xref: /dragonfly/sys/kern/lwkt_thread.c (revision cfd1aba3)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59 
60 #include <sys/dsched.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70 
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 
74 #ifdef _KERNEL_VIRTUAL
75 #include <pthread.h>
76 #endif
77 
78 #if !defined(KTR_CTXSW)
79 #define KTR_CTXSW KTR_ALL
80 #endif
81 KTR_INFO_MASTER(ctxsw);
82 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
83 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
84 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
86 
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88 
89 #ifdef	INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static __int64_t switch_count = 0;
93 static __int64_t preempt_hit = 0;
94 static __int64_t preempt_miss = 0;
95 static __int64_t preempt_weird = 0;
96 static int lwkt_use_spin_port;
97 static struct objcache *thread_cache;
98 int cpu_mwait_spin = 0;
99 
100 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
101 static void lwkt_setcpu_remote(void *arg);
102 
103 extern void cpu_heavy_restore(void);
104 extern void cpu_lwkt_restore(void);
105 extern void cpu_kthread_restore(void);
106 extern void cpu_idle_restore(void);
107 
108 /*
109  * We can make all thread ports use the spin backend instead of the thread
110  * backend.  This should only be set to debug the spin backend.
111  */
112 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
113 
114 #ifdef	INVARIANTS
115 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
116     "Panic if attempting to switch lwkt's while mastering cpusync");
117 #endif
118 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
119     "Number of switched threads");
120 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
121     "Successful preemption events");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
123     "Failed preemption events");
124 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
125     "Number of preempted threads.");
126 static int fairq_enable = 0;
127 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
128 	&fairq_enable, 0, "Turn on fairq priority accumulators");
129 static int fairq_bypass = -1;
130 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
131 	&fairq_bypass, 0, "Allow fairq to bypass td on token failure");
132 extern int lwkt_sched_debug;
133 int lwkt_sched_debug = 0;
134 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
135 	&lwkt_sched_debug, 0, "Scheduler debug");
136 static int lwkt_spin_loops = 10;
137 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
138 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
139 static int lwkt_spin_reseq = 0;
140 SYSCTL_INT(_lwkt, OID_AUTO, spin_reseq, CTLFLAG_RW,
141 	&lwkt_spin_reseq, 0, "Scheduler resequencer enable");
142 static int lwkt_spin_monitor = 0;
143 SYSCTL_INT(_lwkt, OID_AUTO, spin_monitor, CTLFLAG_RW,
144 	&lwkt_spin_monitor, 0, "Scheduler uses monitor/mwait");
145 static int lwkt_spin_fatal = 0;	/* disabled */
146 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
147 	&lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
148 static int preempt_enable = 1;
149 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
150 	&preempt_enable, 0, "Enable preemption");
151 static int lwkt_cache_threads = 0;
152 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
153 	&lwkt_cache_threads, 0, "thread+kstack cache");
154 
155 #ifndef _KERNEL_VIRTUAL
156 static __cachealign int lwkt_cseq_rindex;
157 static __cachealign int lwkt_cseq_windex;
158 #endif
159 
160 /*
161  * These helper procedures handle the runq, they can only be called from
162  * within a critical section.
163  *
164  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
165  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
166  * instead of 'mycpu' when referencing the globaldata structure.   Once
167  * SMP live enqueuing and dequeueing only occurs on the current cpu.
168  */
169 static __inline
170 void
171 _lwkt_dequeue(thread_t td)
172 {
173     if (td->td_flags & TDF_RUNQ) {
174 	struct globaldata *gd = td->td_gd;
175 
176 	td->td_flags &= ~TDF_RUNQ;
177 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
178 	--gd->gd_tdrunqcount;
179 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
180 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
181     }
182 }
183 
184 /*
185  * Priority enqueue.
186  *
187  * There are a limited number of lwkt threads runnable since user
188  * processes only schedule one at a time per cpu.  However, there can
189  * be many user processes in kernel mode exiting from a tsleep() which
190  * become runnable.
191  *
192  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
193  *	 will ignore user priority.  This is to ensure that user threads in
194  *	 kernel mode get cpu at some point regardless of what the user
195  *	 scheduler thinks.
196  */
197 static __inline
198 void
199 _lwkt_enqueue(thread_t td)
200 {
201     thread_t xtd;
202 
203     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
204 	struct globaldata *gd = td->td_gd;
205 
206 	td->td_flags |= TDF_RUNQ;
207 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
208 	if (xtd == NULL) {
209 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
210 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
211 	} else {
212 	    /*
213 	     * NOTE: td_upri - higher numbers more desireable, same sense
214 	     *	     as td_pri (typically reversed from lwp_upri).
215 	     *
216 	     *	     In the equal priority case we want the best selection
217 	     *	     at the beginning so the less desireable selections know
218 	     *	     that they have to setrunqueue/go-to-another-cpu, even
219 	     *	     though it means switching back to the 'best' selection.
220 	     *	     This also avoids degenerate situations when many threads
221 	     *	     are runnable or waking up at the same time.
222 	     *
223 	     *	     If upri matches exactly place at end/round-robin.
224 	     */
225 	    while (xtd &&
226 		   (xtd->td_pri >= td->td_pri ||
227 		    (xtd->td_pri == td->td_pri &&
228 		     xtd->td_upri >= td->td_upri))) {
229 		xtd = TAILQ_NEXT(xtd, td_threadq);
230 	    }
231 	    if (xtd)
232 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
233 	    else
234 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
235 	}
236 	++gd->gd_tdrunqcount;
237 
238 	/*
239 	 * Request a LWKT reschedule if we are now at the head of the queue.
240 	 */
241 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
242 	    need_lwkt_resched();
243     }
244 }
245 
246 static __boolean_t
247 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
248 {
249 	struct thread *td = (struct thread *)obj;
250 
251 	td->td_kstack = NULL;
252 	td->td_kstack_size = 0;
253 	td->td_flags = TDF_ALLOCATED_THREAD;
254 	td->td_mpflags = 0;
255 	return (1);
256 }
257 
258 static void
259 _lwkt_thread_dtor(void *obj, void *privdata)
260 {
261 	struct thread *td = (struct thread *)obj;
262 
263 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
264 	    ("_lwkt_thread_dtor: not allocated from objcache"));
265 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
266 		td->td_kstack_size > 0,
267 	    ("_lwkt_thread_dtor: corrupted stack"));
268 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
269 	td->td_kstack = NULL;
270 	td->td_flags = 0;
271 }
272 
273 /*
274  * Initialize the lwkt s/system.
275  *
276  * Nominally cache up to 32 thread + kstack structures.  Cache more on
277  * systems with a lot of cpu cores.
278  */
279 void
280 lwkt_init(void)
281 {
282     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
283     if (lwkt_cache_threads == 0) {
284 	lwkt_cache_threads = ncpus * 4;
285 	if (lwkt_cache_threads < 32)
286 	    lwkt_cache_threads = 32;
287     }
288     thread_cache = objcache_create_mbacked(
289 				M_THREAD, sizeof(struct thread),
290 				0, lwkt_cache_threads,
291 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
292 }
293 
294 /*
295  * Schedule a thread to run.  As the current thread we can always safely
296  * schedule ourselves, and a shortcut procedure is provided for that
297  * function.
298  *
299  * (non-blocking, self contained on a per cpu basis)
300  */
301 void
302 lwkt_schedule_self(thread_t td)
303 {
304     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
305     crit_enter_quick(td);
306     KASSERT(td != &td->td_gd->gd_idlethread,
307 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
308     KKASSERT(td->td_lwp == NULL ||
309 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
310     _lwkt_enqueue(td);
311     crit_exit_quick(td);
312 }
313 
314 /*
315  * Deschedule a thread.
316  *
317  * (non-blocking, self contained on a per cpu basis)
318  */
319 void
320 lwkt_deschedule_self(thread_t td)
321 {
322     crit_enter_quick(td);
323     _lwkt_dequeue(td);
324     crit_exit_quick(td);
325 }
326 
327 /*
328  * LWKTs operate on a per-cpu basis
329  *
330  * WARNING!  Called from early boot, 'mycpu' may not work yet.
331  */
332 void
333 lwkt_gdinit(struct globaldata *gd)
334 {
335     TAILQ_INIT(&gd->gd_tdrunq);
336     TAILQ_INIT(&gd->gd_tdallq);
337 }
338 
339 /*
340  * Create a new thread.  The thread must be associated with a process context
341  * or LWKT start address before it can be scheduled.  If the target cpu is
342  * -1 the thread will be created on the current cpu.
343  *
344  * If you intend to create a thread without a process context this function
345  * does everything except load the startup and switcher function.
346  */
347 thread_t
348 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
349 {
350     static int cpu_rotator;
351     globaldata_t gd = mycpu;
352     void *stack;
353 
354     /*
355      * If static thread storage is not supplied allocate a thread.  Reuse
356      * a cached free thread if possible.  gd_freetd is used to keep an exiting
357      * thread intact through the exit.
358      */
359     if (td == NULL) {
360 	crit_enter_gd(gd);
361 	if ((td = gd->gd_freetd) != NULL) {
362 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
363 				      TDF_RUNQ)) == 0);
364 	    gd->gd_freetd = NULL;
365 	} else {
366 	    td = objcache_get(thread_cache, M_WAITOK);
367 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
368 				      TDF_RUNQ)) == 0);
369 	}
370 	crit_exit_gd(gd);
371     	KASSERT((td->td_flags &
372 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
373 		 TDF_ALLOCATED_THREAD,
374 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
375     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
376     }
377 
378     /*
379      * Try to reuse cached stack.
380      */
381     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
382 	if (flags & TDF_ALLOCATED_STACK) {
383 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
384 	    stack = NULL;
385 	}
386     }
387     if (stack == NULL) {
388 	stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
389 	flags |= TDF_ALLOCATED_STACK;
390     }
391     if (cpu < 0) {
392 	cpu = ++cpu_rotator;
393 	cpu_ccfence();
394 	cpu %= ncpus;
395     }
396     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
397     return(td);
398 }
399 
400 /*
401  * Initialize a preexisting thread structure.  This function is used by
402  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
403  *
404  * All threads start out in a critical section at a priority of
405  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
406  * appropriate.  This function may send an IPI message when the
407  * requested cpu is not the current cpu and consequently gd_tdallq may
408  * not be initialized synchronously from the point of view of the originating
409  * cpu.
410  *
411  * NOTE! we have to be careful in regards to creating threads for other cpus
412  * if SMP has not yet been activated.
413  */
414 static void
415 lwkt_init_thread_remote(void *arg)
416 {
417     thread_t td = arg;
418 
419     /*
420      * Protected by critical section held by IPI dispatch
421      */
422     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
423 }
424 
425 /*
426  * lwkt core thread structural initialization.
427  *
428  * NOTE: All threads are initialized as mpsafe threads.
429  */
430 void
431 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
432 		struct globaldata *gd)
433 {
434     globaldata_t mygd = mycpu;
435 
436     bzero(td, sizeof(struct thread));
437     td->td_kstack = stack;
438     td->td_kstack_size = stksize;
439     td->td_flags = flags;
440     td->td_mpflags = 0;
441     td->td_type = TD_TYPE_GENERIC;
442     td->td_gd = gd;
443     td->td_pri = TDPRI_KERN_DAEMON;
444     td->td_critcount = 1;
445     td->td_toks_have = NULL;
446     td->td_toks_stop = &td->td_toks_base;
447     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
448 	lwkt_initport_spin(&td->td_msgport, td,
449 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
450     } else {
451 	lwkt_initport_thread(&td->td_msgport, td);
452     }
453     pmap_init_thread(td);
454     /*
455      * Normally initializing a thread for a remote cpu requires sending an
456      * IPI.  However, the idlethread is setup before the other cpus are
457      * activated so we have to treat it as a special case.  XXX manipulation
458      * of gd_tdallq requires the BGL.
459      */
460     if (gd == mygd || td == &gd->gd_idlethread) {
461 	crit_enter_gd(mygd);
462 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
463 	crit_exit_gd(mygd);
464     } else {
465 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
466     }
467     dsched_new_thread(td);
468 }
469 
470 void
471 lwkt_set_comm(thread_t td, const char *ctl, ...)
472 {
473     __va_list va;
474 
475     __va_start(va, ctl);
476     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
477     __va_end(va);
478     KTR_LOG(ctxsw_newtd, td, td->td_comm);
479 }
480 
481 /*
482  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
483  * this does not prevent the thread from migrating to another cpu so the
484  * gd_tdallq state is not protected by this.
485  */
486 void
487 lwkt_hold(thread_t td)
488 {
489     atomic_add_int(&td->td_refs, 1);
490 }
491 
492 void
493 lwkt_rele(thread_t td)
494 {
495     KKASSERT(td->td_refs > 0);
496     atomic_add_int(&td->td_refs, -1);
497 }
498 
499 void
500 lwkt_free_thread(thread_t td)
501 {
502     KKASSERT(td->td_refs == 0);
503     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
504 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
505     if (td->td_flags & TDF_ALLOCATED_THREAD) {
506     	objcache_put(thread_cache, td);
507     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
508 	/* client-allocated struct with internally allocated stack */
509 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
510 	    ("lwkt_free_thread: corrupted stack"));
511 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
512 	td->td_kstack = NULL;
513 	td->td_kstack_size = 0;
514     }
515 
516     KTR_LOG(ctxsw_deadtd, td);
517 }
518 
519 
520 /*
521  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
522  * switch to the idlethread.  Switching must occur within a critical
523  * section to avoid races with the scheduling queue.
524  *
525  * We always have full control over our cpu's run queue.  Other cpus
526  * that wish to manipulate our queue must use the cpu_*msg() calls to
527  * talk to our cpu, so a critical section is all that is needed and
528  * the result is very, very fast thread switching.
529  *
530  * The LWKT scheduler uses a fixed priority model and round-robins at
531  * each priority level.  User process scheduling is a totally
532  * different beast and LWKT priorities should not be confused with
533  * user process priorities.
534  *
535  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
536  * is not called by the current thread in the preemption case, only when
537  * the preempting thread blocks (in order to return to the original thread).
538  *
539  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
540  * migration and tsleep deschedule the current lwkt thread and call
541  * lwkt_switch().  In particular, the target cpu of the migration fully
542  * expects the thread to become non-runnable and can deadlock against
543  * cpusync operations if we run any IPIs prior to switching the thread out.
544  *
545  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
546  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
547  */
548 void
549 lwkt_switch(void)
550 {
551     globaldata_t gd = mycpu;
552     thread_t td = gd->gd_curthread;
553     thread_t ntd;
554     int spinning = 0;
555 
556     KKASSERT(gd->gd_processing_ipiq == 0);
557     KKASSERT(td->td_flags & TDF_RUNNING);
558 
559     /*
560      * Switching from within a 'fast' (non thread switched) interrupt or IPI
561      * is illegal.  However, we may have to do it anyway if we hit a fatal
562      * kernel trap or we have paniced.
563      *
564      * If this case occurs save and restore the interrupt nesting level.
565      */
566     if (gd->gd_intr_nesting_level) {
567 	int savegdnest;
568 	int savegdtrap;
569 
570 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
571 	    panic("lwkt_switch: Attempt to switch from a "
572 		  "fast interrupt, ipi, or hard code section, "
573 		  "td %p\n",
574 		  td);
575 	} else {
576 	    savegdnest = gd->gd_intr_nesting_level;
577 	    savegdtrap = gd->gd_trap_nesting_level;
578 	    gd->gd_intr_nesting_level = 0;
579 	    gd->gd_trap_nesting_level = 0;
580 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
581 		td->td_flags |= TDF_PANICWARN;
582 		kprintf("Warning: thread switch from interrupt, IPI, "
583 			"or hard code section.\n"
584 			"thread %p (%s)\n", td, td->td_comm);
585 		print_backtrace(-1);
586 	    }
587 	    lwkt_switch();
588 	    gd->gd_intr_nesting_level = savegdnest;
589 	    gd->gd_trap_nesting_level = savegdtrap;
590 	    return;
591 	}
592     }
593 
594     /*
595      * Release our current user process designation if we are blocking
596      * or if a user reschedule was requested.
597      *
598      * NOTE: This function is NOT called if we are switching into or
599      *	     returning from a preemption.
600      *
601      * NOTE: Releasing our current user process designation may cause
602      *	     it to be assigned to another thread, which in turn will
603      *	     cause us to block in the usched acquire code when we attempt
604      *	     to return to userland.
605      *
606      * NOTE: On SMP systems this can be very nasty when heavy token
607      *	     contention is present so we want to be careful not to
608      *	     release the designation gratuitously.
609      */
610     if (td->td_release &&
611 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
612 	    td->td_release(td);
613     }
614 
615     /*
616      * Release all tokens
617      */
618     crit_enter_gd(gd);
619     if (TD_TOKS_HELD(td))
620 	    lwkt_relalltokens(td);
621 
622     /*
623      * We had better not be holding any spin locks, but don't get into an
624      * endless panic loop.
625      */
626     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
627 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
628 	     gd->gd_spinlocks));
629 
630 
631 #ifdef	INVARIANTS
632     if (td->td_cscount) {
633 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
634 		td);
635 	if (panic_on_cscount)
636 	    panic("switching while mastering cpusync");
637     }
638 #endif
639 
640     /*
641      * If we had preempted another thread on this cpu, resume the preempted
642      * thread.  This occurs transparently, whether the preempted thread
643      * was scheduled or not (it may have been preempted after descheduling
644      * itself).
645      *
646      * We have to setup the MP lock for the original thread after backing
647      * out the adjustment that was made to curthread when the original
648      * was preempted.
649      */
650     if ((ntd = td->td_preempted) != NULL) {
651 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
652 	ntd->td_flags |= TDF_PREEMPT_DONE;
653 
654 	/*
655 	 * The interrupt may have woken a thread up, we need to properly
656 	 * set the reschedule flag if the originally interrupted thread is
657 	 * at a lower priority.
658 	 *
659 	 * The interrupt may not have descheduled.
660 	 */
661 	if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
662 	    need_lwkt_resched();
663 	goto havethread_preempted;
664     }
665 
666     /*
667      * If we cannot obtain ownership of the tokens we cannot immediately
668      * schedule the target thread.
669      *
670      * Reminder: Again, we cannot afford to run any IPIs in this path if
671      * the current thread has been descheduled.
672      */
673     for (;;) {
674 	clear_lwkt_resched();
675 
676 	/*
677 	 * Hotpath - pull the head of the run queue and attempt to schedule
678 	 * it.
679 	 */
680 	ntd = TAILQ_FIRST(&gd->gd_tdrunq);
681 
682 	if (ntd == NULL) {
683 	    /*
684 	     * Runq is empty, switch to idle to allow it to halt.
685 	     */
686 	    ntd = &gd->gd_idlethread;
687 	    if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
688 		ASSERT_NO_TOKENS_HELD(ntd);
689 	    cpu_time.cp_msg[0] = 0;
690 	    cpu_time.cp_stallpc = 0;
691 	    goto haveidle;
692 	}
693 
694 	/*
695 	 * Hotpath - schedule ntd.
696 	 *
697 	 * NOTE: For UP there is no mplock and lwkt_getalltokens()
698 	 *	     always succeeds.
699 	 */
700 	if (TD_TOKS_NOT_HELD(ntd) ||
701 	    lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops)))
702 	{
703 	    goto havethread;
704 	}
705 
706 	/*
707 	 * Coldpath (SMP only since tokens always succeed on UP)
708 	 *
709 	 * We had some contention on the thread we wanted to schedule.
710 	 * What we do now is try to find a thread that we can schedule
711 	 * in its stead.
712 	 *
713 	 * The coldpath scan does NOT rearrange threads in the run list.
714 	 * The lwkt_schedulerclock() will assert need_lwkt_resched() on
715 	 * the next tick whenever the current head is not the current thread.
716 	 */
717 #ifdef	INVARIANTS
718 	++ntd->td_contended;
719 #endif
720 	++gd->gd_cnt.v_lock_colls;
721 
722 	if (fairq_bypass > 0)
723 		goto skip;
724 
725 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
726 #ifndef NO_LWKT_SPLIT_USERPRI
727 		/*
728 		 * Never schedule threads returning to userland or the
729 		 * user thread scheduler helper thread when higher priority
730 		 * threads are present.  The runq is sorted by priority
731 		 * so we can give up traversing it when we find the first
732 		 * low priority thread.
733 		 */
734 		if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
735 			ntd = NULL;
736 			break;
737 		}
738 #endif
739 
740 		/*
741 		 * Try this one.
742 		 */
743 		if (TD_TOKS_NOT_HELD(ntd) ||
744 		    lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops))) {
745 			goto havethread;
746 		}
747 #ifdef	INVARIANTS
748 		++ntd->td_contended;
749 #endif
750 		++gd->gd_cnt.v_lock_colls;
751 	}
752 
753 skip:
754 	/*
755 	 * We exhausted the run list, meaning that all runnable threads
756 	 * are contested.
757 	 */
758 	cpu_pause();
759 #ifdef _KERNEL_VIRTUAL
760 	pthread_yield();
761 #endif
762 	ntd = &gd->gd_idlethread;
763 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
764 	    ASSERT_NO_TOKENS_HELD(ntd);
765 	/* contention case, do not clear contention mask */
766 
767 	/*
768 	 * We are going to have to retry but if the current thread is not
769 	 * on the runq we instead switch through the idle thread to get away
770 	 * from the current thread.  We have to flag for lwkt reschedule
771 	 * to prevent the idle thread from halting.
772 	 *
773 	 * NOTE: A non-zero spinning is passed to lwkt_getalltokens() to
774 	 *	 instruct it to deal with the potential for deadlocks by
775 	 *	 ordering the tokens by address.
776 	 */
777 	if ((td->td_flags & TDF_RUNQ) == 0) {
778 	    need_lwkt_resched();	/* prevent hlt */
779 	    goto haveidle;
780 	}
781 #if defined(INVARIANTS) && defined(__x86_64__)
782 	if ((read_rflags() & PSL_I) == 0) {
783 		cpu_enable_intr();
784 		panic("lwkt_switch() called with interrupts disabled");
785 	}
786 #endif
787 
788 	/*
789 	 * Number iterations so far.  After a certain point we switch to
790 	 * a sorted-address/monitor/mwait version of lwkt_getalltokens()
791 	 */
792 	if (spinning < 0x7FFFFFFF)
793 	    ++spinning;
794 
795 #ifndef _KERNEL_VIRTUAL
796 	/*
797 	 * lwkt_getalltokens() failed in sorted token mode, we can use
798 	 * monitor/mwait in this case.
799 	 */
800 	if (spinning >= lwkt_spin_loops &&
801 	    (cpu_mi_feature & CPU_MI_MONITOR) &&
802 	    lwkt_spin_monitor)
803 	{
804 	    cpu_mmw_pause_int(&gd->gd_reqflags,
805 			      (gd->gd_reqflags | RQF_SPINNING) &
806 			      ~RQF_IDLECHECK_WK_MASK,
807 			      cpu_mwait_spin, 0);
808 	}
809 #endif
810 
811 	/*
812 	 * We already checked that td is still scheduled so this should be
813 	 * safe.
814 	 */
815 	splz_check();
816 
817 #ifndef _KERNEL_VIRTUAL
818 	/*
819 	 * This experimental resequencer is used as a fall-back to reduce
820 	 * hw cache line contention by placing each core's scheduler into a
821 	 * time-domain-multplexed slot.
822 	 *
823 	 * The resequencer is disabled by default.  It's functionality has
824 	 * largely been superceeded by the token algorithm which limits races
825 	 * to a subset of cores.
826 	 *
827 	 * The resequencer algorithm tends to break down when more than
828 	 * 20 cores are contending.  What appears to happen is that new
829 	 * tokens can be obtained out of address-sorted order by new cores
830 	 * while existing cores languish in long delays between retries and
831 	 * wind up being starved-out of the token acquisition.
832 	 */
833 	if (lwkt_spin_reseq && spinning >= lwkt_spin_reseq) {
834 	    int cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
835 	    int oseq;
836 
837 	    while ((oseq = lwkt_cseq_rindex) != cseq) {
838 		cpu_ccfence();
839 #if 1
840 		if (cpu_mi_feature & CPU_MI_MONITOR) {
841 		    cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq,
842 			cpu_mwait_spin, 0);
843 		} else {
844 #endif
845 		    cpu_pause();
846 		    cpu_lfence();
847 #if 1
848 		}
849 #endif
850 	    }
851 	    DELAY(1);
852 	    atomic_add_int(&lwkt_cseq_rindex, 1);
853 	}
854 #endif
855 	/* highest level for(;;) loop */
856     }
857 
858 havethread:
859     /*
860      * Clear gd_idle_repeat when doing a normal switch to a non-idle
861      * thread.
862      */
863     ntd->td_wmesg = NULL;
864     ++gd->gd_cnt.v_swtch;
865     gd->gd_idle_repeat = 0;
866 
867 havethread_preempted:
868     /*
869      * If the new target does not need the MP lock and we are holding it,
870      * release the MP lock.  If the new target requires the MP lock we have
871      * already acquired it for the target.
872      */
873     ;
874 haveidle:
875     KASSERT(ntd->td_critcount,
876 	    ("priority problem in lwkt_switch %d %d",
877 	    td->td_critcount, ntd->td_critcount));
878 
879     if (td != ntd) {
880 	/*
881 	 * Execute the actual thread switch operation.  This function
882 	 * returns to the current thread and returns the previous thread
883 	 * (which may be different from the thread we switched to).
884 	 *
885 	 * We are responsible for marking ntd as TDF_RUNNING.
886 	 */
887 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
888 	++switch_count;
889 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
890 	ntd->td_flags |= TDF_RUNNING;
891 	lwkt_switch_return(td->td_switch(ntd));
892 	/* ntd invalid, td_switch() can return a different thread_t */
893     }
894 
895     /*
896      * catch-all.  XXX is this strictly needed?
897      */
898     splz_check();
899 
900     /* NOTE: current cpu may have changed after switch */
901     crit_exit_quick(td);
902 }
903 
904 /*
905  * Called by assembly in the td_switch (thread restore path) for thread
906  * bootstrap cases which do not 'return' to lwkt_switch().
907  */
908 void
909 lwkt_switch_return(thread_t otd)
910 {
911 	globaldata_t rgd;
912 
913 	/*
914 	 * Check if otd was migrating.  Now that we are on ntd we can finish
915 	 * up the migration.  This is a bit messy but it is the only place
916 	 * where td is known to be fully descheduled.
917 	 *
918 	 * We can only activate the migration if otd was migrating but not
919 	 * held on the cpu due to a preemption chain.  We still have to
920 	 * clear TDF_RUNNING on the old thread either way.
921 	 *
922 	 * We are responsible for clearing the previously running thread's
923 	 * TDF_RUNNING.
924 	 */
925 	if ((rgd = otd->td_migrate_gd) != NULL &&
926 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
927 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
928 			 (TDF_MIGRATING | TDF_RUNNING));
929 		otd->td_migrate_gd = NULL;
930 		otd->td_flags &= ~TDF_RUNNING;
931 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
932 	} else {
933 		otd->td_flags &= ~TDF_RUNNING;
934 	}
935 
936 	/*
937 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
938 	 * invalid the *instant* we set TDF_MP_EXITSIG.
939 	 */
940 	while (otd->td_flags & TDF_EXITING) {
941 		u_int mpflags;
942 
943 		mpflags = otd->td_mpflags;
944 		cpu_ccfence();
945 
946 		if (mpflags & TDF_MP_EXITWAIT) {
947 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
948 					      mpflags | TDF_MP_EXITSIG)) {
949 				wakeup(otd);
950 				break;
951 			}
952 		} else {
953 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
954 					      mpflags | TDF_MP_EXITSIG)) {
955 				wakeup(otd);
956 				break;
957 			}
958 		}
959 	}
960 }
961 
962 /*
963  * Request that the target thread preempt the current thread.  Preemption
964  * can only occur if our only critical section is the one that we were called
965  * with, the relative priority of the target thread is higher, and the target
966  * thread holds no tokens.  This also only works if we are not holding any
967  * spinlocks (obviously).
968  *
969  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
970  * this is called via lwkt_schedule() through the td_preemptable callback.
971  * critcount is the managed critical priority that we should ignore in order
972  * to determine whether preemption is possible (aka usually just the crit
973  * priority of lwkt_schedule() itself).
974  *
975  * Preemption is typically limited to interrupt threads.
976  *
977  * Operation works in a fairly straight-forward manner.  The normal
978  * scheduling code is bypassed and we switch directly to the target
979  * thread.  When the target thread attempts to block or switch away
980  * code at the base of lwkt_switch() will switch directly back to our
981  * thread.  Our thread is able to retain whatever tokens it holds and
982  * if the target needs one of them the target will switch back to us
983  * and reschedule itself normally.
984  */
985 void
986 lwkt_preempt(thread_t ntd, int critcount)
987 {
988     struct globaldata *gd = mycpu;
989     thread_t xtd;
990     thread_t td;
991     int save_gd_intr_nesting_level;
992 
993     /*
994      * The caller has put us in a critical section.  We can only preempt
995      * if the caller of the caller was not in a critical section (basically
996      * a local interrupt), as determined by the 'critcount' parameter.  We
997      * also can't preempt if the caller is holding any spinlocks (even if
998      * he isn't in a critical section).  This also handles the tokens test.
999      *
1000      * YYY The target thread must be in a critical section (else it must
1001      * inherit our critical section?  I dunno yet).
1002      */
1003     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
1004 
1005     td = gd->gd_curthread;
1006     if (preempt_enable == 0) {
1007 	++preempt_miss;
1008 	return;
1009     }
1010     if (ntd->td_pri <= td->td_pri) {
1011 	++preempt_miss;
1012 	return;
1013     }
1014     if (td->td_critcount > critcount) {
1015 	++preempt_miss;
1016 	return;
1017     }
1018     if (td->td_cscount) {
1019 	++preempt_miss;
1020 	return;
1021     }
1022     if (ntd->td_gd != gd) {
1023 	++preempt_miss;
1024 	return;
1025     }
1026     /*
1027      * We don't have to check spinlocks here as they will also bump
1028      * td_critcount.
1029      *
1030      * Do not try to preempt if the target thread is holding any tokens.
1031      * We could try to acquire the tokens but this case is so rare there
1032      * is no need to support it.
1033      */
1034     KKASSERT(gd->gd_spinlocks == 0);
1035 
1036     if (TD_TOKS_HELD(ntd)) {
1037 	++preempt_miss;
1038 	return;
1039     }
1040     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1041 	++preempt_weird;
1042 	return;
1043     }
1044     if (ntd->td_preempted) {
1045 	++preempt_hit;
1046 	return;
1047     }
1048     KKASSERT(gd->gd_processing_ipiq == 0);
1049 
1050     /*
1051      * Since we are able to preempt the current thread, there is no need to
1052      * call need_lwkt_resched().
1053      *
1054      * We must temporarily clear gd_intr_nesting_level around the switch
1055      * since switchouts from the target thread are allowed (they will just
1056      * return to our thread), and since the target thread has its own stack.
1057      *
1058      * A preemption must switch back to the original thread, assert the
1059      * case.
1060      */
1061     ++preempt_hit;
1062     ntd->td_preempted = td;
1063     td->td_flags |= TDF_PREEMPT_LOCK;
1064     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1065     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1066     gd->gd_intr_nesting_level = 0;
1067 
1068     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1069     ntd->td_flags |= TDF_RUNNING;
1070     xtd = td->td_switch(ntd);
1071     KKASSERT(xtd == ntd);
1072     lwkt_switch_return(xtd);
1073     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1074 
1075     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1076     ntd->td_preempted = NULL;
1077     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1078 }
1079 
1080 /*
1081  * Conditionally call splz() if gd_reqflags indicates work is pending.
1082  * This will work inside a critical section but not inside a hard code
1083  * section.
1084  *
1085  * (self contained on a per cpu basis)
1086  */
1087 void
1088 splz_check(void)
1089 {
1090     globaldata_t gd = mycpu;
1091     thread_t td = gd->gd_curthread;
1092 
1093     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1094 	gd->gd_intr_nesting_level == 0 &&
1095 	td->td_nest_count < 2)
1096     {
1097 	splz();
1098     }
1099 }
1100 
1101 /*
1102  * This version is integrated into crit_exit, reqflags has already
1103  * been tested but td_critcount has not.
1104  *
1105  * We only want to execute the splz() on the 1->0 transition of
1106  * critcount and not in a hard code section or if too deeply nested.
1107  *
1108  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1109  */
1110 void
1111 lwkt_maybe_splz(thread_t td)
1112 {
1113     globaldata_t gd = td->td_gd;
1114 
1115     if (td->td_critcount == 0 &&
1116 	gd->gd_intr_nesting_level == 0 &&
1117 	td->td_nest_count < 2)
1118     {
1119 	splz();
1120     }
1121 }
1122 
1123 /*
1124  * Drivers which set up processing co-threads can call this function to
1125  * run the co-thread at a higher priority and to allow it to preempt
1126  * normal threads.
1127  */
1128 void
1129 lwkt_set_interrupt_support_thread(void)
1130 {
1131 	thread_t td = curthread;
1132 
1133         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1134 	td->td_flags |= TDF_INTTHREAD;
1135 	td->td_preemptable = lwkt_preempt;
1136 }
1137 
1138 
1139 /*
1140  * This function is used to negotiate a passive release of the current
1141  * process/lwp designation with the user scheduler, allowing the user
1142  * scheduler to schedule another user thread.  The related kernel thread
1143  * (curthread) continues running in the released state.
1144  */
1145 void
1146 lwkt_passive_release(struct thread *td)
1147 {
1148     struct lwp *lp = td->td_lwp;
1149 
1150 #ifndef NO_LWKT_SPLIT_USERPRI
1151     td->td_release = NULL;
1152     lwkt_setpri_self(TDPRI_KERN_USER);
1153 #endif
1154 
1155     lp->lwp_proc->p_usched->release_curproc(lp);
1156 }
1157 
1158 
1159 /*
1160  * This implements a LWKT yield, allowing a kernel thread to yield to other
1161  * kernel threads at the same or higher priority.  This function can be
1162  * called in a tight loop and will typically only yield once per tick.
1163  *
1164  * Most kernel threads run at the same priority in order to allow equal
1165  * sharing.
1166  *
1167  * (self contained on a per cpu basis)
1168  */
1169 void
1170 lwkt_yield(void)
1171 {
1172     globaldata_t gd = mycpu;
1173     thread_t td = gd->gd_curthread;
1174 
1175     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1176 	splz();
1177     if (lwkt_resched_wanted()) {
1178 	lwkt_schedule_self(curthread);
1179 	lwkt_switch();
1180     }
1181 }
1182 
1183 /*
1184  * The quick version processes pending interrupts and higher-priority
1185  * LWKT threads but will not round-robin same-priority LWKT threads.
1186  *
1187  * When called while attempting to return to userland the only same-pri
1188  * threads are the ones which have already tried to become the current
1189  * user process.
1190  */
1191 void
1192 lwkt_yield_quick(void)
1193 {
1194     globaldata_t gd = mycpu;
1195     thread_t td = gd->gd_curthread;
1196 
1197     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1198 	splz();
1199     if (lwkt_resched_wanted()) {
1200 	crit_enter();
1201 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1202 	    clear_lwkt_resched();
1203 	} else {
1204 	    lwkt_schedule_self(curthread);
1205 	    lwkt_switch();
1206 	}
1207 	crit_exit();
1208     }
1209 }
1210 
1211 /*
1212  * This yield is designed for kernel threads with a user context.
1213  *
1214  * The kernel acting on behalf of the user is potentially cpu-bound,
1215  * this function will efficiently allow other threads to run and also
1216  * switch to other processes by releasing.
1217  *
1218  * The lwkt_user_yield() function is designed to have very low overhead
1219  * if no yield is determined to be needed.
1220  */
1221 void
1222 lwkt_user_yield(void)
1223 {
1224     globaldata_t gd = mycpu;
1225     thread_t td = gd->gd_curthread;
1226 
1227     /*
1228      * Always run any pending interrupts in case we are in a critical
1229      * section.
1230      */
1231     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1232 	splz();
1233 
1234     /*
1235      * Switch (which forces a release) if another kernel thread needs
1236      * the cpu, if userland wants us to resched, or if our kernel
1237      * quantum has run out.
1238      */
1239     if (lwkt_resched_wanted() ||
1240 	user_resched_wanted())
1241     {
1242 	lwkt_switch();
1243     }
1244 
1245 #if 0
1246     /*
1247      * Reacquire the current process if we are released.
1248      *
1249      * XXX not implemented atm.  The kernel may be holding locks and such,
1250      *     so we want the thread to continue to receive cpu.
1251      */
1252     if (td->td_release == NULL && lp) {
1253 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1254 	td->td_release = lwkt_passive_release;
1255 	lwkt_setpri_self(TDPRI_USER_NORM);
1256     }
1257 #endif
1258 }
1259 
1260 /*
1261  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1262  * deal with threads that might be blocked on a wait queue.
1263  *
1264  * We have a little helper inline function which does additional work after
1265  * the thread has been enqueued, including dealing with preemption and
1266  * setting need_lwkt_resched() (which prevents the kernel from returning
1267  * to userland until it has processed higher priority threads).
1268  *
1269  * It is possible for this routine to be called after a failed _enqueue
1270  * (due to the target thread migrating, sleeping, or otherwise blocked).
1271  * We have to check that the thread is actually on the run queue!
1272  */
1273 static __inline
1274 void
1275 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1276 {
1277     if (ntd->td_flags & TDF_RUNQ) {
1278 	if (ntd->td_preemptable) {
1279 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1280 	}
1281     }
1282 }
1283 
1284 static __inline
1285 void
1286 _lwkt_schedule(thread_t td)
1287 {
1288     globaldata_t mygd = mycpu;
1289 
1290     KASSERT(td != &td->td_gd->gd_idlethread,
1291 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1292     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1293     crit_enter_gd(mygd);
1294     KKASSERT(td->td_lwp == NULL ||
1295 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1296 
1297     if (td == mygd->gd_curthread) {
1298 	_lwkt_enqueue(td);
1299     } else {
1300 	/*
1301 	 * If we own the thread, there is no race (since we are in a
1302 	 * critical section).  If we do not own the thread there might
1303 	 * be a race but the target cpu will deal with it.
1304 	 */
1305 	if (td->td_gd == mygd) {
1306 	    _lwkt_enqueue(td);
1307 	    _lwkt_schedule_post(mygd, td, 1);
1308 	} else {
1309 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1310 	}
1311     }
1312     crit_exit_gd(mygd);
1313 }
1314 
1315 void
1316 lwkt_schedule(thread_t td)
1317 {
1318     _lwkt_schedule(td);
1319 }
1320 
1321 void
1322 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1323 {
1324     _lwkt_schedule(td);
1325 }
1326 
1327 /*
1328  * When scheduled remotely if frame != NULL the IPIQ is being
1329  * run via doreti or an interrupt then preemption can be allowed.
1330  *
1331  * To allow preemption we have to drop the critical section so only
1332  * one is present in _lwkt_schedule_post.
1333  */
1334 static void
1335 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1336 {
1337     thread_t td = curthread;
1338     thread_t ntd = arg;
1339 
1340     if (frame && ntd->td_preemptable) {
1341 	crit_exit_noyield(td);
1342 	_lwkt_schedule(ntd);
1343 	crit_enter_quick(td);
1344     } else {
1345 	_lwkt_schedule(ntd);
1346     }
1347 }
1348 
1349 /*
1350  * Thread migration using a 'Pull' method.  The thread may or may not be
1351  * the current thread.  It MUST be descheduled and in a stable state.
1352  * lwkt_giveaway() must be called on the cpu owning the thread.
1353  *
1354  * At any point after lwkt_giveaway() is called, the target cpu may
1355  * 'pull' the thread by calling lwkt_acquire().
1356  *
1357  * We have to make sure the thread is not sitting on a per-cpu tsleep
1358  * queue or it will blow up when it moves to another cpu.
1359  *
1360  * MPSAFE - must be called under very specific conditions.
1361  */
1362 void
1363 lwkt_giveaway(thread_t td)
1364 {
1365     globaldata_t gd = mycpu;
1366 
1367     crit_enter_gd(gd);
1368     if (td->td_flags & TDF_TSLEEPQ)
1369 	tsleep_remove(td);
1370     KKASSERT(td->td_gd == gd);
1371     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1372     td->td_flags |= TDF_MIGRATING;
1373     crit_exit_gd(gd);
1374 }
1375 
1376 void
1377 lwkt_acquire(thread_t td)
1378 {
1379     globaldata_t gd;
1380     globaldata_t mygd;
1381     int retry = 10000000;
1382 
1383     KKASSERT(td->td_flags & TDF_MIGRATING);
1384     gd = td->td_gd;
1385     mygd = mycpu;
1386     if (gd != mycpu) {
1387 	cpu_lfence();
1388 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1389 	crit_enter_gd(mygd);
1390 	DEBUG_PUSH_INFO("lwkt_acquire");
1391 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1392 	    lwkt_process_ipiq();
1393 	    cpu_lfence();
1394 	    if (--retry == 0) {
1395 		kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1396 			td, td->td_flags);
1397 		retry = 10000000;
1398 	    }
1399 #ifdef _KERNEL_VIRTUAL
1400 	    pthread_yield();
1401 #endif
1402 	}
1403 	DEBUG_POP_INFO();
1404 	cpu_mfence();
1405 	td->td_gd = mygd;
1406 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1407 	td->td_flags &= ~TDF_MIGRATING;
1408 	crit_exit_gd(mygd);
1409     } else {
1410 	crit_enter_gd(mygd);
1411 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1412 	td->td_flags &= ~TDF_MIGRATING;
1413 	crit_exit_gd(mygd);
1414     }
1415 }
1416 
1417 /*
1418  * Generic deschedule.  Descheduling threads other then your own should be
1419  * done only in carefully controlled circumstances.  Descheduling is
1420  * asynchronous.
1421  *
1422  * This function may block if the cpu has run out of messages.
1423  */
1424 void
1425 lwkt_deschedule(thread_t td)
1426 {
1427     crit_enter();
1428     if (td == curthread) {
1429 	_lwkt_dequeue(td);
1430     } else {
1431 	if (td->td_gd == mycpu) {
1432 	    _lwkt_dequeue(td);
1433 	} else {
1434 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1435 	}
1436     }
1437     crit_exit();
1438 }
1439 
1440 /*
1441  * Set the target thread's priority.  This routine does not automatically
1442  * switch to a higher priority thread, LWKT threads are not designed for
1443  * continuous priority changes.  Yield if you want to switch.
1444  */
1445 void
1446 lwkt_setpri(thread_t td, int pri)
1447 {
1448     if (td->td_pri != pri) {
1449 	KKASSERT(pri >= 0);
1450 	crit_enter();
1451 	if (td->td_flags & TDF_RUNQ) {
1452 	    KKASSERT(td->td_gd == mycpu);
1453 	    _lwkt_dequeue(td);
1454 	    td->td_pri = pri;
1455 	    _lwkt_enqueue(td);
1456 	} else {
1457 	    td->td_pri = pri;
1458 	}
1459 	crit_exit();
1460     }
1461 }
1462 
1463 /*
1464  * Set the initial priority for a thread prior to it being scheduled for
1465  * the first time.  The thread MUST NOT be scheduled before or during
1466  * this call.  The thread may be assigned to a cpu other then the current
1467  * cpu.
1468  *
1469  * Typically used after a thread has been created with TDF_STOPPREQ,
1470  * and before the thread is initially scheduled.
1471  */
1472 void
1473 lwkt_setpri_initial(thread_t td, int pri)
1474 {
1475     KKASSERT(pri >= 0);
1476     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1477     td->td_pri = pri;
1478 }
1479 
1480 void
1481 lwkt_setpri_self(int pri)
1482 {
1483     thread_t td = curthread;
1484 
1485     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1486     crit_enter();
1487     if (td->td_flags & TDF_RUNQ) {
1488 	_lwkt_dequeue(td);
1489 	td->td_pri = pri;
1490 	_lwkt_enqueue(td);
1491     } else {
1492 	td->td_pri = pri;
1493     }
1494     crit_exit();
1495 }
1496 
1497 /*
1498  * hz tick scheduler clock for LWKT threads
1499  */
1500 void
1501 lwkt_schedulerclock(thread_t td)
1502 {
1503     globaldata_t gd = td->td_gd;
1504     thread_t xtd;
1505 
1506     if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1507 	/*
1508 	 * If the current thread is at the head of the runq shift it to the
1509 	 * end of any equal-priority threads and request a LWKT reschedule
1510 	 * if it moved.
1511 	 *
1512 	 * Ignore upri in this situation.  There will only be one user thread
1513 	 * in user mode, all others will be user threads running in kernel
1514 	 * mode and we have to make sure they get some cpu.
1515 	 */
1516 	xtd = TAILQ_NEXT(td, td_threadq);
1517 	if (xtd && xtd->td_pri == td->td_pri) {
1518 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1519 	    while (xtd && xtd->td_pri == td->td_pri)
1520 		xtd = TAILQ_NEXT(xtd, td_threadq);
1521 	    if (xtd)
1522 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1523 	    else
1524 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1525 	    need_lwkt_resched();
1526 	}
1527     } else {
1528 	/*
1529 	 * If we scheduled a thread other than the one at the head of the
1530 	 * queue always request a reschedule every tick.
1531 	 */
1532 	need_lwkt_resched();
1533     }
1534 }
1535 
1536 /*
1537  * Migrate the current thread to the specified cpu.
1538  *
1539  * This is accomplished by descheduling ourselves from the current cpu
1540  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1541  * 'old' thread wants to migrate after it has been completely switched out
1542  * and will complete the migration.
1543  *
1544  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1545  *
1546  * We must be sure to release our current process designation (if a user
1547  * process) before clearing out any tsleepq we are on because the release
1548  * code may re-add us.
1549  *
1550  * We must be sure to remove ourselves from the current cpu's tsleepq
1551  * before potentially moving to another queue.  The thread can be on
1552  * a tsleepq due to a left-over tsleep_interlock().
1553  */
1554 
1555 void
1556 lwkt_setcpu_self(globaldata_t rgd)
1557 {
1558     thread_t td = curthread;
1559 
1560     if (td->td_gd != rgd) {
1561 	crit_enter_quick(td);
1562 
1563 	if (td->td_release)
1564 	    td->td_release(td);
1565 	if (td->td_flags & TDF_TSLEEPQ)
1566 	    tsleep_remove(td);
1567 
1568 	/*
1569 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1570 	 * trying to deschedule ourselves and switch away, then deschedule
1571 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1572 	 * call lwkt_switch() to complete the operation.
1573 	 */
1574 	td->td_flags |= TDF_MIGRATING;
1575 	lwkt_deschedule_self(td);
1576 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1577 	td->td_migrate_gd = rgd;
1578 	lwkt_switch();
1579 
1580 	/*
1581 	 * We are now on the target cpu
1582 	 */
1583 	KKASSERT(rgd == mycpu);
1584 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1585 	crit_exit_quick(td);
1586     }
1587 }
1588 
1589 void
1590 lwkt_migratecpu(int cpuid)
1591 {
1592 	globaldata_t rgd;
1593 
1594 	rgd = globaldata_find(cpuid);
1595 	lwkt_setcpu_self(rgd);
1596 }
1597 
1598 /*
1599  * Remote IPI for cpu migration (called while in a critical section so we
1600  * do not have to enter another one).
1601  *
1602  * The thread (td) has already been completely descheduled from the
1603  * originating cpu and we can simply assert the case.  The thread is
1604  * assigned to the new cpu and enqueued.
1605  *
1606  * The thread will re-add itself to tdallq when it resumes execution.
1607  */
1608 static void
1609 lwkt_setcpu_remote(void *arg)
1610 {
1611     thread_t td = arg;
1612     globaldata_t gd = mycpu;
1613 
1614     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1615     td->td_gd = gd;
1616     cpu_mfence();
1617     td->td_flags &= ~TDF_MIGRATING;
1618     KKASSERT(td->td_migrate_gd == NULL);
1619     KKASSERT(td->td_lwp == NULL ||
1620 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1621     _lwkt_enqueue(td);
1622 }
1623 
1624 struct lwp *
1625 lwkt_preempted_proc(void)
1626 {
1627     thread_t td = curthread;
1628     while (td->td_preempted)
1629 	td = td->td_preempted;
1630     return(td->td_lwp);
1631 }
1632 
1633 /*
1634  * Create a kernel process/thread/whatever.  It shares it's address space
1635  * with proc0 - ie: kernel only.
1636  *
1637  * If the cpu is not specified one will be selected.  In the future
1638  * specifying a cpu of -1 will enable kernel thread migration between
1639  * cpus.
1640  */
1641 int
1642 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1643 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1644 {
1645     thread_t td;
1646     __va_list ap;
1647 
1648     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1649 			   tdflags);
1650     if (tdp)
1651 	*tdp = td;
1652     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1653 
1654     /*
1655      * Set up arg0 for 'ps' etc
1656      */
1657     __va_start(ap, fmt);
1658     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1659     __va_end(ap);
1660 
1661     /*
1662      * Schedule the thread to run
1663      */
1664     if (td->td_flags & TDF_NOSTART)
1665 	td->td_flags &= ~TDF_NOSTART;
1666     else
1667 	lwkt_schedule(td);
1668     return 0;
1669 }
1670 
1671 /*
1672  * Destroy an LWKT thread.   Warning!  This function is not called when
1673  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1674  * uses a different reaping mechanism.
1675  */
1676 void
1677 lwkt_exit(void)
1678 {
1679     thread_t td = curthread;
1680     thread_t std;
1681     globaldata_t gd;
1682 
1683     /*
1684      * Do any cleanup that might block here
1685      */
1686     if (td->td_flags & TDF_VERBOSE)
1687 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1688     biosched_done(td);
1689     dsched_exit_thread(td);
1690 
1691     /*
1692      * Get us into a critical section to interlock gd_freetd and loop
1693      * until we can get it freed.
1694      *
1695      * We have to cache the current td in gd_freetd because objcache_put()ing
1696      * it would rip it out from under us while our thread is still active.
1697      *
1698      * We are the current thread so of course our own TDF_RUNNING bit will
1699      * be set, so unlike the lwp reap code we don't wait for it to clear.
1700      */
1701     gd = mycpu;
1702     crit_enter_quick(td);
1703     for (;;) {
1704 	if (td->td_refs) {
1705 	    tsleep(td, 0, "tdreap", 1);
1706 	    continue;
1707 	}
1708 	if ((std = gd->gd_freetd) != NULL) {
1709 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1710 	    gd->gd_freetd = NULL;
1711 	    objcache_put(thread_cache, std);
1712 	    continue;
1713 	}
1714 	break;
1715     }
1716 
1717     /*
1718      * Remove thread resources from kernel lists and deschedule us for
1719      * the last time.  We cannot block after this point or we may end
1720      * up with a stale td on the tsleepq.
1721      *
1722      * None of this may block, the critical section is the only thing
1723      * protecting tdallq and the only thing preventing new lwkt_hold()
1724      * thread refs now.
1725      */
1726     if (td->td_flags & TDF_TSLEEPQ)
1727 	tsleep_remove(td);
1728     lwkt_deschedule_self(td);
1729     lwkt_remove_tdallq(td);
1730     KKASSERT(td->td_refs == 0);
1731 
1732     /*
1733      * Final cleanup
1734      */
1735     KKASSERT(gd->gd_freetd == NULL);
1736     if (td->td_flags & TDF_ALLOCATED_THREAD)
1737 	gd->gd_freetd = td;
1738     cpu_thread_exit();
1739 }
1740 
1741 void
1742 lwkt_remove_tdallq(thread_t td)
1743 {
1744     KKASSERT(td->td_gd == mycpu);
1745     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1746 }
1747 
1748 /*
1749  * Code reduction and branch prediction improvements.  Call/return
1750  * overhead on modern cpus often degenerates into 0 cycles due to
1751  * the cpu's branch prediction hardware and return pc cache.  We
1752  * can take advantage of this by not inlining medium-complexity
1753  * functions and we can also reduce the branch prediction impact
1754  * by collapsing perfectly predictable branches into a single
1755  * procedure instead of duplicating it.
1756  *
1757  * Is any of this noticeable?  Probably not, so I'll take the
1758  * smaller code size.
1759  */
1760 void
1761 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1762 {
1763     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1764 }
1765 
1766 void
1767 crit_panic(void)
1768 {
1769     thread_t td = curthread;
1770     int lcrit = td->td_critcount;
1771 
1772     td->td_critcount = 0;
1773     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1774     /* NOT REACHED */
1775 }
1776 
1777 /*
1778  * Called from debugger/panic on cpus which have been stopped.  We must still
1779  * process the IPIQ while stopped, even if we were stopped while in a critical
1780  * section (XXX).
1781  *
1782  * If we are dumping also try to process any pending interrupts.  This may
1783  * or may not work depending on the state of the cpu at the point it was
1784  * stopped.
1785  */
1786 void
1787 lwkt_smp_stopped(void)
1788 {
1789     globaldata_t gd = mycpu;
1790 
1791     crit_enter_gd(gd);
1792     if (dumping) {
1793 	lwkt_process_ipiq();
1794 	splz();
1795     } else {
1796 	lwkt_process_ipiq();
1797     }
1798     crit_exit_gd(gd);
1799 }
1800