xref: /dragonfly/sys/kern/lwkt_thread.c (revision cdecd76a)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	Each cpu in a system has its own self-contained light weight kernel
27  *	thread scheduler, which means that generally speaking we only need
28  *	to use a critical section to avoid problems.  Foreign thread
29  *	scheduling is queued via (async) IPIs.
30  *
31  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.28 2003/07/25 05:51:19 dillon Exp $
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/proc.h>
38 #include <sys/rtprio.h>
39 #include <sys/queue.h>
40 #include <sys/thread2.h>
41 #include <sys/sysctl.h>
42 #include <sys/kthread.h>
43 #include <machine/cpu.h>
44 #include <sys/lock.h>
45 
46 #include <vm/vm.h>
47 #include <vm/vm_param.h>
48 #include <vm/vm_kern.h>
49 #include <vm/vm_object.h>
50 #include <vm/vm_page.h>
51 #include <vm/vm_map.h>
52 #include <vm/vm_pager.h>
53 #include <vm/vm_extern.h>
54 #include <vm/vm_zone.h>
55 
56 #include <machine/stdarg.h>
57 #include <machine/ipl.h>
58 #ifdef SMP
59 #include <machine/smp.h>
60 #endif
61 
62 static int untimely_switch = 0;
63 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
64 #ifdef INVARIANTS
65 static int token_debug = 0;
66 SYSCTL_INT(_lwkt, OID_AUTO, token_debug, CTLFLAG_RW, &token_debug, 0, "");
67 #endif
68 static quad_t switch_count = 0;
69 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
70 static quad_t preempt_hit = 0;
71 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
72 static quad_t preempt_miss = 0;
73 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
74 static quad_t preempt_weird = 0;
75 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
76 static quad_t ipiq_count = 0;
77 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_count, CTLFLAG_RW, &ipiq_count, 0, "");
78 static quad_t ipiq_fifofull = 0;
79 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_fifofull, CTLFLAG_RW, &ipiq_fifofull, 0, "");
80 
81 /*
82  * These helper procedures handle the runq, they can only be called from
83  * within a critical section.
84  */
85 static __inline
86 void
87 _lwkt_dequeue(thread_t td)
88 {
89     if (td->td_flags & TDF_RUNQ) {
90 	int nq = td->td_pri & TDPRI_MASK;
91 	struct globaldata *gd = mycpu;
92 
93 	td->td_flags &= ~TDF_RUNQ;
94 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
95 	/* runqmask is passively cleaned up by the switcher */
96     }
97 }
98 
99 static __inline
100 void
101 _lwkt_enqueue(thread_t td)
102 {
103     if ((td->td_flags & TDF_RUNQ) == 0) {
104 	int nq = td->td_pri & TDPRI_MASK;
105 	struct globaldata *gd = mycpu;
106 
107 	td->td_flags |= TDF_RUNQ;
108 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
109 	gd->gd_runqmask |= 1 << nq;
110     }
111 }
112 
113 static __inline
114 int
115 _lwkt_wantresched(thread_t ntd, thread_t cur)
116 {
117     return((ntd->td_pri & TDPRI_MASK) > (cur->td_pri & TDPRI_MASK));
118 }
119 
120 /*
121  * LWKTs operate on a per-cpu basis
122  *
123  * WARNING!  Called from early boot, 'mycpu' may not work yet.
124  */
125 void
126 lwkt_gdinit(struct globaldata *gd)
127 {
128     int i;
129 
130     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
131 	TAILQ_INIT(&gd->gd_tdrunq[i]);
132     gd->gd_runqmask = 0;
133     TAILQ_INIT(&gd->gd_tdallq);
134 }
135 
136 /*
137  * Initialize a thread wait structure prior to first use.
138  *
139  * NOTE!  called from low level boot code, we cannot do anything fancy!
140  */
141 void
142 lwkt_init_wait(lwkt_wait_t w)
143 {
144     TAILQ_INIT(&w->wa_waitq);
145 }
146 
147 /*
148  * Create a new thread.  The thread must be associated with a process context
149  * or LWKT start address before it can be scheduled.
150  *
151  * If you intend to create a thread without a process context this function
152  * does everything except load the startup and switcher function.
153  */
154 thread_t
155 lwkt_alloc_thread(struct thread *td)
156 {
157     void *stack;
158     int flags = 0;
159 
160     if (td == NULL) {
161 	crit_enter();
162 	if (mycpu->gd_tdfreecount > 0) {
163 	    --mycpu->gd_tdfreecount;
164 	    td = TAILQ_FIRST(&mycpu->gd_tdfreeq);
165 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
166 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
167 	    TAILQ_REMOVE(&mycpu->gd_tdfreeq, td, td_threadq);
168 	    crit_exit();
169 	    stack = td->td_kstack;
170 	    flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
171 	} else {
172 	    crit_exit();
173 	    td = zalloc(thread_zone);
174 	    td->td_kstack = NULL;
175 	    flags |= TDF_ALLOCATED_THREAD;
176 	}
177     }
178     if ((stack = td->td_kstack) == NULL) {
179 	stack = (void *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
180 	flags |= TDF_ALLOCATED_STACK;
181     }
182     lwkt_init_thread(td, stack, flags, mycpu);
183     return(td);
184 }
185 
186 /*
187  * Initialize a preexisting thread structure.  This function is used by
188  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
189  *
190  * NOTE!  called from low level boot code, we cannot do anything fancy!
191  * Only the low level boot code will call this function with gd != mycpu.
192  */
193 void
194 lwkt_init_thread(thread_t td, void *stack, int flags, struct globaldata *gd)
195 {
196     bzero(td, sizeof(struct thread));
197     td->td_kstack = stack;
198     td->td_flags |= flags;
199     td->td_gd = gd;
200     td->td_pri = TDPRI_CRIT;
201     lwkt_init_port(&td->td_msgport, td);
202     pmap_init_thread(td);
203     crit_enter();
204     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
205     crit_exit();
206 }
207 
208 void
209 lwkt_set_comm(thread_t td, const char *ctl, ...)
210 {
211     va_list va;
212 
213     va_start(va, ctl);
214     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
215     va_end(va);
216 }
217 
218 void
219 lwkt_hold(thread_t td)
220 {
221     ++td->td_refs;
222 }
223 
224 void
225 lwkt_rele(thread_t td)
226 {
227     KKASSERT(td->td_refs > 0);
228     --td->td_refs;
229 }
230 
231 void
232 lwkt_wait_free(thread_t td)
233 {
234     while (td->td_refs)
235 	tsleep(td, 0, "tdreap", hz);
236 }
237 
238 void
239 lwkt_free_thread(thread_t td)
240 {
241     struct globaldata *gd = mycpu;
242 
243     KASSERT((td->td_flags & TDF_RUNNING) == 0,
244 	("lwkt_free_thread: did not exit! %p", td));
245 
246     crit_enter();
247     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
248     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
249 	(td->td_flags & TDF_ALLOCATED_THREAD)
250     ) {
251 	++gd->gd_tdfreecount;
252 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
253 	crit_exit();
254     } else {
255 	crit_exit();
256 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
257 	    kmem_free(kernel_map,
258 		    (vm_offset_t)td->td_kstack, UPAGES * PAGE_SIZE);
259 	    /* gd invalid */
260 	    td->td_kstack = NULL;
261 	}
262 	if (td->td_flags & TDF_ALLOCATED_THREAD)
263 	    zfree(thread_zone, td);
264     }
265 }
266 
267 
268 /*
269  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
270  * switch to the idlethread.  Switching must occur within a critical
271  * section to avoid races with the scheduling queue.
272  *
273  * We always have full control over our cpu's run queue.  Other cpus
274  * that wish to manipulate our queue must use the cpu_*msg() calls to
275  * talk to our cpu, so a critical section is all that is needed and
276  * the result is very, very fast thread switching.
277  *
278  * The LWKT scheduler uses a fixed priority model and round-robins at
279  * each priority level.  User process scheduling is a totally
280  * different beast and LWKT priorities should not be confused with
281  * user process priorities.
282  *
283  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
284  * cleans it up.  Note that the td_switch() function cannot do anything that
285  * requires the MP lock since the MP lock will have already been setup for
286  * the target thread (not the current thread).
287  */
288 
289 void
290 lwkt_switch(void)
291 {
292     struct globaldata *gd;
293     thread_t td = curthread;
294     thread_t ntd;
295 #ifdef SMP
296     int mpheld;
297 #endif
298 
299     if (mycpu->gd_intr_nesting_level &&
300 	td->td_preempted == NULL && panicstr == NULL
301     ) {
302 	panic("lwkt_switch: cannot switch from within an interrupt, yet\n");
303     }
304 
305     /*
306      * Passive release (used to transition from user to kernel mode
307      * when we block or switch rather then when we enter the kernel).
308      * This function is NOT called if we are switching into a preemption
309      * or returning from a preemption.  Typically this causes us to lose
310      * our P_CURPROC designation (if we have one) and become a true LWKT
311      * thread, and may also hand P_CURPROC to another process and schedule
312      * its thread.
313      */
314     if (td->td_release)
315 	    td->td_release(td);
316 
317     crit_enter();
318     ++switch_count;
319 
320 #ifdef SMP
321     /*
322      * td_mpcount cannot be used to determine if we currently hold the
323      * MP lock because get_mplock() will increment it prior to attempting
324      * to get the lock, and switch out if it can't.  Look at the actual lock.
325      */
326     mpheld = MP_LOCK_HELD();
327 #endif
328     if ((ntd = td->td_preempted) != NULL) {
329 	/*
330 	 * We had preempted another thread on this cpu, resume the preempted
331 	 * thread.  This occurs transparently, whether the preempted thread
332 	 * was scheduled or not (it may have been preempted after descheduling
333 	 * itself).
334 	 *
335 	 * We have to setup the MP lock for the original thread after backing
336 	 * out the adjustment that was made to curthread when the original
337 	 * was preempted.
338 	 */
339 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
340 #ifdef SMP
341 	if (ntd->td_mpcount && mpheld == 0) {
342 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d\n",
343 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
344 	}
345 	if (ntd->td_mpcount) {
346 	    td->td_mpcount -= ntd->td_mpcount;
347 	    KKASSERT(td->td_mpcount >= 0);
348 	}
349 #endif
350 	ntd->td_flags |= TDF_PREEMPT_DONE;
351 	/* YYY release mp lock on switchback if original doesn't need it */
352     } else {
353 	/*
354 	 * Priority queue / round-robin at each priority.  Note that user
355 	 * processes run at a fixed, low priority and the user process
356 	 * scheduler deals with interactions between user processes
357 	 * by scheduling and descheduling them from the LWKT queue as
358 	 * necessary.
359 	 *
360 	 * We have to adjust the MP lock for the target thread.  If we
361 	 * need the MP lock and cannot obtain it we try to locate a
362 	 * thread that does not need the MP lock.
363 	 */
364 	gd = mycpu;
365 again:
366 	if (gd->gd_runqmask) {
367 	    int nq = bsrl(gd->gd_runqmask);
368 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
369 		gd->gd_runqmask &= ~(1 << nq);
370 		goto again;
371 	    }
372 #ifdef SMP
373 	    if (ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) {
374 		/*
375 		 * Target needs MP lock and we couldn't get it, try
376 		 * to locate a thread which does not need the MP lock
377 		 * to run.  If we cannot locate a thread spin in idle.
378 		 */
379 		u_int32_t rqmask = gd->gd_runqmask;
380 		while (rqmask) {
381 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
382 			if (ntd->td_mpcount == 0)
383 			    break;
384 		    }
385 		    if (ntd)
386 			break;
387 		    rqmask &= ~(1 << nq);
388 		    nq = bsrl(rqmask);
389 		}
390 		if (ntd == NULL) {
391 		    ntd = &gd->gd_idlethread;
392 		    ntd->td_flags |= TDF_IDLE_NOHLT;
393 		} else {
394 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
395 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
396 		}
397 	    } else {
398 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
399 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
400 	    }
401 #else
402 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
403 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
404 #endif
405 	} else {
406 	    /*
407 	     * Nothing to run but we may still need the BGL to deal with
408 	     * pending interrupts, spin in idle if so.
409 	     */
410 	    ntd = &gd->gd_idlethread;
411 	    if (gd->gd_reqflags)
412 		ntd->td_flags |= TDF_IDLE_NOHLT;
413 	}
414     }
415     KASSERT(ntd->td_pri >= TDPRI_CRIT,
416 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
417 
418     /*
419      * Do the actual switch.  If the new target does not need the MP lock
420      * and we are holding it, release the MP lock.  If the new target requires
421      * the MP lock we have already acquired it for the target.
422      */
423 #ifdef SMP
424     if (ntd->td_mpcount == 0 ) {
425 	if (MP_LOCK_HELD())
426 	    cpu_rel_mplock();
427     } else {
428 	ASSERT_MP_LOCK_HELD();
429     }
430 #endif
431     if (td != ntd) {
432 	td->td_switch(ntd);
433     }
434 
435     crit_exit();
436 }
437 
438 /*
439  * Switch if another thread has a higher priority.  Do not switch to other
440  * threads at the same priority.
441  */
442 void
443 lwkt_maybe_switch()
444 {
445     struct globaldata *gd = mycpu;
446     struct thread *td = gd->gd_curthread;
447 
448     if ((td->td_pri & TDPRI_MASK) < bsrl(gd->gd_runqmask)) {
449 	lwkt_switch();
450     }
451 }
452 
453 /*
454  * Request that the target thread preempt the current thread.  Preemption
455  * only works under a specific set of conditions:
456  *
457  *	- We are not preempting ourselves
458  *	- The target thread is owned by the current cpu
459  *	- We are not currently being preempted
460  *	- The target is not currently being preempted
461  *	- We are able to satisfy the target's MP lock requirements (if any).
462  *
463  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
464  * this is called via lwkt_schedule() through the td_preemptable callback.
465  * critpri is the managed critical priority that we should ignore in order
466  * to determine whether preemption is possible (aka usually just the crit
467  * priority of lwkt_schedule() itself).
468  *
469  * XXX at the moment we run the target thread in a critical section during
470  * the preemption in order to prevent the target from taking interrupts
471  * that *WE* can't.  Preemption is strictly limited to interrupt threads
472  * and interrupt-like threads, outside of a critical section, and the
473  * preempted source thread will be resumed the instant the target blocks
474  * whether or not the source is scheduled (i.e. preemption is supposed to
475  * be as transparent as possible).
476  *
477  * The target thread inherits our MP count (added to its own) for the
478  * duration of the preemption in order to preserve the atomicy of the
479  * MP lock during the preemption.  Therefore, any preempting targets must be
480  * careful in regards to MP assertions.  Note that the MP count may be
481  * out of sync with the physical mp_lock.  If we preempt we have to preserve
482  * the expected situation.
483  */
484 void
485 lwkt_preempt(thread_t ntd, int critpri)
486 {
487     thread_t td = curthread;
488 #ifdef SMP
489     int mpheld;
490     int savecnt;
491 #endif
492 
493     /*
494      * The caller has put us in a critical section.  We can only preempt
495      * if the caller of the caller was not in a critical section (basically
496      * a local interrupt), as determined by the 'critpri' parameter.   If
497      * we are unable to preempt
498      *
499      * YYY The target thread must be in a critical section (else it must
500      * inherit our critical section?  I dunno yet).
501      */
502     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
503 
504     need_resched();
505     if (!_lwkt_wantresched(ntd, td)) {
506 	++preempt_miss;
507 	return;
508     }
509     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
510 	++preempt_miss;
511 	return;
512     }
513 #ifdef SMP
514     if (ntd->td_gd != mycpu) {
515 	++preempt_miss;
516 	return;
517     }
518 #endif
519     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
520 	++preempt_weird;
521 	return;
522     }
523     if (ntd->td_preempted) {
524 	++preempt_hit;
525 	return;
526     }
527 #ifdef SMP
528     /*
529      * note: an interrupt might have occured just as we were transitioning
530      * to the MP lock.  In this case td_mpcount will be pre-disposed but
531      * not actually synchronized with the actual state of the lock.  We
532      * can use it to imply an MP lock requirement for the preemption but
533      * we cannot use it to test whether we hold the MP lock or not.
534      */
535     mpheld = MP_LOCK_HELD();
536     if (mpheld && td->td_mpcount == 0)
537 	panic("lwkt_preempt(): held and no count");
538     savecnt = td->td_mpcount;
539     ntd->td_mpcount += td->td_mpcount;
540     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
541 	ntd->td_mpcount -= td->td_mpcount;
542 	++preempt_miss;
543 	return;
544     }
545 #endif
546 
547     ++preempt_hit;
548     ntd->td_preempted = td;
549     td->td_flags |= TDF_PREEMPT_LOCK;
550     td->td_switch(ntd);
551     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
552 #ifdef SMP
553     KKASSERT(savecnt == td->td_mpcount);
554     if (mpheld == 0 && MP_LOCK_HELD())
555 	cpu_rel_mplock();
556     else if (mpheld && !MP_LOCK_HELD())
557 	panic("lwkt_preempt(): MP lock was not held through");
558 #endif
559     ntd->td_preempted = NULL;
560     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
561 }
562 
563 /*
564  * Yield our thread while higher priority threads are pending.  This is
565  * typically called when we leave a critical section but it can be safely
566  * called while we are in a critical section.
567  *
568  * This function will not generally yield to equal priority threads but it
569  * can occur as a side effect.  Note that lwkt_switch() is called from
570  * inside the critical section to pervent its own crit_exit() from reentering
571  * lwkt_yield_quick().
572  *
573  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
574  * came along but was blocked and made pending.
575  *
576  * (self contained on a per cpu basis)
577  */
578 void
579 lwkt_yield_quick(void)
580 {
581     globaldata_t gd = mycpu;
582     thread_t td = gd->gd_curthread;
583 
584     /*
585      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
586      * it with a non-zero cpl then we might not wind up calling splz after
587      * a task switch when the critical section is exited even though the
588      * new task could accept the interrupt.  YYY alternative is to have
589      * lwkt_switch() just call splz unconditionally.
590      *
591      * XXX from crit_exit() only called after last crit section is released.
592      * If called directly will run splz() even if in a critical section.
593      */
594     if (gd->gd_reqflags)
595 	splz();
596 
597     /*
598      * YYY enabling will cause wakeup() to task-switch, which really
599      * confused the old 4.x code.  This is a good way to simulate
600      * preemption and MP without actually doing preemption or MP, because a
601      * lot of code assumes that wakeup() does not block.
602      */
603     if (untimely_switch && gd->gd_intr_nesting_level == 0) {
604 	crit_enter();
605 	/*
606 	 * YYY temporary hacks until we disassociate the userland scheduler
607 	 * from the LWKT scheduler.
608 	 */
609 	if (td->td_flags & TDF_RUNQ) {
610 	    lwkt_switch();		/* will not reenter yield function */
611 	} else {
612 	    lwkt_schedule_self();	/* make sure we are scheduled */
613 	    lwkt_switch();		/* will not reenter yield function */
614 	    lwkt_deschedule_self();	/* make sure we are descheduled */
615 	}
616 	crit_exit_noyield(td);
617     }
618 }
619 
620 /*
621  * This implements a normal yield which, unlike _quick, will yield to equal
622  * priority threads as well.  Note that gd_reqflags tests will be handled by
623  * the crit_exit() call in lwkt_switch().
624  *
625  * (self contained on a per cpu basis)
626  */
627 void
628 lwkt_yield(void)
629 {
630     lwkt_schedule_self();
631     lwkt_switch();
632 }
633 
634 /*
635  * Schedule a thread to run.  As the current thread we can always safely
636  * schedule ourselves, and a shortcut procedure is provided for that
637  * function.
638  *
639  * (non-blocking, self contained on a per cpu basis)
640  */
641 void
642 lwkt_schedule_self(void)
643 {
644     thread_t td = curthread;
645 
646     crit_enter();
647     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
648     _lwkt_enqueue(td);
649     if (td->td_proc && td->td_proc->p_stat == SSLEEP)
650 	panic("SCHED SELF PANIC");
651     crit_exit();
652 }
653 
654 /*
655  * Generic schedule.  Possibly schedule threads belonging to other cpus and
656  * deal with threads that might be blocked on a wait queue.
657  *
658  * YYY this is one of the best places to implement load balancing code.
659  * Load balancing can be accomplished by requesting other sorts of actions
660  * for the thread in question.
661  */
662 void
663 lwkt_schedule(thread_t td)
664 {
665 #ifdef	INVARIANTS
666     if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc
667 	&& td->td_proc->p_stat == SSLEEP
668     ) {
669 	printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n",
670 	    curthread,
671 	    curthread->td_proc ? curthread->td_proc->p_pid : -1,
672 	    curthread->td_proc ? curthread->td_proc->p_stat : -1,
673 	    td,
674 	    td->td_proc ? curthread->td_proc->p_pid : -1,
675 	    td->td_proc ? curthread->td_proc->p_stat : -1
676 	);
677 	panic("SCHED PANIC");
678     }
679 #endif
680     crit_enter();
681     if (td == curthread) {
682 	_lwkt_enqueue(td);
683     } else {
684 	lwkt_wait_t w;
685 
686 	/*
687 	 * If the thread is on a wait list we have to send our scheduling
688 	 * request to the owner of the wait structure.  Otherwise we send
689 	 * the scheduling request to the cpu owning the thread.  Races
690 	 * are ok, the target will forward the message as necessary (the
691 	 * message may chase the thread around before it finally gets
692 	 * acted upon).
693 	 *
694 	 * (remember, wait structures use stable storage)
695 	 */
696 	if ((w = td->td_wait) != NULL) {
697 	    if (lwkt_trytoken(&w->wa_token)) {
698 		TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
699 		--w->wa_count;
700 		td->td_wait = NULL;
701 		if (td->td_gd == mycpu) {
702 		    _lwkt_enqueue(td);
703 		    if (td->td_preemptable) {
704 			td->td_preemptable(td, TDPRI_CRIT*2); /* YYY +token */
705 		    } else if (_lwkt_wantresched(td, curthread)) {
706 			need_resched();
707 		    }
708 		} else {
709 		    lwkt_send_ipiq(td->td_gd->gd_cpuid, (ipifunc_t)lwkt_schedule, td);
710 		}
711 		lwkt_reltoken(&w->wa_token);
712 	    } else {
713 		lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td);
714 	    }
715 	} else {
716 	    /*
717 	     * If the wait structure is NULL and we own the thread, there
718 	     * is no race (since we are in a critical section).  If we
719 	     * do not own the thread there might be a race but the
720 	     * target cpu will deal with it.
721 	     */
722 	    if (td->td_gd == mycpu) {
723 		_lwkt_enqueue(td);
724 		if (td->td_preemptable) {
725 		    td->td_preemptable(td, TDPRI_CRIT);
726 		} else if (_lwkt_wantresched(td, curthread)) {
727 		    need_resched();
728 		}
729 	    } else {
730 		lwkt_send_ipiq(td->td_gd->gd_cpuid, (ipifunc_t)lwkt_schedule, td);
731 	    }
732 	}
733     }
734     crit_exit();
735 }
736 
737 /*
738  * Managed acquisition.  This code assumes that the MP lock is held for
739  * the tdallq operation and that the thread has been descheduled from its
740  * original cpu.  We also have to wait for the thread to be entirely switched
741  * out on its original cpu (this is usually fast enough that we never loop)
742  * since the LWKT system does not have to hold the MP lock while switching
743  * and the target may have released it before switching.
744  */
745 void
746 lwkt_acquire(thread_t td)
747 {
748     struct globaldata *gd;
749 
750     gd = td->td_gd;
751     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
752     while (td->td_flags & TDF_RUNNING)	/* XXX spin */
753 	;
754     if (gd != mycpu) {
755 	crit_enter();
756 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);	/* protected by BGL */
757 	gd = mycpu;
758 	td->td_gd = gd;
759 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); /* protected by BGL */
760 	crit_exit();
761     }
762 }
763 
764 /*
765  * Deschedule a thread.
766  *
767  * (non-blocking, self contained on a per cpu basis)
768  */
769 void
770 lwkt_deschedule_self(void)
771 {
772     thread_t td = curthread;
773 
774     crit_enter();
775     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
776     _lwkt_dequeue(td);
777     crit_exit();
778 }
779 
780 /*
781  * Generic deschedule.  Descheduling threads other then your own should be
782  * done only in carefully controlled circumstances.  Descheduling is
783  * asynchronous.
784  *
785  * This function may block if the cpu has run out of messages.
786  */
787 void
788 lwkt_deschedule(thread_t td)
789 {
790     crit_enter();
791     if (td == curthread) {
792 	_lwkt_dequeue(td);
793     } else {
794 	if (td->td_gd == mycpu) {
795 	    _lwkt_dequeue(td);
796 	} else {
797 	    lwkt_send_ipiq(td->td_gd->gd_cpuid, (ipifunc_t)lwkt_deschedule, td);
798 	}
799     }
800     crit_exit();
801 }
802 
803 /*
804  * Set the target thread's priority.  This routine does not automatically
805  * switch to a higher priority thread, LWKT threads are not designed for
806  * continuous priority changes.  Yield if you want to switch.
807  *
808  * We have to retain the critical section count which uses the high bits
809  * of the td_pri field.  The specified priority may also indicate zero or
810  * more critical sections by adding TDPRI_CRIT*N.
811  */
812 void
813 lwkt_setpri(thread_t td, int pri)
814 {
815     KKASSERT(pri >= 0);
816     KKASSERT(td->td_gd == mycpu);
817     crit_enter();
818     if (td->td_flags & TDF_RUNQ) {
819 	_lwkt_dequeue(td);
820 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
821 	_lwkt_enqueue(td);
822     } else {
823 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
824     }
825     crit_exit();
826 }
827 
828 void
829 lwkt_setpri_self(int pri)
830 {
831     thread_t td = curthread;
832 
833     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
834     crit_enter();
835     if (td->td_flags & TDF_RUNQ) {
836 	_lwkt_dequeue(td);
837 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
838 	_lwkt_enqueue(td);
839     } else {
840 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
841     }
842     crit_exit();
843 }
844 
845 struct proc *
846 lwkt_preempted_proc(void)
847 {
848     thread_t td = curthread;
849     while (td->td_preempted)
850 	td = td->td_preempted;
851     return(td->td_proc);
852 }
853 
854 typedef struct lwkt_gettoken_req {
855     lwkt_token_t tok;
856     int	cpu;
857 } lwkt_gettoken_req;
858 
859 #if 0
860 
861 /*
862  * This function deschedules the current thread and blocks on the specified
863  * wait queue.  We obtain ownership of the wait queue in order to block
864  * on it.  A generation number is used to interlock the wait queue in case
865  * it gets signalled while we are blocked waiting on the token.
866  *
867  * Note: alternatively we could dequeue our thread and then message the
868  * target cpu owning the wait queue.  YYY implement as sysctl.
869  *
870  * Note: wait queue signals normally ping-pong the cpu as an optimization.
871  */
872 
873 void
874 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
875 {
876     thread_t td = curthread;
877 
878     lwkt_gettoken(&w->wa_token);
879     if (w->wa_gen == *gen) {
880 	_lwkt_dequeue(td);
881 	TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
882 	++w->wa_count;
883 	td->td_wait = w;
884 	td->td_wmesg = wmesg;
885 again:
886 	lwkt_switch();
887 	lwkt_regettoken(&w->wa_token);
888 	if (td->td_wmesg != NULL) {
889 	    _lwkt_dequeue(td);
890 	    goto again;
891 	}
892     }
893     /* token might be lost, doesn't matter for gen update */
894     *gen = w->wa_gen;
895     lwkt_reltoken(&w->wa_token);
896 }
897 
898 /*
899  * Signal a wait queue.  We gain ownership of the wait queue in order to
900  * signal it.  Once a thread is removed from the wait queue we have to
901  * deal with the cpu owning the thread.
902  *
903  * Note: alternatively we could message the target cpu owning the wait
904  * queue.  YYY implement as sysctl.
905  */
906 void
907 lwkt_signal(lwkt_wait_t w, int count)
908 {
909     thread_t td;
910     int count;
911 
912     lwkt_gettoken(&w->wa_token);
913     ++w->wa_gen;
914     if (count < 0)
915 	count = w->wa_count;
916     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
917 	--count;
918 	--w->wa_count;
919 	TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
920 	td->td_wait = NULL;
921 	td->td_wmesg = NULL;
922 	if (td->td_gd == mycpu) {
923 	    _lwkt_enqueue(td);
924 	} else {
925 	    lwkt_send_ipiq(td->td_gd->gd_cpuid, (ipifunc_t)lwkt_schedule, td);
926 	}
927 	lwkt_regettoken(&w->wa_token);
928     }
929     lwkt_reltoken(&w->wa_token);
930 }
931 
932 #endif
933 
934 /*
935  * Acquire ownership of a token
936  *
937  * Acquire ownership of a token.  The token may have spl and/or critical
938  * section side effects, depending on its purpose.  These side effects
939  * guarentee that you will maintain ownership of the token as long as you
940  * do not block.  If you block you may lose access to the token (but you
941  * must still release it even if you lose your access to it).
942  *
943  * YYY for now we use a critical section to prevent IPIs from taking away
944  * a token, but do we really only need to disable IPIs ?
945  *
946  * YYY certain tokens could be made to act like mutexes when performance
947  * would be better (e.g. t_cpu == -1).  This is not yet implemented.
948  *
949  * YYY the tokens replace 4.x's simplelocks for the most part, but this
950  * means that 4.x does not expect a switch so for now we cannot switch
951  * when waiting for an IPI to be returned.
952  *
953  * YYY If the token is owned by another cpu we may have to send an IPI to
954  * it and then block.   The IPI causes the token to be given away to the
955  * requesting cpu, unless it has already changed hands.  Since only the
956  * current cpu can give away a token it owns we do not need a memory barrier.
957  * This needs serious optimization.
958  */
959 
960 #ifdef SMP
961 
962 static
963 void
964 lwkt_gettoken_remote(void *arg)
965 {
966     lwkt_gettoken_req *req = arg;
967     if (req->tok->t_cpu == mycpu->gd_cpuid) {
968 #ifdef INVARIANTS
969 	if (token_debug)
970 	    printf("GT(%d,%d) ", req->tok->t_cpu, req->cpu);
971 #endif
972 	req->tok->t_cpu = req->cpu;
973 	req->tok->t_reqcpu = req->cpu;	/* YYY leave owned by target cpu */
974 	/* else set reqcpu to point to current cpu for release */
975     }
976 }
977 
978 #endif
979 
980 int
981 lwkt_gettoken(lwkt_token_t tok)
982 {
983     /*
984      * Prevent preemption so the token can't be taken away from us once
985      * we gain ownership of it.  Use a synchronous request which might
986      * block.  The request will be forwarded as necessary playing catchup
987      * to the token.
988      */
989 
990     crit_enter();
991 #ifdef INVARIANTS
992     if (curthread->td_pri > 2000) {
993 	curthread->td_pri = 1000;
994 	panic("too HIGH!");
995     }
996 #endif
997 #ifdef SMP
998     while (tok->t_cpu != mycpu->gd_cpuid) {
999 	struct lwkt_gettoken_req req;
1000 	int seq;
1001 	int dcpu;
1002 
1003 	req.cpu = mycpu->gd_cpuid;
1004 	req.tok = tok;
1005 	dcpu = (volatile int)tok->t_cpu;
1006 	KKASSERT(dcpu >= 0 && dcpu < ncpus);
1007 #ifdef INVARIANTS
1008 	if (token_debug)
1009 	    printf("REQT%d ", dcpu);
1010 #endif
1011 	seq = lwkt_send_ipiq(dcpu, lwkt_gettoken_remote, &req);
1012 	lwkt_wait_ipiq(dcpu, seq);
1013 #ifdef INVARIANTS
1014 	if (token_debug)
1015 	    printf("REQR%d ", tok->t_cpu);
1016 #endif
1017     }
1018 #endif
1019     /*
1020      * leave us in a critical section on return.  This will be undone
1021      * by lwkt_reltoken().  Bump the generation number.
1022      */
1023     return(++tok->t_gen);
1024 }
1025 
1026 /*
1027  * Attempt to acquire ownership of a token.  Returns 1 on success, 0 on
1028  * failure.
1029  */
1030 int
1031 lwkt_trytoken(lwkt_token_t tok)
1032 {
1033     crit_enter();
1034 #ifdef SMP
1035     if (tok->t_cpu != mycpu->gd_cpuid) {
1036 	return(0);
1037     }
1038 #endif
1039     /* leave us in the critical section */
1040     ++tok->t_gen;
1041     return(1);
1042 }
1043 
1044 /*
1045  * Release your ownership of a token.  Releases must occur in reverse
1046  * order to aquisitions, eventually so priorities can be unwound properly
1047  * like SPLs.  At the moment the actual implemention doesn't care.
1048  *
1049  * We can safely hand a token that we own to another cpu without notifying
1050  * it, but once we do we can't get it back without requesting it (unless
1051  * the other cpu hands it back to us before we check).
1052  *
1053  * We might have lost the token, so check that.
1054  */
1055 void
1056 lwkt_reltoken(lwkt_token_t tok)
1057 {
1058     if (tok->t_cpu == mycpu->gd_cpuid) {
1059 	tok->t_cpu = tok->t_reqcpu;
1060     }
1061     crit_exit();
1062 }
1063 
1064 /*
1065  * Reacquire a token that might have been lost and compare and update the
1066  * generation number.  0 is returned if the generation has not changed
1067  * (nobody else obtained the token while we were blocked, on this cpu or
1068  * any other cpu).
1069  *
1070  * This function returns with the token re-held whether the generation
1071  * number changed or not.
1072  */
1073 int
1074 lwkt_gentoken(lwkt_token_t tok, int *gen)
1075 {
1076     if (lwkt_regettoken(tok) == *gen) {
1077 	return(0);
1078     } else {
1079 	*gen = tok->t_gen;
1080 	return(-1);
1081     }
1082 }
1083 
1084 
1085 /*
1086  * Re-acquire a token that might have been lost.  Returns the generation
1087  * number of the token.
1088  */
1089 int
1090 lwkt_regettoken(lwkt_token_t tok)
1091 {
1092     /* assert we are in a critical section */
1093     if (tok->t_cpu != mycpu->gd_cpuid) {
1094 #ifdef SMP
1095 	while (tok->t_cpu != mycpu->gd_cpuid) {
1096 	    struct lwkt_gettoken_req req;
1097 	    int seq;
1098 	    int dcpu;
1099 
1100 	    req.cpu = mycpu->gd_cpuid;
1101 	    req.tok = tok;
1102 	    dcpu = (volatile int)tok->t_cpu;
1103 	    KKASSERT(dcpu >= 0 && dcpu < ncpus);
1104 #ifdef INVARIANTS
1105 	    if (token_debug)
1106 		printf("REQT%d ", dcpu);
1107 #endif
1108 	    seq = lwkt_send_ipiq(dcpu, lwkt_gettoken_remote, &req);
1109 	    lwkt_wait_ipiq(dcpu, seq);
1110 #ifdef INVARIATNS
1111 	    if (token_debug)
1112 		printf("REQR%d ", tok->t_cpu);
1113 #endif
1114 	}
1115 #endif
1116 	++tok->t_gen;
1117     }
1118     return(tok->t_gen);
1119 }
1120 
1121 void
1122 lwkt_inittoken(lwkt_token_t tok)
1123 {
1124     /*
1125      * Zero structure and set cpu owner and reqcpu to cpu 0.
1126      */
1127     bzero(tok, sizeof(*tok));
1128 }
1129 
1130 /*
1131  * Create a kernel process/thread/whatever.  It shares it's address space
1132  * with proc0 - ie: kernel only.
1133  *
1134  * XXX should be renamed to lwkt_create()
1135  *
1136  * The thread will be entered with the MP lock held.
1137  */
1138 int
1139 lwkt_create(void (*func)(void *), void *arg,
1140     struct thread **tdp, thread_t template, int tdflags,
1141     const char *fmt, ...)
1142 {
1143     thread_t td;
1144     va_list ap;
1145 
1146     td = lwkt_alloc_thread(template);
1147     if (tdp)
1148 	*tdp = td;
1149     cpu_set_thread_handler(td, kthread_exit, func, arg);
1150     td->td_flags |= TDF_VERBOSE | tdflags;
1151 #ifdef SMP
1152     td->td_mpcount = 1;
1153 #endif
1154 
1155     /*
1156      * Set up arg0 for 'ps' etc
1157      */
1158     va_start(ap, fmt);
1159     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1160     va_end(ap);
1161 
1162     /*
1163      * Schedule the thread to run
1164      */
1165     if ((td->td_flags & TDF_STOPREQ) == 0)
1166 	lwkt_schedule(td);
1167     else
1168 	td->td_flags &= ~TDF_STOPREQ;
1169     return 0;
1170 }
1171 
1172 /*
1173  * Destroy an LWKT thread.   Warning!  This function is not called when
1174  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1175  * uses a different reaping mechanism.
1176  */
1177 void
1178 lwkt_exit(void)
1179 {
1180     thread_t td = curthread;
1181 
1182     if (td->td_flags & TDF_VERBOSE)
1183 	printf("kthread %p %s has exited\n", td, td->td_comm);
1184     crit_enter();
1185     lwkt_deschedule_self();
1186     ++mycpu->gd_tdfreecount;
1187     TAILQ_INSERT_TAIL(&mycpu->gd_tdfreeq, td, td_threadq);
1188     cpu_thread_exit();
1189 }
1190 
1191 /*
1192  * Create a kernel process/thread/whatever.  It shares it's address space
1193  * with proc0 - ie: kernel only.  5.x compatible.
1194  */
1195 int
1196 kthread_create(void (*func)(void *), void *arg,
1197     struct thread **tdp, const char *fmt, ...)
1198 {
1199     thread_t td;
1200     va_list ap;
1201 
1202     td = lwkt_alloc_thread(NULL);
1203     if (tdp)
1204 	*tdp = td;
1205     cpu_set_thread_handler(td, kthread_exit, func, arg);
1206     td->td_flags |= TDF_VERBOSE;
1207 #ifdef SMP
1208     td->td_mpcount = 1;
1209 #endif
1210 
1211     /*
1212      * Set up arg0 for 'ps' etc
1213      */
1214     va_start(ap, fmt);
1215     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1216     va_end(ap);
1217 
1218     /*
1219      * Schedule the thread to run
1220      */
1221     lwkt_schedule(td);
1222     return 0;
1223 }
1224 
1225 void
1226 crit_panic(void)
1227 {
1228     thread_t td = curthread;
1229     int lpri = td->td_pri;
1230 
1231     td->td_pri = 0;
1232     panic("td_pri is/would-go negative! %p %d", td, lpri);
1233 }
1234 
1235 /*
1236  * Destroy an LWKT thread.   Warning!  This function is not called when
1237  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1238  * uses a different reaping mechanism.
1239  *
1240  * XXX duplicates lwkt_exit()
1241  */
1242 void
1243 kthread_exit(void)
1244 {
1245     lwkt_exit();
1246 }
1247 
1248 #ifdef SMP
1249 
1250 /*
1251  * Send a function execution request to another cpu.  The request is queued
1252  * on the cpu<->cpu ipiq matrix.  Each cpu owns a unique ipiq FIFO for every
1253  * possible target cpu.  The FIFO can be written.
1254  *
1255  * YYY If the FIFO fills up we have to enable interrupts and process the
1256  * IPIQ while waiting for it to empty or we may deadlock with another cpu.
1257  * Create a CPU_*() function to do this!
1258  *
1259  * Must be called from a critical section.
1260  */
1261 int
1262 lwkt_send_ipiq(int dcpu, ipifunc_t func, void *arg)
1263 {
1264     lwkt_ipiq_t ip;
1265     int windex;
1266     struct globaldata *gd = mycpu;
1267 
1268     if (dcpu == gd->gd_cpuid) {
1269 	func(arg);
1270 	return(0);
1271     }
1272     crit_enter();
1273     ++gd->gd_intr_nesting_level;
1274 #ifdef INVARIANTS
1275     if (gd->gd_intr_nesting_level > 20)
1276 	panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
1277 #endif
1278     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
1279     KKASSERT(dcpu >= 0 && dcpu < ncpus);
1280     ++ipiq_count;
1281     ip = &gd->gd_ipiq[dcpu];
1282 
1283     /*
1284      * We always drain before the FIFO becomes full so it should never
1285      * become full.  We need to leave enough entries to deal with
1286      * reentrancy.
1287      */
1288     KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO);
1289     windex = ip->ip_windex & MAXCPUFIFO_MASK;
1290     ip->ip_func[windex] = func;
1291     ip->ip_arg[windex] = arg;
1292     /* YYY memory barrier */
1293     ++ip->ip_windex;
1294     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
1295 	unsigned int eflags = read_eflags();
1296 	cpu_enable_intr();
1297 	++ipiq_fifofull;
1298 	while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
1299 	    KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
1300 	    lwkt_process_ipiq();
1301 	}
1302 	write_eflags(eflags);
1303     }
1304     --gd->gd_intr_nesting_level;
1305     cpu_send_ipiq(dcpu);	/* issues memory barrier if appropriate */
1306     crit_exit();
1307     return(ip->ip_windex);
1308 }
1309 
1310 /*
1311  * Send a message to several target cpus.  Typically used for scheduling.
1312  */
1313 void
1314 lwkt_send_ipiq_mask(u_int32_t mask, ipifunc_t func, void *arg)
1315 {
1316     int cpuid;
1317 
1318     while (mask) {
1319 	    cpuid = bsfl(mask);
1320 	    lwkt_send_ipiq(cpuid, func, arg);
1321 	    mask &= ~(1 << cpuid);
1322     }
1323 }
1324 
1325 /*
1326  * Wait for the remote cpu to finish processing a function.
1327  *
1328  * YYY we have to enable interrupts and process the IPIQ while waiting
1329  * for it to empty or we may deadlock with another cpu.  Create a CPU_*()
1330  * function to do this!  YYY we really should 'block' here.
1331  *
1332  * Must be called from a critical section.  Thsi routine may be called
1333  * from an interrupt (for example, if an interrupt wakes a foreign thread
1334  * up).
1335  */
1336 void
1337 lwkt_wait_ipiq(int dcpu, int seq)
1338 {
1339     lwkt_ipiq_t ip;
1340     int maxc = 100000000;
1341 
1342     if (dcpu != mycpu->gd_cpuid) {
1343 	KKASSERT(dcpu >= 0 && dcpu < ncpus);
1344 	ip = &mycpu->gd_ipiq[dcpu];
1345 	if ((int)(ip->ip_xindex - seq) < 0) {
1346 	    unsigned int eflags = read_eflags();
1347 	    cpu_enable_intr();
1348 	    while ((int)(ip->ip_xindex - seq) < 0) {
1349 		lwkt_process_ipiq();
1350 		if (--maxc == 0)
1351 			printf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n", mycpu->gd_cpuid, dcpu, ip->ip_xindex - seq);
1352 		if (maxc < -1000000)
1353 			panic("LWKT_WAIT_IPIQ");
1354 	    }
1355 	    write_eflags(eflags);
1356 	}
1357     }
1358 }
1359 
1360 /*
1361  * Called from IPI interrupt (like a fast interrupt), which has placed
1362  * us in a critical section.  The MP lock may or may not be held.
1363  * May also be called from doreti or splz, or be reentrantly called
1364  * indirectly through the ip_func[] we run.
1365  */
1366 void
1367 lwkt_process_ipiq(void)
1368 {
1369     int n;
1370     int cpuid = mycpu->gd_cpuid;
1371 
1372     for (n = 0; n < ncpus; ++n) {
1373 	lwkt_ipiq_t ip;
1374 	int ri;
1375 
1376 	if (n == cpuid)
1377 	    continue;
1378 	ip = globaldata_find(n)->gd_ipiq;
1379 	if (ip == NULL)
1380 	    continue;
1381 	ip = &ip[cpuid];
1382 
1383 	/*
1384 	 * Note: xindex is only updated after we are sure the function has
1385 	 * finished execution.  Beware lwkt_process_ipiq() reentrancy!  The
1386 	 * function may send an IPI which may block/drain.
1387 	 */
1388 	while (ip->ip_rindex != ip->ip_windex) {
1389 	    ri = ip->ip_rindex & MAXCPUFIFO_MASK;
1390 	    ++ip->ip_rindex;
1391 	    ip->ip_func[ri](ip->ip_arg[ri]);
1392 	    /* YYY memory barrier */
1393 	    ip->ip_xindex = ip->ip_rindex;
1394 	}
1395     }
1396 }
1397 
1398 #else
1399 
1400 int
1401 lwkt_send_ipiq(int dcpu, ipifunc_t func, void *arg)
1402 {
1403     panic("lwkt_send_ipiq: UP box! (%d,%p,%p)", dcpu, func, arg);
1404     return(0); /* NOT REACHED */
1405 }
1406 
1407 void
1408 lwkt_wait_ipiq(int dcpu, int seq)
1409 {
1410     panic("lwkt_wait_ipiq: UP box! (%d,%d)", dcpu, seq);
1411 }
1412 
1413 #endif
1414