xref: /dragonfly/sys/kern/subr_blist.c (revision c89a6c1b)
1 /*
2  * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
3  *
4  * Copyright (c) 1998,2004 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *
37  *	This module implements a general bitmap allocator/deallocator.  The
38  *	allocator eats around 2 bits per 'block'.  The module does not
39  *	try to interpret the meaning of a 'block' other then to return
40  *	SWAPBLK_NONE on an allocation failure.
41  *
42  *	A radix tree is used to maintain the bitmap.  Two radix constants are
43  *	involved:  One for the bitmaps contained in the leaf nodes (typically
44  *	32), and one for the meta nodes (typically 16).  Both meta and leaf
45  *	nodes have a hint field.  This field gives us a hint as to the largest
46  *	free contiguous range of blocks under the node.  It may contain a
47  *	value that is too high, but will never contain a value that is too
48  *	low.  When the radix tree is searched, allocation failures in subtrees
49  *	update the hint.
50  *
51  *	The radix tree also implements two collapsed states for meta nodes:
52  *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
53  *	in either of these two states, all information contained underneath
54  *	the node is considered stale.  These states are used to optimize
55  *	allocation and freeing operations.
56  *
57  * 	The hinting greatly increases code efficiency for allocations while
58  *	the general radix structure optimizes both allocations and frees.  The
59  *	radix tree should be able to operate well no matter how much
60  *	fragmentation there is and no matter how large a bitmap is used.
61  *
62  *	Unlike the rlist code, the blist code wires all necessary memory at
63  *	creation time.  Neither allocations nor frees require interaction with
64  *	the memory subsystem.  In contrast, the rlist code may allocate memory
65  *	on an rlist_free() call.  The non-blocking features of the blist code
66  *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
67  *	rlist code uses a little less overall memory then the blist code (but
68  *	due to swap interleaving not all that much less), but the blist code
69  *	scales much, much better.
70  *
71  *	LAYOUT: The radix tree is layed out recursively using a
72  *	linear array.  Each meta node is immediately followed (layed out
73  *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
74  *	is a recursive structure but one that can be easily scanned through
75  *	a very simple 'skip' calculation.  In order to support large radixes,
76  *	portions of the tree may reside outside our memory allocation.  We
77  *	handle this with an early-termination optimization (when bighint is
78  *	set to -1) on the scan.  The memory allocation is only large enough
79  *	to cover the number of blocks requested at creation time even if it
80  *	must be encompassed in larger root-node radix.
81  *
82  *	NOTE: The allocator cannot currently allocate more then
83  *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
84  *	large' if you try.  This is an area that could use improvement.  The
85  *	radix is large enough that this restriction does not effect the swap
86  *	system, though.  Currently only the allocation code is effected by
87  *	this algorithmic unfeature.  The freeing code can handle arbitrary
88  *	ranges.
89  *
90  *	NOTE: The radix may exceed 32 bits in order to support up to 2^31
91  *	      blocks.  The first divison will drop the radix down and fit
92  *	      it within a signed 32 bit integer.
93  *
94  *	This code can be compiled stand-alone for debugging.
95  *
96  * $FreeBSD: src/sys/kern/subr_blist.c,v 1.5.2.2 2003/01/12 09:23:12 dillon Exp $
97  * $DragonFly: src/sys/kern/subr_blist.c,v 1.8 2008/08/10 22:09:50 dillon Exp $
98  */
99 
100 #ifdef _KERNEL
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/blist.h>
107 #include <sys/malloc.h>
108 #include <vm/vm.h>
109 #include <vm/vm_object.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_page.h>
113 
114 #else
115 
116 #ifndef BLIST_NO_DEBUG
117 #define BLIST_DEBUG
118 #endif
119 
120 #define SWAPBLK_NONE ((swblk_t)-1)
121 
122 #include <sys/types.h>
123 #include <stdio.h>
124 #include <string.h>
125 #include <stdlib.h>
126 #include <stdarg.h>
127 
128 #define kmalloc(a,b,c)	malloc(a)
129 #define kfree(a,b)	free(a)
130 #define kprintf		printf
131 #define KKASSERT(exp)
132 
133 #include <sys/blist.h>
134 
135 void panic(const char *ctl, ...);
136 
137 #endif
138 
139 /*
140  * static support functions
141  */
142 
143 static swblk_t blst_leaf_alloc(blmeta_t *scan, swblk_t blk, int count);
144 static swblk_t blst_meta_alloc(blmeta_t *scan, swblk_t blk,
145 				swblk_t count, int64_t radix, int skip);
146 static void blst_leaf_free(blmeta_t *scan, swblk_t relblk, int count);
147 static void blst_meta_free(blmeta_t *scan, swblk_t freeBlk, swblk_t count,
148 					int64_t radix, int skip, swblk_t blk);
149 static void blst_copy(blmeta_t *scan, swblk_t blk, int64_t radix,
150 				swblk_t skip, blist_t dest, swblk_t count);
151 static swblk_t	blst_radix_init(blmeta_t *scan, int64_t radix,
152 						int skip, swblk_t count);
153 #ifndef _KERNEL
154 static void	blst_radix_print(blmeta_t *scan, swblk_t blk,
155 					int64_t radix, int skip, int tab);
156 #endif
157 
158 #ifdef _KERNEL
159 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
160 #endif
161 
162 /*
163  * blist_create() - create a blist capable of handling up to the specified
164  *		    number of blocks
165  *
166  *	blocks must be greater then 0
167  *
168  *	The smallest blist consists of a single leaf node capable of
169  *	managing BLIST_BMAP_RADIX blocks.
170  */
171 
172 blist_t
173 blist_create(swblk_t blocks)
174 {
175 	blist_t bl;
176 	int64_t radix;
177 	int skip = 0;
178 
179 	/*
180 	 * Calculate radix and skip field used for scanning.
181 	 *
182 	 * Radix can exceed 32 bits even if swblk_t is limited to 32 bits.
183 	 */
184 	radix = BLIST_BMAP_RADIX;
185 
186 	while (radix < blocks) {
187 		radix *= BLIST_META_RADIX;
188 		skip = (skip + 1) * BLIST_META_RADIX;
189 		KKASSERT(skip > 0);
190 	}
191 
192 	bl = kmalloc(sizeof(struct blist), M_SWAP, M_WAITOK);
193 
194 	bzero(bl, sizeof(*bl));
195 
196 	bl->bl_blocks = blocks;
197 	bl->bl_radix = radix;
198 	bl->bl_skip = skip;
199 	bl->bl_rootblks = 1 +
200 	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
201 	bl->bl_root = kmalloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, M_WAITOK);
202 
203 #if defined(BLIST_DEBUG)
204 	kprintf(
205 		"BLIST representing %d blocks (%d MB of swap)"
206 		", requiring %dK of ram\n",
207 		bl->bl_blocks,
208 		bl->bl_blocks * 4 / 1024,
209 		(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
210 	);
211 	kprintf("BLIST raw radix tree contains %d records\n", bl->bl_rootblks);
212 #endif
213 	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
214 
215 	return(bl);
216 }
217 
218 void
219 blist_destroy(blist_t bl)
220 {
221 	kfree(bl->bl_root, M_SWAP);
222 	kfree(bl, M_SWAP);
223 }
224 
225 /*
226  * blist_alloc() - reserve space in the block bitmap.  Return the base
227  *		     of a contiguous region or SWAPBLK_NONE if space could
228  *		     not be allocated.
229  */
230 
231 swblk_t
232 blist_alloc(blist_t bl, swblk_t count)
233 {
234 	swblk_t blk = SWAPBLK_NONE;
235 
236 	if (bl) {
237 		if (bl->bl_radix == BLIST_BMAP_RADIX)
238 			blk = blst_leaf_alloc(bl->bl_root, 0, count);
239 		else
240 			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
241 		if (blk != SWAPBLK_NONE)
242 			bl->bl_free -= count;
243 	}
244 	return(blk);
245 }
246 
247 /*
248  * blist_free() -	free up space in the block bitmap.  Return the base
249  *		     	of a contiguous region.  Panic if an inconsistancy is
250  *			found.
251  */
252 
253 void
254 blist_free(blist_t bl, swblk_t blkno, swblk_t count)
255 {
256 	if (bl) {
257 		if (bl->bl_radix == BLIST_BMAP_RADIX)
258 			blst_leaf_free(bl->bl_root, blkno, count);
259 		else
260 			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
261 		bl->bl_free += count;
262 	}
263 }
264 
265 /*
266  * blist_resize() -	resize an existing radix tree to handle the
267  *			specified number of blocks.  This will reallocate
268  *			the tree and transfer the previous bitmap to the new
269  *			one.  When extending the tree you can specify whether
270  *			the new blocks are to left allocated or freed.
271  */
272 
273 void
274 blist_resize(blist_t *pbl, swblk_t count, int freenew)
275 {
276     blist_t newbl = blist_create(count);
277     blist_t save = *pbl;
278 
279     *pbl = newbl;
280     if (count > save->bl_blocks)
281 	    count = save->bl_blocks;
282     blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
283 
284     /*
285      * If resizing upwards, should we free the new space or not?
286      */
287     if (freenew && count < newbl->bl_blocks) {
288 	    blist_free(newbl, count, newbl->bl_blocks - count);
289     }
290     blist_destroy(save);
291 }
292 
293 #ifdef BLIST_DEBUG
294 
295 /*
296  * blist_print()    - dump radix tree
297  */
298 
299 void
300 blist_print(blist_t bl)
301 {
302 	kprintf("BLIST {\n");
303 	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
304 	kprintf("}\n");
305 }
306 
307 #endif
308 
309 /************************************************************************
310  *			  ALLOCATION SUPPORT FUNCTIONS			*
311  ************************************************************************
312  *
313  *	These support functions do all the actual work.  They may seem
314  *	rather longish, but that's because I've commented them up.  The
315  *	actual code is straight forward.
316  *
317  */
318 
319 /*
320  * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
321  *
322  *	This is the core of the allocator and is optimized for the 1 block
323  *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
324  *	somewhat slower.  The 1 block allocation case is log2 and extremely
325  *	quick.
326  */
327 
328 static swblk_t
329 blst_leaf_alloc(blmeta_t *scan, swblk_t blk, int count)
330 {
331 	u_swblk_t orig = scan->u.bmu_bitmap;
332 
333 	if (orig == 0) {
334 		/*
335 		 * Optimize bitmap all-allocated case.  Also, count = 1
336 		 * case assumes at least 1 bit is free in the bitmap, so
337 		 * we have to take care of this case here.
338 		 */
339 		scan->bm_bighint = 0;
340 		return(SWAPBLK_NONE);
341 	}
342 	if (count == 1) {
343 		/*
344 		 * Optimized code to allocate one bit out of the bitmap
345 		 */
346 		u_swblk_t mask;
347 		int j = BLIST_BMAP_RADIX/2;
348 		int r = 0;
349 
350 		mask = (u_swblk_t)-1 >> (BLIST_BMAP_RADIX/2);
351 
352 		while (j) {
353 			if ((orig & mask) == 0) {
354 			    r += j;
355 			    orig >>= j;
356 			}
357 			j >>= 1;
358 			mask >>= j;
359 		}
360 		scan->u.bmu_bitmap &= ~(1 << r);
361 		return(blk + r);
362 	}
363 	if (count <= BLIST_BMAP_RADIX) {
364 		/*
365 		 * non-optimized code to allocate N bits out of the bitmap.
366 		 * The more bits, the faster the code runs.  It will run
367 		 * the slowest allocating 2 bits, but since there aren't any
368 		 * memory ops in the core loop (or shouldn't be, anyway),
369 		 * you probably won't notice the difference.
370 		 */
371 		int j;
372 		int n = BLIST_BMAP_RADIX - count;
373 		u_swblk_t mask;
374 
375 		mask = (u_swblk_t)-1 >> n;
376 
377 		for (j = 0; j <= n; ++j) {
378 			if ((orig & mask) == mask) {
379 				scan->u.bmu_bitmap &= ~mask;
380 				return(blk + j);
381 			}
382 			mask = (mask << 1);
383 		}
384 	}
385 	/*
386 	 * We couldn't allocate count in this subtree, update bighint.
387 	 */
388 	scan->bm_bighint = count - 1;
389 	return(SWAPBLK_NONE);
390 }
391 
392 /*
393  * blist_meta_alloc() -	allocate at a meta in the radix tree.
394  *
395  *	Attempt to allocate at a meta node.  If we can't, we update
396  *	bighint and return a failure.  Updating bighint optimize future
397  *	calls that hit this node.  We have to check for our collapse cases
398  *	and we have a few optimizations strewn in as well.
399  */
400 
401 static swblk_t
402 blst_meta_alloc(blmeta_t *scan, swblk_t blk, swblk_t count,
403 		int64_t radix, int skip)
404 {
405 	int i;
406 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
407 
408 	if (scan->u.bmu_avail == 0)  {
409 		/*
410 		 * ALL-ALLOCATED special case
411 		 */
412 		scan->bm_bighint = count;
413 		return(SWAPBLK_NONE);
414 	}
415 
416 	/*
417 	 * note: radix may exceed 32 bits until first division.
418 	 */
419 	if (scan->u.bmu_avail == radix) {
420 		radix /= BLIST_META_RADIX;
421 
422 		/*
423 		 * ALL-FREE special case, initialize uninitialize
424 		 * sublevel.
425 		 */
426 		for (i = 1; i <= skip; i += next_skip) {
427 			if (scan[i].bm_bighint == (swblk_t)-1)
428 				break;
429 			if (next_skip == 1) {
430 				scan[i].u.bmu_bitmap = (u_swblk_t)-1;
431 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
432 			} else {
433 				scan[i].bm_bighint = (swblk_t)radix;
434 				scan[i].u.bmu_avail = (swblk_t)radix;
435 			}
436 		}
437 	} else {
438 		radix /= BLIST_META_RADIX;
439 	}
440 
441 	for (i = 1; i <= skip; i += next_skip) {
442 		if (count <= scan[i].bm_bighint) {
443 			/*
444 			 * count fits in object
445 			 */
446 			swblk_t r;
447 			if (next_skip == 1) {
448 				r = blst_leaf_alloc(&scan[i], blk, count);
449 			} else {
450 				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
451 			}
452 			if (r != SWAPBLK_NONE) {
453 				scan->u.bmu_avail -= count;
454 				if (scan->bm_bighint > scan->u.bmu_avail)
455 					scan->bm_bighint = scan->u.bmu_avail;
456 				return(r);
457 			}
458 		} else if (scan[i].bm_bighint == (swblk_t)-1) {
459 			/*
460 			 * Terminator
461 			 */
462 			break;
463 		} else if (count > (swblk_t)radix) {
464 			/*
465 			 * count does not fit in object even if it were
466 			 * complete free.
467 			 */
468 			panic("blist_meta_alloc: allocation too large");
469 		}
470 		blk += (swblk_t)radix;
471 	}
472 
473 	/*
474 	 * We couldn't allocate count in this subtree, update bighint.
475 	 */
476 	if (scan->bm_bighint >= count)
477 		scan->bm_bighint = count - 1;
478 	return(SWAPBLK_NONE);
479 }
480 
481 /*
482  * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
483  *
484  */
485 
486 static void
487 blst_leaf_free(blmeta_t *scan, swblk_t blk, int count)
488 {
489 	/*
490 	 * free some data in this bitmap
491 	 *
492 	 * e.g.
493 	 *	0000111111111110000
494 	 *          \_________/\__/
495 	 *		v        n
496 	 */
497 	int n = blk & (BLIST_BMAP_RADIX - 1);
498 	u_swblk_t mask;
499 
500 	mask = ((u_swblk_t)-1 << n) &
501 	    ((u_swblk_t)-1 >> (BLIST_BMAP_RADIX - count - n));
502 
503 	if (scan->u.bmu_bitmap & mask)
504 		panic("blst_radix_free: freeing free block");
505 	scan->u.bmu_bitmap |= mask;
506 
507 	/*
508 	 * We could probably do a better job here.  We are required to make
509 	 * bighint at least as large as the biggest contiguous block of
510 	 * data.  If we just shoehorn it, a little extra overhead will
511 	 * be incured on the next allocation (but only that one typically).
512 	 */
513 	scan->bm_bighint = BLIST_BMAP_RADIX;
514 }
515 
516 /*
517  * BLST_META_FREE() - free allocated blocks from radix tree meta info
518  *
519  *	This support routine frees a range of blocks from the bitmap.
520  *	The range must be entirely enclosed by this radix node.  If a
521  *	meta node, we break the range down recursively to free blocks
522  *	in subnodes (which means that this code can free an arbitrary
523  *	range whereas the allocation code cannot allocate an arbitrary
524  *	range).
525  */
526 
527 static void
528 blst_meta_free(blmeta_t *scan, swblk_t freeBlk, swblk_t count,
529 	       int64_t radix, int skip, swblk_t blk)
530 {
531 	int i;
532 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
533 
534 #if 0
535 	kprintf("FREE (%x,%d) FROM (%x,%lld)\n",
536 	    freeBlk, count,
537 	    blk, (long long)radix
538 	);
539 #endif
540 
541 	/*
542 	 * NOTE: radix may exceed 32 bits until first division.
543 	 */
544 	if (scan->u.bmu_avail == 0) {
545 		/*
546 		 * ALL-ALLOCATED special case, with possible
547 		 * shortcut to ALL-FREE special case.
548 		 */
549 		scan->u.bmu_avail = count;
550 		scan->bm_bighint = count;
551 
552 		if (count != radix)  {
553 			for (i = 1; i <= skip; i += next_skip) {
554 				if (scan[i].bm_bighint == (swblk_t)-1)
555 					break;
556 				scan[i].bm_bighint = 0;
557 				if (next_skip == 1) {
558 					scan[i].u.bmu_bitmap = 0;
559 				} else {
560 					scan[i].u.bmu_avail = 0;
561 				}
562 			}
563 			/* fall through */
564 		}
565 	} else {
566 		scan->u.bmu_avail += count;
567 		/* scan->bm_bighint = radix; */
568 	}
569 
570 	/*
571 	 * ALL-FREE special case.
572 	 */
573 
574 	if (scan->u.bmu_avail == radix)
575 		return;
576 	if (scan->u.bmu_avail > radix)
577 		panic("blst_meta_free: freeing already free blocks (%d) %d/%lld", count, scan->u.bmu_avail, (long long)radix);
578 
579 	/*
580 	 * Break the free down into its components
581 	 */
582 
583 	radix /= BLIST_META_RADIX;
584 
585 	i = (freeBlk - blk) / (swblk_t)radix;
586 	blk += i * (swblk_t)radix;
587 	i = i * next_skip + 1;
588 
589 	while (i <= skip && blk < freeBlk + count) {
590 		swblk_t v;
591 
592 		v = blk + (swblk_t)radix - freeBlk;
593 		if (v > count)
594 			v = count;
595 
596 		if (scan->bm_bighint == (swblk_t)-1)
597 			panic("blst_meta_free: freeing unexpected range");
598 
599 		if (next_skip == 1) {
600 			blst_leaf_free(&scan[i], freeBlk, v);
601 		} else {
602 			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
603 		}
604 		if (scan->bm_bighint < scan[i].bm_bighint)
605 		    scan->bm_bighint = scan[i].bm_bighint;
606 		count -= v;
607 		freeBlk += v;
608 		blk += (swblk_t)radix;
609 		i += next_skip;
610 	}
611 }
612 
613 /*
614  * BLIST_RADIX_COPY() - copy one radix tree to another
615  *
616  *	Locates free space in the source tree and frees it in the destination
617  *	tree.  The space may not already be free in the destination.
618  */
619 
620 static void
621 blst_copy(blmeta_t *scan, swblk_t blk, int64_t radix,
622 	  swblk_t skip, blist_t dest, swblk_t count)
623 {
624 	int next_skip;
625 	int i;
626 
627 	/*
628 	 * Leaf node
629 	 */
630 
631 	if (radix == BLIST_BMAP_RADIX) {
632 		u_swblk_t v = scan->u.bmu_bitmap;
633 
634 		if (v == (u_swblk_t)-1) {
635 			blist_free(dest, blk, count);
636 		} else if (v != 0) {
637 			int i;
638 
639 			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
640 				if (v & (1 << i))
641 					blist_free(dest, blk + i, 1);
642 			}
643 		}
644 		return;
645 	}
646 
647 	/*
648 	 * Meta node
649 	 */
650 
651 	if (scan->u.bmu_avail == 0) {
652 		/*
653 		 * Source all allocated, leave dest allocated
654 		 */
655 		return;
656 	}
657 	if (scan->u.bmu_avail == radix) {
658 		/*
659 		 * Source all free, free entire dest
660 		 */
661 		if (count < radix)
662 			blist_free(dest, blk, count);
663 		else
664 			blist_free(dest, blk, (swblk_t)radix);
665 		return;
666 	}
667 
668 
669 	radix /= BLIST_META_RADIX;
670 	next_skip = ((u_int)skip / BLIST_META_RADIX);
671 
672 	for (i = 1; count && i <= skip; i += next_skip) {
673 		if (scan[i].bm_bighint == (swblk_t)-1)
674 			break;
675 
676 		if (count >= (swblk_t)radix) {
677 			blst_copy(
678 			    &scan[i],
679 			    blk,
680 			    radix,
681 			    next_skip - 1,
682 			    dest,
683 			    (swblk_t)radix
684 			);
685 			count -= (swblk_t)radix;
686 		} else {
687 			if (count) {
688 				blst_copy(
689 				    &scan[i],
690 				    blk,
691 				    radix,
692 				    next_skip - 1,
693 				    dest,
694 				    count
695 				);
696 			}
697 			count = 0;
698 		}
699 		blk += (swblk_t)radix;
700 	}
701 }
702 
703 /*
704  * BLST_RADIX_INIT() - initialize radix tree
705  *
706  *	Initialize our meta structures and bitmaps and calculate the exact
707  *	amount of space required to manage 'count' blocks - this space may
708  *	be considerably less then the calculated radix due to the large
709  *	RADIX values we use.
710  */
711 
712 static swblk_t
713 blst_radix_init(blmeta_t *scan, int64_t radix, int skip, swblk_t count)
714 {
715 	int i;
716 	int next_skip;
717 	swblk_t memindex = 0;
718 
719 	/*
720 	 * Leaf node
721 	 */
722 
723 	if (radix == BLIST_BMAP_RADIX) {
724 		if (scan) {
725 			scan->bm_bighint = 0;
726 			scan->u.bmu_bitmap = 0;
727 		}
728 		return(memindex);
729 	}
730 
731 	/*
732 	 * Meta node.  If allocating the entire object we can special
733 	 * case it.  However, we need to figure out how much memory
734 	 * is required to manage 'count' blocks, so we continue on anyway.
735 	 */
736 
737 	if (scan) {
738 		scan->bm_bighint = 0;
739 		scan->u.bmu_avail = 0;
740 	}
741 
742 	radix /= BLIST_META_RADIX;
743 	next_skip = ((u_int)skip / BLIST_META_RADIX);
744 
745 	for (i = 1; i <= skip; i += next_skip) {
746 		if (count >= (swblk_t)radix) {
747 			/*
748 			 * Allocate the entire object
749 			 */
750 			memindex = i + blst_radix_init(
751 			    ((scan) ? &scan[i] : NULL),
752 			    radix,
753 			    next_skip - 1,
754 			    (swblk_t)radix
755 			);
756 			count -= (swblk_t)radix;
757 		} else if (count > 0) {
758 			/*
759 			 * Allocate a partial object
760 			 */
761 			memindex = i + blst_radix_init(
762 			    ((scan) ? &scan[i] : NULL),
763 			    radix,
764 			    next_skip - 1,
765 			    count
766 			);
767 			count = 0;
768 		} else {
769 			/*
770 			 * Add terminator and break out
771 			 */
772 			if (scan)
773 				scan[i].bm_bighint = (swblk_t)-1;
774 			break;
775 		}
776 	}
777 	if (memindex < i)
778 		memindex = i;
779 	return(memindex);
780 }
781 
782 #ifdef BLIST_DEBUG
783 
784 static void
785 blst_radix_print(blmeta_t *scan, swblk_t blk, int64_t radix, int skip, int tab)
786 {
787 	int i;
788 	int next_skip;
789 	int lastState = 0;
790 
791 	if (radix == BLIST_BMAP_RADIX) {
792 		kprintf(
793 		    "%*.*s(%04x,%lld): bitmap %08x big=%d\n",
794 		    tab, tab, "",
795 		    blk, (long long)radix,
796 		    scan->u.bmu_bitmap,
797 		    scan->bm_bighint
798 		);
799 		return;
800 	}
801 
802 	if (scan->u.bmu_avail == 0) {
803 		kprintf(
804 		    "%*.*s(%04x,%lld) ALL ALLOCATED\n",
805 		    tab, tab, "",
806 		    blk,
807 		    (long long)radix
808 		);
809 		return;
810 	}
811 	if (scan->u.bmu_avail == radix) {
812 		kprintf(
813 		    "%*.*s(%04x,%lld) ALL FREE\n",
814 		    tab, tab, "",
815 		    blk,
816 		    (long long)radix
817 		);
818 		return;
819 	}
820 
821 	kprintf(
822 	    "%*.*s(%04x,%lld): subtree (%d/%lld) big=%d {\n",
823 	    tab, tab, "",
824 	    blk, (long long)radix,
825 	    scan->u.bmu_avail,
826 	    (long long)radix,
827 	    scan->bm_bighint
828 	);
829 
830 	radix /= BLIST_META_RADIX;
831 	next_skip = ((u_int)skip / BLIST_META_RADIX);
832 	tab += 4;
833 
834 	for (i = 1; i <= skip; i += next_skip) {
835 		if (scan[i].bm_bighint == (swblk_t)-1) {
836 			kprintf(
837 			    "%*.*s(%04x,%lld): Terminator\n",
838 			    tab, tab, "",
839 			    blk, (long long)radix
840 			);
841 			lastState = 0;
842 			break;
843 		}
844 		blst_radix_print(
845 		    &scan[i],
846 		    blk,
847 		    radix,
848 		    next_skip - 1,
849 		    tab
850 		);
851 		blk += (swblk_t)radix;
852 	}
853 	tab -= 4;
854 
855 	kprintf(
856 	    "%*.*s}\n",
857 	    tab, tab, ""
858 	);
859 }
860 
861 #endif
862 
863 #ifdef BLIST_DEBUG
864 
865 int
866 main(int ac, char **av)
867 {
868 	int size = 1024;
869 	int i;
870 	blist_t bl;
871 
872 	for (i = 1; i < ac; ++i) {
873 		const char *ptr = av[i];
874 		if (*ptr != '-') {
875 			size = strtol(ptr, NULL, 0);
876 			continue;
877 		}
878 		ptr += 2;
879 		fprintf(stderr, "Bad option: %s\n", ptr - 2);
880 		exit(1);
881 	}
882 	bl = blist_create(size);
883 	blist_free(bl, 0, size);
884 
885 	for (;;) {
886 		char buf[1024];
887 		swblk_t da = 0;
888 		swblk_t count = 0;
889 
890 
891 		kprintf("%d/%d/%lld> ",
892 			bl->bl_free, size, (long long)bl->bl_radix);
893 		fflush(stdout);
894 		if (fgets(buf, sizeof(buf), stdin) == NULL)
895 			break;
896 		switch(buf[0]) {
897 		case 'r':
898 			if (sscanf(buf + 1, "%d", &count) == 1) {
899 				blist_resize(&bl, count, 1);
900 			} else {
901 				kprintf("?\n");
902 			}
903 		case 'p':
904 			blist_print(bl);
905 			break;
906 		case 'a':
907 			if (sscanf(buf + 1, "%d", &count) == 1) {
908 				swblk_t blk = blist_alloc(bl, count);
909 				kprintf("    R=%04x\n", blk);
910 			} else {
911 				kprintf("?\n");
912 			}
913 			break;
914 		case 'f':
915 			if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
916 				blist_free(bl, da, count);
917 			} else {
918 				kprintf("?\n");
919 			}
920 			break;
921 		case '?':
922 		case 'h':
923 			puts(
924 			    "p          -print\n"
925 			    "a %d       -allocate\n"
926 			    "f %x %d    -free\n"
927 			    "r %d       -resize\n"
928 			    "h/?        -help"
929 			);
930 			break;
931 		default:
932 			kprintf("?\n");
933 			break;
934 		}
935 	}
936 	return(0);
937 }
938 
939 void
940 panic(const char *ctl, ...)
941 {
942 	__va_list va;
943 
944 	__va_start(va, ctl);
945 	vfprintf(stderr, ctl, va);
946 	fprintf(stderr, "\n");
947 	__va_end(va);
948 	exit(1);
949 }
950 
951 #endif
952 
953