xref: /dragonfly/sys/kern/lwkt_thread.c (revision ffe53622)
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread
39  * scheduling is queued via (async) IPIs.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55 #include <sys/indefinite.h>
56 
57 #include <sys/thread2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/indefinite2.h>
60 
61 #include <sys/dsched.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71 
72 #include <machine/stdarg.h>
73 #include <machine/smp.h>
74 #include <machine/clock.h>
75 
76 #ifdef _KERNEL_VIRTUAL
77 #include <pthread.h>
78 #endif
79 
80 #define LOOPMASK
81 
82 #if !defined(KTR_CTXSW)
83 #define KTR_CTXSW KTR_ALL
84 #endif
85 KTR_INFO_MASTER(ctxsw);
86 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
87 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
88 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
89 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
90 
91 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
92 
93 #ifdef	INVARIANTS
94 static int panic_on_cscount = 0;
95 #endif
96 static int64_t switch_count = 0;
97 static int64_t preempt_hit = 0;
98 static int64_t preempt_miss = 0;
99 static int64_t preempt_weird = 0;
100 static int lwkt_use_spin_port;
101 static struct objcache *thread_cache;
102 int cpu_mwait_spin = 0;
103 
104 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
105 static void lwkt_setcpu_remote(void *arg);
106 
107 /*
108  * We can make all thread ports use the spin backend instead of the thread
109  * backend.  This should only be set to debug the spin backend.
110  */
111 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
112 
113 #ifdef	INVARIANTS
114 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
115     "Panic if attempting to switch lwkt's while mastering cpusync");
116 #endif
117 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
118     "Number of switched threads");
119 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
120     "Successful preemption events");
121 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
122     "Failed preemption events");
123 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
124     "Number of preempted threads.");
125 static int fairq_enable = 0;
126 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
127 	&fairq_enable, 0, "Turn on fairq priority accumulators");
128 static int fairq_bypass = -1;
129 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
130 	&fairq_bypass, 0, "Allow fairq to bypass td on token failure");
131 extern int lwkt_sched_debug;
132 int lwkt_sched_debug = 0;
133 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
134 	&lwkt_sched_debug, 0, "Scheduler debug");
135 static u_int lwkt_spin_loops = 10;
136 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
137 	&lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
138 static int preempt_enable = 1;
139 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
140 	&preempt_enable, 0, "Enable preemption");
141 static int lwkt_cache_threads = 0;
142 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
143 	&lwkt_cache_threads, 0, "thread+kstack cache");
144 
145 /*
146  * These helper procedures handle the runq, they can only be called from
147  * within a critical section.
148  *
149  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
150  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
151  * instead of 'mycpu' when referencing the globaldata structure.   Once
152  * SMP live enqueuing and dequeueing only occurs on the current cpu.
153  */
154 static __inline
155 void
156 _lwkt_dequeue(thread_t td)
157 {
158     if (td->td_flags & TDF_RUNQ) {
159 	struct globaldata *gd = td->td_gd;
160 
161 	td->td_flags &= ~TDF_RUNQ;
162 	TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
163 	--gd->gd_tdrunqcount;
164 	if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
165 		atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
166     }
167 }
168 
169 /*
170  * Priority enqueue.
171  *
172  * There are a limited number of lwkt threads runnable since user
173  * processes only schedule one at a time per cpu.  However, there can
174  * be many user processes in kernel mode exiting from a tsleep() which
175  * become runnable.
176  *
177  * We scan the queue in both directions to help deal with degenerate
178  * situations when hundreds or thousands (or more) threads are runnable.
179  *
180  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
181  *	 will ignore user priority.  This is to ensure that user threads in
182  *	 kernel mode get cpu at some point regardless of what the user
183  *	 scheduler thinks.
184  */
185 static __inline
186 void
187 _lwkt_enqueue(thread_t td)
188 {
189     thread_t xtd;	/* forward scan */
190     thread_t rtd;	/* reverse scan */
191 
192     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
193 	struct globaldata *gd = td->td_gd;
194 
195 	td->td_flags |= TDF_RUNQ;
196 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
197 	if (xtd == NULL) {
198 	    TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
199 	    atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
200 	} else {
201 	    /*
202 	     * NOTE: td_upri - higher numbers more desireable, same sense
203 	     *	     as td_pri (typically reversed from lwp_upri).
204 	     *
205 	     *	     In the equal priority case we want the best selection
206 	     *	     at the beginning so the less desireable selections know
207 	     *	     that they have to setrunqueue/go-to-another-cpu, even
208 	     *	     though it means switching back to the 'best' selection.
209 	     *	     This also avoids degenerate situations when many threads
210 	     *	     are runnable or waking up at the same time.
211 	     *
212 	     *	     If upri matches exactly place at end/round-robin.
213 	     */
214 	    rtd = TAILQ_LAST(&gd->gd_tdrunq, lwkt_queue);
215 
216 	    while (xtd &&
217 		   (xtd->td_pri > td->td_pri ||
218 		    (xtd->td_pri == td->td_pri &&
219 		     xtd->td_upri >= td->td_upri))) {
220 		xtd = TAILQ_NEXT(xtd, td_threadq);
221 
222 		/*
223 		 * Doing a reverse scan at the same time is an optimization
224 		 * for the insert-closer-to-tail case that avoids having to
225 		 * scan the entire list.  This situation can occur when
226 		 * thousands of threads are woken up at the same time.
227 		 */
228 		if (rtd->td_pri > td->td_pri ||
229 		    (rtd->td_pri == td->td_pri &&
230 		    rtd->td_upri >= td->td_upri)) {
231 			TAILQ_INSERT_AFTER(&gd->gd_tdrunq, rtd, td, td_threadq);
232 			goto skip;
233 		}
234 		rtd = TAILQ_PREV(rtd, lwkt_queue, td_threadq);
235 	    }
236 	    if (xtd)
237 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
238 	    else
239 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
240 	}
241 skip:
242 	++gd->gd_tdrunqcount;
243 
244 	/*
245 	 * Request a LWKT reschedule if we are now at the head of the queue.
246 	 */
247 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
248 	    need_lwkt_resched();
249     }
250 }
251 
252 static boolean_t
253 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
254 {
255 	struct thread *td = (struct thread *)obj;
256 
257 	td->td_kstack = NULL;
258 	td->td_kstack_size = 0;
259 	td->td_flags = TDF_ALLOCATED_THREAD;
260 	td->td_mpflags = 0;
261 	return (1);
262 }
263 
264 static void
265 _lwkt_thread_dtor(void *obj, void *privdata)
266 {
267 	struct thread *td = (struct thread *)obj;
268 
269 	KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
270 	    ("_lwkt_thread_dtor: not allocated from objcache"));
271 	KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
272 		td->td_kstack_size > 0,
273 	    ("_lwkt_thread_dtor: corrupted stack"));
274 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
275 	td->td_kstack = NULL;
276 	td->td_flags = 0;
277 }
278 
279 /*
280  * Initialize the lwkt s/system.
281  *
282  * Nominally cache up to 32 thread + kstack structures.  Cache more on
283  * systems with a lot of cpu cores.
284  */
285 static void
286 lwkt_init(void)
287 {
288     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
289     if (lwkt_cache_threads == 0) {
290 	lwkt_cache_threads = ncpus * 4;
291 	if (lwkt_cache_threads < 32)
292 	    lwkt_cache_threads = 32;
293     }
294     thread_cache = objcache_create_mbacked(
295 				M_THREAD, sizeof(struct thread),
296 				0, lwkt_cache_threads,
297 				_lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
298 }
299 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
300 
301 /*
302  * Schedule a thread to run.  As the current thread we can always safely
303  * schedule ourselves, and a shortcut procedure is provided for that
304  * function.
305  *
306  * (non-blocking, self contained on a per cpu basis)
307  */
308 void
309 lwkt_schedule_self(thread_t td)
310 {
311     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
312     crit_enter_quick(td);
313     KASSERT(td != &td->td_gd->gd_idlethread,
314 	    ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
315     KKASSERT(td->td_lwp == NULL ||
316 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
317     _lwkt_enqueue(td);
318     crit_exit_quick(td);
319 }
320 
321 /*
322  * Deschedule a thread.
323  *
324  * (non-blocking, self contained on a per cpu basis)
325  */
326 void
327 lwkt_deschedule_self(thread_t td)
328 {
329     crit_enter_quick(td);
330     _lwkt_dequeue(td);
331     crit_exit_quick(td);
332 }
333 
334 /*
335  * LWKTs operate on a per-cpu basis
336  *
337  * WARNING!  Called from early boot, 'mycpu' may not work yet.
338  */
339 void
340 lwkt_gdinit(struct globaldata *gd)
341 {
342     TAILQ_INIT(&gd->gd_tdrunq);
343     TAILQ_INIT(&gd->gd_tdallq);
344     lockinit(&gd->gd_sysctllock, "sysctl", 0, LK_CANRECURSE);
345 }
346 
347 /*
348  * Create a new thread.  The thread must be associated with a process context
349  * or LWKT start address before it can be scheduled.  If the target cpu is
350  * -1 the thread will be created on the current cpu.
351  *
352  * If you intend to create a thread without a process context this function
353  * does everything except load the startup and switcher function.
354  */
355 thread_t
356 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
357 {
358     static int cpu_rotator;
359     globaldata_t gd = mycpu;
360     void *stack;
361 
362     /*
363      * If static thread storage is not supplied allocate a thread.  Reuse
364      * a cached free thread if possible.  gd_freetd is used to keep an exiting
365      * thread intact through the exit.
366      */
367     if (td == NULL) {
368 	crit_enter_gd(gd);
369 	if ((td = gd->gd_freetd) != NULL) {
370 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
371 				      TDF_RUNQ)) == 0);
372 	    gd->gd_freetd = NULL;
373 	} else {
374 	    td = objcache_get(thread_cache, M_WAITOK);
375 	    KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
376 				      TDF_RUNQ)) == 0);
377 	}
378 	crit_exit_gd(gd);
379     	KASSERT((td->td_flags &
380 		 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
381 		 TDF_ALLOCATED_THREAD,
382 		("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
383     	flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
384     }
385 
386     /*
387      * Try to reuse cached stack.
388      */
389     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
390 	if (flags & TDF_ALLOCATED_STACK) {
391 	    kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
392 	    stack = NULL;
393 	}
394     }
395     if (stack == NULL) {
396 	if (cpu < 0)
397 		stack = (void *)kmem_alloc_stack(&kernel_map, stksize, 0);
398 	else
399 		stack = (void *)kmem_alloc_stack(&kernel_map, stksize,
400 						 KM_CPU(cpu));
401 	flags |= TDF_ALLOCATED_STACK;
402     }
403     if (cpu < 0) {
404 	cpu = ++cpu_rotator;
405 	cpu_ccfence();
406 	cpu = (uint32_t)cpu % (uint32_t)ncpus;
407     }
408     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
409     return(td);
410 }
411 
412 /*
413  * Initialize a preexisting thread structure.  This function is used by
414  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
415  *
416  * All threads start out in a critical section at a priority of
417  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
418  * appropriate.  This function may send an IPI message when the
419  * requested cpu is not the current cpu and consequently gd_tdallq may
420  * not be initialized synchronously from the point of view of the originating
421  * cpu.
422  *
423  * NOTE! we have to be careful in regards to creating threads for other cpus
424  * if SMP has not yet been activated.
425  */
426 static void
427 lwkt_init_thread_remote(void *arg)
428 {
429     thread_t td = arg;
430 
431     /*
432      * Protected by critical section held by IPI dispatch
433      */
434     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
435 }
436 
437 /*
438  * lwkt core thread structural initialization.
439  *
440  * NOTE: All threads are initialized as mpsafe threads.
441  */
442 void
443 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
444 		struct globaldata *gd)
445 {
446     globaldata_t mygd = mycpu;
447 
448     bzero(td, sizeof(struct thread));
449     td->td_kstack = stack;
450     td->td_kstack_size = stksize;
451     td->td_flags = flags;
452     td->td_mpflags = 0;
453     td->td_type = TD_TYPE_GENERIC;
454     td->td_gd = gd;
455     td->td_pri = TDPRI_KERN_DAEMON;
456     td->td_critcount = 1;
457     td->td_toks_have = NULL;
458     td->td_toks_stop = &td->td_toks_base;
459     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
460 	lwkt_initport_spin(&td->td_msgport, td,
461 	    (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
462     } else {
463 	lwkt_initport_thread(&td->td_msgport, td);
464     }
465     pmap_init_thread(td);
466     /*
467      * Normally initializing a thread for a remote cpu requires sending an
468      * IPI.  However, the idlethread is setup before the other cpus are
469      * activated so we have to treat it as a special case.  XXX manipulation
470      * of gd_tdallq requires the BGL.
471      */
472     if (gd == mygd || td == &gd->gd_idlethread) {
473 	crit_enter_gd(mygd);
474 	TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
475 	crit_exit_gd(mygd);
476     } else {
477 	lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
478     }
479     dsched_enter_thread(td);
480 }
481 
482 void
483 lwkt_set_comm(thread_t td, const char *ctl, ...)
484 {
485     __va_list va;
486 
487     __va_start(va, ctl);
488     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
489     __va_end(va);
490     KTR_LOG(ctxsw_newtd, td, td->td_comm);
491 }
492 
493 /*
494  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
495  * this does not prevent the thread from migrating to another cpu so the
496  * gd_tdallq state is not protected by this.
497  */
498 void
499 lwkt_hold(thread_t td)
500 {
501     atomic_add_int(&td->td_refs, 1);
502 }
503 
504 void
505 lwkt_rele(thread_t td)
506 {
507     KKASSERT(td->td_refs > 0);
508     atomic_add_int(&td->td_refs, -1);
509 }
510 
511 void
512 lwkt_free_thread(thread_t td)
513 {
514     KKASSERT(td->td_refs == 0);
515     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
516 			      TDF_RUNQ | TDF_TSLEEPQ)) == 0);
517     if (td->td_flags & TDF_ALLOCATED_THREAD) {
518     	objcache_put(thread_cache, td);
519     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
520 	/* client-allocated struct with internally allocated stack */
521 	KASSERT(td->td_kstack && td->td_kstack_size > 0,
522 	    ("lwkt_free_thread: corrupted stack"));
523 	kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
524 	td->td_kstack = NULL;
525 	td->td_kstack_size = 0;
526     }
527 
528     KTR_LOG(ctxsw_deadtd, td);
529 }
530 
531 
532 /*
533  * Switch to the next runnable lwkt.  If no LWKTs are runnable then
534  * switch to the idlethread.  Switching must occur within a critical
535  * section to avoid races with the scheduling queue.
536  *
537  * We always have full control over our cpu's run queue.  Other cpus
538  * that wish to manipulate our queue must use the cpu_*msg() calls to
539  * talk to our cpu, so a critical section is all that is needed and
540  * the result is very, very fast thread switching.
541  *
542  * The LWKT scheduler uses a fixed priority model and round-robins at
543  * each priority level.  User process scheduling is a totally
544  * different beast and LWKT priorities should not be confused with
545  * user process priorities.
546  *
547  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
548  * is not called by the current thread in the preemption case, only when
549  * the preempting thread blocks (in order to return to the original thread).
550  *
551  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
552  * migration and tsleep deschedule the current lwkt thread and call
553  * lwkt_switch().  In particular, the target cpu of the migration fully
554  * expects the thread to become non-runnable and can deadlock against
555  * cpusync operations if we run any IPIs prior to switching the thread out.
556  *
557  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
558  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
559  */
560 void
561 lwkt_switch(void)
562 {
563     globaldata_t gd = mycpu;
564     thread_t td = gd->gd_curthread;
565     thread_t ntd;
566     thread_t xtd;
567     int upri;
568 #ifdef LOOPMASK
569     uint64_t tsc_base = rdtsc();
570 #endif
571 
572     KKASSERT(gd->gd_processing_ipiq == 0);
573     KKASSERT(td->td_flags & TDF_RUNNING);
574 
575     /*
576      * Switching from within a 'fast' (non thread switched) interrupt or IPI
577      * is illegal.  However, we may have to do it anyway if we hit a fatal
578      * kernel trap or we have paniced.
579      *
580      * If this case occurs save and restore the interrupt nesting level.
581      */
582     if (gd->gd_intr_nesting_level) {
583 	int savegdnest;
584 	int savegdtrap;
585 
586 	if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
587 	    panic("lwkt_switch: Attempt to switch from a "
588 		  "fast interrupt, ipi, or hard code section, "
589 		  "td %p\n",
590 		  td);
591 	} else {
592 	    savegdnest = gd->gd_intr_nesting_level;
593 	    savegdtrap = gd->gd_trap_nesting_level;
594 	    gd->gd_intr_nesting_level = 0;
595 	    gd->gd_trap_nesting_level = 0;
596 	    if ((td->td_flags & TDF_PANICWARN) == 0) {
597 		td->td_flags |= TDF_PANICWARN;
598 		kprintf("Warning: thread switch from interrupt, IPI, "
599 			"or hard code section.\n"
600 			"thread %p (%s)\n", td, td->td_comm);
601 		print_backtrace(-1);
602 	    }
603 	    lwkt_switch();
604 	    gd->gd_intr_nesting_level = savegdnest;
605 	    gd->gd_trap_nesting_level = savegdtrap;
606 	    return;
607 	}
608     }
609 
610     /*
611      * Release our current user process designation if we are blocking
612      * or if a user reschedule was requested.
613      *
614      * NOTE: This function is NOT called if we are switching into or
615      *	     returning from a preemption.
616      *
617      * NOTE: Releasing our current user process designation may cause
618      *	     it to be assigned to another thread, which in turn will
619      *	     cause us to block in the usched acquire code when we attempt
620      *	     to return to userland.
621      *
622      * NOTE: On SMP systems this can be very nasty when heavy token
623      *	     contention is present so we want to be careful not to
624      *	     release the designation gratuitously.
625      */
626     if (td->td_release &&
627 	(user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
628 	    td->td_release(td);
629     }
630 
631     /*
632      * Release all tokens.  Once we do this we must remain in the critical
633      * section and cannot run IPIs or other interrupts until we switch away
634      * because they may implode if they try to get a token using our thread
635      * context.
636      */
637     crit_enter_gd(gd);
638     if (TD_TOKS_HELD(td))
639 	    lwkt_relalltokens(td);
640 
641     /*
642      * We had better not be holding any spin locks, but don't get into an
643      * endless panic loop.
644      */
645     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
646 	    ("lwkt_switch: still holding %d exclusive spinlocks!",
647 	     gd->gd_spinlocks));
648 
649 #ifdef	INVARIANTS
650     if (td->td_cscount) {
651 	kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
652 		td);
653 	if (panic_on_cscount)
654 	    panic("switching while mastering cpusync");
655     }
656 #endif
657 
658     /*
659      * If we had preempted another thread on this cpu, resume the preempted
660      * thread.  This occurs transparently, whether the preempted thread
661      * was scheduled or not (it may have been preempted after descheduling
662      * itself).
663      *
664      * We have to setup the MP lock for the original thread after backing
665      * out the adjustment that was made to curthread when the original
666      * was preempted.
667      */
668     if ((ntd = td->td_preempted) != NULL) {
669 	KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
670 	ntd->td_flags |= TDF_PREEMPT_DONE;
671 	ntd->td_contended = 0;		/* reset contended */
672 
673 	/*
674 	 * The interrupt may have woken a thread up, we need to properly
675 	 * set the reschedule flag if the originally interrupted thread is
676 	 * at a lower priority.
677 	 *
678 	 * NOTE: The interrupt may not have descheduled ntd.
679 	 *
680 	 * NOTE: We do not reschedule if there are no threads on the runq.
681 	 *	 (ntd could be the idlethread).
682 	 */
683 	xtd = TAILQ_FIRST(&gd->gd_tdrunq);
684 	if (xtd && xtd != ntd)
685 	    need_lwkt_resched();
686 	goto havethread_preempted;
687     }
688 
689     /*
690      * Figure out switch target.  If we cannot switch to our desired target
691      * look for a thread that we can switch to.
692      *
693      * NOTE! The limited spin loop and related parameters are extremely
694      *	     important for system performance, particularly for pipes and
695      *	     concurrent conflicting VM faults.
696      */
697     clear_lwkt_resched();
698     ntd = TAILQ_FIRST(&gd->gd_tdrunq);
699 
700     if (ntd) {
701 	do {
702 	    if (TD_TOKS_NOT_HELD(ntd) ||
703 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
704 	    {
705 		goto havethread;
706 	    }
707 	    ++ntd->td_contended;	/* overflow ok */
708 	    if (gd->gd_indefinite.type == 0)
709 		indefinite_init(&gd->gd_indefinite, NULL, 0, 't');
710 #ifdef LOOPMASK
711 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
712 		    kprintf("lwkt_switch: excessive contended %d "
713 			    "thread %p\n", ntd->td_contended, ntd);
714 		    tsc_base = rdtsc();
715 	    }
716 #endif
717 	} while (ntd->td_contended < (lwkt_spin_loops >> 1));
718 	upri = ntd->td_upri;
719 
720 	/*
721 	 * Bleh, the thread we wanted to switch to has a contended token.
722 	 * See if we can switch to another thread.
723 	 *
724 	 * We generally don't want to do this because it represents a
725 	 * priority inversion, but contending tokens on the same cpu can
726 	 * cause real problems if we don't now that we have an exclusive
727 	 * priority mechanism over shared for tokens.
728 	 *
729 	 * The solution is to allow threads with pending tokens to compete
730 	 * for them (a lower priority thread will get less cpu once it
731 	 * returns from the kernel anyway).  If a thread does not have
732 	 * any contending tokens, we go by td_pri and upri.
733 	 */
734 	while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
735 	    if (TD_TOKS_NOT_HELD(ntd) &&
736 		ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri) {
737 		    continue;
738 	    }
739 	    if (upri < ntd->td_upri)
740 		upri = ntd->td_upri;
741 
742 	    /*
743 	     * Try this one.
744 	     */
745 	    if (TD_TOKS_NOT_HELD(ntd) ||
746 		lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
747 		    goto havethread;
748 	    }
749 	    ++ntd->td_contended;	/* overflow ok */
750 	}
751 
752 	/*
753 	 * Fall through, switch to idle thread to get us out of the current
754 	 * context.  Since we were contended, prevent HLT by flagging a
755 	 * LWKT reschedule.
756 	 */
757 	need_lwkt_resched();
758     }
759 
760     /*
761      * We either contended on ntd or the runq is empty.  We must switch
762      * through the idle thread to get out of the current context.
763      */
764     ntd = &gd->gd_idlethread;
765     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
766 	ASSERT_NO_TOKENS_HELD(ntd);
767     cpu_time.cp_msg[0] = 0;
768     goto haveidle;
769 
770 havethread:
771     /*
772      * Clear gd_idle_repeat when doing a normal switch to a non-idle
773      * thread.
774      */
775     ntd->td_wmesg = NULL;
776     ntd->td_contended = 0;	/* reset once scheduled */
777     ++gd->gd_cnt.v_swtch;
778     gd->gd_idle_repeat = 0;
779 
780     /*
781      * If we were busy waiting record final disposition
782      */
783     if (gd->gd_indefinite.type)
784 	    indefinite_done(&gd->gd_indefinite);
785 
786 havethread_preempted:
787     /*
788      * If the new target does not need the MP lock and we are holding it,
789      * release the MP lock.  If the new target requires the MP lock we have
790      * already acquired it for the target.
791      */
792     ;
793 haveidle:
794     KASSERT(ntd->td_critcount,
795 	    ("priority problem in lwkt_switch %d %d",
796 	    td->td_critcount, ntd->td_critcount));
797 
798     if (td != ntd) {
799 	/*
800 	 * Execute the actual thread switch operation.  This function
801 	 * returns to the current thread and returns the previous thread
802 	 * (which may be different from the thread we switched to).
803 	 *
804 	 * We are responsible for marking ntd as TDF_RUNNING.
805 	 */
806 	KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
807 	++switch_count;
808 	KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
809 	ntd->td_flags |= TDF_RUNNING;
810 	lwkt_switch_return(td->td_switch(ntd));
811 	/* ntd invalid, td_switch() can return a different thread_t */
812     }
813 
814     /*
815      * catch-all.  XXX is this strictly needed?
816      */
817     splz_check();
818 
819     /* NOTE: current cpu may have changed after switch */
820     crit_exit_quick(td);
821 }
822 
823 /*
824  * Called by assembly in the td_switch (thread restore path) for thread
825  * bootstrap cases which do not 'return' to lwkt_switch().
826  */
827 void
828 lwkt_switch_return(thread_t otd)
829 {
830 	globaldata_t rgd;
831 #ifdef LOOPMASK
832 	uint64_t tsc_base = rdtsc();
833 #endif
834 	int exiting;
835 
836 	exiting = otd->td_flags & TDF_EXITING;
837 	cpu_ccfence();
838 
839 	/*
840 	 * Check if otd was migrating.  Now that we are on ntd we can finish
841 	 * up the migration.  This is a bit messy but it is the only place
842 	 * where td is known to be fully descheduled.
843 	 *
844 	 * We can only activate the migration if otd was migrating but not
845 	 * held on the cpu due to a preemption chain.  We still have to
846 	 * clear TDF_RUNNING on the old thread either way.
847 	 *
848 	 * We are responsible for clearing the previously running thread's
849 	 * TDF_RUNNING.
850 	 */
851 	if ((rgd = otd->td_migrate_gd) != NULL &&
852 	    (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
853 		KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
854 			 (TDF_MIGRATING | TDF_RUNNING));
855 		otd->td_migrate_gd = NULL;
856 		otd->td_flags &= ~TDF_RUNNING;
857 		lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
858 	} else {
859 		otd->td_flags &= ~TDF_RUNNING;
860 	}
861 
862 	/*
863 	 * Final exit validations (see lwp_wait()).  Note that otd becomes
864 	 * invalid the *instant* we set TDF_MP_EXITSIG.
865 	 *
866 	 * Use the EXITING status loaded from before we clear TDF_RUNNING,
867 	 * because if it is not set otd becomes invalid the instant we clear
868 	 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
869 	 * might 'steal' TDF_EXITING from another switch-return!).
870 	 */
871 	while (exiting) {
872 		u_int mpflags;
873 
874 		mpflags = otd->td_mpflags;
875 		cpu_ccfence();
876 
877 		if (mpflags & TDF_MP_EXITWAIT) {
878 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
879 					      mpflags | TDF_MP_EXITSIG)) {
880 				wakeup(otd);
881 				break;
882 			}
883 		} else {
884 			if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
885 					      mpflags | TDF_MP_EXITSIG)) {
886 				wakeup(otd);
887 				break;
888 			}
889 		}
890 
891 #ifdef LOOPMASK
892 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
893 			kprintf("lwkt_switch_return: excessive TDF_EXITING "
894 				"thread %p\n", otd);
895 			tsc_base = rdtsc();
896 		}
897 #endif
898 	}
899 }
900 
901 /*
902  * Request that the target thread preempt the current thread.  Preemption
903  * can only occur only:
904  *
905  *	- If our critical section is the one that we were called with
906  *	- The relative priority of the target thread is higher
907  *	- The target is not excessively interrupt-nested via td_nest_count
908  *	- The target thread holds no tokens.
909  *	- The target thread is not already scheduled and belongs to the
910  *	  current cpu.
911  *	- The current thread is not holding any spin-locks.
912  *
913  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
914  * this is called via lwkt_schedule() through the td_preemptable callback.
915  * critcount is the managed critical priority that we should ignore in order
916  * to determine whether preemption is possible (aka usually just the crit
917  * priority of lwkt_schedule() itself).
918  *
919  * Preemption is typically limited to interrupt threads.
920  *
921  * Operation works in a fairly straight-forward manner.  The normal
922  * scheduling code is bypassed and we switch directly to the target
923  * thread.  When the target thread attempts to block or switch away
924  * code at the base of lwkt_switch() will switch directly back to our
925  * thread.  Our thread is able to retain whatever tokens it holds and
926  * if the target needs one of them the target will switch back to us
927  * and reschedule itself normally.
928  */
929 void
930 lwkt_preempt(thread_t ntd, int critcount)
931 {
932     struct globaldata *gd = mycpu;
933     thread_t xtd;
934     thread_t td;
935     int save_gd_intr_nesting_level;
936 
937     /*
938      * The caller has put us in a critical section.  We can only preempt
939      * if the caller of the caller was not in a critical section (basically
940      * a local interrupt), as determined by the 'critcount' parameter.  We
941      * also can't preempt if the caller is holding any spinlocks (even if
942      * he isn't in a critical section).  This also handles the tokens test.
943      *
944      * YYY The target thread must be in a critical section (else it must
945      * inherit our critical section?  I dunno yet).
946      */
947     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
948 
949     td = gd->gd_curthread;
950     if (preempt_enable == 0) {
951 	++preempt_miss;
952 	return;
953     }
954     if (ntd->td_pri <= td->td_pri) {
955 	++preempt_miss;
956 	return;
957     }
958     if (td->td_critcount > critcount) {
959 	++preempt_miss;
960 	return;
961     }
962     if (td->td_nest_count >= 2) {
963 	++preempt_miss;
964 	return;
965     }
966     if (td->td_cscount) {
967 	++preempt_miss;
968 	return;
969     }
970     if (ntd->td_gd != gd) {
971 	++preempt_miss;
972 	return;
973     }
974 
975     /*
976      * We don't have to check spinlocks here as they will also bump
977      * td_critcount.
978      *
979      * Do not try to preempt if the target thread is holding any tokens.
980      * We could try to acquire the tokens but this case is so rare there
981      * is no need to support it.
982      */
983     KKASSERT(gd->gd_spinlocks == 0);
984 
985     if (TD_TOKS_HELD(ntd)) {
986 	++preempt_miss;
987 	return;
988     }
989     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
990 	++preempt_weird;
991 	return;
992     }
993     if (ntd->td_preempted) {
994 	++preempt_hit;
995 	return;
996     }
997     KKASSERT(gd->gd_processing_ipiq == 0);
998 
999     /*
1000      * Since we are able to preempt the current thread, there is no need to
1001      * call need_lwkt_resched().
1002      *
1003      * We must temporarily clear gd_intr_nesting_level around the switch
1004      * since switchouts from the target thread are allowed (they will just
1005      * return to our thread), and since the target thread has its own stack.
1006      *
1007      * A preemption must switch back to the original thread, assert the
1008      * case.
1009      */
1010     ++preempt_hit;
1011     ntd->td_preempted = td;
1012     td->td_flags |= TDF_PREEMPT_LOCK;
1013     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1014     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1015     gd->gd_intr_nesting_level = 0;
1016 
1017     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1018     ntd->td_flags |= TDF_RUNNING;
1019     xtd = td->td_switch(ntd);
1020     KKASSERT(xtd == ntd);
1021     lwkt_switch_return(xtd);
1022     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1023 
1024     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1025     ntd->td_preempted = NULL;
1026     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1027 }
1028 
1029 /*
1030  * Conditionally call splz() if gd_reqflags indicates work is pending.
1031  * This will work inside a critical section but not inside a hard code
1032  * section.
1033  *
1034  * (self contained on a per cpu basis)
1035  */
1036 void
1037 splz_check(void)
1038 {
1039     globaldata_t gd = mycpu;
1040     thread_t td = gd->gd_curthread;
1041 
1042     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1043 	gd->gd_intr_nesting_level == 0 &&
1044 	td->td_nest_count < 2)
1045     {
1046 	splz();
1047     }
1048 }
1049 
1050 /*
1051  * This version is integrated into crit_exit, reqflags has already
1052  * been tested but td_critcount has not.
1053  *
1054  * We only want to execute the splz() on the 1->0 transition of
1055  * critcount and not in a hard code section or if too deeply nested.
1056  *
1057  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1058  */
1059 void
1060 lwkt_maybe_splz(thread_t td)
1061 {
1062     globaldata_t gd = td->td_gd;
1063 
1064     if (td->td_critcount == 0 &&
1065 	gd->gd_intr_nesting_level == 0 &&
1066 	td->td_nest_count < 2)
1067     {
1068 	splz();
1069     }
1070 }
1071 
1072 /*
1073  * Drivers which set up processing co-threads can call this function to
1074  * run the co-thread at a higher priority and to allow it to preempt
1075  * normal threads.
1076  */
1077 void
1078 lwkt_set_interrupt_support_thread(void)
1079 {
1080 	thread_t td = curthread;
1081 
1082         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1083 	td->td_flags |= TDF_INTTHREAD;
1084 	td->td_preemptable = lwkt_preempt;
1085 }
1086 
1087 
1088 /*
1089  * This function is used to negotiate a passive release of the current
1090  * process/lwp designation with the user scheduler, allowing the user
1091  * scheduler to schedule another user thread.  The related kernel thread
1092  * (curthread) continues running in the released state.
1093  */
1094 void
1095 lwkt_passive_release(struct thread *td)
1096 {
1097     struct lwp *lp = td->td_lwp;
1098 
1099     td->td_release = NULL;
1100     lwkt_setpri_self(TDPRI_KERN_USER);
1101 
1102     lp->lwp_proc->p_usched->release_curproc(lp);
1103 }
1104 
1105 
1106 /*
1107  * This implements a LWKT yield, allowing a kernel thread to yield to other
1108  * kernel threads at the same or higher priority.  This function can be
1109  * called in a tight loop and will typically only yield once per tick.
1110  *
1111  * Most kernel threads run at the same priority in order to allow equal
1112  * sharing.
1113  *
1114  * (self contained on a per cpu basis)
1115  */
1116 void
1117 lwkt_yield(void)
1118 {
1119     globaldata_t gd = mycpu;
1120     thread_t td = gd->gd_curthread;
1121 
1122     /*
1123      * Should never be called with spinlocks held but there is a path
1124      * via ACPI where it might happen.
1125      */
1126     if (gd->gd_spinlocks)
1127 	return;
1128 
1129     /*
1130      * Safe to call splz if we are not too-heavily nested.
1131      */
1132     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1133 	splz();
1134 
1135     /*
1136      * Caller allows switching
1137      */
1138     if (lwkt_resched_wanted()) {
1139 	lwkt_schedule_self(curthread);
1140 	lwkt_switch();
1141     }
1142 }
1143 
1144 /*
1145  * The quick version processes pending interrupts and higher-priority
1146  * LWKT threads but will not round-robin same-priority LWKT threads.
1147  *
1148  * When called while attempting to return to userland the only same-pri
1149  * threads are the ones which have already tried to become the current
1150  * user process.
1151  */
1152 void
1153 lwkt_yield_quick(void)
1154 {
1155     globaldata_t gd = mycpu;
1156     thread_t td = gd->gd_curthread;
1157 
1158     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1159 	splz();
1160     if (lwkt_resched_wanted()) {
1161 	crit_enter();
1162 	if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1163 	    clear_lwkt_resched();
1164 	} else {
1165 	    lwkt_schedule_self(curthread);
1166 	    lwkt_switch();
1167 	}
1168 	crit_exit();
1169     }
1170 }
1171 
1172 /*
1173  * This yield is designed for kernel threads with a user context.
1174  *
1175  * The kernel acting on behalf of the user is potentially cpu-bound,
1176  * this function will efficiently allow other threads to run and also
1177  * switch to other processes by releasing.
1178  *
1179  * The lwkt_user_yield() function is designed to have very low overhead
1180  * if no yield is determined to be needed.
1181  */
1182 void
1183 lwkt_user_yield(void)
1184 {
1185     globaldata_t gd = mycpu;
1186     thread_t td = gd->gd_curthread;
1187 
1188     /*
1189      * Should never be called with spinlocks held but there is a path
1190      * via ACPI where it might happen.
1191      */
1192     if (gd->gd_spinlocks)
1193 	return;
1194 
1195     /*
1196      * Always run any pending interrupts in case we are in a critical
1197      * section.
1198      */
1199     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1200 	splz();
1201 
1202     /*
1203      * Switch (which forces a release) if another kernel thread needs
1204      * the cpu, if userland wants us to resched, or if our kernel
1205      * quantum has run out.
1206      */
1207     if (lwkt_resched_wanted() ||
1208 	user_resched_wanted())
1209     {
1210 	lwkt_switch();
1211     }
1212 
1213 #if 0
1214     /*
1215      * Reacquire the current process if we are released.
1216      *
1217      * XXX not implemented atm.  The kernel may be holding locks and such,
1218      *     so we want the thread to continue to receive cpu.
1219      */
1220     if (td->td_release == NULL && lp) {
1221 	lp->lwp_proc->p_usched->acquire_curproc(lp);
1222 	td->td_release = lwkt_passive_release;
1223 	lwkt_setpri_self(TDPRI_USER_NORM);
1224     }
1225 #endif
1226 }
1227 
1228 /*
1229  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1230  * deal with threads that might be blocked on a wait queue.
1231  *
1232  * We have a little helper inline function which does additional work after
1233  * the thread has been enqueued, including dealing with preemption and
1234  * setting need_lwkt_resched() (which prevents the kernel from returning
1235  * to userland until it has processed higher priority threads).
1236  *
1237  * It is possible for this routine to be called after a failed _enqueue
1238  * (due to the target thread migrating, sleeping, or otherwise blocked).
1239  * We have to check that the thread is actually on the run queue!
1240  */
1241 static __inline
1242 void
1243 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1244 {
1245     if (ntd->td_flags & TDF_RUNQ) {
1246 	if (ntd->td_preemptable) {
1247 	    ntd->td_preemptable(ntd, ccount);	/* YYY +token */
1248 	}
1249     }
1250 }
1251 
1252 static __inline
1253 void
1254 _lwkt_schedule(thread_t td)
1255 {
1256     globaldata_t mygd = mycpu;
1257 
1258     KASSERT(td != &td->td_gd->gd_idlethread,
1259 	    ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1260     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1261     crit_enter_gd(mygd);
1262     KKASSERT(td->td_lwp == NULL ||
1263 	     (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1264 
1265     if (td == mygd->gd_curthread) {
1266 	_lwkt_enqueue(td);
1267     } else {
1268 	/*
1269 	 * If we own the thread, there is no race (since we are in a
1270 	 * critical section).  If we do not own the thread there might
1271 	 * be a race but the target cpu will deal with it.
1272 	 */
1273 	if (td->td_gd == mygd) {
1274 	    _lwkt_enqueue(td);
1275 	    _lwkt_schedule_post(mygd, td, 1);
1276 	} else {
1277 	    lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1278 	}
1279     }
1280     crit_exit_gd(mygd);
1281 }
1282 
1283 void
1284 lwkt_schedule(thread_t td)
1285 {
1286     _lwkt_schedule(td);
1287 }
1288 
1289 void
1290 lwkt_schedule_noresched(thread_t td)	/* XXX not impl */
1291 {
1292     _lwkt_schedule(td);
1293 }
1294 
1295 /*
1296  * When scheduled remotely if frame != NULL the IPIQ is being
1297  * run via doreti or an interrupt then preemption can be allowed.
1298  *
1299  * To allow preemption we have to drop the critical section so only
1300  * one is present in _lwkt_schedule_post.
1301  */
1302 static void
1303 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1304 {
1305     thread_t td = curthread;
1306     thread_t ntd = arg;
1307 
1308     if (frame && ntd->td_preemptable) {
1309 	crit_exit_noyield(td);
1310 	_lwkt_schedule(ntd);
1311 	crit_enter_quick(td);
1312     } else {
1313 	_lwkt_schedule(ntd);
1314     }
1315 }
1316 
1317 /*
1318  * Thread migration using a 'Pull' method.  The thread may or may not be
1319  * the current thread.  It MUST be descheduled and in a stable state.
1320  * lwkt_giveaway() must be called on the cpu owning the thread.
1321  *
1322  * At any point after lwkt_giveaway() is called, the target cpu may
1323  * 'pull' the thread by calling lwkt_acquire().
1324  *
1325  * We have to make sure the thread is not sitting on a per-cpu tsleep
1326  * queue or it will blow up when it moves to another cpu.
1327  *
1328  * MPSAFE - must be called under very specific conditions.
1329  */
1330 void
1331 lwkt_giveaway(thread_t td)
1332 {
1333     globaldata_t gd = mycpu;
1334 
1335     crit_enter_gd(gd);
1336     if (td->td_flags & TDF_TSLEEPQ)
1337 	tsleep_remove(td);
1338     KKASSERT(td->td_gd == gd);
1339     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1340     td->td_flags |= TDF_MIGRATING;
1341     crit_exit_gd(gd);
1342 }
1343 
1344 void
1345 lwkt_acquire(thread_t td)
1346 {
1347     globaldata_t gd;
1348     globaldata_t mygd;
1349 
1350     KKASSERT(td->td_flags & TDF_MIGRATING);
1351     gd = td->td_gd;
1352     mygd = mycpu;
1353     if (gd != mycpu) {
1354 #ifdef LOOPMASK
1355 	uint64_t tsc_base = rdtsc();
1356 #endif
1357 	cpu_lfence();
1358 	KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1359 	crit_enter_gd(mygd);
1360 	DEBUG_PUSH_INFO("lwkt_acquire");
1361 	while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1362 	    lwkt_process_ipiq();
1363 	    cpu_lfence();
1364 #ifdef _KERNEL_VIRTUAL
1365 	    pthread_yield();
1366 #endif
1367 #ifdef LOOPMASK
1368 	    if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1369 		    kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1370 			    td, td->td_flags);
1371 		    tsc_base = rdtsc();
1372 	    }
1373 #endif
1374 	}
1375 	DEBUG_POP_INFO();
1376 	cpu_mfence();
1377 	td->td_gd = mygd;
1378 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1379 	td->td_flags &= ~TDF_MIGRATING;
1380 	crit_exit_gd(mygd);
1381     } else {
1382 	crit_enter_gd(mygd);
1383 	TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1384 	td->td_flags &= ~TDF_MIGRATING;
1385 	crit_exit_gd(mygd);
1386     }
1387 }
1388 
1389 /*
1390  * Generic deschedule.  Descheduling threads other then your own should be
1391  * done only in carefully controlled circumstances.  Descheduling is
1392  * asynchronous.
1393  *
1394  * This function may block if the cpu has run out of messages.
1395  */
1396 void
1397 lwkt_deschedule(thread_t td)
1398 {
1399     crit_enter();
1400     if (td == curthread) {
1401 	_lwkt_dequeue(td);
1402     } else {
1403 	if (td->td_gd == mycpu) {
1404 	    _lwkt_dequeue(td);
1405 	} else {
1406 	    lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1407 	}
1408     }
1409     crit_exit();
1410 }
1411 
1412 /*
1413  * Set the target thread's priority.  This routine does not automatically
1414  * switch to a higher priority thread, LWKT threads are not designed for
1415  * continuous priority changes.  Yield if you want to switch.
1416  */
1417 void
1418 lwkt_setpri(thread_t td, int pri)
1419 {
1420     if (td->td_pri != pri) {
1421 	KKASSERT(pri >= 0);
1422 	crit_enter();
1423 	if (td->td_flags & TDF_RUNQ) {
1424 	    KKASSERT(td->td_gd == mycpu);
1425 	    _lwkt_dequeue(td);
1426 	    td->td_pri = pri;
1427 	    _lwkt_enqueue(td);
1428 	} else {
1429 	    td->td_pri = pri;
1430 	}
1431 	crit_exit();
1432     }
1433 }
1434 
1435 /*
1436  * Set the initial priority for a thread prior to it being scheduled for
1437  * the first time.  The thread MUST NOT be scheduled before or during
1438  * this call.  The thread may be assigned to a cpu other then the current
1439  * cpu.
1440  *
1441  * Typically used after a thread has been created with TDF_STOPPREQ,
1442  * and before the thread is initially scheduled.
1443  */
1444 void
1445 lwkt_setpri_initial(thread_t td, int pri)
1446 {
1447     KKASSERT(pri >= 0);
1448     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1449     td->td_pri = pri;
1450 }
1451 
1452 void
1453 lwkt_setpri_self(int pri)
1454 {
1455     thread_t td = curthread;
1456 
1457     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1458     crit_enter();
1459     if (td->td_flags & TDF_RUNQ) {
1460 	_lwkt_dequeue(td);
1461 	td->td_pri = pri;
1462 	_lwkt_enqueue(td);
1463     } else {
1464 	td->td_pri = pri;
1465     }
1466     crit_exit();
1467 }
1468 
1469 /*
1470  * hz tick scheduler clock for LWKT threads
1471  */
1472 void
1473 lwkt_schedulerclock(thread_t td)
1474 {
1475     globaldata_t gd = td->td_gd;
1476     thread_t xtd;
1477 
1478     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1479     if (xtd == td) {
1480 	/*
1481 	 * If the current thread is at the head of the runq shift it to the
1482 	 * end of any equal-priority threads and request a LWKT reschedule
1483 	 * if it moved.
1484 	 *
1485 	 * Ignore upri in this situation.  There will only be one user thread
1486 	 * in user mode, all others will be user threads running in kernel
1487 	 * mode and we have to make sure they get some cpu.
1488 	 */
1489 	xtd = TAILQ_NEXT(td, td_threadq);
1490 	if (xtd && xtd->td_pri == td->td_pri) {
1491 	    TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1492 	    while (xtd && xtd->td_pri == td->td_pri)
1493 		xtd = TAILQ_NEXT(xtd, td_threadq);
1494 	    if (xtd)
1495 		TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1496 	    else
1497 		TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1498 	    need_lwkt_resched();
1499 	}
1500     } else if (xtd) {
1501 	/*
1502 	 * If we scheduled a thread other than the one at the head of the
1503 	 * queue always request a reschedule every tick.
1504 	 */
1505 	need_lwkt_resched();
1506     }
1507     /* else curthread probably the idle thread, no need to reschedule */
1508 }
1509 
1510 /*
1511  * Migrate the current thread to the specified cpu.
1512  *
1513  * This is accomplished by descheduling ourselves from the current cpu
1514  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1515  * 'old' thread wants to migrate after it has been completely switched out
1516  * and will complete the migration.
1517  *
1518  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1519  *
1520  * We must be sure to release our current process designation (if a user
1521  * process) before clearing out any tsleepq we are on because the release
1522  * code may re-add us.
1523  *
1524  * We must be sure to remove ourselves from the current cpu's tsleepq
1525  * before potentially moving to another queue.  The thread can be on
1526  * a tsleepq due to a left-over tsleep_interlock().
1527  */
1528 
1529 void
1530 lwkt_setcpu_self(globaldata_t rgd)
1531 {
1532     thread_t td = curthread;
1533 
1534     if (td->td_gd != rgd) {
1535 	crit_enter_quick(td);
1536 
1537 	if (td->td_release)
1538 	    td->td_release(td);
1539 	if (td->td_flags & TDF_TSLEEPQ)
1540 	    tsleep_remove(td);
1541 
1542 	/*
1543 	 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1544 	 * trying to deschedule ourselves and switch away, then deschedule
1545 	 * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1546 	 * call lwkt_switch() to complete the operation.
1547 	 */
1548 	td->td_flags |= TDF_MIGRATING;
1549 	lwkt_deschedule_self(td);
1550 	TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1551 	td->td_migrate_gd = rgd;
1552 	lwkt_switch();
1553 
1554 	/*
1555 	 * We are now on the target cpu
1556 	 */
1557 	KKASSERT(rgd == mycpu);
1558 	TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1559 	crit_exit_quick(td);
1560     }
1561 }
1562 
1563 void
1564 lwkt_migratecpu(int cpuid)
1565 {
1566 	globaldata_t rgd;
1567 
1568 	rgd = globaldata_find(cpuid);
1569 	lwkt_setcpu_self(rgd);
1570 }
1571 
1572 /*
1573  * Remote IPI for cpu migration (called while in a critical section so we
1574  * do not have to enter another one).
1575  *
1576  * The thread (td) has already been completely descheduled from the
1577  * originating cpu and we can simply assert the case.  The thread is
1578  * assigned to the new cpu and enqueued.
1579  *
1580  * The thread will re-add itself to tdallq when it resumes execution.
1581  */
1582 static void
1583 lwkt_setcpu_remote(void *arg)
1584 {
1585     thread_t td = arg;
1586     globaldata_t gd = mycpu;
1587 
1588     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1589     td->td_gd = gd;
1590     cpu_mfence();
1591     td->td_flags &= ~TDF_MIGRATING;
1592     KKASSERT(td->td_migrate_gd == NULL);
1593     KKASSERT(td->td_lwp == NULL ||
1594 	    (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1595     _lwkt_enqueue(td);
1596 }
1597 
1598 struct lwp *
1599 lwkt_preempted_proc(void)
1600 {
1601     thread_t td = curthread;
1602     while (td->td_preempted)
1603 	td = td->td_preempted;
1604     return(td->td_lwp);
1605 }
1606 
1607 /*
1608  * Create a kernel process/thread/whatever.  It shares it's address space
1609  * with proc0 - ie: kernel only.
1610  *
1611  * If the cpu is not specified one will be selected.  In the future
1612  * specifying a cpu of -1 will enable kernel thread migration between
1613  * cpus.
1614  */
1615 int
1616 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1617 	    thread_t template, int tdflags, int cpu, const char *fmt, ...)
1618 {
1619     thread_t td;
1620     __va_list ap;
1621 
1622     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1623 			   tdflags);
1624     if (tdp)
1625 	*tdp = td;
1626     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1627 
1628     /*
1629      * Set up arg0 for 'ps' etc
1630      */
1631     __va_start(ap, fmt);
1632     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1633     __va_end(ap);
1634 
1635     /*
1636      * Schedule the thread to run
1637      */
1638     if (td->td_flags & TDF_NOSTART)
1639 	td->td_flags &= ~TDF_NOSTART;
1640     else
1641 	lwkt_schedule(td);
1642     return 0;
1643 }
1644 
1645 /*
1646  * Destroy an LWKT thread.   Warning!  This function is not called when
1647  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1648  * uses a different reaping mechanism.
1649  */
1650 void
1651 lwkt_exit(void)
1652 {
1653     thread_t td = curthread;
1654     thread_t std;
1655     globaldata_t gd;
1656 
1657     /*
1658      * Do any cleanup that might block here
1659      */
1660     if (td->td_flags & TDF_VERBOSE)
1661 	kprintf("kthread %p %s has exited\n", td, td->td_comm);
1662     biosched_done(td);
1663     dsched_exit_thread(td);
1664 
1665     /*
1666      * Get us into a critical section to interlock gd_freetd and loop
1667      * until we can get it freed.
1668      *
1669      * We have to cache the current td in gd_freetd because objcache_put()ing
1670      * it would rip it out from under us while our thread is still active.
1671      *
1672      * We are the current thread so of course our own TDF_RUNNING bit will
1673      * be set, so unlike the lwp reap code we don't wait for it to clear.
1674      */
1675     gd = mycpu;
1676     crit_enter_quick(td);
1677     for (;;) {
1678 	if (td->td_refs) {
1679 	    tsleep(td, 0, "tdreap", 1);
1680 	    continue;
1681 	}
1682 	if ((std = gd->gd_freetd) != NULL) {
1683 	    KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1684 	    gd->gd_freetd = NULL;
1685 	    objcache_put(thread_cache, std);
1686 	    continue;
1687 	}
1688 	break;
1689     }
1690 
1691     /*
1692      * Remove thread resources from kernel lists and deschedule us for
1693      * the last time.  We cannot block after this point or we may end
1694      * up with a stale td on the tsleepq.
1695      *
1696      * None of this may block, the critical section is the only thing
1697      * protecting tdallq and the only thing preventing new lwkt_hold()
1698      * thread refs now.
1699      */
1700     if (td->td_flags & TDF_TSLEEPQ)
1701 	tsleep_remove(td);
1702     lwkt_deschedule_self(td);
1703     lwkt_remove_tdallq(td);
1704     KKASSERT(td->td_refs == 0);
1705 
1706     /*
1707      * Final cleanup
1708      */
1709     KKASSERT(gd->gd_freetd == NULL);
1710     if (td->td_flags & TDF_ALLOCATED_THREAD)
1711 	gd->gd_freetd = td;
1712     cpu_thread_exit();
1713 }
1714 
1715 void
1716 lwkt_remove_tdallq(thread_t td)
1717 {
1718     KKASSERT(td->td_gd == mycpu);
1719     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1720 }
1721 
1722 /*
1723  * Code reduction and branch prediction improvements.  Call/return
1724  * overhead on modern cpus often degenerates into 0 cycles due to
1725  * the cpu's branch prediction hardware and return pc cache.  We
1726  * can take advantage of this by not inlining medium-complexity
1727  * functions and we can also reduce the branch prediction impact
1728  * by collapsing perfectly predictable branches into a single
1729  * procedure instead of duplicating it.
1730  *
1731  * Is any of this noticeable?  Probably not, so I'll take the
1732  * smaller code size.
1733  */
1734 void
1735 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1736 {
1737     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1738 }
1739 
1740 void
1741 crit_panic(void)
1742 {
1743     thread_t td = curthread;
1744     int lcrit = td->td_critcount;
1745 
1746     td->td_critcount = 0;
1747     cpu_ccfence();
1748     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1749     /* NOT REACHED */
1750 }
1751 
1752 /*
1753  * Called from debugger/panic on cpus which have been stopped.  We must still
1754  * process the IPIQ while stopped.
1755  *
1756  * If we are dumping also try to process any pending interrupts.  This may
1757  * or may not work depending on the state of the cpu at the point it was
1758  * stopped.
1759  */
1760 void
1761 lwkt_smp_stopped(void)
1762 {
1763     globaldata_t gd = mycpu;
1764 
1765     if (dumping) {
1766 	lwkt_process_ipiq();
1767 	--gd->gd_intr_nesting_level;
1768 	splz();
1769 	++gd->gd_intr_nesting_level;
1770     } else {
1771 	lwkt_process_ipiq();
1772     }
1773     cpu_smp_stopped();
1774 }
1775