xref: /dragonfly/sys/kern/lwkt_thread.c (revision d2cd83ff)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.120 2008/10/26 04:29:19 sephe Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/proc.h>
48 #include <sys/rtprio.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 #include <sys/caps.h>
55 #include <sys/spinlock.h>
56 #include <sys/ktr.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_map.h>
67 #include <vm/vm_pager.h>
68 #include <vm/vm_extern.h>
69 
70 #include <machine/stdarg.h>
71 #include <machine/smp.h>
72 
73 
74 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
75 
76 static int untimely_switch = 0;
77 #ifdef	INVARIANTS
78 static int panic_on_cscount = 0;
79 #endif
80 static __int64_t switch_count = 0;
81 static __int64_t preempt_hit = 0;
82 static __int64_t preempt_miss = 0;
83 static __int64_t preempt_weird = 0;
84 static __int64_t token_contention_count = 0;
85 static __int64_t mplock_contention_count = 0;
86 static int lwkt_use_spin_port;
87 #ifdef SMP
88 static int chain_mplock = 0;
89 #endif
90 static struct objcache *thread_cache;
91 
92 volatile cpumask_t mp_lock_contention_mask;
93 
94 extern void cpu_heavy_restore(void);
95 extern void cpu_lwkt_restore(void);
96 extern void cpu_kthread_restore(void);
97 extern void cpu_idle_restore(void);
98 
99 int
100 jg_tos_ok(struct thread *td)
101 {
102 	if (td == NULL) {
103 		return 1;
104 	}
105 	KKASSERT(td->td_sp != NULL);
106 	unsigned long tos = ((unsigned long *)td->td_sp)[0];
107 	int tos_ok = 0;
108 	if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore)
109 		|| (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
110 		tos_ok = 1;
111 	}
112 	return tos_ok;
113 }
114 
115 /*
116  * We can make all thread ports use the spin backend instead of the thread
117  * backend.  This should only be set to debug the spin backend.
118  */
119 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
120 
121 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
122 #ifdef	INVARIANTS
123 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
124 #endif
125 #ifdef SMP
126 SYSCTL_INT(_lwkt, OID_AUTO, chain_mplock, CTLFLAG_RW, &chain_mplock, 0, "");
127 #endif
128 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
129 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
130 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
131 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
132 #ifdef	INVARIANTS
133 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
134 	&token_contention_count, 0, "spinning due to token contention");
135 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
136 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
137 #endif
138 
139 /*
140  * Kernel Trace
141  */
142 #if !defined(KTR_GIANT_CONTENTION)
143 #define KTR_GIANT_CONTENTION	KTR_ALL
144 #endif
145 
146 KTR_INFO_MASTER(giant);
147 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
148 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
149 
150 #define loggiant(name)	KTR_LOG(giant_ ## name, curthread)
151 
152 /*
153  * These helper procedures handle the runq, they can only be called from
154  * within a critical section.
155  *
156  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
157  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
158  * instead of 'mycpu' when referencing the globaldata structure.   Once
159  * SMP live enqueuing and dequeueing only occurs on the current cpu.
160  */
161 static __inline
162 void
163 _lwkt_dequeue(thread_t td)
164 {
165     if (td->td_flags & TDF_RUNQ) {
166 	int nq = td->td_pri & TDPRI_MASK;
167 	struct globaldata *gd = td->td_gd;
168 
169 	td->td_flags &= ~TDF_RUNQ;
170 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
171 	/* runqmask is passively cleaned up by the switcher */
172     }
173 }
174 
175 static __inline
176 void
177 _lwkt_enqueue(thread_t td)
178 {
179     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
180 	int nq = td->td_pri & TDPRI_MASK;
181 	struct globaldata *gd = td->td_gd;
182 
183 	td->td_flags |= TDF_RUNQ;
184 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
185 	gd->gd_runqmask |= 1 << nq;
186     }
187 }
188 
189 static __boolean_t
190 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
191 {
192 	struct thread *td = (struct thread *)obj;
193 
194 	td->td_kstack = NULL;
195 	td->td_kstack_size = 0;
196 	td->td_flags = TDF_ALLOCATED_THREAD;
197 	return (1);
198 }
199 
200 static void
201 _lwkt_thread_dtor(void *obj, void *privdata)
202 {
203 	struct thread *td = (struct thread *)obj;
204 
205 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
206 	    ("_lwkt_thread_dtor: not allocated from objcache"));
207 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
208 		td->td_kstack_size > 0,
209 	    ("_lwkt_thread_dtor: corrupted stack"));
210 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
211 }
212 
213 /*
214  * Initialize the lwkt s/system.
215  */
216 void
217 lwkt_init(void)
218 {
219     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
220     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
221 			NULL, CACHE_NTHREADS/2,
222 			_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
223 }
224 
225 /*
226  * Schedule a thread to run.  As the current thread we can always safely
227  * schedule ourselves, and a shortcut procedure is provided for that
228  * function.
229  *
230  * (non-blocking, self contained on a per cpu basis)
231  */
232 void
233 lwkt_schedule_self(thread_t td)
234 {
235     crit_enter_quick(td);
236     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
237     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
238     _lwkt_enqueue(td);
239     crit_exit_quick(td);
240 }
241 
242 /*
243  * Deschedule a thread.
244  *
245  * (non-blocking, self contained on a per cpu basis)
246  */
247 void
248 lwkt_deschedule_self(thread_t td)
249 {
250     crit_enter_quick(td);
251     _lwkt_dequeue(td);
252     crit_exit_quick(td);
253 }
254 
255 /*
256  * LWKTs operate on a per-cpu basis
257  *
258  * WARNING!  Called from early boot, 'mycpu' may not work yet.
259  */
260 void
261 lwkt_gdinit(struct globaldata *gd)
262 {
263     int i;
264 
265     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
266 	TAILQ_INIT(&gd->gd_tdrunq[i]);
267     gd->gd_runqmask = 0;
268     TAILQ_INIT(&gd->gd_tdallq);
269 }
270 
271 /*
272  * Create a new thread.  The thread must be associated with a process context
273  * or LWKT start address before it can be scheduled.  If the target cpu is
274  * -1 the thread will be created on the current cpu.
275  *
276  * If you intend to create a thread without a process context this function
277  * does everything except load the startup and switcher function.
278  */
279 thread_t
280 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
281 {
282     globaldata_t gd = mycpu;
283     void *stack;
284 
285     /*
286      * If static thread storage is not supplied allocate a thread.  Reuse
287      * a cached free thread if possible.  gd_freetd is used to keep an exiting
288      * thread intact through the exit.
289      */
290     if (td == NULL) {
291 	if ((td = gd->gd_freetd) != NULL)
292 	    gd->gd_freetd = NULL;
293 	else
294 	    td = objcache_get(thread_cache, M_WAITOK);
295     	KASSERT((td->td_flags &
296 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
297 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
298     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
299     }
300 
301     /*
302      * Try to reuse cached stack.
303      */
304     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
305 	if (flags & TDF_ALLOCATED_STACK) {
306 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
307 	    stack = NULL;
308 	}
309     }
310     if (stack == NULL) {
311 	stack = (void *)kmem_alloc(&kernel_map, stksize);
312 	flags |= TDF_ALLOCATED_STACK;
313     }
314     if (cpu < 0)
315 	lwkt_init_thread(td, stack, stksize, flags, gd);
316     else
317 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
318     return(td);
319 }
320 
321 /*
322  * Initialize a preexisting thread structure.  This function is used by
323  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
324  *
325  * All threads start out in a critical section at a priority of
326  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
327  * appropriate.  This function may send an IPI message when the
328  * requested cpu is not the current cpu and consequently gd_tdallq may
329  * not be initialized synchronously from the point of view of the originating
330  * cpu.
331  *
332  * NOTE! we have to be careful in regards to creating threads for other cpus
333  * if SMP has not yet been activated.
334  */
335 #ifdef SMP
336 
337 static void
338 lwkt_init_thread_remote(void *arg)
339 {
340     thread_t td = arg;
341 
342     /*
343      * Protected by critical section held by IPI dispatch
344      */
345     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
346 }
347 
348 #endif
349 
350 void
351 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
352 		struct globaldata *gd)
353 {
354     globaldata_t mygd = mycpu;
355 
356     bzero(td, sizeof(struct thread));
357     td->td_kstack = stack;
358     td->td_kstack_size = stksize;
359     td->td_flags = flags;
360     td->td_gd = gd;
361     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
362 #ifdef SMP
363     if ((flags & TDF_MPSAFE) == 0)
364 	td->td_mpcount = 1;
365 #endif
366     if (lwkt_use_spin_port)
367 	lwkt_initport_spin(&td->td_msgport);
368     else
369 	lwkt_initport_thread(&td->td_msgport, td);
370     pmap_init_thread(td);
371 #ifdef SMP
372     /*
373      * Normally initializing a thread for a remote cpu requires sending an
374      * IPI.  However, the idlethread is setup before the other cpus are
375      * activated so we have to treat it as a special case.  XXX manipulation
376      * of gd_tdallq requires the BGL.
377      */
378     if (gd == mygd || td == &gd->gd_idlethread) {
379 	crit_enter_gd(mygd);
380 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
381 	crit_exit_gd(mygd);
382     } else {
383 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
384     }
385 #else
386     crit_enter_gd(mygd);
387     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
388     crit_exit_gd(mygd);
389 #endif
390 }
391 
392 void
393 lwkt_set_comm(thread_t td, const char *ctl, ...)
394 {
395     __va_list va;
396 
397     __va_start(va, ctl);
398     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
399     __va_end(va);
400 }
401 
402 void
403 lwkt_hold(thread_t td)
404 {
405     ++td->td_refs;
406 }
407 
408 void
409 lwkt_rele(thread_t td)
410 {
411     KKASSERT(td->td_refs > 0);
412     --td->td_refs;
413 }
414 
415 void
416 lwkt_wait_free(thread_t td)
417 {
418     while (td->td_refs)
419 	tsleep(td, 0, "tdreap", hz);
420 }
421 
422 void
423 lwkt_free_thread(thread_t td)
424 {
425     KASSERT((td->td_flags & TDF_RUNNING) == 0,
426 	("lwkt_free_thread: did not exit! %p", td));
427 
428     if (td->td_flags & TDF_ALLOCATED_THREAD) {
429     	objcache_put(thread_cache, td);
430     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
431 	/* client-allocated struct with internally allocated stack */
432 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
433 	    ("lwkt_free_thread: corrupted stack"));
434 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
435 	td->td_kstack = NULL;
436 	td->td_kstack_size = 0;
437     }
438 }
439 
440 
441 /*
442  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
443  * switch to the idlethread.  Switching must occur within a critical
444  * section to avoid races with the scheduling queue.
445  *
446  * We always have full control over our cpu's run queue.  Other cpus
447  * that wish to manipulate our queue must use the cpu_*msg() calls to
448  * talk to our cpu, so a critical section is all that is needed and
449  * the result is very, very fast thread switching.
450  *
451  * The LWKT scheduler uses a fixed priority model and round-robins at
452  * each priority level.  User process scheduling is a totally
453  * different beast and LWKT priorities should not be confused with
454  * user process priorities.
455  *
456  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
457  * cleans it up.  Note that the td_switch() function cannot do anything that
458  * requires the MP lock since the MP lock will have already been setup for
459  * the target thread (not the current thread).  It's nice to have a scheduler
460  * that does not need the MP lock to work because it allows us to do some
461  * really cool high-performance MP lock optimizations.
462  *
463  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
464  * is not called by the current thread in the preemption case, only when
465  * the preempting thread blocks (in order to return to the original thread).
466  */
467 void
468 lwkt_switch(void)
469 {
470     globaldata_t gd = mycpu;
471     thread_t td = gd->gd_curthread;
472     thread_t ntd;
473 #ifdef SMP
474     int mpheld;
475 #endif
476 
477     /*
478      * Switching from within a 'fast' (non thread switched) interrupt or IPI
479      * is illegal.  However, we may have to do it anyway if we hit a fatal
480      * kernel trap or we have paniced.
481      *
482      * If this case occurs save and restore the interrupt nesting level.
483      */
484     if (gd->gd_intr_nesting_level) {
485 	int savegdnest;
486 	int savegdtrap;
487 
488 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
489 	    panic("lwkt_switch: cannot switch from within "
490 		  "a fast interrupt, yet, td %p\n", td);
491 	} else {
492 	    savegdnest = gd->gd_intr_nesting_level;
493 	    savegdtrap = gd->gd_trap_nesting_level;
494 	    gd->gd_intr_nesting_level = 0;
495 	    gd->gd_trap_nesting_level = 0;
496 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
497 		td->td_flags |= TDF_PANICWARN;
498 		kprintf("Warning: thread switch from interrupt or IPI, "
499 			"thread %p (%s)\n", td, td->td_comm);
500 		print_backtrace();
501 	    }
502 	    lwkt_switch();
503 	    gd->gd_intr_nesting_level = savegdnest;
504 	    gd->gd_trap_nesting_level = savegdtrap;
505 	    return;
506 	}
507     }
508 
509     /*
510      * Passive release (used to transition from user to kernel mode
511      * when we block or switch rather then when we enter the kernel).
512      * This function is NOT called if we are switching into a preemption
513      * or returning from a preemption.  Typically this causes us to lose
514      * our current process designation (if we have one) and become a true
515      * LWKT thread, and may also hand the current process designation to
516      * another process and schedule thread.
517      */
518     if (td->td_release)
519 	    td->td_release(td);
520 
521     crit_enter_gd(gd);
522     if (td->td_toks)
523 	    lwkt_relalltokens(td);
524 
525     /*
526      * We had better not be holding any spin locks, but don't get into an
527      * endless panic loop.
528      */
529     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
530 	    ("lwkt_switch: still holding a shared spinlock %p!",
531 	     gd->gd_spinlock_rd));
532     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
533 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
534 	     gd->gd_spinlocks_wr));
535 
536 
537 #ifdef SMP
538     /*
539      * td_mpcount cannot be used to determine if we currently hold the
540      * MP lock because get_mplock() will increment it prior to attempting
541      * to get the lock, and switch out if it can't.  Our ownership of
542      * the actual lock will remain stable while we are in a critical section
543      * (but, of course, another cpu may own or release the lock so the
544      * actual value of mp_lock is not stable).
545      */
546     mpheld = MP_LOCK_HELD();
547 #ifdef	INVARIANTS
548     if (td->td_cscount) {
549 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
550 		td);
551 	if (panic_on_cscount)
552 	    panic("switching while mastering cpusync");
553     }
554 #endif
555 #endif
556     if ((ntd = td->td_preempted) != NULL) {
557 	/*
558 	 * We had preempted another thread on this cpu, resume the preempted
559 	 * thread.  This occurs transparently, whether the preempted thread
560 	 * was scheduled or not (it may have been preempted after descheduling
561 	 * itself).
562 	 *
563 	 * We have to setup the MP lock for the original thread after backing
564 	 * out the adjustment that was made to curthread when the original
565 	 * was preempted.
566 	 */
567 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
568 #ifdef SMP
569 	if (ntd->td_mpcount && mpheld == 0) {
570 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
571 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
572 	}
573 	if (ntd->td_mpcount) {
574 	    td->td_mpcount -= ntd->td_mpcount;
575 	    KKASSERT(td->td_mpcount >= 0);
576 	}
577 #endif
578 	ntd->td_flags |= TDF_PREEMPT_DONE;
579 
580 	/*
581 	 * The interrupt may have woken a thread up, we need to properly
582 	 * set the reschedule flag if the originally interrupted thread is
583 	 * at a lower priority.
584 	 */
585 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
586 	    need_lwkt_resched();
587 	/* YYY release mp lock on switchback if original doesn't need it */
588     } else {
589 	/*
590 	 * Priority queue / round-robin at each priority.  Note that user
591 	 * processes run at a fixed, low priority and the user process
592 	 * scheduler deals with interactions between user processes
593 	 * by scheduling and descheduling them from the LWKT queue as
594 	 * necessary.
595 	 *
596 	 * We have to adjust the MP lock for the target thread.  If we
597 	 * need the MP lock and cannot obtain it we try to locate a
598 	 * thread that does not need the MP lock.  If we cannot, we spin
599 	 * instead of HLT.
600 	 *
601 	 * A similar issue exists for the tokens held by the target thread.
602 	 * If we cannot obtain ownership of the tokens we cannot immediately
603 	 * schedule the thread.
604 	 */
605 
606 	/*
607 	 * If an LWKT reschedule was requested, well that is what we are
608 	 * doing now so clear it.
609 	 */
610 	clear_lwkt_resched();
611 again:
612 	if (gd->gd_runqmask) {
613 	    int nq = bsrl(gd->gd_runqmask);
614 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
615 		gd->gd_runqmask &= ~(1 << nq);
616 		goto again;
617 	    }
618 #ifdef SMP
619 	    /*
620 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
621 	     *
622 	     * If the target needs the MP lock and we couldn't get it,
623 	     * or if the target is holding tokens and we could not
624 	     * gain ownership of the tokens, continue looking for a
625 	     * thread to schedule and spin instead of HLT if we can't.
626 	     *
627 	     * NOTE: the mpheld variable invalid after this conditional, it
628 	     * can change due to both cpu_try_mplock() returning success
629 	     * AND interactions in lwkt_getalltokens() due to the fact that
630 	     * we are trying to check the mpcount of a thread other then
631 	     * the current thread.  Because of this, if the current thread
632 	     * is not holding td_mpcount, an IPI indirectly run via
633 	     * lwkt_getalltokens() can obtain and release the MP lock and
634 	     * cause the core MP lock to be released.
635 	     */
636 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
637 		(ntd->td_toks && lwkt_getalltokens(ntd) == 0)
638 	    ) {
639 		u_int32_t rqmask = gd->gd_runqmask;
640 
641 		mpheld = MP_LOCK_HELD();
642 		ntd = NULL;
643 		while (rqmask) {
644 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
645 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
646 			    /* spinning due to MP lock being held */
647 #ifdef	INVARIANTS
648 			    ++mplock_contention_count;
649 #endif
650 			    /* mplock still not held, 'mpheld' still valid */
651 			    continue;
652 			}
653 
654 			/*
655 			 * mpheld state invalid after getalltokens call returns
656 			 * failure, but the variable is only needed for
657 			 * the loop.
658 			 */
659 			if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
660 			    /* spinning due to token contention */
661 #ifdef	INVARIANTS
662 			    ++token_contention_count;
663 #endif
664 			    mpheld = MP_LOCK_HELD();
665 			    continue;
666 			}
667 			break;
668 		    }
669 		    if (ntd)
670 			break;
671 		    rqmask &= ~(1 << nq);
672 		    nq = bsrl(rqmask);
673 
674 		    /*
675 		     * We have two choices. We can either refuse to run a
676 		     * user thread when a kernel thread needs the MP lock
677 		     * but could not get it, or we can allow it to run but
678 		     * then expect an IPI (hopefully) later on to force a
679 		     * reschedule when the MP lock might become available.
680 		     */
681 		    if (nq < TDPRI_KERN_LPSCHED) {
682 			if (chain_mplock == 0)
683 				break;
684 			atomic_set_int(&mp_lock_contention_mask,
685 				       gd->gd_cpumask);
686 			/* continue loop, allow user threads to be scheduled */
687 		    }
688 		}
689 		if (ntd == NULL) {
690 		    cpu_mplock_contested();
691 		    ntd = &gd->gd_idlethread;
692 		    ntd->td_flags |= TDF_IDLE_NOHLT;
693 		    goto using_idle_thread;
694 		} else {
695 		    ++gd->gd_cnt.v_swtch;
696 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
697 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
698 		}
699 	    } else {
700 		++gd->gd_cnt.v_swtch;
701 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
702 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
703 	    }
704 #else
705 	    /*
706 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
707 	     * worry about tokens or the BGL.  However, we still have
708 	     * to call lwkt_getalltokens() in order to properly detect
709 	     * stale tokens.  This call cannot fail for a UP build!
710 	     */
711 	    lwkt_getalltokens(ntd);
712 	    ++gd->gd_cnt.v_swtch;
713 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
714 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
715 #endif
716 	} else {
717 	    /*
718 	     * We have nothing to run but only let the idle loop halt
719 	     * the cpu if there are no pending interrupts.
720 	     */
721 	    ntd = &gd->gd_idlethread;
722 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
723 		ntd->td_flags |= TDF_IDLE_NOHLT;
724 #ifdef SMP
725 using_idle_thread:
726 	    /*
727 	     * The idle thread should not be holding the MP lock unless we
728 	     * are trapping in the kernel or in a panic.  Since we select the
729 	     * idle thread unconditionally when no other thread is available,
730 	     * if the MP lock is desired during a panic or kernel trap, we
731 	     * have to loop in the scheduler until we get it.
732 	     */
733 	    if (ntd->td_mpcount) {
734 		mpheld = MP_LOCK_HELD();
735 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
736 		    panic("Idle thread %p was holding the BGL!", ntd);
737 		} else if (mpheld == 0) {
738 		    cpu_mplock_contested();
739 		    goto again;
740 		}
741 	    }
742 #endif
743 	}
744     }
745     KASSERT(ntd->td_pri >= TDPRI_CRIT,
746 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
747 
748     /*
749      * Do the actual switch.  If the new target does not need the MP lock
750      * and we are holding it, release the MP lock.  If the new target requires
751      * the MP lock we have already acquired it for the target.
752      */
753 #ifdef SMP
754     if (ntd->td_mpcount == 0 ) {
755 	if (MP_LOCK_HELD())
756 	    cpu_rel_mplock();
757     } else {
758 	ASSERT_MP_LOCK_HELD(ntd);
759     }
760 #endif
761     if (td != ntd) {
762 	++switch_count;
763 	KKASSERT(jg_tos_ok(ntd));
764 	td->td_switch(ntd);
765     }
766     /* NOTE: current cpu may have changed after switch */
767     crit_exit_quick(td);
768 }
769 
770 /*
771  * Request that the target thread preempt the current thread.  Preemption
772  * only works under a specific set of conditions:
773  *
774  *	- We are not preempting ourselves
775  *	- The target thread is owned by the current cpu
776  *	- We are not currently being preempted
777  *	- The target is not currently being preempted
778  *	- We are not holding any spin locks
779  *	- The target thread is not holding any tokens
780  *	- We are able to satisfy the target's MP lock requirements (if any).
781  *
782  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
783  * this is called via lwkt_schedule() through the td_preemptable callback.
784  * critpri is the managed critical priority that we should ignore in order
785  * to determine whether preemption is possible (aka usually just the crit
786  * priority of lwkt_schedule() itself).
787  *
788  * XXX at the moment we run the target thread in a critical section during
789  * the preemption in order to prevent the target from taking interrupts
790  * that *WE* can't.  Preemption is strictly limited to interrupt threads
791  * and interrupt-like threads, outside of a critical section, and the
792  * preempted source thread will be resumed the instant the target blocks
793  * whether or not the source is scheduled (i.e. preemption is supposed to
794  * be as transparent as possible).
795  *
796  * The target thread inherits our MP count (added to its own) for the
797  * duration of the preemption in order to preserve the atomicy of the
798  * MP lock during the preemption.  Therefore, any preempting targets must be
799  * careful in regards to MP assertions.  Note that the MP count may be
800  * out of sync with the physical mp_lock, but we do not have to preserve
801  * the original ownership of the lock if it was out of synch (that is, we
802  * can leave it synchronized on return).
803  */
804 void
805 lwkt_preempt(thread_t ntd, int critpri)
806 {
807     struct globaldata *gd = mycpu;
808     thread_t td;
809 #ifdef SMP
810     int mpheld;
811     int savecnt;
812 #endif
813 
814     /*
815      * The caller has put us in a critical section.  We can only preempt
816      * if the caller of the caller was not in a critical section (basically
817      * a local interrupt), as determined by the 'critpri' parameter.  We
818      * also can't preempt if the caller is holding any spinlocks (even if
819      * he isn't in a critical section).  This also handles the tokens test.
820      *
821      * YYY The target thread must be in a critical section (else it must
822      * inherit our critical section?  I dunno yet).
823      *
824      * Set need_lwkt_resched() unconditionally for now YYY.
825      */
826     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
827 
828     td = gd->gd_curthread;
829     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
830 	++preempt_miss;
831 	return;
832     }
833     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
834 	++preempt_miss;
835 	need_lwkt_resched();
836 	return;
837     }
838 #ifdef SMP
839     if (ntd->td_gd != gd) {
840 	++preempt_miss;
841 	need_lwkt_resched();
842 	return;
843     }
844 #endif
845     /*
846      * Take the easy way out and do not preempt if we are holding
847      * any spinlocks.  We could test whether the thread(s) being
848      * preempted interlock against the target thread's tokens and whether
849      * we can get all the target thread's tokens, but this situation
850      * should not occur very often so its easier to simply not preempt.
851      * Also, plain spinlocks are impossible to figure out at this point so
852      * just don't preempt.
853      *
854      * Do not try to preempt if the target thread is holding any tokens.
855      * We could try to acquire the tokens but this case is so rare there
856      * is no need to support it.
857      */
858     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
859 	++preempt_miss;
860 	need_lwkt_resched();
861 	return;
862     }
863     if (ntd->td_toks) {
864 	++preempt_miss;
865 	need_lwkt_resched();
866 	return;
867     }
868     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
869 	++preempt_weird;
870 	need_lwkt_resched();
871 	return;
872     }
873     if (ntd->td_preempted) {
874 	++preempt_hit;
875 	need_lwkt_resched();
876 	return;
877     }
878 #ifdef SMP
879     /*
880      * note: an interrupt might have occured just as we were transitioning
881      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
882      * (non-zero) but not actually synchronized with the actual state of the
883      * lock.  We can use it to imply an MP lock requirement for the
884      * preemption but we cannot use it to test whether we hold the MP lock
885      * or not.
886      */
887     savecnt = td->td_mpcount;
888     mpheld = MP_LOCK_HELD();
889     ntd->td_mpcount += td->td_mpcount;
890     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
891 	ntd->td_mpcount -= td->td_mpcount;
892 	++preempt_miss;
893 	need_lwkt_resched();
894 	return;
895     }
896 #endif
897 
898     /*
899      * Since we are able to preempt the current thread, there is no need to
900      * call need_lwkt_resched().
901      */
902     ++preempt_hit;
903     ntd->td_preempted = td;
904     td->td_flags |= TDF_PREEMPT_LOCK;
905     td->td_switch(ntd);
906 
907     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
908 #ifdef SMP
909     KKASSERT(savecnt == td->td_mpcount);
910     mpheld = MP_LOCK_HELD();
911     if (mpheld && td->td_mpcount == 0)
912 	cpu_rel_mplock();
913     else if (mpheld == 0 && td->td_mpcount)
914 	panic("lwkt_preempt(): MP lock was not held through");
915 #endif
916     ntd->td_preempted = NULL;
917     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
918 }
919 
920 /*
921  * Yield our thread while higher priority threads are pending.  This is
922  * typically called when we leave a critical section but it can be safely
923  * called while we are in a critical section.
924  *
925  * This function will not generally yield to equal priority threads but it
926  * can occur as a side effect.  Note that lwkt_switch() is called from
927  * inside the critical section to prevent its own crit_exit() from reentering
928  * lwkt_yield_quick().
929  *
930  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
931  * came along but was blocked and made pending.
932  *
933  * (self contained on a per cpu basis)
934  */
935 void
936 lwkt_yield_quick(void)
937 {
938     globaldata_t gd = mycpu;
939     thread_t td = gd->gd_curthread;
940 
941     /*
942      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
943      * it with a non-zero cpl then we might not wind up calling splz after
944      * a task switch when the critical section is exited even though the
945      * new task could accept the interrupt.
946      *
947      * XXX from crit_exit() only called after last crit section is released.
948      * If called directly will run splz() even if in a critical section.
949      *
950      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
951      * except for this special case, we MUST call splz() here to handle any
952      * pending ints, particularly after we switch, or we might accidently
953      * halt the cpu with interrupts pending.
954      */
955     if (gd->gd_reqflags && td->td_nest_count < 2)
956 	splz();
957 
958     /*
959      * YYY enabling will cause wakeup() to task-switch, which really
960      * confused the old 4.x code.  This is a good way to simulate
961      * preemption and MP without actually doing preemption or MP, because a
962      * lot of code assumes that wakeup() does not block.
963      */
964     if (untimely_switch && td->td_nest_count == 0 &&
965 	gd->gd_intr_nesting_level == 0
966     ) {
967 	crit_enter_quick(td);
968 	/*
969 	 * YYY temporary hacks until we disassociate the userland scheduler
970 	 * from the LWKT scheduler.
971 	 */
972 	if (td->td_flags & TDF_RUNQ) {
973 	    lwkt_switch();		/* will not reenter yield function */
974 	} else {
975 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
976 	    lwkt_switch();		/* will not reenter yield function */
977 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
978 	}
979 	crit_exit_noyield(td);
980     }
981 }
982 
983 /*
984  * This implements a normal yield which, unlike _quick, will yield to equal
985  * priority threads as well.  Note that gd_reqflags tests will be handled by
986  * the crit_exit() call in lwkt_switch().
987  *
988  * (self contained on a per cpu basis)
989  */
990 void
991 lwkt_yield(void)
992 {
993     lwkt_schedule_self(curthread);
994     lwkt_switch();
995 }
996 
997 /*
998  * Return 0 if no runnable threads are pending at the same or higher
999  * priority as the passed thread.
1000  *
1001  * Return 1 if runnable threads are pending at the same priority.
1002  *
1003  * Return 2 if runnable threads are pending at a higher priority.
1004  */
1005 int
1006 lwkt_check_resched(thread_t td)
1007 {
1008 	int pri = td->td_pri & TDPRI_MASK;
1009 
1010 	if (td->td_gd->gd_runqmask > (2 << pri) - 1)
1011 		return(2);
1012 	if (TAILQ_NEXT(td, td_threadq))
1013 		return(1);
1014 	return(0);
1015 }
1016 
1017 /*
1018  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1019  * deal with threads that might be blocked on a wait queue.
1020  *
1021  * We have a little helper inline function which does additional work after
1022  * the thread has been enqueued, including dealing with preemption and
1023  * setting need_lwkt_resched() (which prevents the kernel from returning
1024  * to userland until it has processed higher priority threads).
1025  *
1026  * It is possible for this routine to be called after a failed _enqueue
1027  * (due to the target thread migrating, sleeping, or otherwise blocked).
1028  * We have to check that the thread is actually on the run queue!
1029  *
1030  * reschedok is an optimized constant propagated from lwkt_schedule() or
1031  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1032  * reschedule to be requested if the target thread has a higher priority.
1033  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1034  * be 0, prevented undesired reschedules.
1035  */
1036 static __inline
1037 void
1038 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
1039 {
1040     thread_t otd;
1041 
1042     if (ntd->td_flags & TDF_RUNQ) {
1043 	if (ntd->td_preemptable && reschedok) {
1044 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
1045 	} else if (reschedok) {
1046 	    otd = curthread;
1047 	    if ((ntd->td_pri & TDPRI_MASK) > (otd->td_pri & TDPRI_MASK))
1048 		need_lwkt_resched();
1049 	}
1050     }
1051 }
1052 
1053 static __inline
1054 void
1055 _lwkt_schedule(thread_t td, int reschedok)
1056 {
1057     globaldata_t mygd = mycpu;
1058 
1059     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1060     crit_enter_gd(mygd);
1061     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1062     if (td == mygd->gd_curthread) {
1063 	_lwkt_enqueue(td);
1064     } else {
1065 	/*
1066 	 * If we own the thread, there is no race (since we are in a
1067 	 * critical section).  If we do not own the thread there might
1068 	 * be a race but the target cpu will deal with it.
1069 	 */
1070 #ifdef SMP
1071 	if (td->td_gd == mygd) {
1072 	    _lwkt_enqueue(td);
1073 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1074 	} else {
1075 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1076 	}
1077 #else
1078 	_lwkt_enqueue(td);
1079 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1080 #endif
1081     }
1082     crit_exit_gd(mygd);
1083 }
1084 
1085 void
1086 lwkt_schedule(thread_t td)
1087 {
1088     _lwkt_schedule(td, 1);
1089 }
1090 
1091 void
1092 lwkt_schedule_noresched(thread_t td)
1093 {
1094     _lwkt_schedule(td, 0);
1095 }
1096 
1097 #ifdef SMP
1098 
1099 /*
1100  * Thread migration using a 'Pull' method.  The thread may or may not be
1101  * the current thread.  It MUST be descheduled and in a stable state.
1102  * lwkt_giveaway() must be called on the cpu owning the thread.
1103  *
1104  * At any point after lwkt_giveaway() is called, the target cpu may
1105  * 'pull' the thread by calling lwkt_acquire().
1106  *
1107  * MPSAFE - must be called under very specific conditions.
1108  */
1109 void
1110 lwkt_giveaway(thread_t td)
1111 {
1112 	globaldata_t gd = mycpu;
1113 
1114 	crit_enter_gd(gd);
1115 	KKASSERT(td->td_gd == gd);
1116 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1117 	td->td_flags |= TDF_MIGRATING;
1118 	crit_exit_gd(gd);
1119 }
1120 
1121 void
1122 lwkt_acquire(thread_t td)
1123 {
1124     globaldata_t gd;
1125     globaldata_t mygd;
1126 
1127     KKASSERT(td->td_flags & TDF_MIGRATING);
1128     gd = td->td_gd;
1129     mygd = mycpu;
1130     if (gd != mycpu) {
1131 	cpu_lfence();
1132 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1133 	crit_enter_gd(mygd);
1134 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1135 #ifdef SMP
1136 	    lwkt_process_ipiq();
1137 #endif
1138 	    cpu_lfence();
1139 	}
1140 	td->td_gd = mygd;
1141 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1142 	td->td_flags &= ~TDF_MIGRATING;
1143 	crit_exit_gd(mygd);
1144     } else {
1145 	crit_enter_gd(mygd);
1146 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1147 	td->td_flags &= ~TDF_MIGRATING;
1148 	crit_exit_gd(mygd);
1149     }
1150 }
1151 
1152 #endif
1153 
1154 /*
1155  * Generic deschedule.  Descheduling threads other then your own should be
1156  * done only in carefully controlled circumstances.  Descheduling is
1157  * asynchronous.
1158  *
1159  * This function may block if the cpu has run out of messages.
1160  */
1161 void
1162 lwkt_deschedule(thread_t td)
1163 {
1164     crit_enter();
1165 #ifdef SMP
1166     if (td == curthread) {
1167 	_lwkt_dequeue(td);
1168     } else {
1169 	if (td->td_gd == mycpu) {
1170 	    _lwkt_dequeue(td);
1171 	} else {
1172 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1173 	}
1174     }
1175 #else
1176     _lwkt_dequeue(td);
1177 #endif
1178     crit_exit();
1179 }
1180 
1181 /*
1182  * Set the target thread's priority.  This routine does not automatically
1183  * switch to a higher priority thread, LWKT threads are not designed for
1184  * continuous priority changes.  Yield if you want to switch.
1185  *
1186  * We have to retain the critical section count which uses the high bits
1187  * of the td_pri field.  The specified priority may also indicate zero or
1188  * more critical sections by adding TDPRI_CRIT*N.
1189  *
1190  * Note that we requeue the thread whether it winds up on a different runq
1191  * or not.  uio_yield() depends on this and the routine is not normally
1192  * called with the same priority otherwise.
1193  */
1194 void
1195 lwkt_setpri(thread_t td, int pri)
1196 {
1197     KKASSERT(pri >= 0);
1198     KKASSERT(td->td_gd == mycpu);
1199     crit_enter();
1200     if (td->td_flags & TDF_RUNQ) {
1201 	_lwkt_dequeue(td);
1202 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1203 	_lwkt_enqueue(td);
1204     } else {
1205 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1206     }
1207     crit_exit();
1208 }
1209 
1210 void
1211 lwkt_setpri_self(int pri)
1212 {
1213     thread_t td = curthread;
1214 
1215     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1216     crit_enter();
1217     if (td->td_flags & TDF_RUNQ) {
1218 	_lwkt_dequeue(td);
1219 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1220 	_lwkt_enqueue(td);
1221     } else {
1222 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1223     }
1224     crit_exit();
1225 }
1226 
1227 /*
1228  * Migrate the current thread to the specified cpu.
1229  *
1230  * This is accomplished by descheduling ourselves from the current cpu,
1231  * moving our thread to the tdallq of the target cpu, IPI messaging the
1232  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1233  * races while the thread is being migrated.
1234  */
1235 #ifdef SMP
1236 static void lwkt_setcpu_remote(void *arg);
1237 #endif
1238 
1239 void
1240 lwkt_setcpu_self(globaldata_t rgd)
1241 {
1242 #ifdef SMP
1243     thread_t td = curthread;
1244 
1245     if (td->td_gd != rgd) {
1246 	crit_enter_quick(td);
1247 	td->td_flags |= TDF_MIGRATING;
1248 	lwkt_deschedule_self(td);
1249 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1250 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1251 	lwkt_switch();
1252 	/* we are now on the target cpu */
1253 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1254 	crit_exit_quick(td);
1255     }
1256 #endif
1257 }
1258 
1259 void
1260 lwkt_migratecpu(int cpuid)
1261 {
1262 #ifdef SMP
1263 	globaldata_t rgd;
1264 
1265 	rgd = globaldata_find(cpuid);
1266 	lwkt_setcpu_self(rgd);
1267 #endif
1268 }
1269 
1270 /*
1271  * Remote IPI for cpu migration (called while in a critical section so we
1272  * do not have to enter another one).  The thread has already been moved to
1273  * our cpu's allq, but we must wait for the thread to be completely switched
1274  * out on the originating cpu before we schedule it on ours or the stack
1275  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1276  * change to main memory.
1277  *
1278  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1279  * against wakeups.  It is best if this interface is used only when there
1280  * are no pending events that might try to schedule the thread.
1281  */
1282 #ifdef SMP
1283 static void
1284 lwkt_setcpu_remote(void *arg)
1285 {
1286     thread_t td = arg;
1287     globaldata_t gd = mycpu;
1288 
1289     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1290 #ifdef SMP
1291 	lwkt_process_ipiq();
1292 #endif
1293 	cpu_lfence();
1294     }
1295     td->td_gd = gd;
1296     cpu_sfence();
1297     td->td_flags &= ~TDF_MIGRATING;
1298     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1299     _lwkt_enqueue(td);
1300 }
1301 #endif
1302 
1303 struct lwp *
1304 lwkt_preempted_proc(void)
1305 {
1306     thread_t td = curthread;
1307     while (td->td_preempted)
1308 	td = td->td_preempted;
1309     return(td->td_lwp);
1310 }
1311 
1312 /*
1313  * Create a kernel process/thread/whatever.  It shares it's address space
1314  * with proc0 - ie: kernel only.
1315  *
1316  * NOTE!  By default new threads are created with the MP lock held.  A
1317  * thread which does not require the MP lock should release it by calling
1318  * rel_mplock() at the start of the new thread.
1319  */
1320 int
1321 lwkt_create(void (*func)(void *), void *arg,
1322     struct thread **tdp, thread_t template, int tdflags, int cpu,
1323     const char *fmt, ...)
1324 {
1325     thread_t td;
1326     __va_list ap;
1327 
1328     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1329 			   tdflags);
1330     if (tdp)
1331 	*tdp = td;
1332     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1333 
1334     /*
1335      * Set up arg0 for 'ps' etc
1336      */
1337     __va_start(ap, fmt);
1338     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1339     __va_end(ap);
1340 
1341     /*
1342      * Schedule the thread to run
1343      */
1344     if ((td->td_flags & TDF_STOPREQ) == 0)
1345 	lwkt_schedule(td);
1346     else
1347 	td->td_flags &= ~TDF_STOPREQ;
1348     return 0;
1349 }
1350 
1351 /*
1352  * Destroy an LWKT thread.   Warning!  This function is not called when
1353  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1354  * uses a different reaping mechanism.
1355  */
1356 void
1357 lwkt_exit(void)
1358 {
1359     thread_t td = curthread;
1360     thread_t std;
1361     globaldata_t gd;
1362 
1363     if (td->td_flags & TDF_VERBOSE)
1364 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1365     caps_exit(td);
1366 
1367     /*
1368      * Get us into a critical section to interlock gd_freetd and loop
1369      * until we can get it freed.
1370      *
1371      * We have to cache the current td in gd_freetd because objcache_put()ing
1372      * it would rip it out from under us while our thread is still active.
1373      */
1374     gd = mycpu;
1375     crit_enter_quick(td);
1376     while ((std = gd->gd_freetd) != NULL) {
1377 	gd->gd_freetd = NULL;
1378 	objcache_put(thread_cache, std);
1379     }
1380     lwkt_deschedule_self(td);
1381     lwkt_remove_tdallq(td);
1382     if (td->td_flags & TDF_ALLOCATED_THREAD)
1383 	gd->gd_freetd = td;
1384     cpu_thread_exit();
1385 }
1386 
1387 void
1388 lwkt_remove_tdallq(thread_t td)
1389 {
1390     KKASSERT(td->td_gd == mycpu);
1391     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1392 }
1393 
1394 void
1395 crit_panic(void)
1396 {
1397     thread_t td = curthread;
1398     int lpri = td->td_pri;
1399 
1400     td->td_pri = 0;
1401     panic("td_pri is/would-go negative! %p %d", td, lpri);
1402 }
1403 
1404 #ifdef SMP
1405 
1406 /*
1407  * Called from debugger/panic on cpus which have been stopped.  We must still
1408  * process the IPIQ while stopped, even if we were stopped while in a critical
1409  * section (XXX).
1410  *
1411  * If we are dumping also try to process any pending interrupts.  This may
1412  * or may not work depending on the state of the cpu at the point it was
1413  * stopped.
1414  */
1415 void
1416 lwkt_smp_stopped(void)
1417 {
1418     globaldata_t gd = mycpu;
1419 
1420     crit_enter_gd(gd);
1421     if (dumping) {
1422 	lwkt_process_ipiq();
1423 	splz();
1424     } else {
1425 	lwkt_process_ipiq();
1426     }
1427     crit_exit_gd(gd);
1428 }
1429 
1430 /*
1431  * get_mplock() calls this routine if it is unable to obtain the MP lock.
1432  * get_mplock() has already incremented td_mpcount.  We must block and
1433  * not return until giant is held.
1434  *
1435  * All we have to do is lwkt_switch() away.  The LWKT scheduler will not
1436  * reschedule the thread until it can obtain the giant lock for it.
1437  */
1438 void
1439 lwkt_mp_lock_contested(void)
1440 {
1441     loggiant(beg);
1442     lwkt_switch();
1443     loggiant(end);
1444 }
1445 
1446 /*
1447  * The rel_mplock() code will call this function after releasing the
1448  * last reference on the MP lock if mp_lock_contention_mask is non-zero.
1449  *
1450  * We then chain an IPI to a single other cpu potentially needing the
1451  * lock.  This is a bit heuristical and we can wind up with IPIs flying
1452  * all over the place.
1453  */
1454 static void lwkt_mp_lock_uncontested_remote(void *arg __unused);
1455 
1456 void
1457 lwkt_mp_lock_uncontested(void)
1458 {
1459     globaldata_t gd;
1460     globaldata_t dgd;
1461     cpumask_t mask;
1462     cpumask_t tmpmask;
1463     int cpuid;
1464 
1465     if (chain_mplock) {
1466 	gd = mycpu;
1467 	atomic_clear_int(&mp_lock_contention_mask, gd->gd_cpumask);
1468 	mask = mp_lock_contention_mask;
1469 	tmpmask = ~((1 << gd->gd_cpuid) - 1);
1470 
1471 	if (mask) {
1472 	    if (mask & tmpmask)
1473 		    cpuid = bsfl(mask & tmpmask);
1474 	    else
1475 		    cpuid = bsfl(mask);
1476 	    atomic_clear_int(&mp_lock_contention_mask, 1 << cpuid);
1477 	    dgd = globaldata_find(cpuid);
1478 	    lwkt_send_ipiq(dgd, lwkt_mp_lock_uncontested_remote, NULL);
1479 	}
1480     }
1481 }
1482 
1483 /*
1484  * The idea is for this IPI to interrupt a potentially lower priority
1485  * thread, such as a user thread, to allow the scheduler to reschedule
1486  * a higher priority kernel thread that needs the MP lock.
1487  *
1488  * For now we set the LWKT reschedule flag which generates an AST in
1489  * doreti, though theoretically it is also possible to possibly preempt
1490  * here if the underlying thread was operating in user mode.  Nah.
1491  */
1492 static void
1493 lwkt_mp_lock_uncontested_remote(void *arg __unused)
1494 {
1495 	need_lwkt_resched();
1496 }
1497 
1498 #endif
1499