xref: /dragonfly/sys/kern/subr_blist.c (revision 0ca59c34)
1 /*
2  * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
3  *
4  * Copyright (c) 1998,2004 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *
37  *	This module implements a general bitmap allocator/deallocator.  The
38  *	allocator eats around 2 bits per 'block'.  The module does not
39  *	try to interpret the meaning of a 'block' other then to return
40  *	SWAPBLK_NONE on an allocation failure.
41  *
42  *	A radix tree is used to maintain the bitmap.  Two radix constants are
43  *	involved:  One for the bitmaps contained in the leaf nodes (typically
44  *	32), and one for the meta nodes (typically 16).  Both meta and leaf
45  *	nodes have a hint field.  This field gives us a hint as to the largest
46  *	free contiguous range of blocks under the node.  It may contain a
47  *	value that is too high, but will never contain a value that is too
48  *	low.  When the radix tree is searched, allocation failures in subtrees
49  *	update the hint.
50  *
51  *	The radix tree also implements two collapsed states for meta nodes:
52  *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
53  *	in either of these two states, all information contained underneath
54  *	the node is considered stale.  These states are used to optimize
55  *	allocation and freeing operations.
56  *
57  * 	The hinting greatly increases code efficiency for allocations while
58  *	the general radix structure optimizes both allocations and frees.  The
59  *	radix tree should be able to operate well no matter how much
60  *	fragmentation there is and no matter how large a bitmap is used.
61  *
62  *	Unlike the rlist code, the blist code wires all necessary memory at
63  *	creation time.  Neither allocations nor frees require interaction with
64  *	the memory subsystem.  In contrast, the rlist code may allocate memory
65  *	on an rlist_free() call.  The non-blocking features of the blist code
66  *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
67  *	rlist code uses a little less overall memory then the blist code (but
68  *	due to swap interleaving not all that much less), but the blist code
69  *	scales much, much better.
70  *
71  *	LAYOUT: The radix tree is layed out recursively using a
72  *	linear array.  Each meta node is immediately followed (layed out
73  *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
74  *	is a recursive structure but one that can be easily scanned through
75  *	a very simple 'skip' calculation.  In order to support large radixes,
76  *	portions of the tree may reside outside our memory allocation.  We
77  *	handle this with an early-termination optimization (when bighint is
78  *	set to -1) on the scan.  The memory allocation is only large enough
79  *	to cover the number of blocks requested at creation time even if it
80  *	must be encompassed in larger root-node radix.
81  *
82  *	NOTE: The allocator cannot currently allocate more then
83  *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
84  *	large' if you try.  This is an area that could use improvement.  The
85  *	radix is large enough that this restriction does not effect the swap
86  *	system, though.  Currently only the allocation code is effected by
87  *	this algorithmic unfeature.  The freeing code can handle arbitrary
88  *	ranges.
89  *
90  *	NOTE: The radix may exceed 32 bits in order to support up to 2^31
91  *	      blocks.  The first divison will drop the radix down and fit
92  *	      it within a signed 32 bit integer.
93  *
94  *	This code can be compiled stand-alone for debugging.
95  */
96 
97 #ifdef _KERNEL
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/lock.h>
102 #include <sys/kernel.h>
103 #include <sys/blist.h>
104 #include <sys/malloc.h>
105 
106 #else
107 
108 #ifndef BLIST_NO_DEBUG
109 #define BLIST_DEBUG
110 #endif
111 
112 #define SWAPBLK_NONE ((swblk_t)-1)
113 
114 #include <sys/types.h>
115 #include <stdio.h>
116 #include <string.h>
117 #include <stdlib.h>
118 #include <stdarg.h>
119 
120 #define kmalloc(a,b,c)	malloc(a)
121 #define kfree(a,b)	free(a)
122 #define kprintf		printf
123 #define KKASSERT(exp)
124 
125 #include <sys/blist.h>
126 
127 void panic(const char *ctl, ...);
128 
129 #endif
130 
131 /*
132  * static support functions
133  */
134 
135 static swblk_t blst_leaf_alloc(blmeta_t *scan, swblk_t blkat,
136 				swblk_t blk, int count);
137 static swblk_t blst_meta_alloc(blmeta_t *scan, swblk_t blkat,
138 				swblk_t blk, swblk_t count,
139 				int64_t radix, int skip);
140 static void blst_leaf_free(blmeta_t *scan, swblk_t relblk, int count);
141 static void blst_meta_free(blmeta_t *scan, swblk_t freeBlk, swblk_t count,
142 					int64_t radix, int skip, swblk_t blk);
143 static swblk_t blst_leaf_fill(blmeta_t *scan, swblk_t blk, int count);
144 static swblk_t blst_meta_fill(blmeta_t *scan, swblk_t fillBlk, swblk_t count,
145 					int64_t radix, int skip, swblk_t blk);
146 static void blst_copy(blmeta_t *scan, swblk_t blk, int64_t radix,
147 				swblk_t skip, blist_t dest, swblk_t count);
148 static swblk_t	blst_radix_init(blmeta_t *scan, int64_t radix,
149 						int skip, swblk_t count);
150 #ifndef _KERNEL
151 static void	blst_radix_print(blmeta_t *scan, swblk_t blk,
152 					int64_t radix, int skip, int tab);
153 #endif
154 
155 #ifdef _KERNEL
156 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
157 #endif
158 
159 /*
160  * blist_create() - create a blist capable of handling up to the specified
161  *		    number of blocks
162  *
163  *	blocks must be greater then 0
164  *
165  *	The smallest blist consists of a single leaf node capable of
166  *	managing BLIST_BMAP_RADIX blocks.
167  */
168 
169 blist_t
170 blist_create(swblk_t blocks)
171 {
172 	blist_t bl;
173 	int64_t radix;
174 	int skip = 0;
175 
176 	/*
177 	 * Calculate radix and skip field used for scanning.
178 	 *
179 	 * Radix can exceed 32 bits even if swblk_t is limited to 32 bits.
180 	 */
181 	radix = BLIST_BMAP_RADIX;
182 
183 	while (radix < blocks) {
184 		radix *= BLIST_META_RADIX;
185 		skip = (skip + 1) * BLIST_META_RADIX;
186 		KKASSERT(skip > 0);
187 	}
188 
189 	bl = kmalloc(sizeof(struct blist), M_SWAP, M_WAITOK | M_ZERO);
190 
191 	bl->bl_blocks = blocks;
192 	bl->bl_radix = radix;
193 	bl->bl_skip = skip;
194 	bl->bl_rootblks = 1 +
195 	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
196 	bl->bl_root = kmalloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, M_WAITOK);
197 
198 #if defined(BLIST_DEBUG)
199 	kprintf(
200 		"BLIST representing %d blocks (%d MB of swap)"
201 		", requiring %dK of ram\n",
202 		bl->bl_blocks,
203 		bl->bl_blocks * 4 / 1024,
204 		(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
205 	);
206 	kprintf("BLIST raw radix tree contains %d records\n", bl->bl_rootblks);
207 #endif
208 	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
209 
210 	return(bl);
211 }
212 
213 void
214 blist_destroy(blist_t bl)
215 {
216 	kfree(bl->bl_root, M_SWAP);
217 	kfree(bl, M_SWAP);
218 }
219 
220 /*
221  * blist_alloc() - reserve space in the block bitmap.  Return the base
222  *		     of a contiguous region or SWAPBLK_NONE if space could
223  *		     not be allocated.
224  */
225 
226 swblk_t
227 blist_alloc(blist_t bl, swblk_t count)
228 {
229 	swblk_t blk = SWAPBLK_NONE;
230 
231 	if (bl) {
232 		if (bl->bl_radix == BLIST_BMAP_RADIX)
233 			blk = blst_leaf_alloc(bl->bl_root, 0, 0, count);
234 		else
235 			blk = blst_meta_alloc(bl->bl_root, 0, 0, count,
236 					      bl->bl_radix, bl->bl_skip);
237 		if (blk != SWAPBLK_NONE)
238 			bl->bl_free -= count;
239 	}
240 	return(blk);
241 }
242 
243 swblk_t
244 blist_allocat(blist_t bl, swblk_t count, swblk_t blkat)
245 {
246 	swblk_t blk = SWAPBLK_NONE;
247 
248 	if (bl) {
249 		if (bl->bl_radix == BLIST_BMAP_RADIX)
250 			blk = blst_leaf_alloc(bl->bl_root, blkat, 0, count);
251 		else
252 			blk = blst_meta_alloc(bl->bl_root, blkat, 0, count,
253 					      bl->bl_radix, bl->bl_skip);
254 		if (blk != SWAPBLK_NONE)
255 			bl->bl_free -= count;
256 	}
257 	return(blk);
258 }
259 
260 /*
261  * blist_free() -	free up space in the block bitmap.  Return the base
262  *		     	of a contiguous region.  Panic if an inconsistancy is
263  *			found.
264  */
265 
266 void
267 blist_free(blist_t bl, swblk_t blkno, swblk_t count)
268 {
269 	if (bl) {
270 		if (bl->bl_radix == BLIST_BMAP_RADIX)
271 			blst_leaf_free(bl->bl_root, blkno, count);
272 		else
273 			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
274 		bl->bl_free += count;
275 	}
276 }
277 
278 /*
279  * blist_fill() -	mark a region in the block bitmap as off-limits
280  *			to the allocator (i.e. allocate it), ignoring any
281  *			existing allocations.  Return the number of blocks
282  *			actually filled that were free before the call.
283  */
284 
285 swblk_t
286 blist_fill(blist_t bl, swblk_t blkno, swblk_t count)
287 {
288 	swblk_t filled;
289 
290 	if (bl) {
291 		if (bl->bl_radix == BLIST_BMAP_RADIX) {
292 			filled = blst_leaf_fill(bl->bl_root, blkno, count);
293 		} else {
294 			filled = blst_meta_fill(bl->bl_root, blkno, count,
295 			    bl->bl_radix, bl->bl_skip, 0);
296 		}
297 		bl->bl_free -= filled;
298 		return (filled);
299 	} else {
300 		return 0;
301 	}
302 }
303 
304 /*
305  * blist_resize() -	resize an existing radix tree to handle the
306  *			specified number of blocks.  This will reallocate
307  *			the tree and transfer the previous bitmap to the new
308  *			one.  When extending the tree you can specify whether
309  *			the new blocks are to left allocated or freed.
310  */
311 
312 void
313 blist_resize(blist_t *pbl, swblk_t count, int freenew)
314 {
315     blist_t newbl = blist_create(count);
316     blist_t save = *pbl;
317 
318     *pbl = newbl;
319     if (count > save->bl_blocks)
320 	    count = save->bl_blocks;
321     blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
322 
323     /*
324      * If resizing upwards, should we free the new space or not?
325      */
326     if (freenew && count < newbl->bl_blocks) {
327 	    blist_free(newbl, count, newbl->bl_blocks - count);
328     }
329     blist_destroy(save);
330 }
331 
332 #ifdef BLIST_DEBUG
333 
334 /*
335  * blist_print()    - dump radix tree
336  */
337 
338 void
339 blist_print(blist_t bl)
340 {
341 	kprintf("BLIST {\n");
342 	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
343 	kprintf("}\n");
344 }
345 
346 #endif
347 
348 /************************************************************************
349  *			  ALLOCATION SUPPORT FUNCTIONS			*
350  ************************************************************************
351  *
352  *	These support functions do all the actual work.  They may seem
353  *	rather longish, but that's because I've commented them up.  The
354  *	actual code is straight forward.
355  *
356  */
357 
358 /*
359  * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
360  *
361  *	This is the core of the allocator and is optimized for the 1 block
362  *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
363  *	somewhat slower.  The 1 block allocation case is log2 and extremely
364  *	quick.
365  */
366 
367 static swblk_t
368 blst_leaf_alloc(blmeta_t *scan, swblk_t blkat __unused, swblk_t blk, int count)
369 {
370 	u_swblk_t orig = scan->u.bmu_bitmap;
371 
372 	if (orig == 0) {
373 		/*
374 		 * Optimize bitmap all-allocated case.  Also, count = 1
375 		 * case assumes at least 1 bit is free in the bitmap, so
376 		 * we have to take care of this case here.
377 		 */
378 		scan->bm_bighint = 0;
379 		return(SWAPBLK_NONE);
380 	}
381 	if (count == 1) {
382 		/*
383 		 * Optimized code to allocate one bit out of the bitmap
384 		 */
385 		u_swblk_t mask;
386 		int j = BLIST_BMAP_RADIX/2;
387 		int r = 0;
388 
389 		mask = (u_swblk_t)-1 >> (BLIST_BMAP_RADIX/2);
390 
391 		while (j) {
392 			if ((orig & mask) == 0) {
393 			    r += j;
394 			    orig >>= j;
395 			}
396 			j >>= 1;
397 			mask >>= j;
398 		}
399 		scan->u.bmu_bitmap &= ~(1 << r);
400 		return(blk + r);
401 	}
402 	if (count <= BLIST_BMAP_RADIX) {
403 		/*
404 		 * non-optimized code to allocate N bits out of the bitmap.
405 		 * The more bits, the faster the code runs.  It will run
406 		 * the slowest allocating 2 bits, but since there aren't any
407 		 * memory ops in the core loop (or shouldn't be, anyway),
408 		 * you probably won't notice the difference.
409 		 */
410 		int j;
411 		int n = BLIST_BMAP_RADIX - count;
412 		u_swblk_t mask;
413 
414 		mask = (u_swblk_t)-1 >> n;
415 
416 		for (j = 0; j <= n; ++j) {
417 			if ((orig & mask) == mask) {
418 				scan->u.bmu_bitmap &= ~mask;
419 				return(blk + j);
420 			}
421 			mask = (mask << 1);
422 		}
423 	}
424 	/*
425 	 * We couldn't allocate count in this subtree, update bighint.
426 	 */
427 	scan->bm_bighint = count - 1;
428 	return(SWAPBLK_NONE);
429 }
430 
431 /*
432  * blist_meta_alloc() -	allocate at a meta in the radix tree.
433  *
434  *	Attempt to allocate at a meta node.  If we can't, we update
435  *	bighint and return a failure.  Updating bighint optimize future
436  *	calls that hit this node.  We have to check for our collapse cases
437  *	and we have a few optimizations strewn in as well.
438  */
439 static swblk_t
440 blst_meta_alloc(blmeta_t *scan, swblk_t blkat,
441 		swblk_t blk, swblk_t count,
442 		int64_t radix, int skip)
443 {
444 	int i;
445 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
446 	int hintok = (blk >= blkat);
447 
448 	/*
449 	 * ALL-ALLOCATED special case
450 	 */
451 	if (scan->u.bmu_avail == 0)  {
452 		scan->bm_bighint = 0;
453 		return(SWAPBLK_NONE);
454 	}
455 
456 	/*
457 	 * ALL-FREE special case, initialize uninitialized
458 	 * sublevel.
459 	 *
460 	 * NOTE: radix may exceed 32 bits until first division.
461 	 */
462 	if (scan->u.bmu_avail == radix) {
463 		scan->bm_bighint = radix;
464 
465 		radix /= BLIST_META_RADIX;
466 		for (i = 1; i <= skip; i += next_skip) {
467 			if (scan[i].bm_bighint == (swblk_t)-1)
468 				break;
469 			if (next_skip == 1) {
470 				scan[i].u.bmu_bitmap = (u_swblk_t)-1;
471 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
472 			} else {
473 				scan[i].bm_bighint = (swblk_t)radix;
474 				scan[i].u.bmu_avail = (swblk_t)radix;
475 			}
476 		}
477 	} else {
478 		radix /= BLIST_META_RADIX;
479 	}
480 
481 	for (i = 1; i <= skip; i += next_skip) {
482 		if (count <= scan[i].bm_bighint &&
483 		    blk + (swblk_t)radix > blkat) {
484 			/*
485 			 * count fits in object
486 			 */
487 			swblk_t r;
488 			if (next_skip == 1) {
489 				r = blst_leaf_alloc(&scan[i], blkat,
490 						    blk, count);
491 			} else {
492 				r = blst_meta_alloc(&scan[i], blkat,
493 						    blk, count,
494 						    radix, next_skip - 1);
495 			}
496 			if (r != SWAPBLK_NONE) {
497 				scan->u.bmu_avail -= count;
498 				if (scan->bm_bighint > scan->u.bmu_avail)
499 					scan->bm_bighint = scan->u.bmu_avail;
500 				return(r);
501 			}
502 			/* bighint was updated by recursion */
503 		} else if (scan[i].bm_bighint == (swblk_t)-1) {
504 			/*
505 			 * Terminator
506 			 */
507 			break;
508 		} else if (count > (swblk_t)radix) {
509 			/*
510 			 * count does not fit in object even if it were
511 			 * complete free.
512 			 */
513 			panic("blist_meta_alloc: allocation too large");
514 		}
515 		blk += (swblk_t)radix;
516 	}
517 
518 	/*
519 	 * We couldn't allocate count in this subtree, update bighint.
520 	 */
521 	if (hintok && scan->bm_bighint >= count)
522 		scan->bm_bighint = count - 1;
523 	return(SWAPBLK_NONE);
524 }
525 
526 /*
527  * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
528  */
529 static void
530 blst_leaf_free(blmeta_t *scan, swblk_t blk, int count)
531 {
532 	/*
533 	 * free some data in this bitmap
534 	 *
535 	 * e.g.
536 	 *	0000111111111110000
537 	 *          \_________/\__/
538 	 *		v        n
539 	 */
540 	int n = blk & (BLIST_BMAP_RADIX - 1);
541 	u_swblk_t mask;
542 
543 	mask = ((u_swblk_t)-1 << n) &
544 	    ((u_swblk_t)-1 >> (BLIST_BMAP_RADIX - count - n));
545 
546 	if (scan->u.bmu_bitmap & mask)
547 		panic("blst_radix_free: freeing free block");
548 	scan->u.bmu_bitmap |= mask;
549 
550 	/*
551 	 * We could probably do a better job here.  We are required to make
552 	 * bighint at least as large as the biggest contiguous block of
553 	 * data.  If we just shoehorn it, a little extra overhead will
554 	 * be incured on the next allocation (but only that one typically).
555 	 */
556 	scan->bm_bighint = BLIST_BMAP_RADIX;
557 }
558 
559 /*
560  * BLST_META_FREE() - free allocated blocks from radix tree meta info
561  *
562  *	This support routine frees a range of blocks from the bitmap.
563  *	The range must be entirely enclosed by this radix node.  If a
564  *	meta node, we break the range down recursively to free blocks
565  *	in subnodes (which means that this code can free an arbitrary
566  *	range whereas the allocation code cannot allocate an arbitrary
567  *	range).
568  */
569 
570 static void
571 blst_meta_free(blmeta_t *scan, swblk_t freeBlk, swblk_t count,
572 	       int64_t radix, int skip, swblk_t blk)
573 {
574 	int i;
575 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
576 
577 #if 0
578 	kprintf("FREE (%x,%d) FROM (%x,%lld)\n",
579 	    freeBlk, count,
580 	    blk, (long long)radix
581 	);
582 #endif
583 
584 	/*
585 	 * ALL-ALLOCATED special case, initialize for recursion.
586 	 *
587 	 * We will short-cut the ALL-ALLOCATED -> ALL-FREE case.
588 	 */
589 	if (scan->u.bmu_avail == 0) {
590 		scan->u.bmu_avail = count;
591 		scan->bm_bighint = count;
592 
593 		if (count != radix)  {
594 			for (i = 1; i <= skip; i += next_skip) {
595 				if (scan[i].bm_bighint == (swblk_t)-1)
596 					break;
597 				scan[i].bm_bighint = 0;
598 				if (next_skip == 1) {
599 					scan[i].u.bmu_bitmap = 0;
600 				} else {
601 					scan[i].u.bmu_avail = 0;
602 				}
603 			}
604 			/* fall through */
605 		}
606 	} else {
607 		scan->u.bmu_avail += count;
608 		/* scan->bm_bighint = radix; */
609 	}
610 
611 	/*
612 	 * ALL-FREE special case.
613 	 *
614 	 * Set bighint for higher levels to snoop.
615 	 */
616 	if (scan->u.bmu_avail == radix) {
617 		scan->bm_bighint = radix;
618 		return;
619 	}
620 
621 	/*
622 	 * Break the free down into its components
623 	 */
624 	if (scan->u.bmu_avail > radix) {
625 		panic("blst_meta_free: freeing already "
626 		      "free blocks (%d) %d/%lld",
627 		      count, scan->u.bmu_avail, (long long)radix);
628 	}
629 
630 	radix /= BLIST_META_RADIX;
631 
632 	i = (freeBlk - blk) / (swblk_t)radix;
633 	blk += i * (swblk_t)radix;
634 	i = i * next_skip + 1;
635 
636 	while (i <= skip && blk < freeBlk + count) {
637 		swblk_t v;
638 
639 		v = blk + (swblk_t)radix - freeBlk;
640 		if (v > count)
641 			v = count;
642 
643 		if (scan->bm_bighint == (swblk_t)-1)
644 			panic("blst_meta_free: freeing unexpected range");
645 
646 		if (next_skip == 1) {
647 			blst_leaf_free(&scan[i], freeBlk, v);
648 		} else {
649 			blst_meta_free(&scan[i], freeBlk, v,
650 				       radix, next_skip - 1, blk);
651 		}
652 
653 		/*
654 		 * After having dealt with the becomes-all-free case any
655 		 * partial free will not be able to bring us to the
656 		 * becomes-all-free state.
657 		 *
658 		 * We can raise bighint to at least the sub-segment's
659 		 * bighint.
660 		 */
661 		if (scan->bm_bighint < scan[i].bm_bighint) {
662 		    scan->bm_bighint = scan[i].bm_bighint;
663 		}
664 		count -= v;
665 		freeBlk += v;
666 		blk += (swblk_t)radix;
667 		i += next_skip;
668 	}
669 }
670 
671 /*
672  * BLST_LEAF_FILL() -	allocate specific blocks in leaf bitmap
673  *
674  *	Allocates all blocks in the specified range regardless of
675  *	any existing allocations in that range.  Returns the number
676  *	of blocks allocated by the call.
677  */
678 static swblk_t
679 blst_leaf_fill(blmeta_t *scan, swblk_t blk, int count)
680 {
681 	int n = blk & (BLIST_BMAP_RADIX - 1);
682 	swblk_t nblks;
683 	u_swblk_t mask, bitmap;
684 
685 	mask = ((u_swblk_t)-1 << n) &
686 	    ((u_swblk_t)-1 >> (BLIST_BMAP_RADIX - count - n));
687 
688 	/* Count the number of blocks we're about to allocate */
689 	bitmap = scan->u.bmu_bitmap & mask;
690 	for (nblks = 0; bitmap != 0; nblks++)
691 		bitmap &= bitmap - 1;
692 
693 	scan->u.bmu_bitmap &= ~mask;
694 	return (nblks);
695 }
696 
697 /*
698  * BLST_META_FILL() -	allocate specific blocks at a meta node
699  *
700  *	Allocates the specified range of blocks, regardless of
701  *	any existing allocations in the range.  The range must
702  *	be within the extent of this node.  Returns the number
703  *	of blocks allocated by the call.
704  */
705 static swblk_t
706 blst_meta_fill(blmeta_t *scan, swblk_t fillBlk, swblk_t count,
707 	       int64_t radix, int skip, swblk_t blk)
708 {
709 	int i;
710 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
711 	swblk_t nblks = 0;
712 
713 	if (count == radix || scan->u.bmu_avail == 0) {
714 		/*
715 		 * ALL-ALLOCATED special case
716 		 */
717 		nblks = scan->u.bmu_avail;
718 		scan->u.bmu_avail = 0;
719 		scan->bm_bighint = count;
720 		return (nblks);
721 	}
722 
723 	if (scan->u.bmu_avail == radix) {
724 		radix /= BLIST_META_RADIX;
725 
726 		/*
727 		 * ALL-FREE special case, initialize sublevel
728 		 */
729 		for (i = 1; i <= skip; i += next_skip) {
730 			if (scan[i].bm_bighint == (swblk_t)-1)
731 				break;
732 			if (next_skip == 1) {
733 				scan[i].u.bmu_bitmap = (u_swblk_t)-1;
734 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
735 			} else {
736 				scan[i].bm_bighint = (swblk_t)radix;
737 				scan[i].u.bmu_avail = (swblk_t)radix;
738 			}
739 		}
740 	} else {
741 		radix /= BLIST_META_RADIX;
742 	}
743 
744 	if (count > (swblk_t)radix)
745 		panic("blst_meta_fill: allocation too large");
746 
747 	i = (fillBlk - blk) / (swblk_t)radix;
748 	blk += i * (swblk_t)radix;
749 	i = i * next_skip + 1;
750 
751 	while (i <= skip && blk < fillBlk + count) {
752 		swblk_t v;
753 
754 		v = blk + (swblk_t)radix - fillBlk;
755 		if (v > count)
756 			v = count;
757 
758 		if (scan->bm_bighint == (swblk_t)-1)
759 			panic("blst_meta_fill: filling unexpected range");
760 
761 		if (next_skip == 1) {
762 			nblks += blst_leaf_fill(&scan[i], fillBlk, v);
763 		} else {
764 			nblks += blst_meta_fill(&scan[i], fillBlk, v,
765 			    radix, next_skip - 1, blk);
766 		}
767 		count -= v;
768 		fillBlk += v;
769 		blk += (swblk_t)radix;
770 		i += next_skip;
771 	}
772 	scan->u.bmu_avail -= nblks;
773 	return (nblks);
774 }
775 
776 /*
777  * BLIST_RADIX_COPY() - copy one radix tree to another
778  *
779  *	Locates free space in the source tree and frees it in the destination
780  *	tree.  The space may not already be free in the destination.
781  */
782 
783 static void
784 blst_copy(blmeta_t *scan, swblk_t blk, int64_t radix,
785 	  swblk_t skip, blist_t dest, swblk_t count)
786 {
787 	int next_skip;
788 	int i;
789 
790 	/*
791 	 * Leaf node
792 	 */
793 
794 	if (radix == BLIST_BMAP_RADIX) {
795 		u_swblk_t v = scan->u.bmu_bitmap;
796 
797 		if (v == (u_swblk_t)-1) {
798 			blist_free(dest, blk, count);
799 		} else if (v != 0) {
800 			int i;
801 
802 			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
803 				if (v & (1 << i))
804 					blist_free(dest, blk + i, 1);
805 			}
806 		}
807 		return;
808 	}
809 
810 	/*
811 	 * Meta node
812 	 */
813 
814 	if (scan->u.bmu_avail == 0) {
815 		/*
816 		 * Source all allocated, leave dest allocated
817 		 */
818 		return;
819 	}
820 	if (scan->u.bmu_avail == radix) {
821 		/*
822 		 * Source all free, free entire dest
823 		 */
824 		if (count < radix)
825 			blist_free(dest, blk, count);
826 		else
827 			blist_free(dest, blk, (swblk_t)radix);
828 		return;
829 	}
830 
831 
832 	radix /= BLIST_META_RADIX;
833 	next_skip = ((u_int)skip / BLIST_META_RADIX);
834 
835 	for (i = 1; count && i <= skip; i += next_skip) {
836 		if (scan[i].bm_bighint == (swblk_t)-1)
837 			break;
838 
839 		if (count >= (swblk_t)radix) {
840 			blst_copy(
841 			    &scan[i],
842 			    blk,
843 			    radix,
844 			    next_skip - 1,
845 			    dest,
846 			    (swblk_t)radix
847 			);
848 			count -= (swblk_t)radix;
849 		} else {
850 			if (count) {
851 				blst_copy(
852 				    &scan[i],
853 				    blk,
854 				    radix,
855 				    next_skip - 1,
856 				    dest,
857 				    count
858 				);
859 			}
860 			count = 0;
861 		}
862 		blk += (swblk_t)radix;
863 	}
864 }
865 
866 /*
867  * BLST_RADIX_INIT() - initialize radix tree
868  *
869  *	Initialize our meta structures and bitmaps and calculate the exact
870  *	amount of space required to manage 'count' blocks - this space may
871  *	be considerably less then the calculated radix due to the large
872  *	RADIX values we use.
873  */
874 
875 static swblk_t
876 blst_radix_init(blmeta_t *scan, int64_t radix, int skip, swblk_t count)
877 {
878 	int i;
879 	int next_skip;
880 	swblk_t memindex = 0;
881 
882 	/*
883 	 * Leaf node
884 	 */
885 
886 	if (radix == BLIST_BMAP_RADIX) {
887 		if (scan) {
888 			scan->bm_bighint = 0;
889 			scan->u.bmu_bitmap = 0;
890 		}
891 		return(memindex);
892 	}
893 
894 	/*
895 	 * Meta node.  If allocating the entire object we can special
896 	 * case it.  However, we need to figure out how much memory
897 	 * is required to manage 'count' blocks, so we continue on anyway.
898 	 */
899 
900 	if (scan) {
901 		scan->bm_bighint = 0;
902 		scan->u.bmu_avail = 0;
903 	}
904 
905 	radix /= BLIST_META_RADIX;
906 	next_skip = ((u_int)skip / BLIST_META_RADIX);
907 
908 	for (i = 1; i <= skip; i += next_skip) {
909 		if (count >= (swblk_t)radix) {
910 			/*
911 			 * Allocate the entire object
912 			 */
913 			memindex = i + blst_radix_init(
914 			    ((scan) ? &scan[i] : NULL),
915 			    radix,
916 			    next_skip - 1,
917 			    (swblk_t)radix
918 			);
919 			count -= (swblk_t)radix;
920 		} else if (count > 0) {
921 			/*
922 			 * Allocate a partial object
923 			 */
924 			memindex = i + blst_radix_init(
925 			    ((scan) ? &scan[i] : NULL),
926 			    radix,
927 			    next_skip - 1,
928 			    count
929 			);
930 			count = 0;
931 		} else {
932 			/*
933 			 * Add terminator and break out
934 			 */
935 			if (scan)
936 				scan[i].bm_bighint = (swblk_t)-1;
937 			break;
938 		}
939 	}
940 	if (memindex < i)
941 		memindex = i;
942 	return(memindex);
943 }
944 
945 #ifdef BLIST_DEBUG
946 
947 static void
948 blst_radix_print(blmeta_t *scan, swblk_t blk, int64_t radix, int skip, int tab)
949 {
950 	int i;
951 	int next_skip;
952 
953 	if (radix == BLIST_BMAP_RADIX) {
954 		kprintf(
955 		    "%*.*s(%04x,%lld): bitmap %08x big=%d\n",
956 		    tab, tab, "",
957 		    blk, (long long)radix,
958 		    scan->u.bmu_bitmap,
959 		    scan->bm_bighint
960 		);
961 		return;
962 	}
963 
964 	if (scan->u.bmu_avail == 0) {
965 		kprintf(
966 		    "%*.*s(%04x,%lld) ALL ALLOCATED\n",
967 		    tab, tab, "",
968 		    blk,
969 		    (long long)radix
970 		);
971 		return;
972 	}
973 	if (scan->u.bmu_avail == radix) {
974 		kprintf(
975 		    "%*.*s(%04x,%lld) ALL FREE\n",
976 		    tab, tab, "",
977 		    blk,
978 		    (long long)radix
979 		);
980 		return;
981 	}
982 
983 	kprintf(
984 	    "%*.*s(%04x,%lld): subtree (%d/%lld) big=%d {\n",
985 	    tab, tab, "",
986 	    blk, (long long)radix,
987 	    scan->u.bmu_avail,
988 	    (long long)radix,
989 	    scan->bm_bighint
990 	);
991 
992 	radix /= BLIST_META_RADIX;
993 	next_skip = ((u_int)skip / BLIST_META_RADIX);
994 	tab += 4;
995 
996 	for (i = 1; i <= skip; i += next_skip) {
997 		if (scan[i].bm_bighint == (swblk_t)-1) {
998 			kprintf(
999 			    "%*.*s(%04x,%lld): Terminator\n",
1000 			    tab, tab, "",
1001 			    blk, (long long)radix
1002 			);
1003 			break;
1004 		}
1005 		blst_radix_print(
1006 		    &scan[i],
1007 		    blk,
1008 		    radix,
1009 		    next_skip - 1,
1010 		    tab
1011 		);
1012 		blk += (swblk_t)radix;
1013 	}
1014 	tab -= 4;
1015 
1016 	kprintf(
1017 	    "%*.*s}\n",
1018 	    tab, tab, ""
1019 	);
1020 }
1021 
1022 #endif
1023 
1024 #ifdef BLIST_DEBUG
1025 
1026 int
1027 main(int ac, char **av)
1028 {
1029 	int size = 1024;
1030 	int i;
1031 	blist_t bl;
1032 
1033 	for (i = 1; i < ac; ++i) {
1034 		const char *ptr = av[i];
1035 		if (*ptr != '-') {
1036 			size = strtol(ptr, NULL, 0);
1037 			continue;
1038 		}
1039 		ptr += 2;
1040 		fprintf(stderr, "Bad option: %s\n", ptr - 2);
1041 		exit(1);
1042 	}
1043 	bl = blist_create(size);
1044 	blist_free(bl, 0, size);
1045 
1046 	for (;;) {
1047 		char buf[1024];
1048 		swblk_t da = 0;
1049 		swblk_t count = 0;
1050 		swblk_t blkat;
1051 
1052 
1053 		kprintf("%d/%d/%lld> ",
1054 			bl->bl_free, size, (long long)bl->bl_radix);
1055 		fflush(stdout);
1056 		if (fgets(buf, sizeof(buf), stdin) == NULL)
1057 			break;
1058 		switch(buf[0]) {
1059 		case 'r':
1060 			if (sscanf(buf + 1, "%d", &count) == 1) {
1061 				blist_resize(&bl, count, 1);
1062 				size = count;
1063 			} else {
1064 				kprintf("?\n");
1065 			}
1066 		case 'p':
1067 			blist_print(bl);
1068 			break;
1069 		case 'a':
1070 			if (sscanf(buf + 1, "%d %d", &count, &blkat) == 1) {
1071 				swblk_t blk = blist_alloc(bl, count);
1072 				kprintf("    R=%04x\n", blk);
1073 			} else if (sscanf(buf + 1, "%d %d", &count, &blkat) == 2) {
1074 				swblk_t blk = blist_allocat(bl, count, blkat);
1075 				kprintf("    R=%04x\n", blk);
1076 			} else {
1077 				kprintf("?\n");
1078 			}
1079 			break;
1080 		case 'f':
1081 			if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
1082 				blist_free(bl, da, count);
1083 			} else {
1084 				kprintf("?\n");
1085 			}
1086 			break;
1087 		case 'l':
1088 			if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
1089 				printf("    n=%d\n",
1090 				    blist_fill(bl, da, count));
1091 			} else {
1092 				kprintf("?\n");
1093 			}
1094 			break;
1095 		case '?':
1096 		case 'h':
1097 			puts(
1098 			    "p          -print\n"
1099 			    "a %d       -allocate\n"
1100 			    "f %x %d    -free\n"
1101 			    "l %x %d	-fill\n"
1102 			    "r %d       -resize\n"
1103 			    "h/?        -help"
1104 			);
1105 			break;
1106 		default:
1107 			kprintf("?\n");
1108 			break;
1109 		}
1110 	}
1111 	return(0);
1112 }
1113 
1114 void
1115 panic(const char *ctl, ...)
1116 {
1117 	__va_list va;
1118 
1119 	__va_start(va, ctl);
1120 	vfprintf(stderr, ctl, va);
1121 	fprintf(stderr, "\n");
1122 	__va_end(va);
1123 	exit(1);
1124 }
1125 
1126 #endif
1127 
1128