled a thread other than the one at the head of the
1447 	 * queue always request a reschedule every tick.
1448 	 */
1449 	need_lwkt_resched();
1450     }
1451 }
1452 
1453 /*
1454  * Migrate the current thread to the specified cpu.
1455  *
1456  * This is accomplished by descheduling ourselves from the current cpu
1457  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1458  * 'old' thread wants to migrate after it has been completely switched out
1459  * and will complete the migration.
1460  *
1461  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1462  *
1463  * We must be sure to release our current process designation (if a user
1464  * process) before clearing out any tsleepq we are on because the release
1465  * code may re-add us.
1466  *
1467  * We must be sure to remove ourselves from the current cpu's tsleepq
1468  * before potentially moving to another queue.  The thread can be on
1469  * a tsleepq due to a left-over tsleep_interlock().
1470  */
1471 
1472 void
1473 lwkt_setcpu_self(globaldata_t rgd)
1474 {
1475     thread_t td = curthread;
1476 
1477     if (td->td_gd != rgd) {
1478 	crit_enter_quick(td);
1479 
1480 	if (td->td_release)
1481 	    td->td_release(td);
1482 	if (td->td_flags & TDF_TSLEEPQ)
1483 	    tsleep_remove(td);
1484 
1485 	/*
1486 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1487 	 * trying to deschedule ourselves and switch away, then deschedule
1488 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1489 	 * call lwkt_switch() to complete the operation.
1490 	 */
1491 	td->td_flags |= TDF_MIGRATING;
1492 	lwkt_deschedule_self(td);
1493 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1494 	td->td_migrate_gd = rgd;
1495 	lwkt_switch();
1496 
1497 	/*
1498 	 * We are now on the target cpu
1499 	 */
1500 	KKASSERT(rgd == mycpu);
1501 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1502 	crit_exit_quick(td);
1503     }
1504 }
1505 
1506 void
1507 lwkt_migratecpu(int cpuid)
1508 {
1509 	globaldata_t rgd;
1510 
1511 	rgd = globaldata_find(cpuid);
1512 	lwkt_setcpu_self(rgd);
1513 }
1514 
1515 /*
1516  * Remote IPI for cpu migration (called while in a critical section so we
1517  * do not have to enter another one).
1518  *
1519  * The thread (td) has already been completely descheduled from the
1520  * originating cpu and we can simply assert the case.  The thread is
1521  * assigned to the new cpu and enqueued.
1522  *
1523  * The thread will re-add itself to tdallq when it resumes execution.
1524  */
1525 static void
1526 lwkt_setcpu_remote(void *arg)
1527 {
1528     thread_t td = arg;
1529     globaldata_t gd = mycpu;
1530 
1531     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1532     td->td_gd = gd;
1533     cpu_mfence();
1534     td->td_flags &= ~TDF_MIGRATING;
1535     KKASSERT(td->td_migrate_gd == NULL);
1536     KKASSERT(td->td_lwp == NULL ||
1537 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1538     _lwkt_enqueue(td);
1539 }
1540 
1541 struct lwp *
1542 lwkt_preempted_proc(void)
1543 {
1544     thread_t td = curthread;
1545     while (td->td_preempted)
1546 	td = td->td_preempted;
1547     return(td->td_lwp);
1548 }
1549 
1550 /*
1551  * Create a kernel process/thread/whatever.  It shares it's address space
1552  * with proc0 - ie: kernel only.
1553  *
1554  * If the cpu is not specified one will be selected.  In the future
1555  * specifying a cpu of -1 will enable kernel thread migration between
1556  * cpus.
1557  */
1558 int
1559 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1560 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1561 {
1562     thread_t td;
1563     __va_list ap;
1564 
1565     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1566 			   tdflags);
1567     if (tdp)
1568 	*tdp = td;
1569     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1570 
1571     /*
1572      * Set up arg0 for 'ps' etc
1573      */
1574     __va_start(ap, fmt);
1575     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1576     __va_end(ap);
1577 
1578     /*
1579      * Schedule the thread to run
1580      */
1581     if (td->td_flags & TDF_NOSTART)
1582 	td->td_flags &= ~TDF_NOSTART;
1583     else
1584 	lwkt_schedule(td);
1585     return 0;
1586 }
1587 
1588 /*
1589  * Destroy an LWKT thread.   Warning!  This function is not called when
1590  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1591  * uses a different reaping mechanism.
1592  */
1593 void
1594 lwkt_exit(void)
1595 {
1596     thread_t td = curthread;
1597     thread_t std;
1598     globaldata_t gd;
1599 
1600     /*
1601      * Do any cleanup that might block here
1602      */
1603     if (td->td_flags & TDF_VERBOSE)
1604 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1605     biosched_done(td);
1606     dsched_exit_thread(td);
1607 
1608     /*
1609      * Get us into a critical section to interlock gd_freetd and loop
1610      * until we can get it freed.
1611      *
1612      * We have to cache the current td in gd_freetd because objcache_put()ing
1613      * it would rip it out from under us while our thread is still active.
1614      *
1615      * We are the current thread so of course our own TDF_RUNNING bit will
1616      * be set, so unlike the lwp reap code we don't wait for it to clear.
1617      */
1618     gd = mycpu;
1619     crit_enter_quick(td);
1620     for (;;) {
1621 	if (td->td_refs) {
1622 	    tsleep(td, 0, "tdreap", 1);
1623 	    continue;
1624 	}
1625 	if ((std = gd->gd_freetd) != NULL) {
1626 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1627 	    gd->gd_freetd = NULL;
1628 	    objcache_put(thread_cache, std);
1629 	    continue;
1630 	}
1631 	break;
1632     }
1633 
1634     /*
1635      * Remove thread resources from kernel lists and deschedule us for
1636      * the last time.  We cannot block after this point or we may end
1637      * up with a stale td on the tsleepq.
1638      *
1639      * None of this may block, the critical section is the only thing
1640      * protecting tdallq and the only thing preventing new lwkt_hold()
1641      * thread refs now.
1642      */
1643     if (td->td_flags & TDF_TSLEEPQ)
1644 	tsleep_remove(td);
1645     lwkt_deschedule_self(td);
1646     lwkt_remove_tdallq(td);
1647     KKASSERT(td->td_refs == 0);
1648 
1649     /*
1650      * Final cleanup
1651      */
1652     KKASSERT(gd->gd_freetd == NULL);
1653     if (td->td_flags & TDF_ALLOCATED_THREAD)
1654 	gd->gd_freetd = td;
1655     cpu_thread_exit();
1656 }
1657 
1658 void
1659 lwkt_remove_tdallq(thread_t td)
1660 {
1661     KKASSERT(td->td_gd == mycpu);
1662     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1663 }
1664 
1665 /*
1666  * Code reduction and branch prediction improvements.  Call/return
1667  * overhead on modern cpus often degenerates into 0 cycles due to
1668  * the cpu's branch prediction hardware and return pc cache.  We
1669  * can take advantage of this by not inlining medium-complexity
1670  * functions and we can also reduce the branch prediction impact
1671  * by collapsing perfectly predictable branches into a single
1672  * procedure instead of duplicating it.
1673  *
1674  * Is any of this noticeable?  Probably not, so I'll take the
1675  * smaller code size.
1676  */
1677 void
1678 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1679 {
1680     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1681 }
1682 
1683 void
1684 crit_panic(void)
1685 {
1686     thread_t td = curthread;
1687     int lcrit = td->td_critcount;
1688 
1689     td->td_critcount = 0;
1690     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1691     /* NOT REACHED */
1692 }
1693 
1694 /*
1695  * Called from debugger/panic on cpus which have been stopped.  We must still
1696  * process the IPIQ while stopped.
1697  *
1698  * If we are dumping also try to process any pending interrupts.  This may
1699  * or may not work depending on the state of the cpu at the point it was
1700  * stopped.
1701  */
1702 void
1703 lwkt_smp_stopped(void)
1704 {
1705     globaldata_t gd = mycpu;
1706 
1707     if (dumping) {
1708 	lwkt_process_ipiq();
1709 	--gd->gd_intr_nesting_level;
1710 	splz();
1711 	++gd->gd_intr_nesting_level;
1712     } else {
1713 	lwkt_process_ipiq();
1714     }
1715     cpu_smp_stopped();
1716 }
1717