xref: /dragonfly/sys/kern/lwkt_thread.c (revision e0ecab34)
1 /*
2  * Copyright (c) 2003-2010 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 #include <machine/cpu.h>
51 #include <sys/lock.h>
52 #include <sys/caps.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59 
60 #include <sys/dsched.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70 
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 
74 #if !defined(KTR_CTXSW)
75 #define KTR_CTXSW KTR_ALL
76 #endif
77 KTR_INFO_MASTER(ctxsw);
78 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p",
79 	 sizeof(int) + sizeof(struct thread *));
80 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p",
81 	 sizeof(int) + sizeof(struct thread *));
82 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s",
83 	 sizeof (struct thread *) + sizeof(char *));
84 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *));
85 
86 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
87 
88 #ifdef	INVARIANTS
89 static int panic_on_cscount = 0;
90 #endif
91 static __int64_t switch_count = 0;
92 static __int64_t preempt_hit = 0;
93 static __int64_t preempt_miss = 0;
94 static __int64_t preempt_weird = 0;
95 static __int64_t token_contention_count __debugvar = 0;
96 static int lwkt_use_spin_port;
97 static struct objcache *thread_cache;
98 
99 #ifdef SMP
100 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
101 #endif
102 
103 extern void cpu_heavy_restore(void);
104 extern void cpu_lwkt_restore(void);
105 extern void cpu_kthread_restore(void);
106 extern void cpu_idle_restore(void);
107 
108 #ifdef __x86_64__
109 
110 static int
111 jg_tos_ok(struct thread *td)
112 {
113 	void *tos;
114 	int tos_ok;
115 
116 	if (td == NULL) {
117 		return 1;
118 	}
119 	KKASSERT(td->td_sp != NULL);
120 	tos = ((void **)td->td_sp)[0];
121 	tos_ok = 0;
122 	if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) ||
123 	    (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
124 		tos_ok = 1;
125 	}
126 	return tos_ok;
127 }
128 
129 #endif
130 
131 /*
132  * We can make all thread ports use the spin backend instead of the thread
133  * backend.  This should only be set to debug the spin backend.
134  */
135 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
136 
137 #ifdef	INVARIANTS
138 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
139 #endif
140 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
141 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
142 	    "Successful preemption events");
143 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
144 	    "Failed preemption events");
145 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
146 #ifdef	INVARIANTS
147 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
148 	&token_contention_count, 0, "spinning due to token contention");
149 #endif
150 
151 /*
152  * These helper procedures handle the runq, they can only be called from
153  * within a critical section.
154  *
155  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
156  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
157  * instead of 'mycpu' when referencing the globaldata structure.   Once
158  * SMP live enqueuing and dequeueing only occurs on the current cpu.
159  */
160 static __inline
161 void
162 _lwkt_dequeue(thread_t td)
163 {
164     if (td->td_flags & TDF_RUNQ) {
165 	int nq = td->td_pri & TDPRI_MASK;
166 	struct globaldata *gd = td->td_gd;
167 
168 	td->td_flags &= ~TDF_RUNQ;
169 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
170 	/* runqmask is passively cleaned up by the switcher */
171     }
172 }
173 
174 static __inline
175 void
176 _lwkt_enqueue(thread_t td)
177 {
178     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
179 	int nq = td->td_pri & TDPRI_MASK;
180 	struct globaldata *gd = td->td_gd;
181 
182 	td->td_flags |= TDF_RUNQ;
183 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
184 	gd->gd_runqmask |= 1 << nq;
185     }
186 }
187 
188 static __boolean_t
189 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
190 {
191 	struct thread *td = (struct thread *)obj;
192 
193 	td->td_kstack = NULL;
194 	td->td_kstack_size = 0;
195 	td->td_flags = TDF_ALLOCATED_THREAD;
196 	return (1);
197 }
198 
199 static void
200 _lwkt_thread_dtor(void *obj, void *privdata)
201 {
202 	struct thread *td = (struct thread *)obj;
203 
204 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
205 	    ("_lwkt_thread_dtor: not allocated from objcache"));
206 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
207 		td->td_kstack_size > 0,
208 	    ("_lwkt_thread_dtor: corrupted stack"));
209 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
210 }
211 
212 /*
213  * Initialize the lwkt s/system.
214  */
215 void
216 lwkt_init(void)
217 {
218     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
219     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
220 			NULL, CACHE_NTHREADS/2,
221 			_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
222 }
223 
224 /*
225  * Schedule a thread to run.  As the current thread we can always safely
226  * schedule ourselves, and a shortcut procedure is provided for that
227  * function.
228  *
229  * (non-blocking, self contained on a per cpu basis)
230  */
231 void
232 lwkt_schedule_self(thread_t td)
233 {
234     crit_enter_quick(td);
235     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
236     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
237     _lwkt_enqueue(td);
238     crit_exit_quick(td);
239 }
240 
241 /*
242  * Deschedule a thread.
243  *
244  * (non-blocking, self contained on a per cpu basis)
245  */
246 void
247 lwkt_deschedule_self(thread_t td)
248 {
249     crit_enter_quick(td);
250     _lwkt_dequeue(td);
251     crit_exit_quick(td);
252 }
253 
254 /*
255  * LWKTs operate on a per-cpu basis
256  *
257  * WARNING!  Called from early boot, 'mycpu' may not work yet.
258  */
259 void
260 lwkt_gdinit(struct globaldata *gd)
261 {
262     int i;
263 
264     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
265 	TAILQ_INIT(&gd->gd_tdrunq[i]);
266     gd->gd_runqmask = 0;
267     TAILQ_INIT(&gd->gd_tdallq);
268 }
269 
270 /*
271  * Create a new thread.  The thread must be associated with a process context
272  * or LWKT start address before it can be scheduled.  If the target cpu is
273  * -1 the thread will be created on the current cpu.
274  *
275  * If you intend to create a thread without a process context this function
276  * does everything except load the startup and switcher function.
277  */
278 thread_t
279 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
280 {
281     globaldata_t gd = mycpu;
282     void *stack;
283 
284     /*
285      * If static thread storage is not supplied allocate a thread.  Reuse
286      * a cached free thread if possible.  gd_freetd is used to keep an exiting
287      * thread intact through the exit.
288      */
289     if (td == NULL) {
290 	if ((td = gd->gd_freetd) != NULL)
291 	    gd->gd_freetd = NULL;
292 	else
293 	    td = objcache_get(thread_cache, M_WAITOK);
294     	KASSERT((td->td_flags &
295 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
296 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
297     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
298     }
299 
300     /*
301      * Try to reuse cached stack.
302      */
303     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
304 	if (flags & TDF_ALLOCATED_STACK) {
305 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
306 	    stack = NULL;
307 	}
308     }
309     if (stack == NULL) {
310 	stack = (void *)kmem_alloc(&kernel_map, stksize);
311 	flags |= TDF_ALLOCATED_STACK;
312     }
313     if (cpu < 0)
314 	lwkt_init_thread(td, stack, stksize, flags, gd);
315     else
316 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
317     return(td);
318 }
319 
320 /*
321  * Initialize a preexisting thread structure.  This function is used by
322  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
323  *
324  * All threads start out in a critical section at a priority of
325  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
326  * appropriate.  This function may send an IPI message when the
327  * requested cpu is not the current cpu and consequently gd_tdallq may
328  * not be initialized synchronously from the point of view of the originating
329  * cpu.
330  *
331  * NOTE! we have to be careful in regards to creating threads for other cpus
332  * if SMP has not yet been activated.
333  */
334 #ifdef SMP
335 
336 static void
337 lwkt_init_thread_remote(void *arg)
338 {
339     thread_t td = arg;
340 
341     /*
342      * Protected by critical section held by IPI dispatch
343      */
344     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
345 }
346 
347 #endif
348 
349 void
350 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
351 		struct globaldata *gd)
352 {
353     globaldata_t mygd = mycpu;
354 
355     bzero(td, sizeof(struct thread));
356     td->td_kstack = stack;
357     td->td_kstack_size = stksize;
358     td->td_flags = flags;
359     td->td_gd = gd;
360     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
361     td->td_toks_stop = &td->td_toks_base;
362 #ifdef SMP
363     if ((flags & TDF_MPSAFE) == 0)
364 	td->td_mpcount = 1;
365 #endif
366     if (lwkt_use_spin_port)
367 	lwkt_initport_spin(&td->td_msgport);
368     else
369 	lwkt_initport_thread(&td->td_msgport, td);
370     pmap_init_thread(td);
371 #ifdef SMP
372     /*
373      * Normally initializing a thread for a remote cpu requires sending an
374      * IPI.  However, the idlethread is setup before the other cpus are
375      * activated so we have to treat it as a special case.  XXX manipulation
376      * of gd_tdallq requires the BGL.
377      */
378     if (gd == mygd || td == &gd->gd_idlethread) {
379 	crit_enter_gd(mygd);
380 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
381 	crit_exit_gd(mygd);
382     } else {
383 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
384     }
385 #else
386     crit_enter_gd(mygd);
387     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
388     crit_exit_gd(mygd);
389 #endif
390 
391     dsched_new_thread(td);
392 }
393 
394 void
395 lwkt_set_comm(thread_t td, const char *ctl, ...)
396 {
397     __va_list va;
398 
399     __va_start(va, ctl);
400     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
401     __va_end(va);
402     KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
403 }
404 
405 void
406 lwkt_hold(thread_t td)
407 {
408     ++td->td_refs;
409 }
410 
411 void
412 lwkt_rele(thread_t td)
413 {
414     KKASSERT(td->td_refs > 0);
415     --td->td_refs;
416 }
417 
418 void
419 lwkt_wait_free(thread_t td)
420 {
421     while (td->td_refs)
422 	tsleep(td, 0, "tdreap", hz);
423 }
424 
425 void
426 lwkt_free_thread(thread_t td)
427 {
428     KASSERT((td->td_flags & TDF_RUNNING) == 0,
429 	("lwkt_free_thread: did not exit! %p", td));
430 
431     if (td->td_flags & TDF_ALLOCATED_THREAD) {
432     	objcache_put(thread_cache, td);
433     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
434 	/* client-allocated struct with internally allocated stack */
435 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
436 	    ("lwkt_free_thread: corrupted stack"));
437 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
438 	td->td_kstack = NULL;
439 	td->td_kstack_size = 0;
440     }
441     KTR_LOG(ctxsw_deadtd, td);
442 }
443 
444 
445 /*
446  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
447  * switch to the idlethread.  Switching must occur within a critical
448  * section to avoid races with the scheduling queue.
449  *
450  * We always have full control over our cpu's run queue.  Other cpus
451  * that wish to manipulate our queue must use the cpu_*msg() calls to
452  * talk to our cpu, so a critical section is all that is needed and
453  * the result is very, very fast thread switching.
454  *
455  * The LWKT scheduler uses a fixed priority model and round-robins at
456  * each priority level.  User process scheduling is a totally
457  * different beast and LWKT priorities should not be confused with
458  * user process priorities.
459  *
460  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
461  * cleans it up.  Note that the td_switch() function cannot do anything that
462  * requires the MP lock since the MP lock will have already been setup for
463  * the target thread (not the current thread).  It's nice to have a scheduler
464  * that does not need the MP lock to work because it allows us to do some
465  * really cool high-performance MP lock optimizations.
466  *
467  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
468  * is not called by the current thread in the preemption case, only when
469  * the preempting thread blocks (in order to return to the original thread).
470  */
471 void
472 lwkt_switch(void)
473 {
474     globaldata_t gd = mycpu;
475     thread_t td = gd->gd_curthread;
476     thread_t ntd;
477 #ifdef SMP
478     int mpheld;
479 #endif
480 
481     /*
482      * Switching from within a 'fast' (non thread switched) interrupt or IPI
483      * is illegal.  However, we may have to do it anyway if we hit a fatal
484      * kernel trap or we have paniced.
485      *
486      * If this case occurs save and restore the interrupt nesting level.
487      */
488     if (gd->gd_intr_nesting_level) {
489 	int savegdnest;
490 	int savegdtrap;
491 
492 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
493 	    panic("lwkt_switch: cannot switch from within "
494 		  "a fast interrupt, yet, td %p\n", td);
495 	} else {
496 	    savegdnest = gd->gd_intr_nesting_level;
497 	    savegdtrap = gd->gd_trap_nesting_level;
498 	    gd->gd_intr_nesting_level = 0;
499 	    gd->gd_trap_nesting_level = 0;
500 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
501 		td->td_flags |= TDF_PANICWARN;
502 		kprintf("Warning: thread switch from interrupt or IPI, "
503 			"thread %p (%s)\n", td, td->td_comm);
504 		print_backtrace(-1);
505 	    }
506 	    lwkt_switch();
507 	    gd->gd_intr_nesting_level = savegdnest;
508 	    gd->gd_trap_nesting_level = savegdtrap;
509 	    return;
510 	}
511     }
512 
513     /*
514      * Passive release (used to transition from user to kernel mode
515      * when we block or switch rather then when we enter the kernel).
516      * This function is NOT called if we are switching into a preemption
517      * or returning from a preemption.  Typically this causes us to lose
518      * our current process designation (if we have one) and become a true
519      * LWKT thread, and may also hand the current process designation to
520      * another process and schedule thread.
521      */
522     if (td->td_release)
523 	    td->td_release(td);
524 
525     crit_enter_gd(gd);
526     if (TD_TOKS_HELD(td))
527 	    lwkt_relalltokens(td);
528 
529     /*
530      * We had better not be holding any spin locks, but don't get into an
531      * endless panic loop.
532      */
533     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
534 	    ("lwkt_switch: still holding a shared spinlock %p!",
535 	     gd->gd_spinlock_rd));
536     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
537 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
538 	     gd->gd_spinlocks_wr));
539 
540 
541 #ifdef SMP
542     /*
543      * td_mpcount cannot be used to determine if we currently hold the
544      * MP lock because get_mplock() will increment it prior to attempting
545      * to get the lock, and switch out if it can't.  Our ownership of
546      * the actual lock will remain stable while we are in a critical section
547      * (but, of course, another cpu may own or release the lock so the
548      * actual value of mp_lock is not stable).
549      */
550     mpheld = MP_LOCK_HELD();
551 #ifdef	INVARIANTS
552     if (td->td_cscount) {
553 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
554 		td);
555 	if (panic_on_cscount)
556 	    panic("switching while mastering cpusync");
557     }
558 #endif
559 #endif
560     if ((ntd = td->td_preempted) != NULL) {
561 	/*
562 	 * We had preempted another thread on this cpu, resume the preempted
563 	 * thread.  This occurs transparently, whether the preempted thread
564 	 * was scheduled or not (it may have been preempted after descheduling
565 	 * itself).
566 	 *
567 	 * We have to setup the MP lock for the original thread after backing
568 	 * out the adjustment that was made to curthread when the original
569 	 * was preempted.
570 	 */
571 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
572 #ifdef SMP
573 	if (ntd->td_mpcount && mpheld == 0) {
574 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
575 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
576 	}
577 	if (ntd->td_mpcount) {
578 	    td->td_mpcount -= ntd->td_mpcount;
579 	    KKASSERT(td->td_mpcount >= 0);
580 	}
581 #endif
582 	ntd->td_flags |= TDF_PREEMPT_DONE;
583 
584 	/*
585 	 * The interrupt may have woken a thread up, we need to properly
586 	 * set the reschedule flag if the originally interrupted thread is
587 	 * at a lower priority.
588 	 */
589 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
590 	    need_lwkt_resched();
591 	/* YYY release mp lock on switchback if original doesn't need it */
592     } else {
593 	/*
594 	 * Priority queue / round-robin at each priority.  Note that user
595 	 * processes run at a fixed, low priority and the user process
596 	 * scheduler deals with interactions between user processes
597 	 * by scheduling and descheduling them from the LWKT queue as
598 	 * necessary.
599 	 *
600 	 * We have to adjust the MP lock for the target thread.  If we
601 	 * need the MP lock and cannot obtain it we try to locate a
602 	 * thread that does not need the MP lock.  If we cannot, we spin
603 	 * instead of HLT.
604 	 *
605 	 * A similar issue exists for the tokens held by the target thread.
606 	 * If we cannot obtain ownership of the tokens we cannot immediately
607 	 * schedule the thread.
608 	 */
609 
610 	/*
611 	 * If an LWKT reschedule was requested, well that is what we are
612 	 * doing now so clear it.
613 	 */
614 	clear_lwkt_resched();
615 again:
616 	if (gd->gd_runqmask) {
617 	    int nq = bsrl(gd->gd_runqmask);
618 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
619 		gd->gd_runqmask &= ~(1 << nq);
620 		goto again;
621 	    }
622 #ifdef SMP
623 	    /*
624 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
625 	     *
626 	     * If the target needs the MP lock and we couldn't get it,
627 	     * or if the target is holding tokens and we could not
628 	     * gain ownership of the tokens, continue looking for a
629 	     * thread to schedule and spin instead of HLT if we can't.
630 	     *
631 	     * NOTE: the mpheld variable invalid after this conditional, it
632 	     * can change due to both cpu_try_mplock() returning success
633 	     * AND interactions in lwkt_getalltokens() due to the fact that
634 	     * we are trying to check the mpcount of a thread other then
635 	     * the current thread.  Because of this, if the current thread
636 	     * is not holding td_mpcount, an IPI indirectly run via
637 	     * lwkt_getalltokens() can obtain and release the MP lock and
638 	     * cause the core MP lock to be released.
639 	     */
640 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
641 		(TD_TOKS_HELD(ntd) && lwkt_getalltokens(ntd) == 0)
642 	    ) {
643 		u_int32_t rqmask = gd->gd_runqmask;
644 
645 		cpu_pause();
646 
647 		mpheld = MP_LOCK_HELD();
648 		ntd = NULL;
649 		while (rqmask) {
650 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
651 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
652 			    /* spinning due to MP lock being held */
653 			    continue;
654 			}
655 
656 			/*
657 			 * mpheld state invalid after getalltokens call returns
658 			 * failure, but the variable is only needed for
659 			 * the loop.
660 			 */
661 			if (TD_TOKS_HELD(ntd) && !lwkt_getalltokens(ntd)) {
662 			    /* spinning due to token contention */
663 #ifdef	INVARIANTS
664 			    ++token_contention_count;
665 #endif
666 			    mpheld = MP_LOCK_HELD();
667 			    continue;
668 			}
669 			break;
670 		    }
671 		    if (ntd)
672 			break;
673 		    rqmask &= ~(1 << nq);
674 		    nq = bsrl(rqmask);
675 
676 		    /*
677 		     * We have two choices. We can either refuse to run a
678 		     * user thread when a kernel thread needs the MP lock
679 		     * but could not get it, or we can allow it to run but
680 		     * then expect an IPI (hopefully) later on to force a
681 		     * reschedule when the MP lock might become available.
682 		     */
683 		    if (nq < TDPRI_KERN_LPSCHED) {
684 			break;	/* for now refuse to run */
685 #if 0
686 			if (chain_mplock == 0)
687 				break;
688 			/* continue loop, allow user threads to be scheduled */
689 #endif
690 		    }
691 		}
692 
693 		/*
694 		 * Case where a (kernel) thread needed the MP lock and could
695 		 * not get one, and we may or may not have found another
696 		 * thread which does not need the MP lock to run while
697 		 * we wait (ntd).
698 		 */
699 		if (ntd == NULL) {
700 		    ntd = &gd->gd_idlethread;
701 		    ntd->td_flags |= TDF_IDLE_NOHLT;
702 		    set_mplock_contention_mask(gd);
703 		    cpu_mplock_contested();
704 		    goto using_idle_thread;
705 		} else {
706 		    clr_mplock_contention_mask(gd);
707 		    ++gd->gd_cnt.v_swtch;
708 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
709 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
710 		}
711 	    } else {
712 		clr_mplock_contention_mask(gd);
713 		++gd->gd_cnt.v_swtch;
714 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
715 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
716 	    }
717 #else
718 	    /*
719 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
720 	     * worry about tokens or the BGL.  However, we still have
721 	     * to call lwkt_getalltokens() in order to properly detect
722 	     * stale tokens.  This call cannot fail for a UP build!
723 	     */
724 	    lwkt_getalltokens(ntd);
725 	    ++gd->gd_cnt.v_swtch;
726 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
727 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
728 #endif
729 	} else {
730 	    /*
731 	     * We have nothing to run but only let the idle loop halt
732 	     * the cpu if there are no pending interrupts.
733 	     */
734 	    ntd = &gd->gd_idlethread;
735 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
736 		ntd->td_flags |= TDF_IDLE_NOHLT;
737 #ifdef SMP
738 using_idle_thread:
739 	    /*
740 	     * The idle thread should not be holding the MP lock unless we
741 	     * are trapping in the kernel or in a panic.  Since we select the
742 	     * idle thread unconditionally when no other thread is available,
743 	     * if the MP lock is desired during a panic or kernel trap, we
744 	     * have to loop in the scheduler until we get it.
745 	     */
746 	    if (ntd->td_mpcount) {
747 		mpheld = MP_LOCK_HELD();
748 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
749 		    panic("Idle thread %p was holding the BGL!", ntd);
750 		if (mpheld == 0)
751 		    goto again;
752 	    }
753 #endif
754 	}
755     }
756     KASSERT(ntd->td_pri >= TDPRI_CRIT,
757 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
758 
759     /*
760      * Do the actual switch.  If the new target does not need the MP lock
761      * and we are holding it, release the MP lock.  If the new target requires
762      * the MP lock we have already acquired it for the target.
763      */
764 #ifdef SMP
765     if (ntd->td_mpcount == 0 ) {
766 	if (MP_LOCK_HELD())
767 	    cpu_rel_mplock();
768     } else {
769 	ASSERT_MP_LOCK_HELD(ntd);
770     }
771 #endif
772     if (td != ntd) {
773 	++switch_count;
774 #ifdef __x86_64__
775     {
776 	int tos_ok __debugvar = jg_tos_ok(ntd);
777 	KKASSERT(tos_ok);
778     }
779 #endif
780 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
781 	td->td_switch(ntd);
782     }
783     /* NOTE: current cpu may have changed after switch */
784     crit_exit_quick(td);
785 }
786 
787 /*
788  * Request that the target thread preempt the current thread.  Preemption
789  * only works under a specific set of conditions:
790  *
791  *	- We are not preempting ourselves
792  *	- The target thread is owned by the current cpu
793  *	- We are not currently being preempted
794  *	- The target is not currently being preempted
795  *	- We are not holding any spin locks
796  *	- The target thread is not holding any tokens
797  *	- We are able to satisfy the target's MP lock requirements (if any).
798  *
799  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
800  * this is called via lwkt_schedule() through the td_preemptable callback.
801  * critpri is the managed critical priority that we should ignore in order
802  * to determine whether preemption is possible (aka usually just the crit
803  * priority of lwkt_schedule() itself).
804  *
805  * XXX at the moment we run the target thread in a critical section during
806  * the preemption in order to prevent the target from taking interrupts
807  * that *WE* can't.  Preemption is strictly limited to interrupt threads
808  * and interrupt-like threads, outside of a critical section, and the
809  * preempted source thread will be resumed the instant the target blocks
810  * whether or not the source is scheduled (i.e. preemption is supposed to
811  * be as transparent as possible).
812  *
813  * The target thread inherits our MP count (added to its own) for the
814  * duration of the preemption in order to preserve the atomicy of the
815  * MP lock during the preemption.  Therefore, any preempting targets must be
816  * careful in regards to MP assertions.  Note that the MP count may be
817  * out of sync with the physical mp_lock, but we do not have to preserve
818  * the original ownership of the lock if it was out of synch (that is, we
819  * can leave it synchronized on return).
820  */
821 void
822 lwkt_preempt(thread_t ntd, int critpri)
823 {
824     struct globaldata *gd = mycpu;
825     thread_t td;
826 #ifdef SMP
827     int mpheld;
828     int savecnt;
829 #endif
830 
831     /*
832      * The caller has put us in a critical section.  We can only preempt
833      * if the caller of the caller was not in a critical section (basically
834      * a local interrupt), as determined by the 'critpri' parameter.  We
835      * also can't preempt if the caller is holding any spinlocks (even if
836      * he isn't in a critical section).  This also handles the tokens test.
837      *
838      * YYY The target thread must be in a critical section (else it must
839      * inherit our critical section?  I dunno yet).
840      *
841      * Set need_lwkt_resched() unconditionally for now YYY.
842      */
843     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
844 
845     td = gd->gd_curthread;
846     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
847 	++preempt_miss;
848 	return;
849     }
850     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
851 	++preempt_miss;
852 	need_lwkt_resched();
853 	return;
854     }
855 #ifdef SMP
856     if (ntd->td_gd != gd) {
857 	++preempt_miss;
858 	need_lwkt_resched();
859 	return;
860     }
861 #endif
862     /*
863      * Take the easy way out and do not preempt if we are holding
864      * any spinlocks.  We could test whether the thread(s) being
865      * preempted interlock against the target thread's tokens and whether
866      * we can get all the target thread's tokens, but this situation
867      * should not occur very often so its easier to simply not preempt.
868      * Also, plain spinlocks are impossible to figure out at this point so
869      * just don't preempt.
870      *
871      * Do not try to preempt if the target thread is holding any tokens.
872      * We could try to acquire the tokens but this case is so rare there
873      * is no need to support it.
874      */
875     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
876 	++preempt_miss;
877 	need_lwkt_resched();
878 	return;
879     }
880     if (TD_TOKS_HELD(ntd)) {
881 	++preempt_miss;
882 	need_lwkt_resched();
883 	return;
884     }
885     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
886 	++preempt_weird;
887 	need_lwkt_resched();
888 	return;
889     }
890     if (ntd->td_preempted) {
891 	++preempt_hit;
892 	need_lwkt_resched();
893 	return;
894     }
895 #ifdef SMP
896     /*
897      * note: an interrupt might have occured just as we were transitioning
898      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
899      * (non-zero) but not actually synchronized with the actual state of the
900      * lock.  We can use it to imply an MP lock requirement for the
901      * preemption but we cannot use it to test whether we hold the MP lock
902      * or not.
903      */
904     savecnt = td->td_mpcount;
905     mpheld = MP_LOCK_HELD();
906     ntd->td_mpcount += td->td_mpcount;
907     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
908 	ntd->td_mpcount -= td->td_mpcount;
909 	++preempt_miss;
910 	need_lwkt_resched();
911 	return;
912     }
913 #endif
914 
915     /*
916      * Since we are able to preempt the current thread, there is no need to
917      * call need_lwkt_resched().
918      */
919     ++preempt_hit;
920     ntd->td_preempted = td;
921     td->td_flags |= TDF_PREEMPT_LOCK;
922     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
923     td->td_switch(ntd);
924 
925     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
926 #ifdef SMP
927     KKASSERT(savecnt == td->td_mpcount);
928     mpheld = MP_LOCK_HELD();
929     if (mpheld && td->td_mpcount == 0)
930 	cpu_rel_mplock();
931     else if (mpheld == 0 && td->td_mpcount)
932 	panic("lwkt_preempt(): MP lock was not held through");
933 #endif
934     ntd->td_preempted = NULL;
935     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
936 }
937 
938 /*
939  * Conditionally call splz() if gd_reqflags indicates work is pending.
940  *
941  * td_nest_count prevents deep nesting via splz() or doreti() which
942  * might otherwise blow out the kernel stack.  Note that except for
943  * this special case, we MUST call splz() here to handle any
944  * pending ints, particularly after we switch, or we might accidently
945  * halt the cpu with interrupts pending.
946  *
947  * (self contained on a per cpu basis)
948  */
949 void
950 splz_check(void)
951 {
952     globaldata_t gd = mycpu;
953     thread_t td = gd->gd_curthread;
954 
955     if (gd->gd_reqflags && td->td_nest_count < 2)
956 	splz();
957 }
958 
959 /*
960  * This implements a normal yield which will yield to equal priority
961  * threads as well as higher priority threads.  Note that gd_reqflags
962  * tests will be handled by the crit_exit() call in lwkt_switch().
963  *
964  * (self contained on a per cpu basis)
965  */
966 void
967 lwkt_yield(void)
968 {
969     lwkt_schedule_self(curthread);
970     lwkt_switch();
971 }
972 
973 /*
974  * This function is used along with the lwkt_passive_recover() inline
975  * by the trap code to negotiate a passive release of the current
976  * process/lwp designation with the user scheduler.
977  */
978 void
979 lwkt_passive_release(struct thread *td)
980 {
981     struct lwp *lp = td->td_lwp;
982 
983     td->td_release = NULL;
984     lwkt_setpri_self(TDPRI_KERN_USER);
985     lp->lwp_proc->p_usched->release_curproc(lp);
986 }
987 
988 /*
989  * Make a kernel thread act as if it were in user mode with regards
990  * to scheduling, to avoid becoming cpu-bound in the kernel.  Kernel
991  * loops which may be potentially cpu-bound can call lwkt_user_yield().
992  *
993  * The lwkt_user_yield() function is designed to have very low overhead
994  * if no yield is determined to be needed.
995  */
996 void
997 lwkt_user_yield(void)
998 {
999     thread_t td = curthread;
1000     struct lwp *lp = td->td_lwp;
1001 
1002 #ifdef SMP
1003     /*
1004      * XXX SEVERE TEMPORARY HACK.  A cpu-bound operation running in the
1005      * kernel can prevent other cpus from servicing interrupt threads
1006      * which still require the MP lock (which is a lot of them).  This
1007      * has a chaining effect since if the interrupt is blocked, so is
1008      * the event, so normal scheduling will not pick up on the problem.
1009      */
1010     if (mp_lock_contention_mask && td->td_mpcount) {
1011 	yield_mplock(td);
1012     }
1013 #endif
1014 
1015     /*
1016      * Another kernel thread wants the cpu
1017      */
1018     if (lwkt_resched_wanted())
1019 	lwkt_switch();
1020 
1021     /*
1022      * If the user scheduler has asynchronously determined that the current
1023      * process (when running in user mode) needs to lose the cpu then make
1024      * sure we are released.
1025      */
1026     if (user_resched_wanted()) {
1027 	if (td->td_release)
1028 	    td->td_release(td);
1029     }
1030 
1031     /*
1032      * If we are released reduce our priority
1033      */
1034     if (td->td_release == NULL) {
1035 	if (lwkt_check_resched(td) > 0)
1036 		lwkt_switch();
1037 	if (lp) {
1038 		lp->lwp_proc->p_usched->acquire_curproc(lp);
1039 		td->td_release = lwkt_passive_release;
1040 		lwkt_setpri_self(TDPRI_USER_NORM);
1041 	}
1042     }
1043 }
1044 
1045 /*
1046  * Return 0 if no runnable threads are pending at the same or higher
1047  * priority as the passed thread.
1048  *
1049  * Return 1 if runnable threads are pending at the same priority.
1050  *
1051  * Return 2 if runnable threads are pending at a higher priority.
1052  */
1053 int
1054 lwkt_check_resched(thread_t td)
1055 {
1056 	int pri = td->td_pri & TDPRI_MASK;
1057 
1058 	if (td->td_gd->gd_runqmask > (2 << pri) - 1)
1059 		return(2);
1060 	if (TAILQ_NEXT(td, td_threadq))
1061 		return(1);
1062 	return(0);
1063 }
1064 
1065 /*
1066  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1067  * deal with threads that might be blocked on a wait queue.
1068  *
1069  * We have a little helper inline function which does additional work after
1070  * the thread has been enqueued, including dealing with preemption and
1071  * setting need_lwkt_resched() (which prevents the kernel from returning
1072  * to userland until it has processed higher priority threads).
1073  *
1074  * It is possible for this routine to be called after a failed _enqueue
1075  * (due to the target thread migrating, sleeping, or otherwise blocked).
1076  * We have to check that the thread is actually on the run queue!
1077  *
1078  * reschedok is an optimized constant propagated from lwkt_schedule() or
1079  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1080  * reschedule to be requested if the target thread has a higher priority.
1081  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1082  * be 0, prevented undesired reschedules.
1083  */
1084 static __inline
1085 void
1086 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
1087 {
1088     thread_t otd;
1089 
1090     if (ntd->td_flags & TDF_RUNQ) {
1091 	if (ntd->td_preemptable && reschedok) {
1092 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
1093 	} else if (reschedok) {
1094 	    otd = curthread;
1095 	    if ((ntd->td_pri & TDPRI_MASK) > (otd->td_pri & TDPRI_MASK))
1096 		need_lwkt_resched();
1097 	}
1098     }
1099 }
1100 
1101 static __inline
1102 void
1103 _lwkt_schedule(thread_t td, int reschedok)
1104 {
1105     globaldata_t mygd = mycpu;
1106 
1107     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1108     crit_enter_gd(mygd);
1109     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1110     if (td == mygd->gd_curthread) {
1111 	_lwkt_enqueue(td);
1112     } else {
1113 	/*
1114 	 * If we own the thread, there is no race (since we are in a
1115 	 * critical section).  If we do not own the thread there might
1116 	 * be a race but the target cpu will deal with it.
1117 	 */
1118 #ifdef SMP
1119 	if (td->td_gd == mygd) {
1120 	    _lwkt_enqueue(td);
1121 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1122 	} else {
1123 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1124 	}
1125 #else
1126 	_lwkt_enqueue(td);
1127 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1128 #endif
1129     }
1130     crit_exit_gd(mygd);
1131 }
1132 
1133 void
1134 lwkt_schedule(thread_t td)
1135 {
1136     _lwkt_schedule(td, 1);
1137 }
1138 
1139 void
1140 lwkt_schedule_noresched(thread_t td)
1141 {
1142     _lwkt_schedule(td, 0);
1143 }
1144 
1145 #ifdef SMP
1146 
1147 /*
1148  * When scheduled remotely if frame != NULL the IPIQ is being
1149  * run via doreti or an interrupt then preemption can be allowed.
1150  *
1151  * To allow preemption we have to drop the critical section so only
1152  * one is present in _lwkt_schedule_post.
1153  */
1154 static void
1155 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1156 {
1157     thread_t td = curthread;
1158     thread_t ntd = arg;
1159 
1160     if (frame && ntd->td_preemptable) {
1161 	crit_exit_noyield(td);
1162 	_lwkt_schedule(ntd, 1);
1163 	crit_enter_quick(td);
1164     } else {
1165 	_lwkt_schedule(ntd, 1);
1166     }
1167 }
1168 
1169 /*
1170  * Thread migration using a 'Pull' method.  The thread may or may not be
1171  * the current thread.  It MUST be descheduled and in a stable state.
1172  * lwkt_giveaway() must be called on the cpu owning the thread.
1173  *
1174  * At any point after lwkt_giveaway() is called, the target cpu may
1175  * 'pull' the thread by calling lwkt_acquire().
1176  *
1177  * We have to make sure the thread is not sitting on a per-cpu tsleep
1178  * queue or it will blow up when it moves to another cpu.
1179  *
1180  * MPSAFE - must be called under very specific conditions.
1181  */
1182 void
1183 lwkt_giveaway(thread_t td)
1184 {
1185     globaldata_t gd = mycpu;
1186 
1187     crit_enter_gd(gd);
1188     if (td->td_flags & TDF_TSLEEPQ)
1189 	tsleep_remove(td);
1190     KKASSERT(td->td_gd == gd);
1191     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1192     td->td_flags |= TDF_MIGRATING;
1193     crit_exit_gd(gd);
1194 }
1195 
1196 void
1197 lwkt_acquire(thread_t td)
1198 {
1199     globaldata_t gd;
1200     globaldata_t mygd;
1201 
1202     KKASSERT(td->td_flags & TDF_MIGRATING);
1203     gd = td->td_gd;
1204     mygd = mycpu;
1205     if (gd != mycpu) {
1206 	cpu_lfence();
1207 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1208 	crit_enter_gd(mygd);
1209 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1210 #ifdef SMP
1211 	    lwkt_process_ipiq();
1212 #endif
1213 	    cpu_lfence();
1214 	}
1215 	td->td_gd = mygd;
1216 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1217 	td->td_flags &= ~TDF_MIGRATING;
1218 	crit_exit_gd(mygd);
1219     } else {
1220 	crit_enter_gd(mygd);
1221 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1222 	td->td_flags &= ~TDF_MIGRATING;
1223 	crit_exit_gd(mygd);
1224     }
1225 }
1226 
1227 #endif
1228 
1229 /*
1230  * Generic deschedule.  Descheduling threads other then your own should be
1231  * done only in carefully controlled circumstances.  Descheduling is
1232  * asynchronous.
1233  *
1234  * This function may block if the cpu has run out of messages.
1235  */
1236 void
1237 lwkt_deschedule(thread_t td)
1238 {
1239     crit_enter();
1240 #ifdef SMP
1241     if (td == curthread) {
1242 	_lwkt_dequeue(td);
1243     } else {
1244 	if (td->td_gd == mycpu) {
1245 	    _lwkt_dequeue(td);
1246 	} else {
1247 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1248 	}
1249     }
1250 #else
1251     _lwkt_dequeue(td);
1252 #endif
1253     crit_exit();
1254 }
1255 
1256 /*
1257  * Set the target thread's priority.  This routine does not automatically
1258  * switch to a higher priority thread, LWKT threads are not designed for
1259  * continuous priority changes.  Yield if you want to switch.
1260  *
1261  * We have to retain the critical section count which uses the high bits
1262  * of the td_pri field.  The specified priority may also indicate zero or
1263  * more critical sections by adding TDPRI_CRIT*N.
1264  *
1265  * Note that we requeue the thread whether it winds up on a different runq
1266  * or not.  uio_yield() depends on this and the routine is not normally
1267  * called with the same priority otherwise.
1268  */
1269 void
1270 lwkt_setpri(thread_t td, int pri)
1271 {
1272     KKASSERT(pri >= 0);
1273     KKASSERT(td->td_gd == mycpu);
1274     crit_enter();
1275     if (td->td_flags & TDF_RUNQ) {
1276 	_lwkt_dequeue(td);
1277 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1278 	_lwkt_enqueue(td);
1279     } else {
1280 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1281     }
1282     crit_exit();
1283 }
1284 
1285 /*
1286  * Set the initial priority for a thread prior to it being scheduled for
1287  * the first time.  The thread MUST NOT be scheduled before or during
1288  * this call.  The thread may be assigned to a cpu other then the current
1289  * cpu.
1290  *
1291  * Typically used after a thread has been created with TDF_STOPPREQ,
1292  * and before the thread is initially scheduled.
1293  */
1294 void
1295 lwkt_setpri_initial(thread_t td, int pri)
1296 {
1297     KKASSERT(pri >= 0);
1298     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1299     td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1300 }
1301 
1302 void
1303 lwkt_setpri_self(int pri)
1304 {
1305     thread_t td = curthread;
1306 
1307     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1308     crit_enter();
1309     if (td->td_flags & TDF_RUNQ) {
1310 	_lwkt_dequeue(td);
1311 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1312 	_lwkt_enqueue(td);
1313     } else {
1314 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1315     }
1316     crit_exit();
1317 }
1318 
1319 /*
1320  * Migrate the current thread to the specified cpu.
1321  *
1322  * This is accomplished by descheduling ourselves from the current cpu,
1323  * moving our thread to the tdallq of the target cpu, IPI messaging the
1324  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1325  * races while the thread is being migrated.
1326  *
1327  * We must be sure to remove ourselves from the current cpu's tsleepq
1328  * before potentially moving to another queue.  The thread can be on
1329  * a tsleepq due to a left-over tsleep_interlock().
1330  */
1331 #ifdef SMP
1332 static void lwkt_setcpu_remote(void *arg);
1333 #endif
1334 
1335 void
1336 lwkt_setcpu_self(globaldata_t rgd)
1337 {
1338 #ifdef SMP
1339     thread_t td = curthread;
1340 
1341     if (td->td_gd != rgd) {
1342 	crit_enter_quick(td);
1343 	if (td->td_flags & TDF_TSLEEPQ)
1344 	    tsleep_remove(td);
1345 	td->td_flags |= TDF_MIGRATING;
1346 	lwkt_deschedule_self(td);
1347 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1348 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1349 	lwkt_switch();
1350 	/* we are now on the target cpu */
1351 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1352 	crit_exit_quick(td);
1353     }
1354 #endif
1355 }
1356 
1357 void
1358 lwkt_migratecpu(int cpuid)
1359 {
1360 #ifdef SMP
1361 	globaldata_t rgd;
1362 
1363 	rgd = globaldata_find(cpuid);
1364 	lwkt_setcpu_self(rgd);
1365 #endif
1366 }
1367 
1368 /*
1369  * Remote IPI for cpu migration (called while in a critical section so we
1370  * do not have to enter another one).  The thread has already been moved to
1371  * our cpu's allq, but we must wait for the thread to be completely switched
1372  * out on the originating cpu before we schedule it on ours or the stack
1373  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1374  * change to main memory.
1375  *
1376  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1377  * against wakeups.  It is best if this interface is used only when there
1378  * are no pending events that might try to schedule the thread.
1379  */
1380 #ifdef SMP
1381 static void
1382 lwkt_setcpu_remote(void *arg)
1383 {
1384     thread_t td = arg;
1385     globaldata_t gd = mycpu;
1386 
1387     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1388 #ifdef SMP
1389 	lwkt_process_ipiq();
1390 #endif
1391 	cpu_lfence();
1392     }
1393     td->td_gd = gd;
1394     cpu_sfence();
1395     td->td_flags &= ~TDF_MIGRATING;
1396     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1397     _lwkt_enqueue(td);
1398 }
1399 #endif
1400 
1401 struct lwp *
1402 lwkt_preempted_proc(void)
1403 {
1404     thread_t td = curthread;
1405     while (td->td_preempted)
1406 	td = td->td_preempted;
1407     return(td->td_lwp);
1408 }
1409 
1410 /*
1411  * Create a kernel process/thread/whatever.  It shares it's address space
1412  * with proc0 - ie: kernel only.
1413  *
1414  * NOTE!  By default new threads are created with the MP lock held.  A
1415  * thread which does not require the MP lock should release it by calling
1416  * rel_mplock() at the start of the new thread.
1417  */
1418 int
1419 lwkt_create(void (*func)(void *), void *arg,
1420     struct thread **tdp, thread_t template, int tdflags, int cpu,
1421     const char *fmt, ...)
1422 {
1423     thread_t td;
1424     __va_list ap;
1425 
1426     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1427 			   tdflags);
1428     if (tdp)
1429 	*tdp = td;
1430     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1431 
1432     /*
1433      * Set up arg0 for 'ps' etc
1434      */
1435     __va_start(ap, fmt);
1436     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1437     __va_end(ap);
1438 
1439     /*
1440      * Schedule the thread to run
1441      */
1442     if ((td->td_flags & TDF_STOPREQ) == 0)
1443 	lwkt_schedule(td);
1444     else
1445 	td->td_flags &= ~TDF_STOPREQ;
1446     return 0;
1447 }
1448 
1449 /*
1450  * Destroy an LWKT thread.   Warning!  This function is not called when
1451  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1452  * uses a different reaping mechanism.
1453  */
1454 void
1455 lwkt_exit(void)
1456 {
1457     thread_t td = curthread;
1458     thread_t std;
1459     globaldata_t gd;
1460 
1461     if (td->td_flags & TDF_VERBOSE)
1462 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1463     caps_exit(td);
1464 
1465     /*
1466      * Get us into a critical section to interlock gd_freetd and loop
1467      * until we can get it freed.
1468      *
1469      * We have to cache the current td in gd_freetd because objcache_put()ing
1470      * it would rip it out from under us while our thread is still active.
1471      */
1472     gd = mycpu;
1473     crit_enter_quick(td);
1474     while ((std = gd->gd_freetd) != NULL) {
1475 	gd->gd_freetd = NULL;
1476 	objcache_put(thread_cache, std);
1477     }
1478 
1479     /*
1480      * Remove thread resources from kernel lists and deschedule us for
1481      * the last time.
1482      */
1483     if (td->td_flags & TDF_TSLEEPQ)
1484 	tsleep_remove(td);
1485     biosched_done(td);
1486     dsched_exit_thread(td);
1487     lwkt_deschedule_self(td);
1488     lwkt_remove_tdallq(td);
1489     if (td->td_flags & TDF_ALLOCATED_THREAD)
1490 	gd->gd_freetd = td;
1491     cpu_thread_exit();
1492 }
1493 
1494 void
1495 lwkt_remove_tdallq(thread_t td)
1496 {
1497     KKASSERT(td->td_gd == mycpu);
1498     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1499 }
1500 
1501 void
1502 crit_panic(void)
1503 {
1504     thread_t td = curthread;
1505     int lpri = td->td_pri;
1506 
1507     td->td_pri = 0;
1508     panic("td_pri is/would-go negative! %p %d", td, lpri);
1509 }
1510 
1511 #ifdef SMP
1512 
1513 /*
1514  * Called from debugger/panic on cpus which have been stopped.  We must still
1515  * process the IPIQ while stopped, even if we were stopped while in a critical
1516  * section (XXX).
1517  *
1518  * If we are dumping also try to process any pending interrupts.  This may
1519  * or may not work depending on the state of the cpu at the point it was
1520  * stopped.
1521  */
1522 void
1523 lwkt_smp_stopped(void)
1524 {
1525     globaldata_t gd = mycpu;
1526 
1527     crit_enter_gd(gd);
1528     if (dumping) {
1529 	lwkt_process_ipiq();
1530 	splz();
1531     } else {
1532 	lwkt_process_ipiq();
1533     }
1534     crit_exit_gd(gd);
1535 }
1536 
1537 #endif
1538