xref: /dragonfly/sys/kern/lwkt_thread.c (revision e8364298)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.64 2004/07/04 22:44:27 eirikn Exp $
27  */
28 
29 /*
30  * Each cpu in a system has its own self-contained light weight kernel
31  * thread scheduler, which means that generally speaking we only need
32  * to use a critical section to avoid problems.  Foreign thread
33  * scheduling is queued via (async) IPIs.
34  */
35 
36 #ifdef _KERNEL
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/rtprio.h>
43 #include <sys/queue.h>
44 #include <sys/thread2.h>
45 #include <sys/sysctl.h>
46 #include <sys/kthread.h>
47 #include <machine/cpu.h>
48 #include <sys/lock.h>
49 #include <sys/caps.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_page.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/vm_extern.h>
59 #include <vm/vm_zone.h>
60 
61 #include <machine/stdarg.h>
62 #include <machine/ipl.h>
63 #include <machine/smp.h>
64 
65 #define THREAD_STACK	(UPAGES * PAGE_SIZE)
66 
67 #else
68 
69 #include <sys/stdint.h>
70 #include <libcaps/thread.h>
71 #include <sys/thread.h>
72 #include <sys/msgport.h>
73 #include <sys/errno.h>
74 #include <libcaps/globaldata.h>
75 #include <machine/cpufunc.h>
76 #include <sys/thread2.h>
77 #include <sys/msgport2.h>
78 #include <stdio.h>
79 #include <stdlib.h>
80 #include <string.h>
81 #include <machine/lock.h>
82 
83 #endif
84 
85 static int untimely_switch = 0;
86 #ifdef	INVARIANTS
87 static int panic_on_cscount = 0;
88 #endif
89 static __int64_t switch_count = 0;
90 static __int64_t preempt_hit = 0;
91 static __int64_t preempt_miss = 0;
92 static __int64_t preempt_weird = 0;
93 
94 #ifdef _KERNEL
95 
96 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
97 #ifdef	INVARIANTS
98 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
99 #endif
100 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
101 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
102 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
103 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
104 
105 #endif
106 
107 /*
108  * These helper procedures handle the runq, they can only be called from
109  * within a critical section.
110  *
111  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
112  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
113  * instead of 'mycpu' when referencing the globaldata structure.   Once
114  * SMP live enqueuing and dequeueing only occurs on the current cpu.
115  */
116 static __inline
117 void
118 _lwkt_dequeue(thread_t td)
119 {
120     if (td->td_flags & TDF_RUNQ) {
121 	int nq = td->td_pri & TDPRI_MASK;
122 	struct globaldata *gd = td->td_gd;
123 
124 	td->td_flags &= ~TDF_RUNQ;
125 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
126 	/* runqmask is passively cleaned up by the switcher */
127     }
128 }
129 
130 static __inline
131 void
132 _lwkt_enqueue(thread_t td)
133 {
134     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING)) == 0) {
135 	int nq = td->td_pri & TDPRI_MASK;
136 	struct globaldata *gd = td->td_gd;
137 
138 	td->td_flags |= TDF_RUNQ;
139 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
140 	gd->gd_runqmask |= 1 << nq;
141     }
142 }
143 
144 /*
145  * Schedule a thread to run.  As the current thread we can always safely
146  * schedule ourselves, and a shortcut procedure is provided for that
147  * function.
148  *
149  * (non-blocking, self contained on a per cpu basis)
150  */
151 void
152 lwkt_schedule_self(thread_t td)
153 {
154     crit_enter_quick(td);
155     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
156     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
157     _lwkt_enqueue(td);
158 #ifdef _KERNEL
159     if (td->td_proc && td->td_proc->p_stat == SSLEEP)
160 	panic("SCHED SELF PANIC");
161 #endif
162     crit_exit_quick(td);
163 }
164 
165 /*
166  * Deschedule a thread.
167  *
168  * (non-blocking, self contained on a per cpu basis)
169  */
170 void
171 lwkt_deschedule_self(thread_t td)
172 {
173     crit_enter_quick(td);
174     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
175     _lwkt_dequeue(td);
176     crit_exit_quick(td);
177 }
178 
179 #ifdef _KERNEL
180 
181 /*
182  * LWKTs operate on a per-cpu basis
183  *
184  * WARNING!  Called from early boot, 'mycpu' may not work yet.
185  */
186 void
187 lwkt_gdinit(struct globaldata *gd)
188 {
189     int i;
190 
191     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
192 	TAILQ_INIT(&gd->gd_tdrunq[i]);
193     gd->gd_runqmask = 0;
194     TAILQ_INIT(&gd->gd_tdallq);
195 }
196 
197 #endif /* _KERNEL */
198 
199 /*
200  * Initialize a thread wait structure prior to first use.
201  *
202  * NOTE!  called from low level boot code, we cannot do anything fancy!
203  */
204 void
205 lwkt_wait_init(lwkt_wait_t w)
206 {
207     lwkt_token_init(&w->wa_token);
208     TAILQ_INIT(&w->wa_waitq);
209     w->wa_gen = 0;
210     w->wa_count = 0;
211 }
212 
213 /*
214  * Create a new thread.  The thread must be associated with a process context
215  * or LWKT start address before it can be scheduled.  If the target cpu is
216  * -1 the thread will be created on the current cpu.
217  *
218  * If you intend to create a thread without a process context this function
219  * does everything except load the startup and switcher function.
220  */
221 thread_t
222 lwkt_alloc_thread(struct thread *td, int cpu)
223 {
224     void *stack;
225     int flags = 0;
226     globaldata_t gd = mycpu;
227 
228     if (td == NULL) {
229 	crit_enter_gd(gd);
230 	if (gd->gd_tdfreecount > 0) {
231 	    --gd->gd_tdfreecount;
232 	    td = TAILQ_FIRST(&gd->gd_tdfreeq);
233 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
234 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
235 	    TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
236 	    crit_exit_gd(gd);
237 	    stack = td->td_kstack;
238 	    flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
239 	} else {
240 	    crit_exit_gd(gd);
241 #ifdef _KERNEL
242 	    td = zalloc(thread_zone);
243 #else
244 	    td = malloc(sizeof(struct thread));
245 #endif
246 	    td->td_kstack = NULL;
247 	    flags |= TDF_ALLOCATED_THREAD;
248 	}
249     }
250     if ((stack = td->td_kstack) == NULL) {
251 #ifdef _KERNEL
252 	stack = (void *)kmem_alloc(kernel_map, THREAD_STACK);
253 #else
254 	stack = libcaps_alloc_stack(THREAD_STACK);
255 #endif
256 	flags |= TDF_ALLOCATED_STACK;
257     }
258     if (cpu < 0)
259 	lwkt_init_thread(td, stack, flags, mycpu);
260     else
261 	lwkt_init_thread(td, stack, flags, globaldata_find(cpu));
262     return(td);
263 }
264 
265 #ifdef _KERNEL
266 
267 /*
268  * Initialize a preexisting thread structure.  This function is used by
269  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
270  *
271  * All threads start out in a critical section at a priority of
272  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
273  * appropriate.  This function may send an IPI message when the
274  * requested cpu is not the current cpu and consequently gd_tdallq may
275  * not be initialized synchronously from the point of view of the originating
276  * cpu.
277  *
278  * NOTE! we have to be careful in regards to creating threads for other cpus
279  * if SMP has not yet been activated.
280  */
281 #ifdef SMP
282 
283 static void
284 lwkt_init_thread_remote(void *arg)
285 {
286     thread_t td = arg;
287 
288     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
289 }
290 
291 #endif
292 
293 void
294 lwkt_init_thread(thread_t td, void *stack, int flags, struct globaldata *gd)
295 {
296     globaldata_t mygd = mycpu;
297 
298     bzero(td, sizeof(struct thread));
299     td->td_kstack = stack;
300     td->td_flags |= flags;
301     td->td_gd = gd;
302     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
303     lwkt_initport(&td->td_msgport, td);
304     pmap_init_thread(td);
305 #ifdef SMP
306     /*
307      * Normally initializing a thread for a remote cpu requires sending an
308      * IPI.  However, the idlethread is setup before the other cpus are
309      * activated so we have to treat it as a special case.  XXX manipulation
310      * of gd_tdallq requires the BGL.
311      */
312     if (gd == mygd || td == &gd->gd_idlethread) {
313 	crit_enter_gd(mygd);
314 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
315 	crit_exit_gd(mygd);
316     } else {
317 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
318     }
319 #else
320     crit_enter_gd(mygd);
321     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
322     crit_exit_gd(mygd);
323 #endif
324 }
325 
326 #endif /* _KERNEL */
327 
328 void
329 lwkt_set_comm(thread_t td, const char *ctl, ...)
330 {
331     __va_list va;
332 
333     __va_start(va, ctl);
334     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
335     __va_end(va);
336 }
337 
338 void
339 lwkt_hold(thread_t td)
340 {
341     ++td->td_refs;
342 }
343 
344 void
345 lwkt_rele(thread_t td)
346 {
347     KKASSERT(td->td_refs > 0);
348     --td->td_refs;
349 }
350 
351 #ifdef _KERNEL
352 
353 void
354 lwkt_wait_free(thread_t td)
355 {
356     while (td->td_refs)
357 	tsleep(td, 0, "tdreap", hz);
358 }
359 
360 #endif
361 
362 void
363 lwkt_free_thread(thread_t td)
364 {
365     struct globaldata *gd = mycpu;
366 
367     KASSERT((td->td_flags & TDF_RUNNING) == 0,
368 	("lwkt_free_thread: did not exit! %p", td));
369 
370     crit_enter_gd(gd);
371     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
372     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
373 	(td->td_flags & TDF_ALLOCATED_THREAD)
374     ) {
375 	++gd->gd_tdfreecount;
376 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
377 	crit_exit_gd(gd);
378     } else {
379 	crit_exit_gd(gd);
380 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
381 #ifdef _KERNEL
382 	    kmem_free(kernel_map, (vm_offset_t)td->td_kstack, THREAD_STACK);
383 #else
384 	    libcaps_free_stack(td->td_kstack, THREAD_STACK);
385 #endif
386 	    /* gd invalid */
387 	    td->td_kstack = NULL;
388 	}
389 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
390 #ifdef _KERNEL
391 	    zfree(thread_zone, td);
392 #else
393 	    free(td);
394 #endif
395 	}
396     }
397 }
398 
399 
400 /*
401  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
402  * switch to the idlethread.  Switching must occur within a critical
403  * section to avoid races with the scheduling queue.
404  *
405  * We always have full control over our cpu's run queue.  Other cpus
406  * that wish to manipulate our queue must use the cpu_*msg() calls to
407  * talk to our cpu, so a critical section is all that is needed and
408  * the result is very, very fast thread switching.
409  *
410  * The LWKT scheduler uses a fixed priority model and round-robins at
411  * each priority level.  User process scheduling is a totally
412  * different beast and LWKT priorities should not be confused with
413  * user process priorities.
414  *
415  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
416  * cleans it up.  Note that the td_switch() function cannot do anything that
417  * requires the MP lock since the MP lock will have already been setup for
418  * the target thread (not the current thread).  It's nice to have a scheduler
419  * that does not need the MP lock to work because it allows us to do some
420  * really cool high-performance MP lock optimizations.
421  */
422 
423 void
424 lwkt_switch(void)
425 {
426     globaldata_t gd = mycpu;
427     thread_t td = gd->gd_curthread;
428     thread_t ntd;
429 #ifdef SMP
430     int mpheld;
431 #endif
432 
433     /*
434      * Switching from within a 'fast' (non thread switched) interrupt is
435      * illegal.
436      */
437     if (gd->gd_intr_nesting_level && panicstr == NULL) {
438 	panic("lwkt_switch: cannot switch from within a fast interrupt, yet");
439     }
440 
441     /*
442      * Passive release (used to transition from user to kernel mode
443      * when we block or switch rather then when we enter the kernel).
444      * This function is NOT called if we are switching into a preemption
445      * or returning from a preemption.  Typically this causes us to lose
446      * our current process designation (if we have one) and become a true
447      * LWKT thread, and may also hand the current process designation to
448      * another process and schedule thread.
449      */
450     if (td->td_release)
451 	    td->td_release(td);
452 
453     crit_enter_gd(gd);
454     ++switch_count;
455 
456 #ifdef SMP
457     /*
458      * td_mpcount cannot be used to determine if we currently hold the
459      * MP lock because get_mplock() will increment it prior to attempting
460      * to get the lock, and switch out if it can't.  Our ownership of
461      * the actual lock will remain stable while we are in a critical section
462      * (but, of course, another cpu may own or release the lock so the
463      * actual value of mp_lock is not stable).
464      */
465     mpheld = MP_LOCK_HELD();
466 #ifdef	INVARIANTS
467     if (td->td_cscount) {
468 	printf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
469 		td);
470 	if (panic_on_cscount)
471 	    panic("switching while mastering cpusync");
472     }
473 #endif
474 #endif
475     if ((ntd = td->td_preempted) != NULL) {
476 	/*
477 	 * We had preempted another thread on this cpu, resume the preempted
478 	 * thread.  This occurs transparently, whether the preempted thread
479 	 * was scheduled or not (it may have been preempted after descheduling
480 	 * itself).
481 	 *
482 	 * We have to setup the MP lock for the original thread after backing
483 	 * out the adjustment that was made to curthread when the original
484 	 * was preempted.
485 	 */
486 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
487 #ifdef SMP
488 	if (ntd->td_mpcount && mpheld == 0) {
489 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
490 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
491 	}
492 	if (ntd->td_mpcount) {
493 	    td->td_mpcount -= ntd->td_mpcount;
494 	    KKASSERT(td->td_mpcount >= 0);
495 	}
496 #endif
497 	ntd->td_flags |= TDF_PREEMPT_DONE;
498 	/* YYY release mp lock on switchback if original doesn't need it */
499     } else {
500 	/*
501 	 * Priority queue / round-robin at each priority.  Note that user
502 	 * processes run at a fixed, low priority and the user process
503 	 * scheduler deals with interactions between user processes
504 	 * by scheduling and descheduling them from the LWKT queue as
505 	 * necessary.
506 	 *
507 	 * We have to adjust the MP lock for the target thread.  If we
508 	 * need the MP lock and cannot obtain it we try to locate a
509 	 * thread that does not need the MP lock.  If we cannot, we spin
510 	 * instead of HLT.
511 	 *
512 	 * A similar issue exists for the tokens held by the target thread.
513 	 * If we cannot obtain ownership of the tokens we cannot immediately
514 	 * schedule the thread.
515 	 */
516 
517 	/*
518 	 * We are switching threads.  If there are any pending requests for
519 	 * tokens we can satisfy all of them here.
520 	 */
521 #ifdef SMP
522 	if (gd->gd_tokreqbase)
523 		lwkt_drain_token_requests();
524 #endif
525 
526 again:
527 	if (gd->gd_runqmask) {
528 	    int nq = bsrl(gd->gd_runqmask);
529 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
530 		gd->gd_runqmask &= ~(1 << nq);
531 		goto again;
532 	    }
533 #ifdef SMP
534 	    /*
535 	     * If the target needs the MP lock and we couldn't get it,
536 	     * or if the target is holding tokens and we could not
537 	     * gain ownership of the tokens, continue looking for a
538 	     * thread to schedule and spin instead of HLT if we can't.
539 	     */
540 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
541 		(ntd->td_toks && lwkt_chktokens(ntd) == 0)
542 	    ) {
543 		u_int32_t rqmask = gd->gd_runqmask;
544 		while (rqmask) {
545 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
546 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock())
547 			    continue;
548 			mpheld = MP_LOCK_HELD();
549 			if (ntd->td_toks && !lwkt_chktokens(ntd))
550 			    continue;
551 			break;
552 		    }
553 		    if (ntd)
554 			break;
555 		    rqmask &= ~(1 << nq);
556 		    nq = bsrl(rqmask);
557 		}
558 		if (ntd == NULL) {
559 		    ntd = &gd->gd_idlethread;
560 		    ntd->td_flags |= TDF_IDLE_NOHLT;
561 		} else {
562 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
563 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
564 		}
565 	    } else {
566 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
567 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
568 	    }
569 #else
570 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
571 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
572 #endif
573 	} else {
574 	    /*
575 	     * We have nothing to run but only let the idle loop halt
576 	     * the cpu if there are no pending interrupts.
577 	     */
578 	    ntd = &gd->gd_idlethread;
579 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
580 		ntd->td_flags |= TDF_IDLE_NOHLT;
581 	}
582     }
583     KASSERT(ntd->td_pri >= TDPRI_CRIT,
584 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
585 
586     /*
587      * Do the actual switch.  If the new target does not need the MP lock
588      * and we are holding it, release the MP lock.  If the new target requires
589      * the MP lock we have already acquired it for the target.
590      */
591 #ifdef SMP
592     if (ntd->td_mpcount == 0 ) {
593 	if (MP_LOCK_HELD())
594 	    cpu_rel_mplock();
595     } else {
596 	ASSERT_MP_LOCK_HELD();
597     }
598 #endif
599     if (td != ntd)
600 	td->td_switch(ntd);
601     /* NOTE: current cpu may have changed after switch */
602     crit_exit_quick(td);
603 }
604 
605 /*
606  * Request that the target thread preempt the current thread.  Preemption
607  * only works under a specific set of conditions:
608  *
609  *	- We are not preempting ourselves
610  *	- The target thread is owned by the current cpu
611  *	- We are not currently being preempted
612  *	- The target is not currently being preempted
613  *	- We are able to satisfy the target's MP lock requirements (if any).
614  *
615  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
616  * this is called via lwkt_schedule() through the td_preemptable callback.
617  * critpri is the managed critical priority that we should ignore in order
618  * to determine whether preemption is possible (aka usually just the crit
619  * priority of lwkt_schedule() itself).
620  *
621  * XXX at the moment we run the target thread in a critical section during
622  * the preemption in order to prevent the target from taking interrupts
623  * that *WE* can't.  Preemption is strictly limited to interrupt threads
624  * and interrupt-like threads, outside of a critical section, and the
625  * preempted source thread will be resumed the instant the target blocks
626  * whether or not the source is scheduled (i.e. preemption is supposed to
627  * be as transparent as possible).
628  *
629  * The target thread inherits our MP count (added to its own) for the
630  * duration of the preemption in order to preserve the atomicy of the
631  * MP lock during the preemption.  Therefore, any preempting targets must be
632  * careful in regards to MP assertions.  Note that the MP count may be
633  * out of sync with the physical mp_lock, but we do not have to preserve
634  * the original ownership of the lock if it was out of synch (that is, we
635  * can leave it synchronized on return).
636  */
637 void
638 lwkt_preempt(thread_t ntd, int critpri)
639 {
640     struct globaldata *gd = mycpu;
641     thread_t td;
642 #ifdef SMP
643     int mpheld;
644     int savecnt;
645 #endif
646 
647     /*
648      * The caller has put us in a critical section.  We can only preempt
649      * if the caller of the caller was not in a critical section (basically
650      * a local interrupt), as determined by the 'critpri' parameter.
651      *
652      * YYY The target thread must be in a critical section (else it must
653      * inherit our critical section?  I dunno yet).
654      *
655      * Any tokens held by the target may not be held by thread(s) being
656      * preempted.  We take the easy way out and do not preempt if
657      * the target is holding tokens.
658      *
659      * Set need_lwkt_resched() unconditionally for now YYY.
660      */
661     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
662 
663     td = gd->gd_curthread;
664     need_lwkt_resched();
665     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
666 	++preempt_miss;
667 	return;
668     }
669     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
670 	++preempt_miss;
671 	return;
672     }
673 #ifdef SMP
674     if (ntd->td_gd != gd) {
675 	++preempt_miss;
676 	return;
677     }
678 #endif
679     /*
680      * Take the easy way out and do not preempt if the target is holding
681      * one or more tokens.  We could test whether the thread(s) being
682      * preempted interlock against the target thread's tokens and whether
683      * we can get all the target thread's tokens, but this situation
684      * should not occur very often so its easier to simply not preempt.
685      */
686     if (ntd->td_toks != NULL) {
687 	++preempt_miss;
688 	return;
689     }
690     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
691 	++preempt_weird;
692 	return;
693     }
694     if (ntd->td_preempted) {
695 	++preempt_hit;
696 	return;
697     }
698 #ifdef SMP
699     /*
700      * note: an interrupt might have occured just as we were transitioning
701      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
702      * (non-zero) but not actually synchronized with the actual state of the
703      * lock.  We can use it to imply an MP lock requirement for the
704      * preemption but we cannot use it to test whether we hold the MP lock
705      * or not.
706      */
707     savecnt = td->td_mpcount;
708     mpheld = MP_LOCK_HELD();
709     ntd->td_mpcount += td->td_mpcount;
710     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
711 	ntd->td_mpcount -= td->td_mpcount;
712 	++preempt_miss;
713 	return;
714     }
715 #endif
716 
717     ++preempt_hit;
718     ntd->td_preempted = td;
719     td->td_flags |= TDF_PREEMPT_LOCK;
720     td->td_switch(ntd);
721     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
722 #ifdef SMP
723     KKASSERT(savecnt == td->td_mpcount);
724     mpheld = MP_LOCK_HELD();
725     if (mpheld && td->td_mpcount == 0)
726 	cpu_rel_mplock();
727     else if (mpheld == 0 && td->td_mpcount)
728 	panic("lwkt_preempt(): MP lock was not held through");
729 #endif
730     ntd->td_preempted = NULL;
731     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
732 }
733 
734 /*
735  * Yield our thread while higher priority threads are pending.  This is
736  * typically called when we leave a critical section but it can be safely
737  * called while we are in a critical section.
738  *
739  * This function will not generally yield to equal priority threads but it
740  * can occur as a side effect.  Note that lwkt_switch() is called from
741  * inside the critical section to prevent its own crit_exit() from reentering
742  * lwkt_yield_quick().
743  *
744  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
745  * came along but was blocked and made pending.
746  *
747  * (self contained on a per cpu basis)
748  */
749 void
750 lwkt_yield_quick(void)
751 {
752     globaldata_t gd = mycpu;
753     thread_t td = gd->gd_curthread;
754 
755     /*
756      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
757      * it with a non-zero cpl then we might not wind up calling splz after
758      * a task switch when the critical section is exited even though the
759      * new task could accept the interrupt.
760      *
761      * XXX from crit_exit() only called after last crit section is released.
762      * If called directly will run splz() even if in a critical section.
763      *
764      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
765      * except for this special case, we MUST call splz() here to handle any
766      * pending ints, particularly after we switch, or we might accidently
767      * halt the cpu with interrupts pending.
768      */
769     if (gd->gd_reqflags && td->td_nest_count < 2)
770 	splz();
771 
772     /*
773      * YYY enabling will cause wakeup() to task-switch, which really
774      * confused the old 4.x code.  This is a good way to simulate
775      * preemption and MP without actually doing preemption or MP, because a
776      * lot of code assumes that wakeup() does not block.
777      */
778     if (untimely_switch && td->td_nest_count == 0 &&
779 	gd->gd_intr_nesting_level == 0
780     ) {
781 	crit_enter_quick(td);
782 	/*
783 	 * YYY temporary hacks until we disassociate the userland scheduler
784 	 * from the LWKT scheduler.
785 	 */
786 	if (td->td_flags & TDF_RUNQ) {
787 	    lwkt_switch();		/* will not reenter yield function */
788 	} else {
789 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
790 	    lwkt_switch();		/* will not reenter yield function */
791 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
792 	}
793 	crit_exit_noyield(td);
794     }
795 }
796 
797 /*
798  * This implements a normal yield which, unlike _quick, will yield to equal
799  * priority threads as well.  Note that gd_reqflags tests will be handled by
800  * the crit_exit() call in lwkt_switch().
801  *
802  * (self contained on a per cpu basis)
803  */
804 void
805 lwkt_yield(void)
806 {
807     lwkt_schedule_self(curthread);
808     lwkt_switch();
809 }
810 
811 /*
812  * Generic schedule.  Possibly schedule threads belonging to other cpus and
813  * deal with threads that might be blocked on a wait queue.
814  *
815  * We have a little helper inline function which does additional work after
816  * the thread has been enqueued, including dealing with preemption and
817  * setting need_lwkt_resched() (which prevents the kernel from returning
818  * to userland until it has processed higher priority threads).
819  */
820 static __inline
821 void
822 _lwkt_schedule_post(thread_t ntd, int cpri)
823 {
824     if (ntd->td_preemptable) {
825 	ntd->td_preemptable(ntd, cpri);	/* YYY +token */
826     } else {
827 	if ((ntd->td_flags & TDF_NORESCHED) == 0) {
828 	    if ((ntd->td_pri & TDPRI_MASK) >= TDPRI_KERN_USER)
829 		need_lwkt_resched();
830 	}
831     }
832 }
833 
834 void
835 lwkt_schedule(thread_t td)
836 {
837     globaldata_t mygd = mycpu;
838 
839 #ifdef	INVARIANTS
840     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
841     if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc
842 	&& td->td_proc->p_stat == SSLEEP
843     ) {
844 	printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n",
845 	    curthread,
846 	    curthread->td_proc ? curthread->td_proc->p_pid : -1,
847 	    curthread->td_proc ? curthread->td_proc->p_stat : -1,
848 	    td,
849 	    td->td_proc ? curthread->td_proc->p_pid : -1,
850 	    td->td_proc ? curthread->td_proc->p_stat : -1
851 	);
852 	panic("SCHED PANIC");
853     }
854 #endif
855     crit_enter_gd(mygd);
856     if (td == mygd->gd_curthread) {
857 	_lwkt_enqueue(td);
858     } else {
859 	lwkt_wait_t w;
860 
861 	/*
862 	 * If the thread is on a wait list we have to send our scheduling
863 	 * request to the owner of the wait structure.  Otherwise we send
864 	 * the scheduling request to the cpu owning the thread.  Races
865 	 * are ok, the target will forward the message as necessary (the
866 	 * message may chase the thread around before it finally gets
867 	 * acted upon).
868 	 *
869 	 * (remember, wait structures use stable storage)
870 	 *
871 	 * NOTE: tokens no longer enter a critical section, so we only need
872 	 * to account for the crit_enter() above when calling
873 	 * _lwkt_schedule_post().
874 	 */
875 	if ((w = td->td_wait) != NULL) {
876 	    lwkt_tokref wref;
877 
878 	    if (lwkt_trytoken(&wref, &w->wa_token)) {
879 		TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
880 		--w->wa_count;
881 		td->td_wait = NULL;
882 #ifdef SMP
883 		if (td->td_gd == mycpu) {
884 		    _lwkt_enqueue(td);
885 		    _lwkt_schedule_post(td, TDPRI_CRIT);
886 		} else {
887 		    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
888 		}
889 #else
890 		_lwkt_enqueue(td);
891 		_lwkt_schedule_post(td, TDPRI_CRIT);
892 #endif
893 		lwkt_reltoken(&wref);
894 	    } else {
895 		lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td);
896 	    }
897 	} else {
898 	    /*
899 	     * If the wait structure is NULL and we own the thread, there
900 	     * is no race (since we are in a critical section).  If we
901 	     * do not own the thread there might be a race but the
902 	     * target cpu will deal with it.
903 	     */
904 #ifdef SMP
905 	    if (td->td_gd == mygd) {
906 		_lwkt_enqueue(td);
907 		_lwkt_schedule_post(td, TDPRI_CRIT);
908 	    } else {
909 		lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
910 	    }
911 #else
912 	    _lwkt_enqueue(td);
913 	    _lwkt_schedule_post(td, TDPRI_CRIT);
914 #endif
915 	}
916     }
917     crit_exit_gd(mygd);
918 }
919 
920 /*
921  * Managed acquisition.  This code assumes that the MP lock is held for
922  * the tdallq operation and that the thread has been descheduled from its
923  * original cpu.  We also have to wait for the thread to be entirely switched
924  * out on its original cpu (this is usually fast enough that we never loop)
925  * since the LWKT system does not have to hold the MP lock while switching
926  * and the target may have released it before switching.
927  */
928 void
929 lwkt_acquire(thread_t td)
930 {
931     globaldata_t gd;
932     globaldata_t mygd;
933 
934     gd = td->td_gd;
935     mygd = mycpu;
936     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
937     while (td->td_flags & TDF_RUNNING)	/* XXX spin */
938 	cpu_mb1();
939     if (gd != mygd) {
940 	crit_enter_gd(mygd);
941 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);	/* protected by BGL */
942 	td->td_gd = mygd;
943 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); /* protected by BGL */
944 	crit_exit_gd(mygd);
945     }
946 }
947 
948 /*
949  * Generic deschedule.  Descheduling threads other then your own should be
950  * done only in carefully controlled circumstances.  Descheduling is
951  * asynchronous.
952  *
953  * This function may block if the cpu has run out of messages.
954  */
955 void
956 lwkt_deschedule(thread_t td)
957 {
958     crit_enter();
959     if (td == curthread) {
960 	_lwkt_dequeue(td);
961     } else {
962 	if (td->td_gd == mycpu) {
963 	    _lwkt_dequeue(td);
964 	} else {
965 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_deschedule, td);
966 	}
967     }
968     crit_exit();
969 }
970 
971 /*
972  * Set the target thread's priority.  This routine does not automatically
973  * switch to a higher priority thread, LWKT threads are not designed for
974  * continuous priority changes.  Yield if you want to switch.
975  *
976  * We have to retain the critical section count which uses the high bits
977  * of the td_pri field.  The specified priority may also indicate zero or
978  * more critical sections by adding TDPRI_CRIT*N.
979  *
980  * Note that we requeue the thread whether it winds up on a different runq
981  * or not.  uio_yield() depends on this and the routine is not normally
982  * called with the same priority otherwise.
983  */
984 void
985 lwkt_setpri(thread_t td, int pri)
986 {
987     KKASSERT(pri >= 0);
988     KKASSERT(td->td_gd == mycpu);
989     crit_enter();
990     if (td->td_flags & TDF_RUNQ) {
991 	_lwkt_dequeue(td);
992 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
993 	_lwkt_enqueue(td);
994     } else {
995 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
996     }
997     crit_exit();
998 }
999 
1000 void
1001 lwkt_setpri_self(int pri)
1002 {
1003     thread_t td = curthread;
1004 
1005     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1006     crit_enter();
1007     if (td->td_flags & TDF_RUNQ) {
1008 	_lwkt_dequeue(td);
1009 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1010 	_lwkt_enqueue(td);
1011     } else {
1012 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1013     }
1014     crit_exit();
1015 }
1016 
1017 /*
1018  * Migrate the current thread to the specified cpu.  The BGL must be held
1019  * (for the gd_tdallq manipulation XXX).  This is accomplished by
1020  * descheduling ourselves from the current cpu, moving our thread to the
1021  * tdallq of the target cpu, IPI messaging the target cpu, and switching out.
1022  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1023  */
1024 #ifdef SMP
1025 static void lwkt_setcpu_remote(void *arg);
1026 #endif
1027 
1028 void
1029 lwkt_setcpu_self(globaldata_t rgd)
1030 {
1031 #ifdef SMP
1032     thread_t td = curthread;
1033 
1034     if (td->td_gd != rgd) {
1035 	crit_enter_quick(td);
1036 	td->td_flags |= TDF_MIGRATING;
1037 	lwkt_deschedule_self(td);
1038 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); /* protected by BGL */
1039 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); /* protected by BGL */
1040 	lwkt_send_ipiq(rgd, (ipifunc_t)lwkt_setcpu_remote, td);
1041 	lwkt_switch();
1042 	/* we are now on the target cpu */
1043 	crit_exit_quick(td);
1044     }
1045 #endif
1046 }
1047 
1048 /*
1049  * Remote IPI for cpu migration (called while in a critical section so we
1050  * do not have to enter another one).  The thread has already been moved to
1051  * our cpu's allq, but we must wait for the thread to be completely switched
1052  * out on the originating cpu before we schedule it on ours or the stack
1053  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1054  * change to main memory.
1055  *
1056  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1057  * against wakeups.  It is best if this interface is used only when there
1058  * are no pending events that might try to schedule the thread.
1059  */
1060 #ifdef SMP
1061 static void
1062 lwkt_setcpu_remote(void *arg)
1063 {
1064     thread_t td = arg;
1065     globaldata_t gd = mycpu;
1066 
1067     while (td->td_flags & TDF_RUNNING)
1068 	cpu_mb1();
1069     td->td_gd = gd;
1070     cpu_mb2();
1071     td->td_flags &= ~TDF_MIGRATING;
1072     _lwkt_enqueue(td);
1073 }
1074 #endif
1075 
1076 struct proc *
1077 lwkt_preempted_proc(void)
1078 {
1079     thread_t td = curthread;
1080     while (td->td_preempted)
1081 	td = td->td_preempted;
1082     return(td->td_proc);
1083 }
1084 
1085 /*
1086  * Block on the specified wait queue until signaled.  A generation number
1087  * must be supplied to interlock the wait queue.  The function will
1088  * return immediately if the generation number does not match the wait
1089  * structure's generation number.
1090  */
1091 void
1092 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
1093 {
1094     thread_t td = curthread;
1095     lwkt_tokref ilock;
1096 
1097     lwkt_gettoken(&ilock, &w->wa_token);
1098     crit_enter();
1099     if (w->wa_gen == *gen) {
1100 	_lwkt_dequeue(td);
1101 	TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
1102 	++w->wa_count;
1103 	td->td_wait = w;
1104 	td->td_wmesg = wmesg;
1105     again:
1106 	lwkt_switch();
1107 	if (td->td_wmesg != NULL) {
1108 	    _lwkt_dequeue(td);
1109 	    goto again;
1110 	}
1111     }
1112     crit_exit();
1113     *gen = w->wa_gen;
1114     lwkt_reltoken(&ilock);
1115 }
1116 
1117 /*
1118  * Signal a wait queue.  We gain ownership of the wait queue in order to
1119  * signal it.  Once a thread is removed from the wait queue we have to
1120  * deal with the cpu owning the thread.
1121  *
1122  * Note: alternatively we could message the target cpu owning the wait
1123  * queue.  YYY implement as sysctl.
1124  */
1125 void
1126 lwkt_signal(lwkt_wait_t w, int count)
1127 {
1128     thread_t td;
1129     lwkt_tokref ilock;
1130 
1131     lwkt_gettoken(&ilock, &w->wa_token);
1132     ++w->wa_gen;
1133     crit_enter();
1134     if (count < 0)
1135 	count = w->wa_count;
1136     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
1137 	--count;
1138 	--w->wa_count;
1139 	TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1140 	td->td_wait = NULL;
1141 	td->td_wmesg = NULL;
1142 	if (td->td_gd == mycpu) {
1143 	    _lwkt_enqueue(td);
1144 	} else {
1145 	    lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
1146 	}
1147     }
1148     crit_exit();
1149     lwkt_reltoken(&ilock);
1150 }
1151 
1152 /*
1153  * Create a kernel process/thread/whatever.  It shares it's address space
1154  * with proc0 - ie: kernel only.
1155  *
1156  * NOTE!  By default new threads are created with the MP lock held.  A
1157  * thread which does not require the MP lock should release it by calling
1158  * rel_mplock() at the start of the new thread.
1159  */
1160 int
1161 lwkt_create(void (*func)(void *), void *arg,
1162     struct thread **tdp, thread_t template, int tdflags, int cpu,
1163     const char *fmt, ...)
1164 {
1165     thread_t td;
1166     __va_list ap;
1167 
1168     td = lwkt_alloc_thread(template, cpu);
1169     if (tdp)
1170 	*tdp = td;
1171     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1172     td->td_flags |= TDF_VERBOSE | tdflags;
1173 #ifdef SMP
1174     td->td_mpcount = 1;
1175 #endif
1176 
1177     /*
1178      * Set up arg0 for 'ps' etc
1179      */
1180     __va_start(ap, fmt);
1181     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1182     __va_end(ap);
1183 
1184     /*
1185      * Schedule the thread to run
1186      */
1187     if ((td->td_flags & TDF_STOPREQ) == 0)
1188 	lwkt_schedule(td);
1189     else
1190 	td->td_flags &= ~TDF_STOPREQ;
1191     return 0;
1192 }
1193 
1194 /*
1195  * kthread_* is specific to the kernel and is not needed by userland.
1196  */
1197 #ifdef _KERNEL
1198 
1199 /*
1200  * Destroy an LWKT thread.   Warning!  This function is not called when
1201  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1202  * uses a different reaping mechanism.
1203  */
1204 void
1205 lwkt_exit(void)
1206 {
1207     thread_t td = curthread;
1208     globaldata_t gd;
1209 
1210     if (td->td_flags & TDF_VERBOSE)
1211 	printf("kthread %p %s has exited\n", td, td->td_comm);
1212     caps_exit(td);
1213     crit_enter_quick(td);
1214     lwkt_deschedule_self(td);
1215     gd = mycpu;
1216     KKASSERT(gd == td->td_gd);
1217     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1218     if (td->td_flags & TDF_ALLOCATED_THREAD) {
1219 	++gd->gd_tdfreecount;
1220 	TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1221     }
1222     cpu_thread_exit();
1223 }
1224 
1225 /*
1226  * Create a kernel process/thread/whatever.  It shares it's address space
1227  * with proc0 - ie: kernel only.  5.x compatible.
1228  *
1229  * NOTE!  By default kthreads are created with the MP lock held.  A
1230  * thread which does not require the MP lock should release it by calling
1231  * rel_mplock() at the start of the new thread.
1232  */
1233 int
1234 kthread_create(void (*func)(void *), void *arg,
1235     struct thread **tdp, const char *fmt, ...)
1236 {
1237     thread_t td;
1238     __va_list ap;
1239 
1240     td = lwkt_alloc_thread(NULL, -1);
1241     if (tdp)
1242 	*tdp = td;
1243     cpu_set_thread_handler(td, kthread_exit, func, arg);
1244     td->td_flags |= TDF_VERBOSE;
1245 #ifdef SMP
1246     td->td_mpcount = 1;
1247 #endif
1248 
1249     /*
1250      * Set up arg0 for 'ps' etc
1251      */
1252     __va_start(ap, fmt);
1253     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1254     __va_end(ap);
1255 
1256     /*
1257      * Schedule the thread to run
1258      */
1259     lwkt_schedule(td);
1260     return 0;
1261 }
1262 
1263 /*
1264  * Destroy an LWKT thread.   Warning!  This function is not called when
1265  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1266  * uses a different reaping mechanism.
1267  *
1268  * XXX duplicates lwkt_exit()
1269  */
1270 void
1271 kthread_exit(void)
1272 {
1273     lwkt_exit();
1274 }
1275 
1276 #endif /* _KERNEL */
1277 
1278 void
1279 crit_panic(void)
1280 {
1281     thread_t td = curthread;
1282     int lpri = td->td_pri;
1283 
1284     td->td_pri = 0;
1285     panic("td_pri is/would-go negative! %p %d", td, lpri);
1286 }
1287 
1288