xref: /dragonfly/sys/kern/lwkt_thread.c (revision e65bc1c3)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59 
60 #include <sys/dsched.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70 
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 
74 #if !defined(KTR_CTXSW)
75 #define KTR_CTXSW KTR_ALL
76 #endif
77 KTR_INFO_MASTER(ctxsw);
78 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
79 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
80 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
81 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
82 
83 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
84 
85 #ifdef	INVARIANTS
86 static int panic_on_cscount = 0;
87 #endif
88 static __int64_t switch_count = 0;
89 static __int64_t preempt_hit = 0;
90 static __int64_t preempt_miss = 0;
91 static __int64_t preempt_weird = 0;
92 static int lwkt_use_spin_port;
93 static struct objcache *thread_cache;
94 
95 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
96 static void lwkt_setcpu_remote(void *arg);
97 
98 extern void cpu_heavy_restore(void);
99 extern void cpu_lwkt_restore(void);
100 extern void cpu_kthread_restore(void);
101 extern void cpu_idle_restore(void);
102 
103 /*
104  * We can make all thread ports use the spin backend instead of the thread
105  * backend.  This should only be set to debug the spin backend.
106  */
107 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
108 
109 #ifdef	INVARIANTS
110 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
111     "Panic if attempting to switch lwkt's while mastering cpusync");
112 #endif
113 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
114     "Number of switched threads");
115 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
116     "Successful preemption events");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
118     "Failed preemption events");
119 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
120     "Number of preempted threads.");
121 static int fairq_enable = 0;
122 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
123 	&fairq_enable, 0, "Turn on fairq priority accumulators");
124 static int fairq_bypass = -1;
125 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
126 	&fairq_bypass, 0, "Allow fairq to bypass td on token failure");
127 extern int lwkt_sched_debug;
128 int lwkt_sched_debug = 0;
129 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
130 	&lwkt_sched_debug, 0, "Scheduler debug");
131 static int lwkt_spin_loops = 10;
132 SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
133 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
134 static int lwkt_spin_reseq = 0;
135 SYSCTL_INT(_lwkt, OID_AUTO, spin_reseq, CTLFLAG_RW,
136 	&lwkt_spin_reseq, 0, "Scheduler resequencer enable");
137 static int lwkt_spin_monitor = 0;
138 SYSCTL_INT(_lwkt, OID_AUTO, spin_monitor, CTLFLAG_RW,
139 	&lwkt_spin_monitor, 0, "Scheduler uses monitor/mwait");
140 static int lwkt_spin_fatal = 0;	/* disabled */
141 SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
142 	&lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
143 static int preempt_enable = 1;
144 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
145 	&preempt_enable, 0, "Enable preemption");
146 static int lwkt_cache_threads = 0;
147 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
148 	&lwkt_cache_threads, 0, "thread+kstack cache");
149 
150 static __cachealign int lwkt_cseq_rindex;
151 static __cachealign int lwkt_cseq_windex;
152 
153 /*
154  * These helper procedures handle the runq, they can only be called from
155  * within a critical section.
156  *
157  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
158  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
159  * instead of 'mycpu' when referencing the globaldata structure.   Once
160  * SMP live enqueuing and dequeueing only occurs on the current cpu.
161  */
162 static __inline
163 void
164 _lwkt_dequeue(thread_t td)
165 {
166     if (td->td_flags & TDF_RUNQ) {
167 	struct globaldata *gd = td->td_gd;
168 
169 	td->td_flags &= ~TDF_RUNQ;
170 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
171 	--gd->gd_tdrunqcount;
172 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
173 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
174     }
175 }
176 
177 /*
178  * Priority enqueue.
179  *
180  * There are a limited number of lwkt threads runnable since user
181  * processes only schedule one at a time per cpu.  However, there can
182  * be many user processes in kernel mode exiting from a tsleep() which
183  * become runnable.
184  *
185  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
186  *	 will ignore user priority.  This is to ensure that user threads in
187  *	 kernel mode get cpu at some point regardless of what the user
188  *	 scheduler thinks.
189  */
190 static __inline
191 void
192 _lwkt_enqueue(thread_t td)
193 {
194     thread_t xtd;
195 
196     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
197 	struct globaldata *gd = td->td_gd;
198 
199 	td->td_flags |= TDF_RUNQ;
200 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
201 	if (xtd == NULL) {
202 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
203 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
204 	} else {
205 	    /*
206 	     * NOTE: td_upri - higher numbers more desireable, same sense
207 	     *	     as td_pri (typically reversed from lwp_upri).
208 	     *
209 	     *	     In the equal priority case we want the best selection
210 	     *	     at the beginning so the less desireable selections know
211 	     *	     that they have to setrunqueue/go-to-another-cpu, even
212 	     *	     though it means switching back to the 'best' selection.
213 	     *	     This also avoids degenerate situations when many threads
214 	     *	     are runnable or waking up at the same time.
215 	     *
216 	     *	     If upri matches exactly place at end/round-robin.
217 	     */
218 	    while (xtd &&
219 		   (xtd->td_pri >= td->td_pri ||
220 		    (xtd->td_pri == td->td_pri &&
221 		     xtd->td_upri >= td->td_upri))) {
222 		xtd = TAILQ_NEXT(xtd, td_threadq);
223 	    }
224 	    if (xtd)
225 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
226 	    else
227 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
228 	}
229 	++gd->gd_tdrunqcount;
230 
231 	/*
232 	 * Request a LWKT reschedule if we are now at the head of the queue.
233 	 */
234 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
235 	    need_lwkt_resched();
236     }
237 }
238 
239 static __boolean_t
240 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
241 {
242 	struct thread *td = (struct thread *)obj;
243 
244 	td->td_kstack = NULL;
245 	td->td_kstack_size = 0;
246 	td->td_flags = TDF_ALLOCATED_THREAD;
247 	td->td_mpflags = 0;
248 	return (1);
249 }
250 
251 static void
252 _lwkt_thread_dtor(void *obj, void *privdata)
253 {
254 	struct thread *td = (struct thread *)obj;
255 
256 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
257 	    ("_lwkt_thread_dtor: not allocated from objcache"));
258 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
259 		td->td_kstack_size > 0,
260 	    ("_lwkt_thread_dtor: corrupted stack"));
261 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
262 	td->td_kstack = NULL;
263 	td->td_flags = 0;
264 }
265 
266 /*
267  * Initialize the lwkt s/system.
268  *
269  * Nominally cache up to 32 thread + kstack structures.  Cache more on
270  * systems with a lot of cpu cores.
271  */
272 void
273 lwkt_init(void)
274 {
275     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
276     if (lwkt_cache_threads == 0) {
277 	lwkt_cache_threads = ncpus * 4;
278 	if (lwkt_cache_threads < 32)
279 	    lwkt_cache_threads = 32;
280     }
281     thread_cache = objcache_create_mbacked(
282 				M_THREAD, sizeof(struct thread),
283 				0, lwkt_cache_threads,
284 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
285 }
286 
287 /*
288  * Schedule a thread to run.  As the current thread we can always safely
289  * schedule ourselves, and a shortcut procedure is provided for that
290  * function.
291  *
292  * (non-blocking, self contained on a per cpu basis)
293  */
294 void
295 lwkt_schedule_self(thread_t td)
296 {
297     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
298     crit_enter_quick(td);
299     KASSERT(td != &td->td_gd->gd_idlethread,
300 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
301     KKASSERT(td->td_lwp == NULL ||
302 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
303     _lwkt_enqueue(td);
304     crit_exit_quick(td);
305 }
306 
307 /*
308  * Deschedule a thread.
309  *
310  * (non-blocking, self contained on a per cpu basis)
311  */
312 void
313 lwkt_deschedule_self(thread_t td)
314 {
315     crit_enter_quick(td);
316     _lwkt_dequeue(td);
317     crit_exit_quick(td);
318 }
319 
320 /*
321  * LWKTs operate on a per-cpu basis
322  *
323  * WARNING!  Called from early boot, 'mycpu' may not work yet.
324  */
325 void
326 lwkt_gdinit(struct globaldata *gd)
327 {
328     TAILQ_INIT(&gd->gd_tdrunq);
329     TAILQ_INIT(&gd->gd_tdallq);
330 }
331 
332 /*
333  * Create a new thread.  The thread must be associated with a process context
334  * or LWKT start address before it can be scheduled.  If the target cpu is
335  * -1 the thread will be created on the current cpu.
336  *
337  * If you intend to create a thread without a process context this function
338  * does everything except load the startup and switcher function.
339  */
340 thread_t
341 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
342 {
343     static int cpu_rotator;
344     globaldata_t gd = mycpu;
345     void *stack;
346 
347     /*
348      * If static thread storage is not supplied allocate a thread.  Reuse
349      * a cached free thread if possible.  gd_freetd is used to keep an exiting
350      * thread intact through the exit.
351      */
352     if (td == NULL) {
353 	crit_enter_gd(gd);
354 	if ((td = gd->gd_freetd) != NULL) {
355 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
356 				      TDF_RUNQ)) == 0);
357 	    gd->gd_freetd = NULL;
358 	} else {
359 	    td = objcache_get(thread_cache, M_WAITOK);
360 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
361 				      TDF_RUNQ)) == 0);
362 	}
363 	crit_exit_gd(gd);
364     	KASSERT((td->td_flags &
365 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
366 		 TDF_ALLOCATED_THREAD,
367 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
368     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
369     }
370 
371     /*
372      * Try to reuse cached stack.
373      */
374     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
375 	if (flags & TDF_ALLOCATED_STACK) {
376 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
377 	    stack = NULL;
378 	}
379     }
380     if (stack == NULL) {
381 	stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
382 	flags |= TDF_ALLOCATED_STACK;
383     }
384     if (cpu < 0) {
385 	cpu = ++cpu_rotator;
386 	cpu_ccfence();
387 	cpu %= ncpus;
388     }
389     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
390     return(td);
391 }
392 
393 /*
394  * Initialize a preexisting thread structure.  This function is used by
395  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
396  *
397  * All threads start out in a critical section at a priority of
398  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
399  * appropriate.  This function may send an IPI message when the
400  * requested cpu is not the current cpu and consequently gd_tdallq may
401  * not be initialized synchronously from the point of view of the originating
402  * cpu.
403  *
404  * NOTE! we have to be careful in regards to creating threads for other cpus
405  * if SMP has not yet been activated.
406  */
407 static void
408 lwkt_init_thread_remote(void *arg)
409 {
410     thread_t td = arg;
411 
412     /*
413      * Protected by critical section held by IPI dispatch
414      */
415     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
416 }
417 
418 /*
419  * lwkt core thread structural initialization.
420  *
421  * NOTE: All threads are initialized as mpsafe threads.
422  */
423 void
424 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
425 		struct globaldata *gd)
426 {
427     globaldata_t mygd = mycpu;
428 
429     bzero(td, sizeof(struct thread));
430     td->td_kstack = stack;
431     td->td_kstack_size = stksize;
432     td->td_flags = flags;
433     td->td_mpflags = 0;
434     td->td_type = TD_TYPE_GENERIC;
435     td->td_gd = gd;
436     td->td_pri = TDPRI_KERN_DAEMON;
437     td->td_critcount = 1;
438     td->td_toks_have = NULL;
439     td->td_toks_stop = &td->td_toks_base;
440     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT))
441 	lwkt_initport_spin(&td->td_msgport, td);
442     else
443 	lwkt_initport_thread(&td->td_msgport, td);
444     pmap_init_thread(td);
445     /*
446      * Normally initializing a thread for a remote cpu requires sending an
447      * IPI.  However, the idlethread is setup before the other cpus are
448      * activated so we have to treat it as a special case.  XXX manipulation
449      * of gd_tdallq requires the BGL.
450      */
451     if (gd == mygd || td == &gd->gd_idlethread) {
452 	crit_enter_gd(mygd);
453 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
454 	crit_exit_gd(mygd);
455     } else {
456 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
457     }
458     dsched_new_thread(td);
459 }
460 
461 void
462 lwkt_set_comm(thread_t td, const char *ctl, ...)
463 {
464     __va_list va;
465 
466     __va_start(va, ctl);
467     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
468     __va_end(va);
469     KTR_LOG(ctxsw_newtd, td, td->td_comm);
470 }
471 
472 /*
473  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
474  * this does not prevent the thread from migrating to another cpu so the
475  * gd_tdallq state is not protected by this.
476  */
477 void
478 lwkt_hold(thread_t td)
479 {
480     atomic_add_int(&td->td_refs, 1);
481 }
482 
483 void
484 lwkt_rele(thread_t td)
485 {
486     KKASSERT(td->td_refs > 0);
487     atomic_add_int(&td->td_refs, -1);
488 }
489 
490 void
491 lwkt_free_thread(thread_t td)
492 {
493     KKASSERT(td->td_refs == 0);
494     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
495 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
496     if (td->td_flags & TDF_ALLOCATED_THREAD) {
497     	objcache_put(thread_cache, td);
498     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
499 	/* client-allocated struct with internally allocated stack */
500 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
501 	    ("lwkt_free_thread: corrupted stack"));
502 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
503 	td->td_kstack = NULL;
504 	td->td_kstack_size = 0;
505     }
506     KTR_LOG(ctxsw_deadtd, td);
507 }
508 
509 
510 /*
511  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
512  * switch to the idlethread.  Switching must occur within a critical
513  * section to avoid races with the scheduling queue.
514  *
515  * We always have full control over our cpu's run queue.  Other cpus
516  * that wish to manipulate our queue must use the cpu_*msg() calls to
517  * talk to our cpu, so a critical section is all that is needed and
518  * the result is very, very fast thread switching.
519  *
520  * The LWKT scheduler uses a fixed priority model and round-robins at
521  * each priority level.  User process scheduling is a totally
522  * different beast and LWKT priorities should not be confused with
523  * user process priorities.
524  *
525  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
526  * is not called by the current thread in the preemption case, only when
527  * the preempting thread blocks (in order to return to the original thread).
528  *
529  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
530  * migration and tsleep deschedule the current lwkt thread and call
531  * lwkt_switch().  In particular, the target cpu of the migration fully
532  * expects the thread to become non-runnable and can deadlock against
533  * cpusync operations if we run any IPIs prior to switching the thread out.
534  *
535  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
536  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
537  */
538 void
539 lwkt_switch(void)
540 {
541     globaldata_t gd = mycpu;
542     thread_t td = gd->gd_curthread;
543     thread_t ntd;
544     int spinning = 0;
545 
546     KKASSERT(gd->gd_processing_ipiq == 0);
547     KKASSERT(td->td_flags & TDF_RUNNING);
548 
549     /*
550      * Switching from within a 'fast' (non thread switched) interrupt or IPI
551      * is illegal.  However, we may have to do it anyway if we hit a fatal
552      * kernel trap or we have paniced.
553      *
554      * If this case occurs save and restore the interrupt nesting level.
555      */
556     if (gd->gd_intr_nesting_level) {
557 	int savegdnest;
558 	int savegdtrap;
559 
560 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
561 	    panic("lwkt_switch: Attempt to switch from a "
562 		  "fast interrupt, ipi, or hard code section, "
563 		  "td %p\n",
564 		  td);
565 	} else {
566 	    savegdnest = gd->gd_intr_nesting_level;
567 	    savegdtrap = gd->gd_trap_nesting_level;
568 	    gd->gd_intr_nesting_level = 0;
569 	    gd->gd_trap_nesting_level = 0;
570 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
571 		td->td_flags |= TDF_PANICWARN;
572 		kprintf("Warning: thread switch from interrupt, IPI, "
573 			"or hard code section.\n"
574 			"thread %p (%s)\n", td, td->td_comm);
575 		print_backtrace(-1);
576 	    }
577 	    lwkt_switch();
578 	    gd->gd_intr_nesting_level = savegdnest;
579 	    gd->gd_trap_nesting_level = savegdtrap;
580 	    return;
581 	}
582     }
583 
584     /*
585      * Release our current user process designation if we are blocking
586      * or if a user reschedule was requested.
587      *
588      * NOTE: This function is NOT called if we are switching into or
589      *	     returning from a preemption.
590      *
591      * NOTE: Releasing our current user process designation may cause
592      *	     it to be assigned to another thread, which in turn will
593      *	     cause us to block in the usched acquire code when we attempt
594      *	     to return to userland.
595      *
596      * NOTE: On SMP systems this can be very nasty when heavy token
597      *	     contention is present so we want to be careful not to
598      *	     release the designation gratuitously.
599      */
600     if (td->td_release &&
601 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
602 	    td->td_release(td);
603     }
604 
605     /*
606      * Release all tokens
607      */
608     crit_enter_gd(gd);
609     if (TD_TOKS_HELD(td))
610 	    lwkt_relalltokens(td);
611 
612     /*
613      * We had better not be holding any spin locks, but don't get into an
614      * endless panic loop.
615      */
616     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
617 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
618 	     gd->gd_spinlocks));
619 
620 
621 #ifdef	INVARIANTS
622     if (td->td_cscount) {
623 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
624 		td);
625 	if (panic_on_cscount)
626 	    panic("switching while mastering cpusync");
627     }
628 #endif
629 
630     /*
631      * If we had preempted another thread on this cpu, resume the preempted
632      * thread.  This occurs transparently, whether the preempted thread
633      * was scheduled or not (it may have been preempted after descheduling
634      * itself).
635      *
636      * We have to setup the MP lock for the original thread after backing
637      * out the adjustment that was made to curthread when the original
638      * was preempted.
639      */
640     if ((ntd = td->td_preempted) != NULL) {
641 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
642 	ntd->td_flags |= TDF_PREEMPT_DONE;
643 
644 	/*
645 	 * The interrupt may have woken a thread up, we need to properly
646 	 * set the reschedule flag if the originally interrupted thread is
647 	 * at a lower priority.
648 	 *
649 	 * The interrupt may not have descheduled.
650 	 */
651 	if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
652 	    need_lwkt_resched();
653 	goto havethread_preempted;
654     }
655 
656     /*
657      * If we cannot obtain ownership of the tokens we cannot immediately
658      * schedule the target thread.
659      *
660      * Reminder: Again, we cannot afford to run any IPIs in this path if
661      * the current thread has been descheduled.
662      */
663     for (;;) {
664 	clear_lwkt_resched();
665 
666 	/*
667 	 * Hotpath - pull the head of the run queue and attempt to schedule
668 	 * it.
669 	 */
670 	ntd = TAILQ_FIRST(&gd->gd_tdrunq);
671 
672 	if (ntd == NULL) {
673 	    /*
674 	     * Runq is empty, switch to idle to allow it to halt.
675 	     */
676 	    ntd = &gd->gd_idlethread;
677 	    if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
678 		ASSERT_NO_TOKENS_HELD(ntd);
679 	    cpu_time.cp_msg[0] = 0;
680 	    cpu_time.cp_stallpc = 0;
681 	    goto haveidle;
682 	}
683 
684 	/*
685 	 * Hotpath - schedule ntd.
686 	 *
687 	 * NOTE: For UP there is no mplock and lwkt_getalltokens()
688 	 *	     always succeeds.
689 	 */
690 	if (TD_TOKS_NOT_HELD(ntd) ||
691 	    lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops)))
692 	{
693 	    goto havethread;
694 	}
695 
696 	/*
697 	 * Coldpath (SMP only since tokens always succeed on UP)
698 	 *
699 	 * We had some contention on the thread we wanted to schedule.
700 	 * What we do now is try to find a thread that we can schedule
701 	 * in its stead.
702 	 *
703 	 * The coldpath scan does NOT rearrange threads in the run list.
704 	 * The lwkt_schedulerclock() will assert need_lwkt_resched() on
705 	 * the next tick whenever the current head is not the current thread.
706 	 */
707 #ifdef	INVARIANTS
708 	++ntd->td_contended;
709 #endif
710 	++gd->gd_cnt.v_token_colls;
711 
712 	if (fairq_bypass > 0)
713 		goto skip;
714 
715 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
716 #ifndef NO_LWKT_SPLIT_USERPRI
717 		/*
718 		 * Never schedule threads returning to userland or the
719 		 * user thread scheduler helper thread when higher priority
720 		 * threads are present.  The runq is sorted by priority
721 		 * so we can give up traversing it when we find the first
722 		 * low priority thread.
723 		 */
724 		if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
725 			ntd = NULL;
726 			break;
727 		}
728 #endif
729 
730 		/*
731 		 * Try this one.
732 		 */
733 		if (TD_TOKS_NOT_HELD(ntd) ||
734 		    lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops))) {
735 			goto havethread;
736 		}
737 #ifdef	INVARIANTS
738 		++ntd->td_contended;
739 #endif
740 		++gd->gd_cnt.v_token_colls;
741 	}
742 
743 skip:
744 	/*
745 	 * We exhausted the run list, meaning that all runnable threads
746 	 * are contested.
747 	 */
748 	cpu_pause();
749 	ntd = &gd->gd_idlethread;
750 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
751 	    ASSERT_NO_TOKENS_HELD(ntd);
752 	/* contention case, do not clear contention mask */
753 
754 	/*
755 	 * We are going to have to retry but if the current thread is not
756 	 * on the runq we instead switch through the idle thread to get away
757 	 * from the current thread.  We have to flag for lwkt reschedule
758 	 * to prevent the idle thread from halting.
759 	 *
760 	 * NOTE: A non-zero spinning is passed to lwkt_getalltokens() to
761 	 *	 instruct it to deal with the potential for deadlocks by
762 	 *	 ordering the tokens by address.
763 	 */
764 	if ((td->td_flags & TDF_RUNQ) == 0) {
765 	    need_lwkt_resched();	/* prevent hlt */
766 	    goto haveidle;
767 	}
768 #if defined(INVARIANTS) && defined(__x86_64__)
769 	if ((read_rflags() & PSL_I) == 0) {
770 		cpu_enable_intr();
771 		panic("lwkt_switch() called with interrupts disabled");
772 	}
773 #endif
774 
775 	/*
776 	 * Number iterations so far.  After a certain point we switch to
777 	 * a sorted-address/monitor/mwait version of lwkt_getalltokens()
778 	 */
779 	if (spinning < 0x7FFFFFFF)
780 	    ++spinning;
781 
782 	/*
783 	 * lwkt_getalltokens() failed in sorted token mode, we can use
784 	 * monitor/mwait in this case.
785 	 */
786 	if (spinning >= lwkt_spin_loops &&
787 	    (cpu_mi_feature & CPU_MI_MONITOR) &&
788 	    lwkt_spin_monitor)
789 	{
790 	    cpu_mmw_pause_int(&gd->gd_reqflags,
791 			      (gd->gd_reqflags | RQF_SPINNING) &
792 			      ~RQF_IDLECHECK_WK_MASK);
793 	}
794 
795 	/*
796 	 * We already checked that td is still scheduled so this should be
797 	 * safe.
798 	 */
799 	splz_check();
800 
801 	/*
802 	 * This experimental resequencer is used as a fall-back to reduce
803 	 * hw cache line contention by placing each core's scheduler into a
804 	 * time-domain-multplexed slot.
805 	 *
806 	 * The resequencer is disabled by default.  It's functionality has
807 	 * largely been superceeded by the token algorithm which limits races
808 	 * to a subset of cores.
809 	 *
810 	 * The resequencer algorithm tends to break down when more than
811 	 * 20 cores are contending.  What appears to happen is that new
812 	 * tokens can be obtained out of address-sorted order by new cores
813 	 * while existing cores languish in long delays between retries and
814 	 * wind up being starved-out of the token acquisition.
815 	 */
816 	if (lwkt_spin_reseq && spinning >= lwkt_spin_reseq) {
817 	    int cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
818 	    int oseq;
819 
820 	    while ((oseq = lwkt_cseq_rindex) != cseq) {
821 		cpu_ccfence();
822 #if 1
823 		if (cpu_mi_feature & CPU_MI_MONITOR) {
824 		    cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq);
825 		} else {
826 #endif
827 		    cpu_pause();
828 		    cpu_lfence();
829 #if 1
830 		}
831 #endif
832 	    }
833 	    DELAY(1);
834 	    atomic_add_int(&lwkt_cseq_rindex, 1);
835 	}
836 	/* highest level for(;;) loop */
837     }
838 
839 havethread:
840     /*
841      * Clear gd_idle_repeat when doing a normal switch to a non-idle
842      * thread.
843      */
844     ntd->td_wmesg = NULL;
845     ++gd->gd_cnt.v_swtch;
846     gd->gd_idle_repeat = 0;
847 
848 havethread_preempted:
849     /*
850      * If the new target does not need the MP lock and we are holding it,
851      * release the MP lock.  If the new target requires the MP lock we have
852      * already acquired it for the target.
853      */
854     ;
855 haveidle:
856     KASSERT(ntd->td_critcount,
857 	    ("priority problem in lwkt_switch %d %d",
858 	    td->td_critcount, ntd->td_critcount));
859 
860     if (td != ntd) {
861 	/*
862 	 * Execute the actual thread switch operation.  This function
863 	 * returns to the current thread and returns the previous thread
864 	 * (which may be different from the thread we switched to).
865 	 *
866 	 * We are responsible for marking ntd as TDF_RUNNING.
867 	 */
868 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
869 	++switch_count;
870 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
871 	ntd->td_flags |= TDF_RUNNING;
872 	lwkt_switch_return(td->td_switch(ntd));
873 	/* ntd invalid, td_switch() can return a different thread_t */
874     }
875 
876     /*
877      * catch-all.  XXX is this strictly needed?
878      */
879     splz_check();
880 
881     /* NOTE: current cpu may have changed after switch */
882     crit_exit_quick(td);
883 }
884 
885 /*
886  * Called by assembly in the td_switch (thread restore path) for thread
887  * bootstrap cases which do not 'return' to lwkt_switch().
888  */
889 void
890 lwkt_switch_return(thread_t otd)
891 {
892 	globaldata_t rgd;
893 
894 	/*
895 	 * Check if otd was migrating.  Now that we are on ntd we can finish
896 	 * up the migration.  This is a bit messy but it is the only place
897 	 * where td is known to be fully descheduled.
898 	 *
899 	 * We can only activate the migration if otd was migrating but not
900 	 * held on the cpu due to a preemption chain.  We still have to
901 	 * clear TDF_RUNNING on the old thread either way.
902 	 *
903 	 * We are responsible for clearing the previously running thread's
904 	 * TDF_RUNNING.
905 	 */
906 	if ((rgd = otd->td_migrate_gd) != NULL &&
907 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
908 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
909 			 (TDF_MIGRATING | TDF_RUNNING));
910 		otd->td_migrate_gd = NULL;
911 		otd->td_flags &= ~TDF_RUNNING;
912 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
913 	} else {
914 		otd->td_flags &= ~TDF_RUNNING;
915 	}
916 
917 	/*
918 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
919 	 * invalid the *instant* we set TDF_MP_EXITSIG.
920 	 */
921 	while (otd->td_flags & TDF_EXITING) {
922 		u_int mpflags;
923 
924 		mpflags = otd->td_mpflags;
925 		cpu_ccfence();
926 
927 		if (mpflags & TDF_MP_EXITWAIT) {
928 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
929 					      mpflags | TDF_MP_EXITSIG)) {
930 				wakeup(otd);
931 				break;
932 			}
933 		} else {
934 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
935 					      mpflags | TDF_MP_EXITSIG)) {
936 				wakeup(otd);
937 				break;
938 			}
939 		}
940 	}
941 }
942 
943 /*
944  * Request that the target thread preempt the current thread.  Preemption
945  * can only occur if our only critical section is the one that we were called
946  * with, the relative priority of the target thread is higher, and the target
947  * thread holds no tokens.  This also only works if we are not holding any
948  * spinlocks (obviously).
949  *
950  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
951  * this is called via lwkt_schedule() through the td_preemptable callback.
952  * critcount is the managed critical priority that we should ignore in order
953  * to determine whether preemption is possible (aka usually just the crit
954  * priority of lwkt_schedule() itself).
955  *
956  * Preemption is typically limited to interrupt threads.
957  *
958  * Operation works in a fairly straight-forward manner.  The normal
959  * scheduling code is bypassed and we switch directly to the target
960  * thread.  When the target thread attempts to block or switch away
961  * code at the base of lwkt_switch() will switch directly back to our
962  * thread.  Our thread is able to retain whatever tokens it holds and
963  * if the target needs one of them the target will switch back to us
964  * and reschedule itself normally.
965  */
966 void
967 lwkt_preempt(thread_t ntd, int critcount)
968 {
969     struct globaldata *gd = mycpu;
970     thread_t xtd;
971     thread_t td;
972     int save_gd_intr_nesting_level;
973 
974     /*
975      * The caller has put us in a critical section.  We can only preempt
976      * if the caller of the caller was not in a critical section (basically
977      * a local interrupt), as determined by the 'critcount' parameter.  We
978      * also can't preempt if the caller is holding any spinlocks (even if
979      * he isn't in a critical section).  This also handles the tokens test.
980      *
981      * YYY The target thread must be in a critical section (else it must
982      * inherit our critical section?  I dunno yet).
983      */
984     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
985 
986     td = gd->gd_curthread;
987     if (preempt_enable == 0) {
988 	++preempt_miss;
989 	return;
990     }
991     if (ntd->td_pri <= td->td_pri) {
992 	++preempt_miss;
993 	return;
994     }
995     if (td->td_critcount > critcount) {
996 	++preempt_miss;
997 	return;
998     }
999     if (td->td_cscount) {
1000 	++preempt_miss;
1001 	return;
1002     }
1003     if (ntd->td_gd != gd) {
1004 	++preempt_miss;
1005 	return;
1006     }
1007     /*
1008      * We don't have to check spinlocks here as they will also bump
1009      * td_critcount.
1010      *
1011      * Do not try to preempt if the target thread is holding any tokens.
1012      * We could try to acquire the tokens but this case is so rare there
1013      * is no need to support it.
1014      */
1015     KKASSERT(gd->gd_spinlocks == 0);
1016 
1017     if (TD_TOKS_HELD(ntd)) {
1018 	++preempt_miss;
1019 	return;
1020     }
1021     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1022 	++preempt_weird;
1023 	return;
1024     }
1025     if (ntd->td_preempted) {
1026 	++preempt_hit;
1027 	return;
1028     }
1029     KKASSERT(gd->gd_processing_ipiq == 0);
1030 
1031     /*
1032      * Since we are able to preempt the current thread, there is no need to
1033      * call need_lwkt_resched().
1034      *
1035      * We must temporarily clear gd_intr_nesting_level around the switch
1036      * since switchouts from the target thread are allowed (they will just
1037      * return to our thread), and since the target thread has its own stack.
1038      *
1039      * A preemption must switch back to the original thread, assert the
1040      * case.
1041      */
1042     ++preempt_hit;
1043     ntd->td_preempted = td;
1044     td->td_flags |= TDF_PREEMPT_LOCK;
1045     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1046     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1047     gd->gd_intr_nesting_level = 0;
1048 
1049     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1050     ntd->td_flags |= TDF_RUNNING;
1051     xtd = td->td_switch(ntd);
1052     KKASSERT(xtd == ntd);
1053     lwkt_switch_return(xtd);
1054     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1055 
1056     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1057     ntd->td_preempted = NULL;
1058     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1059 }
1060 
1061 /*
1062  * Conditionally call splz() if gd_reqflags indicates work is pending.
1063  * This will work inside a critical section but not inside a hard code
1064  * section.
1065  *
1066  * (self contained on a per cpu basis)
1067  */
1068 void
1069 splz_check(void)
1070 {
1071     globaldata_t gd = mycpu;
1072     thread_t td = gd->gd_curthread;
1073 
1074     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1075 	gd->gd_intr_nesting_level == 0 &&
1076 	td->td_nest_count < 2)
1077     {
1078 	splz();
1079     }
1080 }
1081 
1082 /*
1083  * This version is integrated into crit_exit, reqflags has already
1084  * been tested but td_critcount has not.
1085  *
1086  * We only want to execute the splz() on the 1->0 transition of
1087  * critcount and not in a hard code section or if too deeply nested.
1088  *
1089  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1090  */
1091 void
1092 lwkt_maybe_splz(thread_t td)
1093 {
1094     globaldata_t gd = td->td_gd;
1095 
1096     if (td->td_critcount == 0 &&
1097 	gd->gd_intr_nesting_level == 0 &&
1098 	td->td_nest_count < 2)
1099     {
1100 	splz();
1101     }
1102 }
1103 
1104 /*
1105  * Drivers which set up processing co-threads can call this function to
1106  * run the co-thread at a higher priority and to allow it to preempt
1107  * normal threads.
1108  */
1109 void
1110 lwkt_set_interrupt_support_thread(void)
1111 {
1112 	thread_t td = curthread;
1113 
1114         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1115 	td->td_flags |= TDF_INTTHREAD;
1116 	td->td_preemptable = lwkt_preempt;
1117 }
1118 
1119 
1120 /*
1121  * This function is used to negotiate a passive release of the current
1122  * process/lwp designation with the user scheduler, allowing the user
1123  * scheduler to schedule another user thread.  The related kernel thread
1124  * (curthread) continues running in the released state.
1125  */
1126 void
1127 lwkt_passive_release(struct thread *td)
1128 {
1129     struct lwp *lp = td->td_lwp;
1130 
1131 #ifndef NO_LWKT_SPLIT_USERPRI
1132     td->td_release = NULL;
1133     lwkt_setpri_self(TDPRI_KERN_USER);
1134 #endif
1135 
1136     lp->lwp_proc->p_usched->release_curproc(lp);
1137 }
1138 
1139 
1140 /*
1141  * This implements a LWKT yield, allowing a kernel thread to yield to other
1142  * kernel threads at the same or higher priority.  This function can be
1143  * called in a tight loop and will typically only yield once per tick.
1144  *
1145  * Most kernel threads run at the same priority in order to allow equal
1146  * sharing.
1147  *
1148  * (self contained on a per cpu basis)
1149  */
1150 void
1151 lwkt_yield(void)
1152 {
1153     globaldata_t gd = mycpu;
1154     thread_t td = gd->gd_curthread;
1155 
1156     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1157 	splz();
1158     if (lwkt_resched_wanted()) {
1159 	lwkt_schedule_self(curthread);
1160 	lwkt_switch();
1161     }
1162 }
1163 
1164 /*
1165  * The quick version processes pending interrupts and higher-priority
1166  * LWKT threads but will not round-robin same-priority LWKT threads.
1167  *
1168  * When called while attempting to return to userland the only same-pri
1169  * threads are the ones which have already tried to become the current
1170  * user process.
1171  */
1172 void
1173 lwkt_yield_quick(void)
1174 {
1175     globaldata_t gd = mycpu;
1176     thread_t td = gd->gd_curthread;
1177 
1178     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1179 	splz();
1180     if (lwkt_resched_wanted()) {
1181 	crit_enter();
1182 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1183 	    clear_lwkt_resched();
1184 	} else {
1185 	    lwkt_schedule_self(curthread);
1186 	    lwkt_switch();
1187 	}
1188 	crit_exit();
1189     }
1190 }
1191 
1192 /*
1193  * This yield is designed for kernel threads with a user context.
1194  *
1195  * The kernel acting on behalf of the user is potentially cpu-bound,
1196  * this function will efficiently allow other threads to run and also
1197  * switch to other processes by releasing.
1198  *
1199  * The lwkt_user_yield() function is designed to have very low overhead
1200  * if no yield is determined to be needed.
1201  */
1202 void
1203 lwkt_user_yield(void)
1204 {
1205     globaldata_t gd = mycpu;
1206     thread_t td = gd->gd_curthread;
1207 
1208     /*
1209      * Always run any pending interrupts in case we are in a critical
1210      * section.
1211      */
1212     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1213 	splz();
1214 
1215     /*
1216      * Switch (which forces a release) if another kernel thread needs
1217      * the cpu, if userland wants us to resched, or if our kernel
1218      * quantum has run out.
1219      */
1220     if (lwkt_resched_wanted() ||
1221 	user_resched_wanted())
1222     {
1223 	lwkt_switch();
1224     }
1225 
1226 #if 0
1227     /*
1228      * Reacquire the current process if we are released.
1229      *
1230      * XXX not implemented atm.  The kernel may be holding locks and such,
1231      *     so we want the thread to continue to receive cpu.
1232      */
1233     if (td->td_release == NULL && lp) {
1234 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1235 	td->td_release = lwkt_passive_release;
1236 	lwkt_setpri_self(TDPRI_USER_NORM);
1237     }
1238 #endif
1239 }
1240 
1241 /*
1242  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1243  * deal with threads that might be blocked on a wait queue.
1244  *
1245  * We have a little helper inline function which does additional work after
1246  * the thread has been enqueued, including dealing with preemption and
1247  * setting need_lwkt_resched() (which prevents the kernel from returning
1248  * to userland until it has processed higher priority threads).
1249  *
1250  * It is possible for this routine to be called after a failed _enqueue
1251  * (due to the target thread migrating, sleeping, or otherwise blocked).
1252  * We have to check that the thread is actually on the run queue!
1253  */
1254 static __inline
1255 void
1256 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1257 {
1258     if (ntd->td_flags & TDF_RUNQ) {
1259 	if (ntd->td_preemptable) {
1260 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1261 	}
1262     }
1263 }
1264 
1265 static __inline
1266 void
1267 _lwkt_schedule(thread_t td)
1268 {
1269     globaldata_t mygd = mycpu;
1270 
1271     KASSERT(td != &td->td_gd->gd_idlethread,
1272 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1273     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1274     crit_enter_gd(mygd);
1275     KKASSERT(td->td_lwp == NULL ||
1276 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1277 
1278     if (td == mygd->gd_curthread) {
1279 	_lwkt_enqueue(td);
1280     } else {
1281 	/*
1282 	 * If we own the thread, there is no race (since we are in a
1283 	 * critical section).  If we do not own the thread there might
1284 	 * be a race but the target cpu will deal with it.
1285 	 */
1286 	if (td->td_gd == mygd) {
1287 	    _lwkt_enqueue(td);
1288 	    _lwkt_schedule_post(mygd, td, 1);
1289 	} else {
1290 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1291 	}
1292     }
1293     crit_exit_gd(mygd);
1294 }
1295 
1296 void
1297 lwkt_schedule(thread_t td)
1298 {
1299     _lwkt_schedule(td);
1300 }
1301 
1302 void
1303 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1304 {
1305     _lwkt_schedule(td);
1306 }
1307 
1308 /*
1309  * When scheduled remotely if frame != NULL the IPIQ is being
1310  * run via doreti or an interrupt then preemption can be allowed.
1311  *
1312  * To allow preemption we have to drop the critical section so only
1313  * one is present in _lwkt_schedule_post.
1314  */
1315 static void
1316 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1317 {
1318     thread_t td = curthread;
1319     thread_t ntd = arg;
1320 
1321     if (frame && ntd->td_preemptable) {
1322 	crit_exit_noyield(td);
1323 	_lwkt_schedule(ntd);
1324 	crit_enter_quick(td);
1325     } else {
1326 	_lwkt_schedule(ntd);
1327     }
1328 }
1329 
1330 /*
1331  * Thread migration using a 'Pull' method.  The thread may or may not be
1332  * the current thread.  It MUST be descheduled and in a stable state.
1333  * lwkt_giveaway() must be called on the cpu owning the thread.
1334  *
1335  * At any point after lwkt_giveaway() is called, the target cpu may
1336  * 'pull' the thread by calling lwkt_acquire().
1337  *
1338  * We have to make sure the thread is not sitting on a per-cpu tsleep
1339  * queue or it will blow up when it moves to another cpu.
1340  *
1341  * MPSAFE - must be called under very specific conditions.
1342  */
1343 void
1344 lwkt_giveaway(thread_t td)
1345 {
1346     globaldata_t gd = mycpu;
1347 
1348     crit_enter_gd(gd);
1349     if (td->td_flags & TDF_TSLEEPQ)
1350 	tsleep_remove(td);
1351     KKASSERT(td->td_gd == gd);
1352     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1353     td->td_flags |= TDF_MIGRATING;
1354     crit_exit_gd(gd);
1355 }
1356 
1357 void
1358 lwkt_acquire(thread_t td)
1359 {
1360     globaldata_t gd;
1361     globaldata_t mygd;
1362     int retry = 10000000;
1363 
1364     KKASSERT(td->td_flags & TDF_MIGRATING);
1365     gd = td->td_gd;
1366     mygd = mycpu;
1367     if (gd != mycpu) {
1368 	cpu_lfence();
1369 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1370 	crit_enter_gd(mygd);
1371 	DEBUG_PUSH_INFO("lwkt_acquire");
1372 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1373 	    lwkt_process_ipiq();
1374 	    cpu_lfence();
1375 	    if (--retry == 0) {
1376 		kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1377 			td, td->td_flags);
1378 		retry = 10000000;
1379 	    }
1380 	}
1381 	DEBUG_POP_INFO();
1382 	cpu_mfence();
1383 	td->td_gd = mygd;
1384 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1385 	td->td_flags &= ~TDF_MIGRATING;
1386 	crit_exit_gd(mygd);
1387     } else {
1388 	crit_enter_gd(mygd);
1389 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1390 	td->td_flags &= ~TDF_MIGRATING;
1391 	crit_exit_gd(mygd);
1392     }
1393 }
1394 
1395 /*
1396  * Generic deschedule.  Descheduling threads other then your own should be
1397  * done only in carefully controlled circumstances.  Descheduling is
1398  * asynchronous.
1399  *
1400  * This function may block if the cpu has run out of messages.
1401  */
1402 void
1403 lwkt_deschedule(thread_t td)
1404 {
1405     crit_enter();
1406     if (td == curthread) {
1407 	_lwkt_dequeue(td);
1408     } else {
1409 	if (td->td_gd == mycpu) {
1410 	    _lwkt_dequeue(td);
1411 	} else {
1412 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1413 	}
1414     }
1415     crit_exit();
1416 }
1417 
1418 /*
1419  * Set the target thread's priority.  This routine does not automatically
1420  * switch to a higher priority thread, LWKT threads are not designed for
1421  * continuous priority changes.  Yield if you want to switch.
1422  */
1423 void
1424 lwkt_setpri(thread_t td, int pri)
1425 {
1426     if (td->td_pri != pri) {
1427 	KKASSERT(pri >= 0);
1428 	crit_enter();
1429 	if (td->td_flags & TDF_RUNQ) {
1430 	    KKASSERT(td->td_gd == mycpu);
1431 	    _lwkt_dequeue(td);
1432 	    td->td_pri = pri;
1433 	    _lwkt_enqueue(td);
1434 	} else {
1435 	    td->td_pri = pri;
1436 	}
1437 	crit_exit();
1438     }
1439 }
1440 
1441 /*
1442  * Set the initial priority for a thread prior to it being scheduled for
1443  * the first time.  The thread MUST NOT be scheduled before or during
1444  * this call.  The thread may be assigned to a cpu other then the current
1445  * cpu.
1446  *
1447  * Typically used after a thread has been created with TDF_STOPPREQ,
1448  * and before the thread is initially scheduled.
1449  */
1450 void
1451 lwkt_setpri_initial(thread_t td, int pri)
1452 {
1453     KKASSERT(pri >= 0);
1454     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1455     td->td_pri = pri;
1456 }
1457 
1458 void
1459 lwkt_setpri_self(int pri)
1460 {
1461     thread_t td = curthread;
1462 
1463     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1464     crit_enter();
1465     if (td->td_flags & TDF_RUNQ) {
1466 	_lwkt_dequeue(td);
1467 	td->td_pri = pri;
1468 	_lwkt_enqueue(td);
1469     } else {
1470 	td->td_pri = pri;
1471     }
1472     crit_exit();
1473 }
1474 
1475 /*
1476  * hz tick scheduler clock for LWKT threads
1477  */
1478 void
1479 lwkt_schedulerclock(thread_t td)
1480 {
1481     globaldata_t gd = td->td_gd;
1482     thread_t xtd;
1483 
1484     if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1485 	/*
1486 	 * If the current thread is at the head of the runq shift it to the
1487 	 * end of any equal-priority threads and request a LWKT reschedule
1488 	 * if it moved.
1489 	 *
1490 	 * Ignore upri in this situation.  There will only be one user thread
1491 	 * in user mode, all others will be user threads running in kernel
1492 	 * mode and we have to make sure they get some cpu.
1493 	 */
1494 	xtd = TAILQ_NEXT(td, td_threadq);
1495 	if (xtd && xtd->td_pri == td->td_pri) {
1496 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1497 	    while (xtd && xtd->td_pri == td->td_pri)
1498 		xtd = TAILQ_NEXT(xtd, td_threadq);
1499 	    if (xtd)
1500 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1501 	    else
1502 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1503 	    need_lwkt_resched();
1504 	}
1505     } else {
1506 	/*
1507 	 * If we scheduled a thread other than the one at the head of the
1508 	 * queue always request a reschedule every tick.
1509 	 */
1510 	need_lwkt_resched();
1511     }
1512 }
1513 
1514 /*
1515  * Migrate the current thread to the specified cpu.
1516  *
1517  * This is accomplished by descheduling ourselves from the current cpu
1518  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1519  * 'old' thread wants to migrate after it has been completely switched out
1520  * and will complete the migration.
1521  *
1522  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1523  *
1524  * We must be sure to release our current process designation (if a user
1525  * process) before clearing out any tsleepq we are on because the release
1526  * code may re-add us.
1527  *
1528  * We must be sure to remove ourselves from the current cpu's tsleepq
1529  * before potentially moving to another queue.  The thread can be on
1530  * a tsleepq due to a left-over tsleep_interlock().
1531  */
1532 
1533 void
1534 lwkt_setcpu_self(globaldata_t rgd)
1535 {
1536     thread_t td = curthread;
1537 
1538     if (td->td_gd != rgd) {
1539 	crit_enter_quick(td);
1540 
1541 	if (td->td_release)
1542 	    td->td_release(td);
1543 	if (td->td_flags & TDF_TSLEEPQ)
1544 	    tsleep_remove(td);
1545 
1546 	/*
1547 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1548 	 * trying to deschedule ourselves and switch away, then deschedule
1549 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1550 	 * call lwkt_switch() to complete the operation.
1551 	 */
1552 	td->td_flags |= TDF_MIGRATING;
1553 	lwkt_deschedule_self(td);
1554 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1555 	td->td_migrate_gd = rgd;
1556 	lwkt_switch();
1557 
1558 	/*
1559 	 * We are now on the target cpu
1560 	 */
1561 	KKASSERT(rgd == mycpu);
1562 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1563 	crit_exit_quick(td);
1564     }
1565 }
1566 
1567 void
1568 lwkt_migratecpu(int cpuid)
1569 {
1570 	globaldata_t rgd;
1571 
1572 	rgd = globaldata_find(cpuid);
1573 	lwkt_setcpu_self(rgd);
1574 }
1575 
1576 /*
1577  * Remote IPI for cpu migration (called while in a critical section so we
1578  * do not have to enter another one).
1579  *
1580  * The thread (td) has already been completely descheduled from the
1581  * originating cpu and we can simply assert the case.  The thread is
1582  * assigned to the new cpu and enqueued.
1583  *
1584  * The thread will re-add itself to tdallq when it resumes execution.
1585  */
1586 static void
1587 lwkt_setcpu_remote(void *arg)
1588 {
1589     thread_t td = arg;
1590     globaldata_t gd = mycpu;
1591 
1592     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1593     td->td_gd = gd;
1594     cpu_mfence();
1595     td->td_flags &= ~TDF_MIGRATING;
1596     KKASSERT(td->td_migrate_gd == NULL);
1597     KKASSERT(td->td_lwp == NULL ||
1598 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1599     _lwkt_enqueue(td);
1600 }
1601 
1602 struct lwp *
1603 lwkt_preempted_proc(void)
1604 {
1605     thread_t td = curthread;
1606     while (td->td_preempted)
1607 	td = td->td_preempted;
1608     return(td->td_lwp);
1609 }
1610 
1611 /*
1612  * Create a kernel process/thread/whatever.  It shares it's address space
1613  * with proc0 - ie: kernel only.
1614  *
1615  * If the cpu is not specified one will be selected.  In the future
1616  * specifying a cpu of -1 will enable kernel thread migration between
1617  * cpus.
1618  */
1619 int
1620 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1621 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1622 {
1623     thread_t td;
1624     __va_list ap;
1625 
1626     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1627 			   tdflags);
1628     if (tdp)
1629 	*tdp = td;
1630     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1631 
1632     /*
1633      * Set up arg0 for 'ps' etc
1634      */
1635     __va_start(ap, fmt);
1636     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1637     __va_end(ap);
1638 
1639     /*
1640      * Schedule the thread to run
1641      */
1642     if (td->td_flags & TDF_NOSTART)
1643 	td->td_flags &= ~TDF_NOSTART;
1644     else
1645 	lwkt_schedule(td);
1646     return 0;
1647 }
1648 
1649 /*
1650  * Destroy an LWKT thread.   Warning!  This function is not called when
1651  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1652  * uses a different reaping mechanism.
1653  */
1654 void
1655 lwkt_exit(void)
1656 {
1657     thread_t td = curthread;
1658     thread_t std;
1659     globaldata_t gd;
1660 
1661     /*
1662      * Do any cleanup that might block here
1663      */
1664     if (td->td_flags & TDF_VERBOSE)
1665 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1666     biosched_done(td);
1667     dsched_exit_thread(td);
1668 
1669     /*
1670      * Get us into a critical section to interlock gd_freetd and loop
1671      * until we can get it freed.
1672      *
1673      * We have to cache the current td in gd_freetd because objcache_put()ing
1674      * it would rip it out from under us while our thread is still active.
1675      *
1676      * We are the current thread so of course our own TDF_RUNNING bit will
1677      * be set, so unlike the lwp reap code we don't wait for it to clear.
1678      */
1679     gd = mycpu;
1680     crit_enter_quick(td);
1681     for (;;) {
1682 	if (td->td_refs) {
1683 	    tsleep(td, 0, "tdreap", 1);
1684 	    continue;
1685 	}
1686 	if ((std = gd->gd_freetd) != NULL) {
1687 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1688 	    gd->gd_freetd = NULL;
1689 	    objcache_put(thread_cache, std);
1690 	    continue;
1691 	}
1692 	break;
1693     }
1694 
1695     /*
1696      * Remove thread resources from kernel lists and deschedule us for
1697      * the last time.  We cannot block after this point or we may end
1698      * up with a stale td on the tsleepq.
1699      *
1700      * None of this may block, the critical section is the only thing
1701      * protecting tdallq and the only thing preventing new lwkt_hold()
1702      * thread refs now.
1703      */
1704     if (td->td_flags & TDF_TSLEEPQ)
1705 	tsleep_remove(td);
1706     lwkt_deschedule_self(td);
1707     lwkt_remove_tdallq(td);
1708     KKASSERT(td->td_refs == 0);
1709 
1710     /*
1711      * Final cleanup
1712      */
1713     KKASSERT(gd->gd_freetd == NULL);
1714     if (td->td_flags & TDF_ALLOCATED_THREAD)
1715 	gd->gd_freetd = td;
1716     cpu_thread_exit();
1717 }
1718 
1719 void
1720 lwkt_remove_tdallq(thread_t td)
1721 {
1722     KKASSERT(td->td_gd == mycpu);
1723     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1724 }
1725 
1726 /*
1727  * Code reduction and branch prediction improvements.  Call/return
1728  * overhead on modern cpus often degenerates into 0 cycles due to
1729  * the cpu's branch prediction hardware and return pc cache.  We
1730  * can take advantage of this by not inlining medium-complexity
1731  * functions and we can also reduce the branch prediction impact
1732  * by collapsing perfectly predictable branches into a single
1733  * procedure instead of duplicating it.
1734  *
1735  * Is any of this noticeable?  Probably not, so I'll take the
1736  * smaller code size.
1737  */
1738 void
1739 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1740 {
1741     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1742 }
1743 
1744 void
1745 crit_panic(void)
1746 {
1747     thread_t td = curthread;
1748     int lcrit = td->td_critcount;
1749 
1750     td->td_critcount = 0;
1751     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1752     /* NOT REACHED */
1753 }
1754 
1755 /*
1756  * Called from debugger/panic on cpus which have been stopped.  We must still
1757  * process the IPIQ while stopped, even if we were stopped while in a critical
1758  * section (XXX).
1759  *
1760  * If we are dumping also try to process any pending interrupts.  This may
1761  * or may not work depending on the state of the cpu at the point it was
1762  * stopped.
1763  */
1764 void
1765 lwkt_smp_stopped(void)
1766 {
1767     globaldata_t gd = mycpu;
1768 
1769     crit_enter_gd(gd);
1770     if (dumping) {
1771 	lwkt_process_ipiq();
1772 	splz();
1773     } else {
1774 	lwkt_process_ipiq();
1775     }
1776     crit_exit_gd(gd);
1777 }
1778