xref: /dragonfly/sys/kern/subr_blist.c (revision a8ca8ac6)
1 /*
2  * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
3  *
4  * Copyright (c) 1998,2004 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *
37  *	This module implements a general bitmap allocator/deallocator.  The
38  *	allocator eats around 2 bits per 'block'.  The module does not
39  *	try to interpret the meaning of a 'block' other then to return
40  *	SWAPBLK_NONE on an allocation failure.
41  *
42  *	A radix tree is used to maintain the bitmap.  Two radix constants are
43  *	involved:  One for the bitmaps contained in the leaf nodes (typically
44  *	32), and one for the meta nodes (typically 16).  Both meta and leaf
45  *	nodes have a hint field.  This field gives us a hint as to the largest
46  *	free contiguous range of blocks under the node.  It may contain a
47  *	value that is too high, but will never contain a value that is too
48  *	low.  When the radix tree is searched, allocation failures in subtrees
49  *	update the hint.
50  *
51  *	The radix tree also implements two collapsed states for meta nodes:
52  *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
53  *	in either of these two states, all information contained underneath
54  *	the node is considered stale.  These states are used to optimize
55  *	allocation and freeing operations.
56  *
57  * 	The hinting greatly increases code efficiency for allocations while
58  *	the general radix structure optimizes both allocations and frees.  The
59  *	radix tree should be able to operate well no matter how much
60  *	fragmentation there is and no matter how large a bitmap is used.
61  *
62  *	Unlike the rlist code, the blist code wires all necessary memory at
63  *	creation time.  Neither allocations nor frees require interaction with
64  *	the memory subsystem.  In contrast, the rlist code may allocate memory
65  *	on an rlist_free() call.  The non-blocking features of the blist code
66  *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
67  *	rlist code uses a little less overall memory then the blist code (but
68  *	due to swap interleaving not all that much less), but the blist code
69  *	scales much, much better.
70  *
71  *	LAYOUT: The radix tree is layed out recursively using a
72  *	linear array.  Each meta node is immediately followed (layed out
73  *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
74  *	is a recursive structure but one that can be easily scanned through
75  *	a very simple 'skip' calculation.  In order to support large radixes,
76  *	portions of the tree may reside outside our memory allocation.  We
77  *	handle this with an early-termination optimization (when bighint is
78  *	set to -1) on the scan.  The memory allocation is only large enough
79  *	to cover the number of blocks requested at creation time even if it
80  *	must be encompassed in larger root-node radix.
81  *
82  *	NOTE: The allocator cannot currently allocate more then
83  *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
84  *	large' if you try.  This is an area that could use improvement.  The
85  *	radix is large enough that this restriction does not effect the swap
86  *	system, though.  Currently only the allocation code is effected by
87  *	this algorithmic unfeature.  The freeing code can handle arbitrary
88  *	ranges.
89  *
90  *	NOTE: The radix may exceed 32 bits in order to support up to 2^31
91  *	      blocks.  The first divison will drop the radix down and fit
92  *	      it within a signed 32 bit integer.
93  *
94  *	This code can be compiled stand-alone for debugging.
95  *
96  * $FreeBSD: src/sys/kern/subr_blist.c,v 1.5.2.2 2003/01/12 09:23:12 dillon Exp $
97  * $DragonFly: src/sys/kern/subr_blist.c,v 1.8 2008/08/10 22:09:50 dillon Exp $
98  */
99 
100 #ifdef _KERNEL
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/blist.h>
107 #include <sys/malloc.h>
108 
109 #else
110 
111 #ifndef BLIST_NO_DEBUG
112 #define BLIST_DEBUG
113 #endif
114 
115 #define SWAPBLK_NONE ((swblk_t)-1)
116 
117 #include <sys/types.h>
118 #include <stdio.h>
119 #include <string.h>
120 #include <stdlib.h>
121 #include <stdarg.h>
122 
123 #define kmalloc(a,b,c)	malloc(a)
124 #define kfree(a,b)	free(a)
125 #define kprintf		printf
126 #define KKASSERT(exp)
127 
128 #include <sys/blist.h>
129 
130 void panic(const char *ctl, ...);
131 
132 #endif
133 
134 /*
135  * static support functions
136  */
137 
138 static swblk_t blst_leaf_alloc(blmeta_t *scan, swblk_t blk, int count);
139 static swblk_t blst_meta_alloc(blmeta_t *scan, swblk_t blk,
140 				swblk_t count, int64_t radix, int skip);
141 static void blst_leaf_free(blmeta_t *scan, swblk_t relblk, int count);
142 static void blst_meta_free(blmeta_t *scan, swblk_t freeBlk, swblk_t count,
143 					int64_t radix, int skip, swblk_t blk);
144 static void blst_copy(blmeta_t *scan, swblk_t blk, int64_t radix,
145 				swblk_t skip, blist_t dest, swblk_t count);
146 static swblk_t	blst_radix_init(blmeta_t *scan, int64_t radix,
147 						int skip, swblk_t count);
148 #ifndef _KERNEL
149 static void	blst_radix_print(blmeta_t *scan, swblk_t blk,
150 					int64_t radix, int skip, int tab);
151 #endif
152 
153 #ifdef _KERNEL
154 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
155 #endif
156 
157 /*
158  * blist_create() - create a blist capable of handling up to the specified
159  *		    number of blocks
160  *
161  *	blocks must be greater then 0
162  *
163  *	The smallest blist consists of a single leaf node capable of
164  *	managing BLIST_BMAP_RADIX blocks.
165  */
166 
167 blist_t
168 blist_create(swblk_t blocks)
169 {
170 	blist_t bl;
171 	int64_t radix;
172 	int skip = 0;
173 
174 	/*
175 	 * Calculate radix and skip field used for scanning.
176 	 *
177 	 * Radix can exceed 32 bits even if swblk_t is limited to 32 bits.
178 	 */
179 	radix = BLIST_BMAP_RADIX;
180 
181 	while (radix < blocks) {
182 		radix *= BLIST_META_RADIX;
183 		skip = (skip + 1) * BLIST_META_RADIX;
184 		KKASSERT(skip > 0);
185 	}
186 
187 	bl = kmalloc(sizeof(struct blist), M_SWAP, M_WAITOK);
188 
189 	bzero(bl, sizeof(*bl));
190 
191 	bl->bl_blocks = blocks;
192 	bl->bl_radix = radix;
193 	bl->bl_skip = skip;
194 	bl->bl_rootblks = 1 +
195 	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
196 	bl->bl_root = kmalloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, M_WAITOK);
197 
198 #if defined(BLIST_DEBUG)
199 	kprintf(
200 		"BLIST representing %d blocks (%d MB of swap)"
201 		", requiring %dK of ram\n",
202 		bl->bl_blocks,
203 		bl->bl_blocks * 4 / 1024,
204 		(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
205 	);
206 	kprintf("BLIST raw radix tree contains %d records\n", bl->bl_rootblks);
207 #endif
208 	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
209 
210 	return(bl);
211 }
212 
213 void
214 blist_destroy(blist_t bl)
215 {
216 	kfree(bl->bl_root, M_SWAP);
217 	kfree(bl, M_SWAP);
218 }
219 
220 /*
221  * blist_alloc() - reserve space in the block bitmap.  Return the base
222  *		     of a contiguous region or SWAPBLK_NONE if space could
223  *		     not be allocated.
224  */
225 
226 swblk_t
227 blist_alloc(blist_t bl, swblk_t count)
228 {
229 	swblk_t blk = SWAPBLK_NONE;
230 
231 	if (bl) {
232 		if (bl->bl_radix == BLIST_BMAP_RADIX)
233 			blk = blst_leaf_alloc(bl->bl_root, 0, count);
234 		else
235 			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
236 		if (blk != SWAPBLK_NONE)
237 			bl->bl_free -= count;
238 	}
239 	return(blk);
240 }
241 
242 /*
243  * blist_free() -	free up space in the block bitmap.  Return the base
244  *		     	of a contiguous region.  Panic if an inconsistancy is
245  *			found.
246  */
247 
248 void
249 blist_free(blist_t bl, swblk_t blkno, swblk_t count)
250 {
251 	if (bl) {
252 		if (bl->bl_radix == BLIST_BMAP_RADIX)
253 			blst_leaf_free(bl->bl_root, blkno, count);
254 		else
255 			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
256 		bl->bl_free += count;
257 	}
258 }
259 
260 /*
261  * blist_resize() -	resize an existing radix tree to handle the
262  *			specified number of blocks.  This will reallocate
263  *			the tree and transfer the previous bitmap to the new
264  *			one.  When extending the tree you can specify whether
265  *			the new blocks are to left allocated or freed.
266  */
267 
268 void
269 blist_resize(blist_t *pbl, swblk_t count, int freenew)
270 {
271     blist_t newbl = blist_create(count);
272     blist_t save = *pbl;
273 
274     *pbl = newbl;
275     if (count > save->bl_blocks)
276 	    count = save->bl_blocks;
277     blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
278 
279     /*
280      * If resizing upwards, should we free the new space or not?
281      */
282     if (freenew && count < newbl->bl_blocks) {
283 	    blist_free(newbl, count, newbl->bl_blocks - count);
284     }
285     blist_destroy(save);
286 }
287 
288 #ifdef BLIST_DEBUG
289 
290 /*
291  * blist_print()    - dump radix tree
292  */
293 
294 void
295 blist_print(blist_t bl)
296 {
297 	kprintf("BLIST {\n");
298 	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
299 	kprintf("}\n");
300 }
301 
302 #endif
303 
304 /************************************************************************
305  *			  ALLOCATION SUPPORT FUNCTIONS			*
306  ************************************************************************
307  *
308  *	These support functions do all the actual work.  They may seem
309  *	rather longish, but that's because I've commented them up.  The
310  *	actual code is straight forward.
311  *
312  */
313 
314 /*
315  * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
316  *
317  *	This is the core of the allocator and is optimized for the 1 block
318  *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
319  *	somewhat slower.  The 1 block allocation case is log2 and extremely
320  *	quick.
321  */
322 
323 static swblk_t
324 blst_leaf_alloc(blmeta_t *scan, swblk_t blk, int count)
325 {
326 	u_swblk_t orig = scan->u.bmu_bitmap;
327 
328 	if (orig == 0) {
329 		/*
330 		 * Optimize bitmap all-allocated case.  Also, count = 1
331 		 * case assumes at least 1 bit is free in the bitmap, so
332 		 * we have to take care of this case here.
333 		 */
334 		scan->bm_bighint = 0;
335 		return(SWAPBLK_NONE);
336 	}
337 	if (count == 1) {
338 		/*
339 		 * Optimized code to allocate one bit out of the bitmap
340 		 */
341 		u_swblk_t mask;
342 		int j = BLIST_BMAP_RADIX/2;
343 		int r = 0;
344 
345 		mask = (u_swblk_t)-1 >> (BLIST_BMAP_RADIX/2);
346 
347 		while (j) {
348 			if ((orig & mask) == 0) {
349 			    r += j;
350 			    orig >>= j;
351 			}
352 			j >>= 1;
353 			mask >>= j;
354 		}
355 		scan->u.bmu_bitmap &= ~(1 << r);
356 		return(blk + r);
357 	}
358 	if (count <= BLIST_BMAP_RADIX) {
359 		/*
360 		 * non-optimized code to allocate N bits out of the bitmap.
361 		 * The more bits, the faster the code runs.  It will run
362 		 * the slowest allocating 2 bits, but since there aren't any
363 		 * memory ops in the core loop (or shouldn't be, anyway),
364 		 * you probably won't notice the difference.
365 		 */
366 		int j;
367 		int n = BLIST_BMAP_RADIX - count;
368 		u_swblk_t mask;
369 
370 		mask = (u_swblk_t)-1 >> n;
371 
372 		for (j = 0; j <= n; ++j) {
373 			if ((orig & mask) == mask) {
374 				scan->u.bmu_bitmap &= ~mask;
375 				return(blk + j);
376 			}
377 			mask = (mask << 1);
378 		}
379 	}
380 	/*
381 	 * We couldn't allocate count in this subtree, update bighint.
382 	 */
383 	scan->bm_bighint = count - 1;
384 	return(SWAPBLK_NONE);
385 }
386 
387 /*
388  * blist_meta_alloc() -	allocate at a meta in the radix tree.
389  *
390  *	Attempt to allocate at a meta node.  If we can't, we update
391  *	bighint and return a failure.  Updating bighint optimize future
392  *	calls that hit this node.  We have to check for our collapse cases
393  *	and we have a few optimizations strewn in as well.
394  */
395 
396 static swblk_t
397 blst_meta_alloc(blmeta_t *scan, swblk_t blk, swblk_t count,
398 		int64_t radix, int skip)
399 {
400 	int i;
401 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
402 
403 	if (scan->u.bmu_avail == 0)  {
404 		/*
405 		 * ALL-ALLOCATED special case
406 		 */
407 		scan->bm_bighint = count;
408 		return(SWAPBLK_NONE);
409 	}
410 
411 	/*
412 	 * note: radix may exceed 32 bits until first division.
413 	 */
414 	if (scan->u.bmu_avail == radix) {
415 		radix /= BLIST_META_RADIX;
416 
417 		/*
418 		 * ALL-FREE special case, initialize uninitialize
419 		 * sublevel.
420 		 */
421 		for (i = 1; i <= skip; i += next_skip) {
422 			if (scan[i].bm_bighint == (swblk_t)-1)
423 				break;
424 			if (next_skip == 1) {
425 				scan[i].u.bmu_bitmap = (u_swblk_t)-1;
426 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
427 			} else {
428 				scan[i].bm_bighint = (swblk_t)radix;
429 				scan[i].u.bmu_avail = (swblk_t)radix;
430 			}
431 		}
432 	} else {
433 		radix /= BLIST_META_RADIX;
434 	}
435 
436 	for (i = 1; i <= skip; i += next_skip) {
437 		if (count <= scan[i].bm_bighint) {
438 			/*
439 			 * count fits in object
440 			 */
441 			swblk_t r;
442 			if (next_skip == 1) {
443 				r = blst_leaf_alloc(&scan[i], blk, count);
444 			} else {
445 				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
446 			}
447 			if (r != SWAPBLK_NONE) {
448 				scan->u.bmu_avail -= count;
449 				if (scan->bm_bighint > scan->u.bmu_avail)
450 					scan->bm_bighint = scan->u.bmu_avail;
451 				return(r);
452 			}
453 		} else if (scan[i].bm_bighint == (swblk_t)-1) {
454 			/*
455 			 * Terminator
456 			 */
457 			break;
458 		} else if (count > (swblk_t)radix) {
459 			/*
460 			 * count does not fit in object even if it were
461 			 * complete free.
462 			 */
463 			panic("blist_meta_alloc: allocation too large");
464 		}
465 		blk += (swblk_t)radix;
466 	}
467 
468 	/*
469 	 * We couldn't allocate count in this subtree, update bighint.
470 	 */
471 	if (scan->bm_bighint >= count)
472 		scan->bm_bighint = count - 1;
473 	return(SWAPBLK_NONE);
474 }
475 
476 /*
477  * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
478  *
479  */
480 
481 static void
482 blst_leaf_free(blmeta_t *scan, swblk_t blk, int count)
483 {
484 	/*
485 	 * free some data in this bitmap
486 	 *
487 	 * e.g.
488 	 *	0000111111111110000
489 	 *          \_________/\__/
490 	 *		v        n
491 	 */
492 	int n = blk & (BLIST_BMAP_RADIX - 1);
493 	u_swblk_t mask;
494 
495 	mask = ((u_swblk_t)-1 << n) &
496 	    ((u_swblk_t)-1 >> (BLIST_BMAP_RADIX - count - n));
497 
498 	if (scan->u.bmu_bitmap & mask)
499 		panic("blst_radix_free: freeing free block");
500 	scan->u.bmu_bitmap |= mask;
501 
502 	/*
503 	 * We could probably do a better job here.  We are required to make
504 	 * bighint at least as large as the biggest contiguous block of
505 	 * data.  If we just shoehorn it, a little extra overhead will
506 	 * be incured on the next allocation (but only that one typically).
507 	 */
508 	scan->bm_bighint = BLIST_BMAP_RADIX;
509 }
510 
511 /*
512  * BLST_META_FREE() - free allocated blocks from radix tree meta info
513  *
514  *	This support routine frees a range of blocks from the bitmap.
515  *	The range must be entirely enclosed by this radix node.  If a
516  *	meta node, we break the range down recursively to free blocks
517  *	in subnodes (which means that this code can free an arbitrary
518  *	range whereas the allocation code cannot allocate an arbitrary
519  *	range).
520  */
521 
522 static void
523 blst_meta_free(blmeta_t *scan, swblk_t freeBlk, swblk_t count,
524 	       int64_t radix, int skip, swblk_t blk)
525 {
526 	int i;
527 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
528 
529 #if 0
530 	kprintf("FREE (%x,%d) FROM (%x,%lld)\n",
531 	    freeBlk, count,
532 	    blk, (long long)radix
533 	);
534 #endif
535 
536 	/*
537 	 * NOTE: radix may exceed 32 bits until first division.
538 	 */
539 	if (scan->u.bmu_avail == 0) {
540 		/*
541 		 * ALL-ALLOCATED special case, with possible
542 		 * shortcut to ALL-FREE special case.
543 		 */
544 		scan->u.bmu_avail = count;
545 		scan->bm_bighint = count;
546 
547 		if (count != radix)  {
548 			for (i = 1; i <= skip; i += next_skip) {
549 				if (scan[i].bm_bighint == (swblk_t)-1)
550 					break;
551 				scan[i].bm_bighint = 0;
552 				if (next_skip == 1) {
553 					scan[i].u.bmu_bitmap = 0;
554 				} else {
555 					scan[i].u.bmu_avail = 0;
556 				}
557 			}
558 			/* fall through */
559 		}
560 	} else {
561 		scan->u.bmu_avail += count;
562 		/* scan->bm_bighint = radix; */
563 	}
564 
565 	/*
566 	 * ALL-FREE special case.
567 	 */
568 
569 	if (scan->u.bmu_avail == radix)
570 		return;
571 	if (scan->u.bmu_avail > radix)
572 		panic("blst_meta_free: freeing already free blocks (%d) %d/%lld", count, scan->u.bmu_avail, (long long)radix);
573 
574 	/*
575 	 * Break the free down into its components
576 	 */
577 
578 	radix /= BLIST_META_RADIX;
579 
580 	i = (freeBlk - blk) / (swblk_t)radix;
581 	blk += i * (swblk_t)radix;
582 	i = i * next_skip + 1;
583 
584 	while (i <= skip && blk < freeBlk + count) {
585 		swblk_t v;
586 
587 		v = blk + (swblk_t)radix - freeBlk;
588 		if (v > count)
589 			v = count;
590 
591 		if (scan->bm_bighint == (swblk_t)-1)
592 			panic("blst_meta_free: freeing unexpected range");
593 
594 		if (next_skip == 1) {
595 			blst_leaf_free(&scan[i], freeBlk, v);
596 		} else {
597 			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
598 		}
599 		if (scan->bm_bighint < scan[i].bm_bighint)
600 		    scan->bm_bighint = scan[i].bm_bighint;
601 		count -= v;
602 		freeBlk += v;
603 		blk += (swblk_t)radix;
604 		i += next_skip;
605 	}
606 }
607 
608 /*
609  * BLIST_RADIX_COPY() - copy one radix tree to another
610  *
611  *	Locates free space in the source tree and frees it in the destination
612  *	tree.  The space may not already be free in the destination.
613  */
614 
615 static void
616 blst_copy(blmeta_t *scan, swblk_t blk, int64_t radix,
617 	  swblk_t skip, blist_t dest, swblk_t count)
618 {
619 	int next_skip;
620 	int i;
621 
622 	/*
623 	 * Leaf node
624 	 */
625 
626 	if (radix == BLIST_BMAP_RADIX) {
627 		u_swblk_t v = scan->u.bmu_bitmap;
628 
629 		if (v == (u_swblk_t)-1) {
630 			blist_free(dest, blk, count);
631 		} else if (v != 0) {
632 			int i;
633 
634 			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
635 				if (v & (1 << i))
636 					blist_free(dest, blk + i, 1);
637 			}
638 		}
639 		return;
640 	}
641 
642 	/*
643 	 * Meta node
644 	 */
645 
646 	if (scan->u.bmu_avail == 0) {
647 		/*
648 		 * Source all allocated, leave dest allocated
649 		 */
650 		return;
651 	}
652 	if (scan->u.bmu_avail == radix) {
653 		/*
654 		 * Source all free, free entire dest
655 		 */
656 		if (count < radix)
657 			blist_free(dest, blk, count);
658 		else
659 			blist_free(dest, blk, (swblk_t)radix);
660 		return;
661 	}
662 
663 
664 	radix /= BLIST_META_RADIX;
665 	next_skip = ((u_int)skip / BLIST_META_RADIX);
666 
667 	for (i = 1; count && i <= skip; i += next_skip) {
668 		if (scan[i].bm_bighint == (swblk_t)-1)
669 			break;
670 
671 		if (count >= (swblk_t)radix) {
672 			blst_copy(
673 			    &scan[i],
674 			    blk,
675 			    radix,
676 			    next_skip - 1,
677 			    dest,
678 			    (swblk_t)radix
679 			);
680 			count -= (swblk_t)radix;
681 		} else {
682 			if (count) {
683 				blst_copy(
684 				    &scan[i],
685 				    blk,
686 				    radix,
687 				    next_skip - 1,
688 				    dest,
689 				    count
690 				);
691 			}
692 			count = 0;
693 		}
694 		blk += (swblk_t)radix;
695 	}
696 }
697 
698 /*
699  * BLST_RADIX_INIT() - initialize radix tree
700  *
701  *	Initialize our meta structures and bitmaps and calculate the exact
702  *	amount of space required to manage 'count' blocks - this space may
703  *	be considerably less then the calculated radix due to the large
704  *	RADIX values we use.
705  */
706 
707 static swblk_t
708 blst_radix_init(blmeta_t *scan, int64_t radix, int skip, swblk_t count)
709 {
710 	int i;
711 	int next_skip;
712 	swblk_t memindex = 0;
713 
714 	/*
715 	 * Leaf node
716 	 */
717 
718 	if (radix == BLIST_BMAP_RADIX) {
719 		if (scan) {
720 			scan->bm_bighint = 0;
721 			scan->u.bmu_bitmap = 0;
722 		}
723 		return(memindex);
724 	}
725 
726 	/*
727 	 * Meta node.  If allocating the entire object we can special
728 	 * case it.  However, we need to figure out how much memory
729 	 * is required to manage 'count' blocks, so we continue on anyway.
730 	 */
731 
732 	if (scan) {
733 		scan->bm_bighint = 0;
734 		scan->u.bmu_avail = 0;
735 	}
736 
737 	radix /= BLIST_META_RADIX;
738 	next_skip = ((u_int)skip / BLIST_META_RADIX);
739 
740 	for (i = 1; i <= skip; i += next_skip) {
741 		if (count >= (swblk_t)radix) {
742 			/*
743 			 * Allocate the entire object
744 			 */
745 			memindex = i + blst_radix_init(
746 			    ((scan) ? &scan[i] : NULL),
747 			    radix,
748 			    next_skip - 1,
749 			    (swblk_t)radix
750 			);
751 			count -= (swblk_t)radix;
752 		} else if (count > 0) {
753 			/*
754 			 * Allocate a partial object
755 			 */
756 			memindex = i + blst_radix_init(
757 			    ((scan) ? &scan[i] : NULL),
758 			    radix,
759 			    next_skip - 1,
760 			    count
761 			);
762 			count = 0;
763 		} else {
764 			/*
765 			 * Add terminator and break out
766 			 */
767 			if (scan)
768 				scan[i].bm_bighint = (swblk_t)-1;
769 			break;
770 		}
771 	}
772 	if (memindex < i)
773 		memindex = i;
774 	return(memindex);
775 }
776 
777 #ifdef BLIST_DEBUG
778 
779 static void
780 blst_radix_print(blmeta_t *scan, swblk_t blk, int64_t radix, int skip, int tab)
781 {
782 	int i;
783 	int next_skip;
784 	int lastState = 0;
785 
786 	if (radix == BLIST_BMAP_RADIX) {
787 		kprintf(
788 		    "%*.*s(%04x,%lld): bitmap %08x big=%d\n",
789 		    tab, tab, "",
790 		    blk, (long long)radix,
791 		    scan->u.bmu_bitmap,
792 		    scan->bm_bighint
793 		);
794 		return;
795 	}
796 
797 	if (scan->u.bmu_avail == 0) {
798 		kprintf(
799 		    "%*.*s(%04x,%lld) ALL ALLOCATED\n",
800 		    tab, tab, "",
801 		    blk,
802 		    (long long)radix
803 		);
804 		return;
805 	}
806 	if (scan->u.bmu_avail == radix) {
807 		kprintf(
808 		    "%*.*s(%04x,%lld) ALL FREE\n",
809 		    tab, tab, "",
810 		    blk,
811 		    (long long)radix
812 		);
813 		return;
814 	}
815 
816 	kprintf(
817 	    "%*.*s(%04x,%lld): subtree (%d/%lld) big=%d {\n",
818 	    tab, tab, "",
819 	    blk, (long long)radix,
820 	    scan->u.bmu_avail,
821 	    (long long)radix,
822 	    scan->bm_bighint
823 	);
824 
825 	radix /= BLIST_META_RADIX;
826 	next_skip = ((u_int)skip / BLIST_META_RADIX);
827 	tab += 4;
828 
829 	for (i = 1; i <= skip; i += next_skip) {
830 		if (scan[i].bm_bighint == (swblk_t)-1) {
831 			kprintf(
832 			    "%*.*s(%04x,%lld): Terminator\n",
833 			    tab, tab, "",
834 			    blk, (long long)radix
835 			);
836 			lastState = 0;
837 			break;
838 		}
839 		blst_radix_print(
840 		    &scan[i],
841 		    blk,
842 		    radix,
843 		    next_skip - 1,
844 		    tab
845 		);
846 		blk += (swblk_t)radix;
847 	}
848 	tab -= 4;
849 
850 	kprintf(
851 	    "%*.*s}\n",
852 	    tab, tab, ""
853 	);
854 }
855 
856 #endif
857 
858 #ifdef BLIST_DEBUG
859 
860 int
861 main(int ac, char **av)
862 {
863 	int size = 1024;
864 	int i;
865 	blist_t bl;
866 
867 	for (i = 1; i < ac; ++i) {
868 		const char *ptr = av[i];
869 		if (*ptr != '-') {
870 			size = strtol(ptr, NULL, 0);
871 			continue;
872 		}
873 		ptr += 2;
874 		fprintf(stderr, "Bad option: %s\n", ptr - 2);
875 		exit(1);
876 	}
877 	bl = blist_create(size);
878 	blist_free(bl, 0, size);
879 
880 	for (;;) {
881 		char buf[1024];
882 		swblk_t da = 0;
883 		swblk_t count = 0;
884 
885 
886 		kprintf("%d/%d/%lld> ",
887 			bl->bl_free, size, (long long)bl->bl_radix);
888 		fflush(stdout);
889 		if (fgets(buf, sizeof(buf), stdin) == NULL)
890 			break;
891 		switch(buf[0]) {
892 		case 'r':
893 			if (sscanf(buf + 1, "%d", &count) == 1) {
894 				blist_resize(&bl, count, 1);
895 				size = count;
896 			} else {
897 				kprintf("?\n");
898 			}
899 		case 'p':
900 			blist_print(bl);
901 			break;
902 		case 'a':
903 			if (sscanf(buf + 1, "%d", &count) == 1) {
904 				swblk_t blk = blist_alloc(bl, count);
905 				kprintf("    R=%04x\n", blk);
906 			} else {
907 				kprintf("?\n");
908 			}
909 			break;
910 		case 'f':
911 			if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
912 				blist_free(bl, da, count);
913 			} else {
914 				kprintf("?\n");
915 			}
916 			break;
917 		case '?':
918 		case 'h':
919 			puts(
920 			    "p          -print\n"
921 			    "a %d       -allocate\n"
922 			    "f %x %d    -free\n"
923 			    "r %d       -resize\n"
924 			    "h/?        -help"
925 			);
926 			break;
927 		default:
928 			kprintf("?\n");
929 			break;
930 		}
931 	}
932 	return(0);
933 }
934 
935 void
936 panic(const char *ctl, ...)
937 {
938 	__va_list va;
939 
940 	__va_start(va, ctl);
941 	vfprintf(stderr, ctl, va);
942 	fprintf(stderr, "\n");
943 	__va_end(va);
944 	exit(1);
945 }
946 
947 #endif
948 
949