xref: /dragonfly/sys/kern/lwkt_thread.c (revision fcce2b94)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.101 2006/06/04 21:09:50 dillon Exp $
35  */
36 
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread
41  * scheduling is queued via (async) IPIs.
42  */
43 
44 #ifdef _KERNEL
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/sysctl.h>
53 #include <sys/kthread.h>
54 #include <machine/cpu.h>
55 #include <sys/lock.h>
56 #include <sys/caps.h>
57 #include <sys/spinlock.h>
58 #include <sys/ktr.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_zone.h>
72 
73 #include <machine/stdarg.h>
74 #include <machine/ipl.h>
75 #include <machine/smp.h>
76 
77 #else
78 
79 #include <sys/stdint.h>
80 #include <libcaps/thread.h>
81 #include <sys/thread.h>
82 #include <sys/msgport.h>
83 #include <sys/errno.h>
84 #include <libcaps/globaldata.h>
85 #include <machine/cpufunc.h>
86 #include <sys/thread2.h>
87 #include <sys/msgport2.h>
88 #include <stdio.h>
89 #include <stdlib.h>
90 #include <string.h>
91 #include <machine/lock.h>
92 #include <machine/atomic.h>
93 #include <machine/cpu.h>
94 
95 #endif
96 
97 static int untimely_switch = 0;
98 #ifdef	INVARIANTS
99 static int panic_on_cscount = 0;
100 #endif
101 static __int64_t switch_count = 0;
102 static __int64_t preempt_hit = 0;
103 static __int64_t preempt_miss = 0;
104 static __int64_t preempt_weird = 0;
105 static __int64_t token_contention_count = 0;
106 static __int64_t mplock_contention_count = 0;
107 
108 #ifdef _KERNEL
109 
110 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
111 #ifdef	INVARIANTS
112 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
113 #endif
114 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
115 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
116 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
118 #ifdef	INVARIANTS
119 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
120 	&token_contention_count, 0, "spinning due to token contention");
121 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
122 	&mplock_contention_count, 0, "spinning due to MPLOCK contention");
123 #endif
124 #endif
125 
126 /*
127  * Kernel Trace
128  */
129 #ifdef _KERNEL
130 
131 #if !defined(KTR_GIANT_CONTENTION)
132 #define KTR_GIANT_CONTENTION	KTR_ALL
133 #endif
134 
135 KTR_INFO_MASTER(giant);
136 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
137 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
138 
139 #define loggiant(name)	KTR_LOG(giant_ ## name, curthread)
140 
141 #endif
142 
143 /*
144  * These helper procedures handle the runq, they can only be called from
145  * within a critical section.
146  *
147  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
148  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
149  * instead of 'mycpu' when referencing the globaldata structure.   Once
150  * SMP live enqueuing and dequeueing only occurs on the current cpu.
151  */
152 static __inline
153 void
154 _lwkt_dequeue(thread_t td)
155 {
156     if (td->td_flags & TDF_RUNQ) {
157 	int nq = td->td_pri & TDPRI_MASK;
158 	struct globaldata *gd = td->td_gd;
159 
160 	td->td_flags &= ~TDF_RUNQ;
161 	TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
162 	/* runqmask is passively cleaned up by the switcher */
163     }
164 }
165 
166 static __inline
167 void
168 _lwkt_enqueue(thread_t td)
169 {
170     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
171 	int nq = td->td_pri & TDPRI_MASK;
172 	struct globaldata *gd = td->td_gd;
173 
174 	td->td_flags |= TDF_RUNQ;
175 	TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
176 	gd->gd_runqmask |= 1 << nq;
177     }
178 }
179 
180 /*
181  * Schedule a thread to run.  As the current thread we can always safely
182  * schedule ourselves, and a shortcut procedure is provided for that
183  * function.
184  *
185  * (non-blocking, self contained on a per cpu basis)
186  */
187 void
188 lwkt_schedule_self(thread_t td)
189 {
190     crit_enter_quick(td);
191     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
192     KKASSERT(td->td_proc == NULL || (td->td_proc->p_flag & P_ONRUNQ) == 0);
193     _lwkt_enqueue(td);
194     crit_exit_quick(td);
195 }
196 
197 /*
198  * Deschedule a thread.
199  *
200  * (non-blocking, self contained on a per cpu basis)
201  */
202 void
203 lwkt_deschedule_self(thread_t td)
204 {
205     crit_enter_quick(td);
206     _lwkt_dequeue(td);
207     crit_exit_quick(td);
208 }
209 
210 #ifdef _KERNEL
211 
212 /*
213  * LWKTs operate on a per-cpu basis
214  *
215  * WARNING!  Called from early boot, 'mycpu' may not work yet.
216  */
217 void
218 lwkt_gdinit(struct globaldata *gd)
219 {
220     int i;
221 
222     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
223 	TAILQ_INIT(&gd->gd_tdrunq[i]);
224     gd->gd_runqmask = 0;
225     TAILQ_INIT(&gd->gd_tdallq);
226 }
227 
228 #endif /* _KERNEL */
229 
230 /*
231  * Create a new thread.  The thread must be associated with a process context
232  * or LWKT start address before it can be scheduled.  If the target cpu is
233  * -1 the thread will be created on the current cpu.
234  *
235  * If you intend to create a thread without a process context this function
236  * does everything except load the startup and switcher function.
237  */
238 thread_t
239 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
240 {
241     void *stack;
242     globaldata_t gd = mycpu;
243 
244     if (td == NULL) {
245 	crit_enter_gd(gd);
246 	if (gd->gd_tdfreecount > 0) {
247 	    --gd->gd_tdfreecount;
248 	    td = TAILQ_FIRST(&gd->gd_tdfreeq);
249 	    KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
250 		("lwkt_alloc_thread: unexpected NULL or corrupted td"));
251 	    TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
252 	    crit_exit_gd(gd);
253 	    flags |= td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
254 	} else {
255 	    crit_exit_gd(gd);
256 #ifdef _KERNEL
257 	    td = zalloc(thread_zone);
258 #else
259 	    td = malloc(sizeof(struct thread));
260 #endif
261 	    td->td_kstack = NULL;
262 	    td->td_kstack_size = 0;
263 	    flags |= TDF_ALLOCATED_THREAD;
264 	}
265     }
266     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
267 	if (flags & TDF_ALLOCATED_STACK) {
268 #ifdef _KERNEL
269 	    kmem_free(kernel_map, (vm_offset_t)stack, td->td_kstack_size);
270 #else
271 	    libcaps_free_stack(stack, td->td_kstack_size);
272 #endif
273 	    stack = NULL;
274 	}
275     }
276     if (stack == NULL) {
277 #ifdef _KERNEL
278 	stack = (void *)kmem_alloc(kernel_map, stksize);
279 #else
280 	stack = libcaps_alloc_stack(stksize);
281 #endif
282 	flags |= TDF_ALLOCATED_STACK;
283     }
284     if (cpu < 0)
285 	lwkt_init_thread(td, stack, stksize, flags, mycpu);
286     else
287 	lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
288     return(td);
289 }
290 
291 #ifdef _KERNEL
292 
293 /*
294  * Initialize a preexisting thread structure.  This function is used by
295  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
296  *
297  * All threads start out in a critical section at a priority of
298  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
299  * appropriate.  This function may send an IPI message when the
300  * requested cpu is not the current cpu and consequently gd_tdallq may
301  * not be initialized synchronously from the point of view of the originating
302  * cpu.
303  *
304  * NOTE! we have to be careful in regards to creating threads for other cpus
305  * if SMP has not yet been activated.
306  */
307 #ifdef SMP
308 
309 static void
310 lwkt_init_thread_remote(void *arg)
311 {
312     thread_t td = arg;
313 
314     /*
315      * Protected by critical section held by IPI dispatch
316      */
317     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
318 }
319 
320 #endif
321 
322 void
323 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
324 		struct globaldata *gd)
325 {
326     globaldata_t mygd = mycpu;
327 
328     bzero(td, sizeof(struct thread));
329     td->td_kstack = stack;
330     td->td_kstack_size = stksize;
331     td->td_flags = flags;
332     td->td_gd = gd;
333     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
334 #ifdef SMP
335     if ((flags & TDF_MPSAFE) == 0)
336 	td->td_mpcount = 1;
337 #endif
338     lwkt_initport(&td->td_msgport, td);
339     pmap_init_thread(td);
340 #ifdef SMP
341     /*
342      * Normally initializing a thread for a remote cpu requires sending an
343      * IPI.  However, the idlethread is setup before the other cpus are
344      * activated so we have to treat it as a special case.  XXX manipulation
345      * of gd_tdallq requires the BGL.
346      */
347     if (gd == mygd || td == &gd->gd_idlethread) {
348 	crit_enter_gd(mygd);
349 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
350 	crit_exit_gd(mygd);
351     } else {
352 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
353     }
354 #else
355     crit_enter_gd(mygd);
356     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
357     crit_exit_gd(mygd);
358 #endif
359 }
360 
361 #endif /* _KERNEL */
362 
363 void
364 lwkt_set_comm(thread_t td, const char *ctl, ...)
365 {
366     __va_list va;
367 
368     __va_start(va, ctl);
369     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
370     __va_end(va);
371 }
372 
373 void
374 lwkt_hold(thread_t td)
375 {
376     ++td->td_refs;
377 }
378 
379 void
380 lwkt_rele(thread_t td)
381 {
382     KKASSERT(td->td_refs > 0);
383     --td->td_refs;
384 }
385 
386 #ifdef _KERNEL
387 
388 void
389 lwkt_wait_free(thread_t td)
390 {
391     while (td->td_refs)
392 	tsleep(td, 0, "tdreap", hz);
393 }
394 
395 #endif
396 
397 void
398 lwkt_free_thread(thread_t td)
399 {
400     struct globaldata *gd = mycpu;
401 
402     KASSERT((td->td_flags & TDF_RUNNING) == 0,
403 	("lwkt_free_thread: did not exit! %p", td));
404 
405     crit_enter_gd(gd);
406     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
407 	(td->td_flags & TDF_ALLOCATED_THREAD)
408     ) {
409 	++gd->gd_tdfreecount;
410 	TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
411 	crit_exit_gd(gd);
412     } else {
413 	crit_exit_gd(gd);
414 	if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
415 #ifdef _KERNEL
416 	    kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
417 #else
418 	    libcaps_free_stack(td->td_kstack, td->td_kstack_size);
419 #endif
420 	    /* gd invalid */
421 	    td->td_kstack = NULL;
422 	    td->td_kstack_size = 0;
423 	}
424 	if (td->td_flags & TDF_ALLOCATED_THREAD) {
425 #ifdef _KERNEL
426 	    zfree(thread_zone, td);
427 #else
428 	    free(td);
429 #endif
430 	}
431     }
432 }
433 
434 
435 /*
436  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
437  * switch to the idlethread.  Switching must occur within a critical
438  * section to avoid races with the scheduling queue.
439  *
440  * We always have full control over our cpu's run queue.  Other cpus
441  * that wish to manipulate our queue must use the cpu_*msg() calls to
442  * talk to our cpu, so a critical section is all that is needed and
443  * the result is very, very fast thread switching.
444  *
445  * The LWKT scheduler uses a fixed priority model and round-robins at
446  * each priority level.  User process scheduling is a totally
447  * different beast and LWKT priorities should not be confused with
448  * user process priorities.
449  *
450  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
451  * cleans it up.  Note that the td_switch() function cannot do anything that
452  * requires the MP lock since the MP lock will have already been setup for
453  * the target thread (not the current thread).  It's nice to have a scheduler
454  * that does not need the MP lock to work because it allows us to do some
455  * really cool high-performance MP lock optimizations.
456  *
457  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
458  * is not called by the current thread in the preemption case, only when
459  * the preempting thread blocks (in order to return to the original thread).
460  */
461 void
462 lwkt_switch(void)
463 {
464     globaldata_t gd = mycpu;
465     thread_t td = gd->gd_curthread;
466     thread_t ntd;
467 #ifdef SMP
468     int mpheld;
469 #endif
470 
471     /*
472      * Switching from within a 'fast' (non thread switched) interrupt or IPI
473      * is illegal.  However, we may have to do it anyway if we hit a fatal
474      * kernel trap or we have paniced.
475      *
476      * If this case occurs save and restore the interrupt nesting level.
477      */
478     if (gd->gd_intr_nesting_level) {
479 	int savegdnest;
480 	int savegdtrap;
481 
482 	if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
483 	    panic("lwkt_switch: cannot switch from within "
484 		  "a fast interrupt, yet, td %p\n", td);
485 	} else {
486 	    savegdnest = gd->gd_intr_nesting_level;
487 	    savegdtrap = gd->gd_trap_nesting_level;
488 	    gd->gd_intr_nesting_level = 0;
489 	    gd->gd_trap_nesting_level = 0;
490 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
491 		td->td_flags |= TDF_PANICWARN;
492 		printf("Warning: thread switch from interrupt or IPI, "
493 			"thread %p (%s)\n", td, td->td_comm);
494 #ifdef DDB
495 		db_print_backtrace();
496 #endif
497 	    }
498 	    lwkt_switch();
499 	    gd->gd_intr_nesting_level = savegdnest;
500 	    gd->gd_trap_nesting_level = savegdtrap;
501 	    return;
502 	}
503     }
504 
505     /*
506      * Passive release (used to transition from user to kernel mode
507      * when we block or switch rather then when we enter the kernel).
508      * This function is NOT called if we are switching into a preemption
509      * or returning from a preemption.  Typically this causes us to lose
510      * our current process designation (if we have one) and become a true
511      * LWKT thread, and may also hand the current process designation to
512      * another process and schedule thread.
513      */
514     if (td->td_release)
515 	    td->td_release(td);
516 
517     crit_enter_gd(gd);
518 #ifdef SMP
519     if (td->td_toks)
520 	    lwkt_relalltokens(td);
521 #endif
522 
523     /*
524      * We had better not be holding any spin locks, but don't get into an
525      * endless panic loop.
526      */
527     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
528 	    ("lwkt_switch: still holding a shared spinlock %p!",
529 	     gd->gd_spinlock_rd));
530     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
531 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
532 	     gd->gd_spinlocks_wr));
533 
534 
535 #ifdef SMP
536     /*
537      * td_mpcount cannot be used to determine if we currently hold the
538      * MP lock because get_mplock() will increment it prior to attempting
539      * to get the lock, and switch out if it can't.  Our ownership of
540      * the actual lock will remain stable while we are in a critical section
541      * (but, of course, another cpu may own or release the lock so the
542      * actual value of mp_lock is not stable).
543      */
544     mpheld = MP_LOCK_HELD();
545 #ifdef	INVARIANTS
546     if (td->td_cscount) {
547 	printf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
548 		td);
549 	if (panic_on_cscount)
550 	    panic("switching while mastering cpusync");
551     }
552 #endif
553 #endif
554     if ((ntd = td->td_preempted) != NULL) {
555 	/*
556 	 * We had preempted another thread on this cpu, resume the preempted
557 	 * thread.  This occurs transparently, whether the preempted thread
558 	 * was scheduled or not (it may have been preempted after descheduling
559 	 * itself).
560 	 *
561 	 * We have to setup the MP lock for the original thread after backing
562 	 * out the adjustment that was made to curthread when the original
563 	 * was preempted.
564 	 */
565 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
566 #ifdef SMP
567 	if (ntd->td_mpcount && mpheld == 0) {
568 	    panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
569 	       td, ntd, td->td_mpcount, ntd->td_mpcount);
570 	}
571 	if (ntd->td_mpcount) {
572 	    td->td_mpcount -= ntd->td_mpcount;
573 	    KKASSERT(td->td_mpcount >= 0);
574 	}
575 #endif
576 	ntd->td_flags |= TDF_PREEMPT_DONE;
577 
578 	/*
579 	 * XXX.  The interrupt may have woken a thread up, we need to properly
580 	 * set the reschedule flag if the originally interrupted thread is at
581 	 * a lower priority.
582 	 */
583 	if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
584 	    need_lwkt_resched();
585 	/* YYY release mp lock on switchback if original doesn't need it */
586     } else {
587 	/*
588 	 * Priority queue / round-robin at each priority.  Note that user
589 	 * processes run at a fixed, low priority and the user process
590 	 * scheduler deals with interactions between user processes
591 	 * by scheduling and descheduling them from the LWKT queue as
592 	 * necessary.
593 	 *
594 	 * We have to adjust the MP lock for the target thread.  If we
595 	 * need the MP lock and cannot obtain it we try to locate a
596 	 * thread that does not need the MP lock.  If we cannot, we spin
597 	 * instead of HLT.
598 	 *
599 	 * A similar issue exists for the tokens held by the target thread.
600 	 * If we cannot obtain ownership of the tokens we cannot immediately
601 	 * schedule the thread.
602 	 */
603 
604 	/*
605 	 * If an LWKT reschedule was requested, well that is what we are
606 	 * doing now so clear it.
607 	 */
608 	clear_lwkt_resched();
609 again:
610 	if (gd->gd_runqmask) {
611 	    int nq = bsrl(gd->gd_runqmask);
612 	    if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
613 		gd->gd_runqmask &= ~(1 << nq);
614 		goto again;
615 	    }
616 #ifdef SMP
617 	    /*
618 	     * THREAD SELECTION FOR AN SMP MACHINE BUILD
619 	     *
620 	     * If the target needs the MP lock and we couldn't get it,
621 	     * or if the target is holding tokens and we could not
622 	     * gain ownership of the tokens, continue looking for a
623 	     * thread to schedule and spin instead of HLT if we can't.
624 	     *
625 	     * NOTE: the mpheld variable invalid after this conditional, it
626 	     * can change due to both cpu_try_mplock() returning success
627 	     * AND interactions in lwkt_getalltokens() due to the fact that
628 	     * we are trying to check the mpcount of a thread other then
629 	     * the current thread.  Because of this, if the current thread
630 	     * is not holding td_mpcount, an IPI indirectly run via
631 	     * lwkt_getalltokens() can obtain and release the MP lock and
632 	     * cause the core MP lock to be released.
633 	     */
634 	    if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
635 		(ntd->td_toks && lwkt_getalltokens(ntd) == 0)
636 	    ) {
637 		u_int32_t rqmask = gd->gd_runqmask;
638 
639 		mpheld = MP_LOCK_HELD();
640 		ntd = NULL;
641 		while (rqmask) {
642 		    TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
643 			if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
644 			    /* spinning due to MP lock being held */
645 #ifdef	INVARIANTS
646 			    ++mplock_contention_count;
647 #endif
648 			    /* mplock still not held, 'mpheld' still valid */
649 			    continue;
650 			}
651 
652 			/*
653 			 * mpheld state invalid after getalltokens call returns
654 			 * failure, but the variable is only needed for
655 			 * the loop.
656 			 */
657 			if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
658 			    /* spinning due to token contention */
659 #ifdef	INVARIANTS
660 			    ++token_contention_count;
661 #endif
662 			    mpheld = MP_LOCK_HELD();
663 			    continue;
664 			}
665 			break;
666 		    }
667 		    if (ntd)
668 			break;
669 		    rqmask &= ~(1 << nq);
670 		    nq = bsrl(rqmask);
671 		}
672 		if (ntd == NULL) {
673 		    ntd = &gd->gd_idlethread;
674 		    ntd->td_flags |= TDF_IDLE_NOHLT;
675 		    goto using_idle_thread;
676 		} else {
677 		    ++gd->gd_cnt.v_swtch;
678 		    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
679 		    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
680 		}
681 	    } else {
682 		++gd->gd_cnt.v_swtch;
683 		TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
684 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
685 	    }
686 #else
687 	    /*
688 	     * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
689 	     * worry about tokens or the BGL.
690 	     */
691 	    ++gd->gd_cnt.v_swtch;
692 	    TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
693 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
694 #endif
695 	} else {
696 	    /*
697 	     * We have nothing to run but only let the idle loop halt
698 	     * the cpu if there are no pending interrupts.
699 	     */
700 	    ntd = &gd->gd_idlethread;
701 	    if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
702 		ntd->td_flags |= TDF_IDLE_NOHLT;
703 #ifdef SMP
704 using_idle_thread:
705 	    /*
706 	     * The idle thread should not be holding the MP lock unless we
707 	     * are trapping in the kernel or in a panic.  Since we select the
708 	     * idle thread unconditionally when no other thread is available,
709 	     * if the MP lock is desired during a panic or kernel trap, we
710 	     * have to loop in the scheduler until we get it.
711 	     */
712 	    if (ntd->td_mpcount) {
713 		mpheld = MP_LOCK_HELD();
714 		if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
715 		    panic("Idle thread %p was holding the BGL!", ntd);
716 		else if (mpheld == 0)
717 		    goto again;
718 	    }
719 #endif
720 	}
721     }
722     KASSERT(ntd->td_pri >= TDPRI_CRIT,
723 	("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
724 
725     /*
726      * Do the actual switch.  If the new target does not need the MP lock
727      * and we are holding it, release the MP lock.  If the new target requires
728      * the MP lock we have already acquired it for the target.
729      */
730 #ifdef SMP
731     if (ntd->td_mpcount == 0 ) {
732 	if (MP_LOCK_HELD())
733 	    cpu_rel_mplock();
734     } else {
735 	ASSERT_MP_LOCK_HELD(ntd);
736     }
737 #endif
738     if (td != ntd) {
739 	++switch_count;
740 	td->td_switch(ntd);
741     }
742     /* NOTE: current cpu may have changed after switch */
743     crit_exit_quick(td);
744 }
745 
746 /*
747  * Request that the target thread preempt the current thread.  Preemption
748  * only works under a specific set of conditions:
749  *
750  *	- We are not preempting ourselves
751  *	- The target thread is owned by the current cpu
752  *	- We are not currently being preempted
753  *	- The target is not currently being preempted
754  *	- We are able to satisfy the target's MP lock requirements (if any).
755  *
756  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
757  * this is called via lwkt_schedule() through the td_preemptable callback.
758  * critpri is the managed critical priority that we should ignore in order
759  * to determine whether preemption is possible (aka usually just the crit
760  * priority of lwkt_schedule() itself).
761  *
762  * XXX at the moment we run the target thread in a critical section during
763  * the preemption in order to prevent the target from taking interrupts
764  * that *WE* can't.  Preemption is strictly limited to interrupt threads
765  * and interrupt-like threads, outside of a critical section, and the
766  * preempted source thread will be resumed the instant the target blocks
767  * whether or not the source is scheduled (i.e. preemption is supposed to
768  * be as transparent as possible).
769  *
770  * The target thread inherits our MP count (added to its own) for the
771  * duration of the preemption in order to preserve the atomicy of the
772  * MP lock during the preemption.  Therefore, any preempting targets must be
773  * careful in regards to MP assertions.  Note that the MP count may be
774  * out of sync with the physical mp_lock, but we do not have to preserve
775  * the original ownership of the lock if it was out of synch (that is, we
776  * can leave it synchronized on return).
777  */
778 void
779 lwkt_preempt(thread_t ntd, int critpri)
780 {
781     struct globaldata *gd = mycpu;
782     thread_t td;
783 #ifdef SMP
784     int mpheld;
785     int savecnt;
786 #endif
787 
788     /*
789      * The caller has put us in a critical section.  We can only preempt
790      * if the caller of the caller was not in a critical section (basically
791      * a local interrupt), as determined by the 'critpri' parameter.  We
792      * also acn't preempt if the caller is holding any spinlocks (even if
793      * he isn't in a critical section).  This also handles the tokens test.
794      *
795      * YYY The target thread must be in a critical section (else it must
796      * inherit our critical section?  I dunno yet).
797      *
798      * Set need_lwkt_resched() unconditionally for now YYY.
799      */
800     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
801 
802     td = gd->gd_curthread;
803     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
804 	++preempt_miss;
805 	return;
806     }
807     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
808 	++preempt_miss;
809 	need_lwkt_resched();
810 	return;
811     }
812 #ifdef SMP
813     if (ntd->td_gd != gd) {
814 	++preempt_miss;
815 	need_lwkt_resched();
816 	return;
817     }
818 #endif
819     /*
820      * Take the easy way out and do not preempt if the target is holding
821      * any spinlocks.  We could test whether the thread(s) being
822      * preempted interlock against the target thread's tokens and whether
823      * we can get all the target thread's tokens, but this situation
824      * should not occur very often so its easier to simply not preempt.
825      * Also, plain spinlocks are impossible to figure out at this point so
826      * just don't preempt.
827      */
828     if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
829 	++preempt_miss;
830 	need_lwkt_resched();
831 	return;
832     }
833     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
834 	++preempt_weird;
835 	need_lwkt_resched();
836 	return;
837     }
838     if (ntd->td_preempted) {
839 	++preempt_hit;
840 	need_lwkt_resched();
841 	return;
842     }
843 #ifdef SMP
844     /*
845      * note: an interrupt might have occured just as we were transitioning
846      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
847      * (non-zero) but not actually synchronized with the actual state of the
848      * lock.  We can use it to imply an MP lock requirement for the
849      * preemption but we cannot use it to test whether we hold the MP lock
850      * or not.
851      */
852     savecnt = td->td_mpcount;
853     mpheld = MP_LOCK_HELD();
854     ntd->td_mpcount += td->td_mpcount;
855     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
856 	ntd->td_mpcount -= td->td_mpcount;
857 	++preempt_miss;
858 	need_lwkt_resched();
859 	return;
860     }
861 #endif
862 
863     /*
864      * Since we are able to preempt the current thread, there is no need to
865      * call need_lwkt_resched().
866      */
867     ++preempt_hit;
868     ntd->td_preempted = td;
869     td->td_flags |= TDF_PREEMPT_LOCK;
870     td->td_switch(ntd);
871     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
872 #ifdef SMP
873     KKASSERT(savecnt == td->td_mpcount);
874     mpheld = MP_LOCK_HELD();
875     if (mpheld && td->td_mpcount == 0)
876 	cpu_rel_mplock();
877     else if (mpheld == 0 && td->td_mpcount)
878 	panic("lwkt_preempt(): MP lock was not held through");
879 #endif
880     ntd->td_preempted = NULL;
881     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
882 }
883 
884 /*
885  * Yield our thread while higher priority threads are pending.  This is
886  * typically called when we leave a critical section but it can be safely
887  * called while we are in a critical section.
888  *
889  * This function will not generally yield to equal priority threads but it
890  * can occur as a side effect.  Note that lwkt_switch() is called from
891  * inside the critical section to prevent its own crit_exit() from reentering
892  * lwkt_yield_quick().
893  *
894  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
895  * came along but was blocked and made pending.
896  *
897  * (self contained on a per cpu basis)
898  */
899 void
900 lwkt_yield_quick(void)
901 {
902     globaldata_t gd = mycpu;
903     thread_t td = gd->gd_curthread;
904 
905     /*
906      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
907      * it with a non-zero cpl then we might not wind up calling splz after
908      * a task switch when the critical section is exited even though the
909      * new task could accept the interrupt.
910      *
911      * XXX from crit_exit() only called after last crit section is released.
912      * If called directly will run splz() even if in a critical section.
913      *
914      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
915      * except for this special case, we MUST call splz() here to handle any
916      * pending ints, particularly after we switch, or we might accidently
917      * halt the cpu with interrupts pending.
918      */
919     if (gd->gd_reqflags && td->td_nest_count < 2)
920 	splz();
921 
922     /*
923      * YYY enabling will cause wakeup() to task-switch, which really
924      * confused the old 4.x code.  This is a good way to simulate
925      * preemption and MP without actually doing preemption or MP, because a
926      * lot of code assumes that wakeup() does not block.
927      */
928     if (untimely_switch && td->td_nest_count == 0 &&
929 	gd->gd_intr_nesting_level == 0
930     ) {
931 	crit_enter_quick(td);
932 	/*
933 	 * YYY temporary hacks until we disassociate the userland scheduler
934 	 * from the LWKT scheduler.
935 	 */
936 	if (td->td_flags & TDF_RUNQ) {
937 	    lwkt_switch();		/* will not reenter yield function */
938 	} else {
939 	    lwkt_schedule_self(td);	/* make sure we are scheduled */
940 	    lwkt_switch();		/* will not reenter yield function */
941 	    lwkt_deschedule_self(td);	/* make sure we are descheduled */
942 	}
943 	crit_exit_noyield(td);
944     }
945 }
946 
947 /*
948  * This implements a normal yield which, unlike _quick, will yield to equal
949  * priority threads as well.  Note that gd_reqflags tests will be handled by
950  * the crit_exit() call in lwkt_switch().
951  *
952  * (self contained on a per cpu basis)
953  */
954 void
955 lwkt_yield(void)
956 {
957     lwkt_schedule_self(curthread);
958     lwkt_switch();
959 }
960 
961 /*
962  * Generic schedule.  Possibly schedule threads belonging to other cpus and
963  * deal with threads that might be blocked on a wait queue.
964  *
965  * We have a little helper inline function which does additional work after
966  * the thread has been enqueued, including dealing with preemption and
967  * setting need_lwkt_resched() (which prevents the kernel from returning
968  * to userland until it has processed higher priority threads).
969  *
970  * It is possible for this routine to be called after a failed _enqueue
971  * (due to the target thread migrating, sleeping, or otherwise blocked).
972  * We have to check that the thread is actually on the run queue!
973  */
974 static __inline
975 void
976 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
977 {
978     if (ntd->td_flags & TDF_RUNQ) {
979 	if (ntd->td_preemptable) {
980 	    ntd->td_preemptable(ntd, cpri);	/* YYY +token */
981 	} else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
982 	    (ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
983 	) {
984 	    need_lwkt_resched();
985 	}
986     }
987 }
988 
989 void
990 lwkt_schedule(thread_t td)
991 {
992     globaldata_t mygd = mycpu;
993 
994     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
995     crit_enter_gd(mygd);
996     KKASSERT(td->td_proc == NULL || (td->td_proc->p_flag & P_ONRUNQ) == 0);
997     if (td == mygd->gd_curthread) {
998 	_lwkt_enqueue(td);
999     } else {
1000 	/*
1001 	 * If we own the thread, there is no race (since we are in a
1002 	 * critical section).  If we do not own the thread there might
1003 	 * be a race but the target cpu will deal with it.
1004 	 */
1005 #ifdef SMP
1006 	if (td->td_gd == mygd) {
1007 	    _lwkt_enqueue(td);
1008 	    _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1009 	} else {
1010 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1011 	}
1012 #else
1013 	_lwkt_enqueue(td);
1014 	_lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1015 #endif
1016     }
1017     crit_exit_gd(mygd);
1018 }
1019 
1020 #ifdef SMP
1021 
1022 /*
1023  * Thread migration using a 'Pull' method.  The thread may or may not be
1024  * the current thread.  It MUST be descheduled and in a stable state.
1025  * lwkt_giveaway() must be called on the cpu owning the thread.
1026  *
1027  * At any point after lwkt_giveaway() is called, the target cpu may
1028  * 'pull' the thread by calling lwkt_acquire().
1029  *
1030  * MPSAFE - must be called under very specific conditions.
1031  */
1032 void
1033 lwkt_giveaway(thread_t td)
1034 {
1035 	globaldata_t gd = mycpu;
1036 
1037 	crit_enter_gd(gd);
1038 	KKASSERT(td->td_gd == gd);
1039 	TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1040 	td->td_flags |= TDF_MIGRATING;
1041 	crit_exit_gd(gd);
1042 }
1043 
1044 void
1045 lwkt_acquire(thread_t td)
1046 {
1047     globaldata_t gd;
1048     globaldata_t mygd;
1049 
1050     KKASSERT(td->td_flags & TDF_MIGRATING);
1051     gd = td->td_gd;
1052     mygd = mycpu;
1053     if (gd != mycpu) {
1054 	cpu_lfence();
1055 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1056 	crit_enter_gd(mygd);
1057 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK))
1058 	    cpu_lfence();
1059 	td->td_gd = mygd;
1060 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1061 	td->td_flags &= ~TDF_MIGRATING;
1062 	crit_exit_gd(mygd);
1063     } else {
1064 	crit_enter_gd(mygd);
1065 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1066 	td->td_flags &= ~TDF_MIGRATING;
1067 	crit_exit_gd(mygd);
1068     }
1069 }
1070 
1071 #endif
1072 
1073 /*
1074  * Generic deschedule.  Descheduling threads other then your own should be
1075  * done only in carefully controlled circumstances.  Descheduling is
1076  * asynchronous.
1077  *
1078  * This function may block if the cpu has run out of messages.
1079  */
1080 void
1081 lwkt_deschedule(thread_t td)
1082 {
1083     crit_enter();
1084 #ifdef SMP
1085     if (td == curthread) {
1086 	_lwkt_dequeue(td);
1087     } else {
1088 	if (td->td_gd == mycpu) {
1089 	    _lwkt_dequeue(td);
1090 	} else {
1091 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1092 	}
1093     }
1094 #else
1095     _lwkt_dequeue(td);
1096 #endif
1097     crit_exit();
1098 }
1099 
1100 /*
1101  * Set the target thread's priority.  This routine does not automatically
1102  * switch to a higher priority thread, LWKT threads are not designed for
1103  * continuous priority changes.  Yield if you want to switch.
1104  *
1105  * We have to retain the critical section count which uses the high bits
1106  * of the td_pri field.  The specified priority may also indicate zero or
1107  * more critical sections by adding TDPRI_CRIT*N.
1108  *
1109  * Note that we requeue the thread whether it winds up on a different runq
1110  * or not.  uio_yield() depends on this and the routine is not normally
1111  * called with the same priority otherwise.
1112  */
1113 void
1114 lwkt_setpri(thread_t td, int pri)
1115 {
1116     KKASSERT(pri >= 0);
1117     KKASSERT(td->td_gd == mycpu);
1118     crit_enter();
1119     if (td->td_flags & TDF_RUNQ) {
1120 	_lwkt_dequeue(td);
1121 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1122 	_lwkt_enqueue(td);
1123     } else {
1124 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1125     }
1126     crit_exit();
1127 }
1128 
1129 void
1130 lwkt_setpri_self(int pri)
1131 {
1132     thread_t td = curthread;
1133 
1134     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1135     crit_enter();
1136     if (td->td_flags & TDF_RUNQ) {
1137 	_lwkt_dequeue(td);
1138 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1139 	_lwkt_enqueue(td);
1140     } else {
1141 	td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1142     }
1143     crit_exit();
1144 }
1145 
1146 /*
1147  * Determine if there is a runnable thread at a higher priority then
1148  * the current thread.  lwkt_setpri() does not check this automatically.
1149  * Return 1 if there is, 0 if there isn't.
1150  *
1151  * Example: if bit 31 of runqmask is set and the current thread is priority
1152  * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.
1153  *
1154  * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1155  * up comparing against 0xffffffff, a comparison that will always be false.
1156  */
1157 int
1158 lwkt_checkpri_self(void)
1159 {
1160     globaldata_t gd = mycpu;
1161     thread_t td = gd->gd_curthread;
1162     int nq = td->td_pri & TDPRI_MASK;
1163 
1164     while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1165 	if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1166 	    return(1);
1167 	++nq;
1168     }
1169     return(0);
1170 }
1171 
1172 /*
1173  * Migrate the current thread to the specified cpu.
1174  *
1175  * This is accomplished by descheduling ourselves from the current cpu,
1176  * moving our thread to the tdallq of the target cpu, IPI messaging the
1177  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1178  * races while the thread is being migrated.
1179  */
1180 #ifdef SMP
1181 static void lwkt_setcpu_remote(void *arg);
1182 #endif
1183 
1184 void
1185 lwkt_setcpu_self(globaldata_t rgd)
1186 {
1187 #ifdef SMP
1188     thread_t td = curthread;
1189 
1190     if (td->td_gd != rgd) {
1191 	crit_enter_quick(td);
1192 	td->td_flags |= TDF_MIGRATING;
1193 	lwkt_deschedule_self(td);
1194 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1195 	lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1196 	lwkt_switch();
1197 	/* we are now on the target cpu */
1198 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1199 	crit_exit_quick(td);
1200     }
1201 #endif
1202 }
1203 
1204 void
1205 lwkt_migratecpu(int cpuid)
1206 {
1207 #ifdef SMP
1208 	globaldata_t rgd;
1209 
1210 	rgd = globaldata_find(cpuid);
1211 	lwkt_setcpu_self(rgd);
1212 #endif
1213 }
1214 
1215 /*
1216  * Remote IPI for cpu migration (called while in a critical section so we
1217  * do not have to enter another one).  The thread has already been moved to
1218  * our cpu's allq, but we must wait for the thread to be completely switched
1219  * out on the originating cpu before we schedule it on ours or the stack
1220  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1221  * change to main memory.
1222  *
1223  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1224  * against wakeups.  It is best if this interface is used only when there
1225  * are no pending events that might try to schedule the thread.
1226  */
1227 #ifdef SMP
1228 static void
1229 lwkt_setcpu_remote(void *arg)
1230 {
1231     thread_t td = arg;
1232     globaldata_t gd = mycpu;
1233 
1234     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK))
1235 	cpu_lfence();
1236     td->td_gd = gd;
1237     cpu_sfence();
1238     td->td_flags &= ~TDF_MIGRATING;
1239     KKASSERT(td->td_proc == NULL || (td->td_proc->p_flag & P_ONRUNQ) == 0);
1240     _lwkt_enqueue(td);
1241 }
1242 #endif
1243 
1244 struct lwp *
1245 lwkt_preempted_proc(void)
1246 {
1247     thread_t td = curthread;
1248     while (td->td_preempted)
1249 	td = td->td_preempted;
1250     return(td->td_lwp);
1251 }
1252 
1253 /*
1254  * Create a kernel process/thread/whatever.  It shares it's address space
1255  * with proc0 - ie: kernel only.
1256  *
1257  * NOTE!  By default new threads are created with the MP lock held.  A
1258  * thread which does not require the MP lock should release it by calling
1259  * rel_mplock() at the start of the new thread.
1260  */
1261 int
1262 lwkt_create(void (*func)(void *), void *arg,
1263     struct thread **tdp, thread_t template, int tdflags, int cpu,
1264     const char *fmt, ...)
1265 {
1266     thread_t td;
1267     __va_list ap;
1268 
1269     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1270 			   tdflags | TDF_VERBOSE);
1271     if (tdp)
1272 	*tdp = td;
1273     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1274 
1275     /*
1276      * Set up arg0 for 'ps' etc
1277      */
1278     __va_start(ap, fmt);
1279     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1280     __va_end(ap);
1281 
1282     /*
1283      * Schedule the thread to run
1284      */
1285     if ((td->td_flags & TDF_STOPREQ) == 0)
1286 	lwkt_schedule(td);
1287     else
1288 	td->td_flags &= ~TDF_STOPREQ;
1289     return 0;
1290 }
1291 
1292 /*
1293  * kthread_* is specific to the kernel and is not needed by userland.
1294  */
1295 #ifdef _KERNEL
1296 
1297 /*
1298  * Destroy an LWKT thread.   Warning!  This function is not called when
1299  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1300  * uses a different reaping mechanism.
1301  */
1302 void
1303 lwkt_exit(void)
1304 {
1305     thread_t td = curthread;
1306     globaldata_t gd;
1307 
1308     if (td->td_flags & TDF_VERBOSE)
1309 	printf("kthread %p %s has exited\n", td, td->td_comm);
1310     caps_exit(td);
1311     crit_enter_quick(td);
1312     lwkt_deschedule_self(td);
1313     gd = mycpu;
1314     lwkt_remove_tdallq(td);
1315     if (td->td_flags & TDF_ALLOCATED_THREAD) {
1316 	++gd->gd_tdfreecount;
1317 	TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1318     }
1319     cpu_thread_exit();
1320 }
1321 
1322 void
1323 lwkt_remove_tdallq(thread_t td)
1324 {
1325     KKASSERT(td->td_gd == mycpu);
1326     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1327 }
1328 
1329 #endif /* _KERNEL */
1330 
1331 void
1332 crit_panic(void)
1333 {
1334     thread_t td = curthread;
1335     int lpri = td->td_pri;
1336 
1337     td->td_pri = 0;
1338     panic("td_pri is/would-go negative! %p %d", td, lpri);
1339 }
1340 
1341 #ifdef SMP
1342 
1343 /*
1344  * Called from debugger/panic on cpus which have been stopped.  We must still
1345  * process the IPIQ while stopped, even if we were stopped while in a critical
1346  * section (XXX).
1347  *
1348  * If we are dumping also try to process any pending interrupts.  This may
1349  * or may not work depending on the state of the cpu at the point it was
1350  * stopped.
1351  */
1352 void
1353 lwkt_smp_stopped(void)
1354 {
1355     globaldata_t gd = mycpu;
1356 
1357     crit_enter_gd(gd);
1358     if (dumping) {
1359 	lwkt_process_ipiq();
1360 	splz();
1361     } else {
1362 	lwkt_process_ipiq();
1363     }
1364     crit_exit_gd(gd);
1365 }
1366 
1367 /*
1368  * get_mplock() calls this routine if it is unable to obtain the MP lock.
1369  * get_mplock() has already incremented td_mpcount.  We must block and
1370  * not return until giant is held.
1371  *
1372  * All we have to do is lwkt_switch() away.  The LWKT scheduler will not
1373  * reschedule the thread until it can obtain the giant lock for it.
1374  */
1375 void
1376 lwkt_mp_lock_contested(void)
1377 {
1378 #ifdef _KERNEL
1379     loggiant(beg);
1380 #endif
1381     lwkt_switch();
1382 #ifdef _KERNEL
1383     loggiant(end);
1384 #endif
1385 }
1386 
1387 #endif
1388