xref: /dragonfly/sys/kern/subr_bus.c (revision 0600465e)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  */
28 
29 #include "opt_bus.h"
30 
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/kobj.h>
37 #include <sys/bus_private.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/device.h>
43 #include <sys/lock.h>
44 #include <sys/conf.h>
45 #include <sys/uio.h>
46 #include <sys/filio.h>
47 #include <sys/event.h>
48 #include <sys/signalvar.h>
49 #include <sys/machintr.h>
50 #include <sys/vnode.h>
51 
52 #include <machine/stdarg.h>	/* for device_printf() */
53 
54 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
55 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
56 
57 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
58 
59 #ifdef BUS_DEBUG
60 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
61 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
62 #define DRIVERNAME(d)	((d)? d->name : "no driver")
63 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
64 
65 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
66  * prevent syslog from deleting initial spaces
67  */
68 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
69 
70 static void	print_device_short(device_t dev, int indent);
71 static void	print_device(device_t dev, int indent);
72 void		print_device_tree_short(device_t dev, int indent);
73 void		print_device_tree(device_t dev, int indent);
74 static void	print_driver_short(driver_t *driver, int indent);
75 static void	print_driver(driver_t *driver, int indent);
76 static void	print_driver_list(driver_list_t drivers, int indent);
77 static void	print_devclass_short(devclass_t dc, int indent);
78 static void	print_devclass(devclass_t dc, int indent);
79 void		print_devclass_list_short(void);
80 void		print_devclass_list(void);
81 
82 #else
83 /* Make the compiler ignore the function calls */
84 #define PDEBUG(a)			/* nop */
85 #define DEVICENAME(d)			/* nop */
86 #define DRIVERNAME(d)			/* nop */
87 #define DEVCLANAME(d)			/* nop */
88 
89 #define print_device_short(d,i)		/* nop */
90 #define print_device(d,i)		/* nop */
91 #define print_device_tree_short(d,i)	/* nop */
92 #define print_device_tree(d,i)		/* nop */
93 #define print_driver_short(d,i)		/* nop */
94 #define print_driver(d,i)		/* nop */
95 #define print_driver_list(d,i)		/* nop */
96 #define print_devclass_short(d,i)	/* nop */
97 #define print_devclass(d,i)		/* nop */
98 #define print_devclass_list_short()	/* nop */
99 #define print_devclass_list()		/* nop */
100 #endif
101 
102 /*
103  * dev sysctl tree
104  */
105 
106 enum {
107 	DEVCLASS_SYSCTL_PARENT,
108 };
109 
110 static int
111 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
112 {
113 	devclass_t dc = (devclass_t)arg1;
114 	const char *value;
115 
116 	switch (arg2) {
117 	case DEVCLASS_SYSCTL_PARENT:
118 		value = dc->parent ? dc->parent->name : "";
119 		break;
120 	default:
121 		return (EINVAL);
122 	}
123 	return (SYSCTL_OUT(req, value, strlen(value)));
124 }
125 
126 static void
127 devclass_sysctl_init(devclass_t dc)
128 {
129 
130 	if (dc->sysctl_tree != NULL)
131 		return;
132 	sysctl_ctx_init(&dc->sysctl_ctx);
133 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
134 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
135 	    CTLFLAG_RD, NULL, "");
136 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
137 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
138 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
139 	    "parent class");
140 }
141 
142 enum {
143 	DEVICE_SYSCTL_DESC,
144 	DEVICE_SYSCTL_DRIVER,
145 	DEVICE_SYSCTL_LOCATION,
146 	DEVICE_SYSCTL_PNPINFO,
147 	DEVICE_SYSCTL_PARENT,
148 };
149 
150 static int
151 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
152 {
153 	device_t dev = (device_t)arg1;
154 	const char *value;
155 	char *buf;
156 	int error;
157 
158 	buf = NULL;
159 	switch (arg2) {
160 	case DEVICE_SYSCTL_DESC:
161 		value = dev->desc ? dev->desc : "";
162 		break;
163 	case DEVICE_SYSCTL_DRIVER:
164 		value = dev->driver ? dev->driver->name : "";
165 		break;
166 	case DEVICE_SYSCTL_LOCATION:
167 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
168 		bus_child_location_str(dev, buf, 1024);
169 		break;
170 	case DEVICE_SYSCTL_PNPINFO:
171 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
172 		bus_child_pnpinfo_str(dev, buf, 1024);
173 		break;
174 	case DEVICE_SYSCTL_PARENT:
175 		value = dev->parent ? dev->parent->nameunit : "";
176 		break;
177 	default:
178 		return (EINVAL);
179 	}
180 	error = SYSCTL_OUT(req, value, strlen(value));
181 	if (buf != NULL)
182 		kfree(buf, M_BUS);
183 	return (error);
184 }
185 
186 static void
187 device_sysctl_init(device_t dev)
188 {
189 	devclass_t dc = dev->devclass;
190 
191 	if (dev->sysctl_tree != NULL)
192 		return;
193 	devclass_sysctl_init(dc);
194 	sysctl_ctx_init(&dev->sysctl_ctx);
195 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
196 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
197 	    dev->nameunit + strlen(dc->name),
198 	    CTLFLAG_RD, NULL, "");
199 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
200 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
201 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
202 	    "device description");
203 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
204 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
205 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
206 	    "device driver name");
207 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
208 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
209 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
210 	    "device location relative to parent");
211 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
212 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
213 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
214 	    "device identification");
215 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
216 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
217 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
218 	    "parent device");
219 }
220 
221 static void
222 device_sysctl_update(device_t dev)
223 {
224 	devclass_t dc = dev->devclass;
225 
226 	if (dev->sysctl_tree == NULL)
227 		return;
228 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
229 }
230 
231 static void
232 device_sysctl_fini(device_t dev)
233 {
234 	if (dev->sysctl_tree == NULL)
235 		return;
236 	sysctl_ctx_free(&dev->sysctl_ctx);
237 	dev->sysctl_tree = NULL;
238 }
239 
240 static void	device_attach_async(device_t dev);
241 static void	device_attach_thread(void *arg);
242 static int	device_doattach(device_t dev);
243 
244 static int do_async_attach = 0;
245 static int numasyncthreads;
246 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
247 
248 /*
249  * /dev/devctl implementation
250  */
251 
252 /*
253  * This design allows only one reader for /dev/devctl.  This is not desirable
254  * in the long run, but will get a lot of hair out of this implementation.
255  * Maybe we should make this device a clonable device.
256  *
257  * Also note: we specifically do not attach a device to the device_t tree
258  * to avoid potential chicken and egg problems.  One could argue that all
259  * of this belongs to the root node.  One could also further argue that the
260  * sysctl interface that we have not might more properly be an ioctl
261  * interface, but at this stage of the game, I'm not inclined to rock that
262  * boat.
263  *
264  * I'm also not sure that the SIGIO support is done correctly or not, as
265  * I copied it from a driver that had SIGIO support that likely hasn't been
266  * tested since 3.4 or 2.2.8!
267  */
268 
269 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
270 static int devctl_disable = 0;
271 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
272 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
273     sysctl_devctl_disable, "I", "devctl disable");
274 
275 static d_open_t		devopen;
276 static d_close_t	devclose;
277 static d_read_t		devread;
278 static d_ioctl_t	devioctl;
279 static d_kqfilter_t	devkqfilter;
280 
281 static struct dev_ops devctl_ops = {
282 	{ "devctl", 0, D_MPSAFE },
283 	.d_open =	devopen,
284 	.d_close =	devclose,
285 	.d_read =	devread,
286 	.d_ioctl =	devioctl,
287 	.d_kqfilter =	devkqfilter
288 };
289 
290 struct dev_event_info
291 {
292 	char *dei_data;
293 	TAILQ_ENTRY(dev_event_info) dei_link;
294 };
295 
296 TAILQ_HEAD(devq, dev_event_info);
297 
298 static struct dev_softc
299 {
300 	int	inuse;
301 	struct lock lock;
302 	struct kqinfo kq;
303 	struct devq devq;
304 	struct proc *async_proc;
305 } devsoftc;
306 
307 /*
308  * Chicken-and-egg problem with devfs, get the queue operational early.
309  */
310 static void
311 predevinit(void)
312 {
313 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
314 	TAILQ_INIT(&devsoftc.devq);
315 }
316 SYSINIT(predevinit, SI_SUB_CREATE_INIT, SI_ORDER_ANY, predevinit, 0);
317 
318 static void
319 devinit(void)
320 {
321 	/*
322 	 * WARNING! make_dev() can call back into devctl_queue_data()
323 	 *	    immediately.
324 	 */
325 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
326 }
327 
328 static int
329 devopen(struct dev_open_args *ap)
330 {
331 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
332 	if (devsoftc.inuse) {
333 		lockmgr(&devsoftc.lock, LK_RELEASE);
334 		return (EBUSY);
335 	}
336 	/* move to init */
337 	devsoftc.inuse = 1;
338 	devsoftc.async_proc = NULL;
339 	lockmgr(&devsoftc.lock, LK_RELEASE);
340 
341 	return (0);
342 }
343 
344 static int
345 devclose(struct dev_close_args *ap)
346 {
347 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
348 	devsoftc.inuse = 0;
349 	wakeup(&devsoftc);
350 	lockmgr(&devsoftc.lock, LK_RELEASE);
351 
352 	return (0);
353 }
354 
355 /*
356  * The read channel for this device is used to report changes to
357  * userland in realtime.  We are required to free the data as well as
358  * the n1 object because we allocate them separately.  Also note that
359  * we return one record at a time.  If you try to read this device a
360  * character at a time, you will lose the rest of the data.  Listening
361  * programs are expected to cope.
362  */
363 static int
364 devread(struct dev_read_args *ap)
365 {
366 	struct uio *uio = ap->a_uio;
367 	struct dev_event_info *n1;
368 	int rv;
369 
370 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
371 	while (TAILQ_EMPTY(&devsoftc.devq)) {
372 		if (ap->a_ioflag & IO_NDELAY) {
373 			lockmgr(&devsoftc.lock, LK_RELEASE);
374 			return (EAGAIN);
375 		}
376 		tsleep_interlock(&devsoftc, PCATCH);
377 		lockmgr(&devsoftc.lock, LK_RELEASE);
378 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
379 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
380 		if (rv) {
381 			/*
382 			 * Need to translate ERESTART to EINTR here? -- jake
383 			 */
384 			lockmgr(&devsoftc.lock, LK_RELEASE);
385 			return (rv);
386 		}
387 	}
388 	n1 = TAILQ_FIRST(&devsoftc.devq);
389 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
390 	lockmgr(&devsoftc.lock, LK_RELEASE);
391 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
392 	kfree(n1->dei_data, M_BUS);
393 	kfree(n1, M_BUS);
394 	return (rv);
395 }
396 
397 static	int
398 devioctl(struct dev_ioctl_args *ap)
399 {
400 	switch (ap->a_cmd) {
401 
402 	case FIONBIO:
403 		return (0);
404 	case FIOASYNC:
405 		if (*(int*)ap->a_data)
406 			devsoftc.async_proc = curproc;
407 		else
408 			devsoftc.async_proc = NULL;
409 		return (0);
410 
411 		/* (un)Support for other fcntl() calls. */
412 	case FIOCLEX:
413 	case FIONCLEX:
414 	case FIONREAD:
415 	case FIOSETOWN:
416 	case FIOGETOWN:
417 	default:
418 		break;
419 	}
420 	return (ENOTTY);
421 }
422 
423 static void dev_filter_detach(struct knote *);
424 static int dev_filter_read(struct knote *, long);
425 
426 static struct filterops dev_filtops =
427 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, NULL,
428 	  dev_filter_detach, dev_filter_read };
429 
430 static int
431 devkqfilter(struct dev_kqfilter_args *ap)
432 {
433 	struct knote *kn = ap->a_kn;
434 	struct klist *klist;
435 
436 	ap->a_result = 0;
437 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
438 
439 	switch (kn->kn_filter) {
440 	case EVFILT_READ:
441 		kn->kn_fop = &dev_filtops;
442 		break;
443 	default:
444 		ap->a_result = EOPNOTSUPP;
445 		lockmgr(&devsoftc.lock, LK_RELEASE);
446 		return (0);
447 	}
448 
449 	klist = &devsoftc.kq.ki_note;
450 	knote_insert(klist, kn);
451 
452 	lockmgr(&devsoftc.lock, LK_RELEASE);
453 
454 	return (0);
455 }
456 
457 static void
458 dev_filter_detach(struct knote *kn)
459 {
460 	struct klist *klist;
461 
462 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
463 	klist = &devsoftc.kq.ki_note;
464 	knote_remove(klist, kn);
465 	lockmgr(&devsoftc.lock, LK_RELEASE);
466 }
467 
468 static int
469 dev_filter_read(struct knote *kn, long hint)
470 {
471 	int ready = 0;
472 
473 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
474 	if (!TAILQ_EMPTY(&devsoftc.devq))
475 		ready = 1;
476 	lockmgr(&devsoftc.lock, LK_RELEASE);
477 
478 	return (ready);
479 }
480 
481 
482 /**
483  * @brief Return whether the userland process is running
484  */
485 boolean_t
486 devctl_process_running(void)
487 {
488 	return (devsoftc.inuse == 1);
489 }
490 
491 /**
492  * @brief Queue data to be read from the devctl device
493  *
494  * Generic interface to queue data to the devctl device.  It is
495  * assumed that @p data is properly formatted.  It is further assumed
496  * that @p data is allocated using the M_BUS malloc type.
497  */
498 void
499 devctl_queue_data(char *data)
500 {
501 	struct dev_event_info *n1 = NULL;
502 	struct proc *p;
503 
504 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
505 	if (n1 == NULL)
506 		return;
507 	n1->dei_data = data;
508 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
509 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
510 	wakeup(&devsoftc);
511 	lockmgr(&devsoftc.lock, LK_RELEASE);
512 	KNOTE(&devsoftc.kq.ki_note, 0);
513 	p = devsoftc.async_proc;
514 	if (p != NULL)
515 		ksignal(p, SIGIO);
516 }
517 
518 /**
519  * @brief Send a 'notification' to userland, using standard ways
520  */
521 void
522 devctl_notify(const char *system, const char *subsystem, const char *type,
523     const char *data)
524 {
525 	int len = 0;
526 	char *msg;
527 
528 	if (system == NULL)
529 		return;		/* BOGUS!  Must specify system. */
530 	if (subsystem == NULL)
531 		return;		/* BOGUS!  Must specify subsystem. */
532 	if (type == NULL)
533 		return;		/* BOGUS!  Must specify type. */
534 	len += strlen(" system=") + strlen(system);
535 	len += strlen(" subsystem=") + strlen(subsystem);
536 	len += strlen(" type=") + strlen(type);
537 	/* add in the data message plus newline. */
538 	if (data != NULL)
539 		len += strlen(data);
540 	len += 3;	/* '!', '\n', and NUL */
541 	msg = kmalloc(len, M_BUS, M_NOWAIT);
542 	if (msg == NULL)
543 		return;		/* Drop it on the floor */
544 	if (data != NULL)
545 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
546 		    system, subsystem, type, data);
547 	else
548 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
549 		    system, subsystem, type);
550 	devctl_queue_data(msg);
551 }
552 
553 /*
554  * Common routine that tries to make sending messages as easy as possible.
555  * We allocate memory for the data, copy strings into that, but do not
556  * free it unless there's an error.  The dequeue part of the driver should
557  * free the data.  We don't send data when the device is disabled.  We do
558  * send data, even when we have no listeners, because we wish to avoid
559  * races relating to startup and restart of listening applications.
560  *
561  * devaddq is designed to string together the type of event, with the
562  * object of that event, plus the plug and play info and location info
563  * for that event.  This is likely most useful for devices, but less
564  * useful for other consumers of this interface.  Those should use
565  * the devctl_queue_data() interface instead.
566  */
567 static void
568 devaddq(const char *type, const char *what, device_t dev)
569 {
570 	char *data = NULL;
571 	char *loc = NULL;
572 	char *pnp = NULL;
573 	const char *parstr;
574 
575 	if (devctl_disable)
576 		return;
577 	data = kmalloc(1024, M_BUS, M_NOWAIT);
578 	if (data == NULL)
579 		goto bad;
580 
581 	/* get the bus specific location of this device */
582 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
583 	if (loc == NULL)
584 		goto bad;
585 	*loc = '\0';
586 	bus_child_location_str(dev, loc, 1024);
587 
588 	/* Get the bus specific pnp info of this device */
589 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
590 	if (pnp == NULL)
591 		goto bad;
592 	*pnp = '\0';
593 	bus_child_pnpinfo_str(dev, pnp, 1024);
594 
595 	/* Get the parent of this device, or / if high enough in the tree. */
596 	if (device_get_parent(dev) == NULL)
597 		parstr = ".";	/* Or '/' ? */
598 	else
599 		parstr = device_get_nameunit(device_get_parent(dev));
600 	/* String it all together. */
601 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
602 	  parstr);
603 	kfree(loc, M_BUS);
604 	kfree(pnp, M_BUS);
605 	devctl_queue_data(data);
606 	return;
607 bad:
608 	if (pnp != NULL)
609 		kfree(pnp, M_BUS);
610 	if (loc != NULL)
611 		kfree(loc, M_BUS);
612 	if (loc != NULL)
613 		kfree(data, M_BUS);
614 	return;
615 }
616 
617 /*
618  * A device was added to the tree.  We are called just after it successfully
619  * attaches (that is, probe and attach success for this device).  No call
620  * is made if a device is merely parented into the tree.  See devnomatch
621  * if probe fails.  If attach fails, no notification is sent (but maybe
622  * we should have a different message for this).
623  */
624 static void
625 devadded(device_t dev)
626 {
627 	char *pnp = NULL;
628 	char *tmp = NULL;
629 
630 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
631 	if (pnp == NULL)
632 		goto fail;
633 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
634 	if (tmp == NULL)
635 		goto fail;
636 	*pnp = '\0';
637 	bus_child_pnpinfo_str(dev, pnp, 1024);
638 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
639 	devaddq("+", tmp, dev);
640 fail:
641 	if (pnp != NULL)
642 		kfree(pnp, M_BUS);
643 	if (tmp != NULL)
644 		kfree(tmp, M_BUS);
645 	return;
646 }
647 
648 /*
649  * A device was removed from the tree.  We are called just before this
650  * happens.
651  */
652 static void
653 devremoved(device_t dev)
654 {
655 	char *pnp = NULL;
656 	char *tmp = NULL;
657 
658 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
659 	if (pnp == NULL)
660 		goto fail;
661 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
662 	if (tmp == NULL)
663 		goto fail;
664 	*pnp = '\0';
665 	bus_child_pnpinfo_str(dev, pnp, 1024);
666 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
667 	devaddq("-", tmp, dev);
668 fail:
669 	if (pnp != NULL)
670 		kfree(pnp, M_BUS);
671 	if (tmp != NULL)
672 		kfree(tmp, M_BUS);
673 	return;
674 }
675 
676 /*
677  * Called when there's no match for this device.  This is only called
678  * the first time that no match happens, so we don't keep getitng this
679  * message.  Should that prove to be undesirable, we can change it.
680  * This is called when all drivers that can attach to a given bus
681  * decline to accept this device.  Other errrors may not be detected.
682  */
683 static void
684 devnomatch(device_t dev)
685 {
686 	devaddq("?", "", dev);
687 }
688 
689 static int
690 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
691 {
692 	struct dev_event_info *n1;
693 	int dis, error;
694 
695 	dis = devctl_disable;
696 	error = sysctl_handle_int(oidp, &dis, 0, req);
697 	if (error || !req->newptr)
698 		return (error);
699 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
700 	devctl_disable = dis;
701 	if (dis) {
702 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
703 			n1 = TAILQ_FIRST(&devsoftc.devq);
704 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
705 			kfree(n1->dei_data, M_BUS);
706 			kfree(n1, M_BUS);
707 		}
708 	}
709 	lockmgr(&devsoftc.lock, LK_RELEASE);
710 	return (0);
711 }
712 
713 /* End of /dev/devctl code */
714 
715 TAILQ_HEAD(,bsd_device)	bus_data_devices;
716 static int bus_data_generation = 1;
717 
718 kobj_method_t null_methods[] = {
719 	{ 0, 0 }
720 };
721 
722 DEFINE_CLASS(null, null_methods, 0);
723 
724 /*
725  * Devclass implementation
726  */
727 
728 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
729 
730 static devclass_t
731 devclass_find_internal(const char *classname, const char *parentname,
732 		       int create)
733 {
734 	devclass_t dc;
735 
736 	PDEBUG(("looking for %s", classname));
737 	if (classname == NULL)
738 		return(NULL);
739 
740 	TAILQ_FOREACH(dc, &devclasses, link)
741 		if (!strcmp(dc->name, classname))
742 			break;
743 
744 	if (create && !dc) {
745 		PDEBUG(("creating %s", classname));
746 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
747 			    M_BUS, M_INTWAIT | M_ZERO);
748 		dc->parent = NULL;
749 		dc->name = (char*) (dc + 1);
750 		strcpy(dc->name, classname);
751 		dc->devices = NULL;
752 		dc->maxunit = 0;
753 		TAILQ_INIT(&dc->drivers);
754 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
755 
756 		bus_data_generation_update();
757 
758 	}
759 
760 	/*
761 	 * If a parent class is specified, then set that as our parent so
762 	 * that this devclass will support drivers for the parent class as
763 	 * well.  If the parent class has the same name don't do this though
764 	 * as it creates a cycle that can trigger an infinite loop in
765 	 * device_probe_child() if a device exists for which there is no
766 	 * suitable driver.
767 	 */
768 	if (parentname && dc && !dc->parent &&
769 	    strcmp(classname, parentname) != 0)
770 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
771 
772 	return(dc);
773 }
774 
775 devclass_t
776 devclass_create(const char *classname)
777 {
778 	return(devclass_find_internal(classname, NULL, TRUE));
779 }
780 
781 devclass_t
782 devclass_find(const char *classname)
783 {
784 	return(devclass_find_internal(classname, NULL, FALSE));
785 }
786 
787 device_t
788 devclass_find_unit(const char *classname, int unit)
789 {
790 	devclass_t dc;
791 
792 	if ((dc = devclass_find(classname)) != NULL)
793 	    return(devclass_get_device(dc, unit));
794 	return (NULL);
795 }
796 
797 int
798 devclass_add_driver(devclass_t dc, driver_t *driver)
799 {
800 	driverlink_t dl;
801 	device_t dev;
802 	int i;
803 
804 	PDEBUG(("%s", DRIVERNAME(driver)));
805 
806 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
807 
808 	/*
809 	 * Compile the driver's methods. Also increase the reference count
810 	 * so that the class doesn't get freed when the last instance
811 	 * goes. This means we can safely use static methods and avoids a
812 	 * double-free in devclass_delete_driver.
813 	 */
814 	kobj_class_instantiate(driver);
815 
816 	/*
817 	 * Make sure the devclass which the driver is implementing exists.
818 	 */
819 	devclass_find_internal(driver->name, NULL, TRUE);
820 
821 	dl->driver = driver;
822 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
823 
824 	/*
825 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
826 	 * but only if the bus has already been attached (otherwise we
827 	 * might probe too early).
828 	 *
829 	 * This is what will cause a newly loaded module to be associated
830 	 * with hardware.  bus_generic_driver_added() is typically what ends
831 	 * up being called.
832 	 */
833 	for (i = 0; i < dc->maxunit; i++) {
834 		if ((dev = dc->devices[i]) != NULL) {
835 			if (dev->state >= DS_ATTACHED)
836 				BUS_DRIVER_ADDED(dev, driver);
837 		}
838 	}
839 
840 	bus_data_generation_update();
841 	return(0);
842 }
843 
844 int
845 devclass_delete_driver(devclass_t busclass, driver_t *driver)
846 {
847 	devclass_t dc = devclass_find(driver->name);
848 	driverlink_t dl;
849 	device_t dev;
850 	int i;
851 	int error;
852 
853 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
854 
855 	if (!dc)
856 		return(0);
857 
858 	/*
859 	 * Find the link structure in the bus' list of drivers.
860 	 */
861 	TAILQ_FOREACH(dl, &busclass->drivers, link)
862 		if (dl->driver == driver)
863 			break;
864 
865 	if (!dl) {
866 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
867 		return(ENOENT);
868 	}
869 
870 	/*
871 	 * Disassociate from any devices.  We iterate through all the
872 	 * devices in the devclass of the driver and detach any which are
873 	 * using the driver and which have a parent in the devclass which
874 	 * we are deleting from.
875 	 *
876 	 * Note that since a driver can be in multiple devclasses, we
877 	 * should not detach devices which are not children of devices in
878 	 * the affected devclass.
879 	 */
880 	for (i = 0; i < dc->maxunit; i++)
881 		if (dc->devices[i]) {
882 			dev = dc->devices[i];
883 			if (dev->driver == driver && dev->parent &&
884 			    dev->parent->devclass == busclass) {
885 				if ((error = device_detach(dev)) != 0)
886 					return(error);
887 				device_set_driver(dev, NULL);
888 		    	}
889 		}
890 
891 	TAILQ_REMOVE(&busclass->drivers, dl, link);
892 	kfree(dl, M_BUS);
893 
894 	kobj_class_uninstantiate(driver);
895 
896 	bus_data_generation_update();
897 	return(0);
898 }
899 
900 static driverlink_t
901 devclass_find_driver_internal(devclass_t dc, const char *classname)
902 {
903 	driverlink_t dl;
904 
905 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
906 
907 	TAILQ_FOREACH(dl, &dc->drivers, link)
908 		if (!strcmp(dl->driver->name, classname))
909 			return(dl);
910 
911 	PDEBUG(("not found"));
912 	return(NULL);
913 }
914 
915 kobj_class_t
916 devclass_find_driver(devclass_t dc, const char *classname)
917 {
918 	driverlink_t dl;
919 
920 	dl = devclass_find_driver_internal(dc, classname);
921 	if (dl)
922 		return(dl->driver);
923 	else
924 		return(NULL);
925 }
926 
927 const char *
928 devclass_get_name(devclass_t dc)
929 {
930 	return(dc->name);
931 }
932 
933 device_t
934 devclass_get_device(devclass_t dc, int unit)
935 {
936 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
937 		return(NULL);
938 	return(dc->devices[unit]);
939 }
940 
941 void *
942 devclass_get_softc(devclass_t dc, int unit)
943 {
944 	device_t dev;
945 
946 	dev = devclass_get_device(dc, unit);
947 	if (!dev)
948 		return(NULL);
949 
950 	return(device_get_softc(dev));
951 }
952 
953 int
954 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
955 {
956 	int i;
957 	int count;
958 	device_t *list;
959 
960 	count = 0;
961 	for (i = 0; i < dc->maxunit; i++)
962 		if (dc->devices[i])
963 			count++;
964 
965 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
966 
967 	count = 0;
968 	for (i = 0; i < dc->maxunit; i++)
969 		if (dc->devices[i]) {
970 			list[count] = dc->devices[i];
971 			count++;
972 		}
973 
974 	*devlistp = list;
975 	*devcountp = count;
976 
977 	return(0);
978 }
979 
980 /**
981  * @brief Get a list of drivers in the devclass
982  *
983  * An array containing a list of pointers to all the drivers in the
984  * given devclass is allocated and returned in @p *listp.  The number
985  * of drivers in the array is returned in @p *countp. The caller should
986  * free the array using @c free(p, M_TEMP).
987  *
988  * @param dc            the devclass to examine
989  * @param listp         gives location for array pointer return value
990  * @param countp        gives location for number of array elements
991  *                      return value
992  *
993  * @retval 0            success
994  * @retval ENOMEM       the array allocation failed
995  */
996 int
997 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
998 {
999         driverlink_t dl;
1000         driver_t **list;
1001         int count;
1002 
1003         count = 0;
1004         TAILQ_FOREACH(dl, &dc->drivers, link)
1005                 count++;
1006         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1007         if (list == NULL)
1008                 return (ENOMEM);
1009 
1010         count = 0;
1011         TAILQ_FOREACH(dl, &dc->drivers, link) {
1012                 list[count] = dl->driver;
1013                 count++;
1014         }
1015         *listp = list;
1016         *countp = count;
1017 
1018         return (0);
1019 }
1020 
1021 /**
1022  * @brief Get the number of devices in a devclass
1023  *
1024  * @param dc		the devclass to examine
1025  */
1026 int
1027 devclass_get_count(devclass_t dc)
1028 {
1029 	int count, i;
1030 
1031 	count = 0;
1032 	for (i = 0; i < dc->maxunit; i++)
1033 		if (dc->devices[i])
1034 			count++;
1035 	return (count);
1036 }
1037 
1038 int
1039 devclass_get_maxunit(devclass_t dc)
1040 {
1041 	return(dc->maxunit);
1042 }
1043 
1044 void
1045 devclass_set_parent(devclass_t dc, devclass_t pdc)
1046 {
1047         dc->parent = pdc;
1048 }
1049 
1050 devclass_t
1051 devclass_get_parent(devclass_t dc)
1052 {
1053 	return(dc->parent);
1054 }
1055 
1056 static int
1057 devclass_alloc_unit(devclass_t dc, int *unitp)
1058 {
1059 	int unit = *unitp;
1060 
1061 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1062 
1063 	/* If we have been given a wired unit number, check for existing device */
1064 	if (unit != -1) {
1065 		if (unit >= 0 && unit < dc->maxunit &&
1066 		    dc->devices[unit] != NULL) {
1067 			if (bootverbose)
1068 				kprintf("%s-: %s%d exists, using next available unit number\n",
1069 				       dc->name, dc->name, unit);
1070 			/* find the next available slot */
1071 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
1072 				;
1073 		}
1074 	} else {
1075 		/* Unwired device, find the next available slot for it */
1076 		unit = 0;
1077 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1078 			unit++;
1079 	}
1080 
1081 	/*
1082 	 * We've selected a unit beyond the length of the table, so let's
1083 	 * extend the table to make room for all units up to and including
1084 	 * this one.
1085 	 */
1086 	if (unit >= dc->maxunit) {
1087 		device_t *newlist;
1088 		int newsize;
1089 
1090 		newsize = (unit + 1);
1091 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
1092 				 M_INTWAIT | M_ZERO);
1093 		if (newlist == NULL)
1094 			return(ENOMEM);
1095 		/*
1096 		 * WARNING: Due to gcc builtin optimization,
1097 		 *	    calling bcopy causes gcc to assume
1098 		 *	    that the source and destination args
1099 		 *	    cannot be NULL and optimize-away later
1100 		 *	    conditional tests to determine if dc->devices
1101 		 *	    is NULL.  In this situation, in fact,
1102 		 *	    dc->devices CAN be NULL w/ maxunit == 0.
1103 		 */
1104 		if (dc->devices) {
1105 			bcopy(dc->devices,
1106 			      newlist,
1107 			      sizeof(device_t) * dc->maxunit);
1108 			kfree(dc->devices, M_BUS);
1109 		}
1110 		dc->devices = newlist;
1111 		dc->maxunit = newsize;
1112 	}
1113 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1114 
1115 	*unitp = unit;
1116 	return(0);
1117 }
1118 
1119 static int
1120 devclass_add_device(devclass_t dc, device_t dev)
1121 {
1122 	int buflen, error;
1123 
1124 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1125 
1126 	buflen = strlen(dc->name) + 5;
1127 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
1128 	if (dev->nameunit == NULL)
1129 		return(ENOMEM);
1130 
1131 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1132 		kfree(dev->nameunit, M_BUS);
1133 		dev->nameunit = NULL;
1134 		return(error);
1135 	}
1136 	dc->devices[dev->unit] = dev;
1137 	dev->devclass = dc;
1138 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1139 
1140 	return(0);
1141 }
1142 
1143 static int
1144 devclass_delete_device(devclass_t dc, device_t dev)
1145 {
1146 	if (!dc || !dev)
1147 		return(0);
1148 
1149 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1150 
1151 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1152 		panic("devclass_delete_device: inconsistent device class");
1153 	dc->devices[dev->unit] = NULL;
1154 	if (dev->flags & DF_WILDCARD)
1155 		dev->unit = -1;
1156 	dev->devclass = NULL;
1157 	kfree(dev->nameunit, M_BUS);
1158 	dev->nameunit = NULL;
1159 
1160 	return(0);
1161 }
1162 
1163 static device_t
1164 make_device(device_t parent, const char *name, int unit)
1165 {
1166 	device_t dev;
1167 	devclass_t dc;
1168 
1169 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1170 
1171 	if (name != NULL) {
1172 		dc = devclass_find_internal(name, NULL, TRUE);
1173 		if (!dc) {
1174 			kprintf("make_device: can't find device class %s\n", name);
1175 			return(NULL);
1176 		}
1177 	} else
1178 		dc = NULL;
1179 
1180 	dev = kmalloc(sizeof(struct bsd_device), M_BUS, M_INTWAIT | M_ZERO);
1181 	if (!dev)
1182 		return(0);
1183 
1184 	dev->parent = parent;
1185 	TAILQ_INIT(&dev->children);
1186 	kobj_init((kobj_t) dev, &null_class);
1187 	dev->driver = NULL;
1188 	dev->devclass = NULL;
1189 	dev->unit = unit;
1190 	dev->nameunit = NULL;
1191 	dev->desc = NULL;
1192 	dev->busy = 0;
1193 	dev->devflags = 0;
1194 	dev->flags = DF_ENABLED;
1195 	dev->order = 0;
1196 	if (unit == -1)
1197 		dev->flags |= DF_WILDCARD;
1198 	if (name) {
1199 		dev->flags |= DF_FIXEDCLASS;
1200 		if (devclass_add_device(dc, dev) != 0) {
1201 			kobj_delete((kobj_t)dev, M_BUS);
1202 			return(NULL);
1203 		}
1204     	}
1205 	dev->ivars = NULL;
1206 	dev->softc = NULL;
1207 
1208 	dev->state = DS_NOTPRESENT;
1209 
1210 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1211 	bus_data_generation_update();
1212 
1213 	return(dev);
1214 }
1215 
1216 static int
1217 device_print_child(device_t dev, device_t child)
1218 {
1219 	int retval = 0;
1220 
1221 	if (device_is_alive(child))
1222 		retval += BUS_PRINT_CHILD(dev, child);
1223 	else
1224 		retval += device_printf(child, " not found\n");
1225 
1226 	return(retval);
1227 }
1228 
1229 device_t
1230 device_add_child(device_t dev, const char *name, int unit)
1231 {
1232 	return device_add_child_ordered(dev, 0, name, unit);
1233 }
1234 
1235 device_t
1236 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1237 {
1238 	device_t child;
1239 	device_t place;
1240 
1241 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1242 		order, unit));
1243 
1244 	child = make_device(dev, name, unit);
1245 	if (child == NULL)
1246 		return child;
1247 	child->order = order;
1248 
1249 	TAILQ_FOREACH(place, &dev->children, link) {
1250 		if (place->order > order)
1251 			break;
1252 	}
1253 
1254 	if (place) {
1255 		/*
1256 		 * The device 'place' is the first device whose order is
1257 		 * greater than the new child.
1258 		 */
1259 		TAILQ_INSERT_BEFORE(place, child, link);
1260 	} else {
1261 		/*
1262 		 * The new child's order is greater or equal to the order of
1263 		 * any existing device. Add the child to the tail of the list.
1264 		 */
1265 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1266     	}
1267 
1268 	bus_data_generation_update();
1269 	return(child);
1270 }
1271 
1272 int
1273 device_delete_child(device_t dev, device_t child)
1274 {
1275 	int error;
1276 	device_t grandchild;
1277 
1278 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1279 
1280 	/* remove children first */
1281 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1282         	error = device_delete_child(child, grandchild);
1283 		if (error)
1284 			return(error);
1285 	}
1286 
1287 	if ((error = device_detach(child)) != 0)
1288 		return(error);
1289 	if (child->devclass)
1290 		devclass_delete_device(child->devclass, child);
1291 	TAILQ_REMOVE(&dev->children, child, link);
1292 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1293 	kobj_delete((kobj_t)child, M_BUS);
1294 
1295 	bus_data_generation_update();
1296 	return(0);
1297 }
1298 
1299 /**
1300  * @brief Delete all children devices of the given device, if any.
1301  *
1302  * This function deletes all children devices of the given device, if
1303  * any, using the device_delete_child() function for each device it
1304  * finds. If a child device cannot be deleted, this function will
1305  * return an error code.
1306  *
1307  * @param dev		the parent device
1308  *
1309  * @retval 0		success
1310  * @retval non-zero	a device would not detach
1311  */
1312 int
1313 device_delete_children(device_t dev)
1314 {
1315 	device_t child;
1316 	int error;
1317 
1318 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1319 
1320 	error = 0;
1321 
1322 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1323 		error = device_delete_child(dev, child);
1324 		if (error) {
1325 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1326 			break;
1327 		}
1328 	}
1329 	return (error);
1330 }
1331 
1332 /**
1333  * @brief Find a device given a unit number
1334  *
1335  * This is similar to devclass_get_devices() but only searches for
1336  * devices which have @p dev as a parent.
1337  *
1338  * @param dev		the parent device to search
1339  * @param unit		the unit number to search for.  If the unit is -1,
1340  *			return the first child of @p dev which has name
1341  *			@p classname (that is, the one with the lowest unit.)
1342  *
1343  * @returns		the device with the given unit number or @c
1344  *			NULL if there is no such device
1345  */
1346 device_t
1347 device_find_child(device_t dev, const char *classname, int unit)
1348 {
1349 	devclass_t dc;
1350 	device_t child;
1351 
1352 	dc = devclass_find(classname);
1353 	if (!dc)
1354 		return(NULL);
1355 
1356 	if (unit != -1) {
1357 		child = devclass_get_device(dc, unit);
1358 		if (child && child->parent == dev)
1359 			return (child);
1360 	} else {
1361 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1362 			child = devclass_get_device(dc, unit);
1363 			if (child && child->parent == dev)
1364 				return (child);
1365 		}
1366 	}
1367 	return(NULL);
1368 }
1369 
1370 static driverlink_t
1371 first_matching_driver(devclass_t dc, device_t dev)
1372 {
1373 	if (dev->devclass)
1374 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1375 	else
1376 		return(TAILQ_FIRST(&dc->drivers));
1377 }
1378 
1379 static driverlink_t
1380 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1381 {
1382 	if (dev->devclass) {
1383 		driverlink_t dl;
1384 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1385 			if (!strcmp(dev->devclass->name, dl->driver->name))
1386 				return(dl);
1387 		return(NULL);
1388 	} else
1389 		return(TAILQ_NEXT(last, link));
1390 }
1391 
1392 int
1393 device_probe_child(device_t dev, device_t child)
1394 {
1395 	devclass_t dc;
1396 	driverlink_t best = NULL;
1397 	driverlink_t dl;
1398 	int result, pri = 0;
1399 	int hasclass = (child->devclass != NULL);
1400 
1401 	dc = dev->devclass;
1402 	if (!dc)
1403 		panic("device_probe_child: parent device has no devclass");
1404 
1405 	if (child->state == DS_ALIVE)
1406 		return(0);
1407 
1408 	for (; dc; dc = dc->parent) {
1409 		for (dl = first_matching_driver(dc, child); dl;
1410 		     dl = next_matching_driver(dc, child, dl)) {
1411 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1412 			device_set_driver(child, dl->driver);
1413 			if (!hasclass)
1414 				device_set_devclass(child, dl->driver->name);
1415 			result = DEVICE_PROBE(child);
1416 			if (!hasclass)
1417 				device_set_devclass(child, 0);
1418 
1419 			/*
1420 			 * If the driver returns SUCCESS, there can be
1421 			 * no higher match for this device.
1422 			 */
1423 			if (result == 0) {
1424 				best = dl;
1425 				pri = 0;
1426 				break;
1427 			}
1428 
1429 			/*
1430 			 * The driver returned an error so it
1431 			 * certainly doesn't match.
1432 			 */
1433 			if (result > 0) {
1434 				device_set_driver(child, NULL);
1435 				continue;
1436 			}
1437 
1438 			/*
1439 			 * A priority lower than SUCCESS, remember the
1440 			 * best matching driver. Initialise the value
1441 			 * of pri for the first match.
1442 			 */
1443 			if (best == NULL || result > pri) {
1444 				best = dl;
1445 				pri = result;
1446 				continue;
1447 			}
1448 		}
1449 		/*
1450 	         * If we have unambiguous match in this devclass,
1451 	         * don't look in the parent.
1452 	         */
1453 	        if (best && pri == 0)
1454 			break;
1455 	}
1456 
1457 	/*
1458 	 * If we found a driver, change state and initialise the devclass.
1459 	 */
1460 	if (best) {
1461 		if (!child->devclass)
1462 			device_set_devclass(child, best->driver->name);
1463 		device_set_driver(child, best->driver);
1464 		if (pri < 0) {
1465 			/*
1466 			 * A bit bogus. Call the probe method again to make
1467 			 * sure that we have the right description.
1468 			 */
1469 			DEVICE_PROBE(child);
1470 		}
1471 
1472 		bus_data_generation_update();
1473 		child->state = DS_ALIVE;
1474 		return(0);
1475 	}
1476 
1477 	return(ENXIO);
1478 }
1479 
1480 int
1481 device_probe_child_gpri(device_t dev, device_t child, u_int gpri)
1482 {
1483 	devclass_t dc;
1484 	driverlink_t best = NULL;
1485 	driverlink_t dl;
1486 	int result, pri = 0;
1487 	int hasclass = (child->devclass != NULL);
1488 
1489 	dc = dev->devclass;
1490 	if (!dc)
1491 		panic("device_probe_child: parent device has no devclass");
1492 
1493 	if (child->state == DS_ALIVE)
1494 		return(0);
1495 
1496 	for (; dc; dc = dc->parent) {
1497 		for (dl = first_matching_driver(dc, child); dl;
1498 			dl = next_matching_driver(dc, child, dl)) {
1499 			/*
1500 			 * GPRI handling, only probe drivers with the
1501 			 * specific GPRI.
1502 			 */
1503 			if (dl->driver->gpri != gpri)
1504 				continue;
1505 
1506 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1507 			device_set_driver(child, dl->driver);
1508 			if (!hasclass)
1509 				device_set_devclass(child, dl->driver->name);
1510 			result = DEVICE_PROBE(child);
1511 			if (!hasclass)
1512 				device_set_devclass(child, 0);
1513 
1514 			/*
1515 			 * If the driver returns SUCCESS, there can be
1516 			 * no higher match for this device.
1517 			 */
1518 			if (result == 0) {
1519 				best = dl;
1520 				pri = 0;
1521 				break;
1522 			}
1523 
1524 			/*
1525 			 * The driver returned an error so it
1526 			 * certainly doesn't match.
1527 			 */
1528 			if (result > 0) {
1529 				device_set_driver(child, NULL);
1530 				continue;
1531 			}
1532 
1533 			/*
1534 			 * A priority lower than SUCCESS, remember the
1535 			 * best matching driver. Initialise the value
1536 			 * of pri for the first match.
1537 			 */
1538 			if (best == NULL || result > pri) {
1539 				best = dl;
1540 				pri = result;
1541 				continue;
1542 			}
1543 	        }
1544 		/*
1545 	         * If we have unambiguous match in this devclass,
1546 	         * don't look in the parent.
1547 	         */
1548 	        if (best && pri == 0)
1549 			break;
1550 	}
1551 
1552 	/*
1553 	 * If we found a driver, change state and initialise the devclass.
1554 	 */
1555 	if (best) {
1556 		if (!child->devclass)
1557 			device_set_devclass(child, best->driver->name);
1558 		device_set_driver(child, best->driver);
1559 		if (pri < 0) {
1560 			/*
1561 			 * A bit bogus. Call the probe method again to make
1562 			 * sure that we have the right description.
1563 			 */
1564 			DEVICE_PROBE(child);
1565 		}
1566 
1567 		bus_data_generation_update();
1568 		child->state = DS_ALIVE;
1569 		return(0);
1570 	}
1571 
1572 	return(ENXIO);
1573 }
1574 
1575 device_t
1576 device_get_parent(device_t dev)
1577 {
1578 	return dev->parent;
1579 }
1580 
1581 int
1582 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1583 {
1584 	int count;
1585 	device_t child;
1586 	device_t *list;
1587 
1588 	count = 0;
1589 	TAILQ_FOREACH(child, &dev->children, link)
1590 		count++;
1591 
1592 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1593 
1594 	count = 0;
1595 	TAILQ_FOREACH(child, &dev->children, link) {
1596 		list[count] = child;
1597 		count++;
1598 	}
1599 
1600 	*devlistp = list;
1601 	*devcountp = count;
1602 
1603 	return(0);
1604 }
1605 
1606 driver_t *
1607 device_get_driver(device_t dev)
1608 {
1609 	return(dev->driver);
1610 }
1611 
1612 devclass_t
1613 device_get_devclass(device_t dev)
1614 {
1615 	return(dev->devclass);
1616 }
1617 
1618 const char *
1619 device_get_name(device_t dev)
1620 {
1621 	if (dev->devclass)
1622 		return devclass_get_name(dev->devclass);
1623 	return(NULL);
1624 }
1625 
1626 const char *
1627 device_get_nameunit(device_t dev)
1628 {
1629 	return(dev->nameunit);
1630 }
1631 
1632 int
1633 device_get_unit(device_t dev)
1634 {
1635 	return(dev->unit);
1636 }
1637 
1638 const char *
1639 device_get_desc(device_t dev)
1640 {
1641 	return(dev->desc);
1642 }
1643 
1644 uint32_t
1645 device_get_flags(device_t dev)
1646 {
1647 	return(dev->devflags);
1648 }
1649 
1650 struct sysctl_ctx_list *
1651 device_get_sysctl_ctx(device_t dev)
1652 {
1653 	return (&dev->sysctl_ctx);
1654 }
1655 
1656 struct sysctl_oid *
1657 device_get_sysctl_tree(device_t dev)
1658 {
1659 	return (dev->sysctl_tree);
1660 }
1661 
1662 int
1663 device_print_prettyname(device_t dev)
1664 {
1665 	const char *name = device_get_name(dev);
1666 
1667 	if (name == NULL)
1668 		return kprintf("unknown: ");
1669 	else
1670 		return kprintf("%s%d: ", name, device_get_unit(dev));
1671 }
1672 
1673 int
1674 device_printf(device_t dev, const char * fmt, ...)
1675 {
1676 	__va_list ap;
1677 	int retval;
1678 
1679 	retval = device_print_prettyname(dev);
1680 	__va_start(ap, fmt);
1681 	retval += kvprintf(fmt, ap);
1682 	__va_end(ap);
1683 	return retval;
1684 }
1685 
1686 static void
1687 device_set_desc_internal(device_t dev, const char* desc, int copy)
1688 {
1689 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1690 		kfree(dev->desc, M_BUS);
1691 		dev->flags &= ~DF_DESCMALLOCED;
1692 		dev->desc = NULL;
1693 	}
1694 
1695 	if (copy && desc) {
1696 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1697 		if (dev->desc) {
1698 			strcpy(dev->desc, desc);
1699 			dev->flags |= DF_DESCMALLOCED;
1700 		}
1701 	} else {
1702 		/* Avoid a -Wcast-qual warning */
1703 		dev->desc = (char *)(uintptr_t) desc;
1704 	}
1705 
1706 	bus_data_generation_update();
1707 }
1708 
1709 void
1710 device_set_desc(device_t dev, const char* desc)
1711 {
1712 	device_set_desc_internal(dev, desc, FALSE);
1713 }
1714 
1715 void
1716 device_set_desc_copy(device_t dev, const char* desc)
1717 {
1718 	device_set_desc_internal(dev, desc, TRUE);
1719 }
1720 
1721 void
1722 device_set_flags(device_t dev, uint32_t flags)
1723 {
1724 	dev->devflags = flags;
1725 }
1726 
1727 void *
1728 device_get_softc(device_t dev)
1729 {
1730 	return dev->softc;
1731 }
1732 
1733 void
1734 device_set_softc(device_t dev, void *softc)
1735 {
1736 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1737 		kfree(dev->softc, M_BUS);
1738 	dev->softc = softc;
1739 	if (dev->softc)
1740 		dev->flags |= DF_EXTERNALSOFTC;
1741 	else
1742 		dev->flags &= ~DF_EXTERNALSOFTC;
1743 }
1744 
1745 void
1746 device_set_async_attach(device_t dev, int enable)
1747 {
1748 	if (enable)
1749 		dev->flags |= DF_ASYNCPROBE;
1750 	else
1751 		dev->flags &= ~DF_ASYNCPROBE;
1752 }
1753 
1754 void *
1755 device_get_ivars(device_t dev)
1756 {
1757 	return dev->ivars;
1758 }
1759 
1760 void
1761 device_set_ivars(device_t dev, void * ivars)
1762 {
1763 	if (!dev)
1764 		return;
1765 
1766 	dev->ivars = ivars;
1767 }
1768 
1769 device_state_t
1770 device_get_state(device_t dev)
1771 {
1772 	return(dev->state);
1773 }
1774 
1775 void
1776 device_enable(device_t dev)
1777 {
1778 	dev->flags |= DF_ENABLED;
1779 }
1780 
1781 void
1782 device_disable(device_t dev)
1783 {
1784 	dev->flags &= ~DF_ENABLED;
1785 }
1786 
1787 /*
1788  * YYY cannot block
1789  */
1790 void
1791 device_busy(device_t dev)
1792 {
1793 	if (dev->state < DS_ATTACHED)
1794 		panic("device_busy: called for unattached device");
1795 	if (dev->busy == 0 && dev->parent)
1796 		device_busy(dev->parent);
1797 	dev->busy++;
1798 	dev->state = DS_BUSY;
1799 }
1800 
1801 /*
1802  * YYY cannot block
1803  */
1804 void
1805 device_unbusy(device_t dev)
1806 {
1807 	if (dev->state != DS_BUSY)
1808 		panic("device_unbusy: called for non-busy device");
1809 	dev->busy--;
1810 	if (dev->busy == 0) {
1811 		if (dev->parent)
1812 			device_unbusy(dev->parent);
1813 		dev->state = DS_ATTACHED;
1814 	}
1815 }
1816 
1817 void
1818 device_quiet(device_t dev)
1819 {
1820 	dev->flags |= DF_QUIET;
1821 }
1822 
1823 void
1824 device_verbose(device_t dev)
1825 {
1826 	dev->flags &= ~DF_QUIET;
1827 }
1828 
1829 int
1830 device_is_quiet(device_t dev)
1831 {
1832 	return((dev->flags & DF_QUIET) != 0);
1833 }
1834 
1835 int
1836 device_is_enabled(device_t dev)
1837 {
1838 	return((dev->flags & DF_ENABLED) != 0);
1839 }
1840 
1841 int
1842 device_is_alive(device_t dev)
1843 {
1844 	return(dev->state >= DS_ALIVE);
1845 }
1846 
1847 int
1848 device_is_attached(device_t dev)
1849 {
1850 	return(dev->state >= DS_ATTACHED);
1851 }
1852 
1853 int
1854 device_set_devclass(device_t dev, const char *classname)
1855 {
1856 	devclass_t dc;
1857 	int error;
1858 
1859 	if (!classname) {
1860 		if (dev->devclass)
1861 			devclass_delete_device(dev->devclass, dev);
1862 		return(0);
1863 	}
1864 
1865 	if (dev->devclass) {
1866 		kprintf("device_set_devclass: device class already set\n");
1867 		return(EINVAL);
1868 	}
1869 
1870 	dc = devclass_find_internal(classname, NULL, TRUE);
1871 	if (!dc)
1872 		return(ENOMEM);
1873 
1874 	error = devclass_add_device(dc, dev);
1875 
1876 	bus_data_generation_update();
1877 	return(error);
1878 }
1879 
1880 int
1881 device_set_driver(device_t dev, driver_t *driver)
1882 {
1883 	if (dev->state >= DS_ATTACHED)
1884 		return(EBUSY);
1885 
1886 	if (dev->driver == driver)
1887 		return(0);
1888 
1889 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1890 		kfree(dev->softc, M_BUS);
1891 		dev->softc = NULL;
1892 	}
1893 	device_set_desc(dev, NULL);
1894 	kobj_delete((kobj_t) dev, 0);
1895 	dev->driver = driver;
1896 	if (driver) {
1897 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1898 		if (!(dev->flags & DF_EXTERNALSOFTC))
1899 			dev->softc = kmalloc(driver->size, M_BUS,
1900 					    M_INTWAIT | M_ZERO);
1901 	} else {
1902 		kobj_init((kobj_t) dev, &null_class);
1903 	}
1904 
1905 	bus_data_generation_update();
1906 	return(0);
1907 }
1908 
1909 int
1910 device_probe_and_attach(device_t dev)
1911 {
1912 	device_t bus = dev->parent;
1913 	int error = 0;
1914 
1915 	if (dev->state >= DS_ALIVE)
1916 		return(0);
1917 
1918 	if ((dev->flags & DF_ENABLED) == 0) {
1919 		if (bootverbose) {
1920 			device_print_prettyname(dev);
1921 			kprintf("not probed (disabled)\n");
1922 		}
1923 		return(0);
1924 	}
1925 
1926 	error = device_probe_child(bus, dev);
1927 	if (error) {
1928 		if (!(dev->flags & DF_DONENOMATCH)) {
1929 			BUS_PROBE_NOMATCH(bus, dev);
1930 			devnomatch(dev);
1931 			dev->flags |= DF_DONENOMATCH;
1932 		}
1933 		return(error);
1934 	}
1935 
1936 	/*
1937 	 * Output the exact device chain prior to the attach in case the
1938 	 * system locks up during attach, and generate the full info after
1939 	 * the attach so correct irq and other information is displayed.
1940 	 */
1941 	if (bootverbose && !device_is_quiet(dev)) {
1942 		device_t tmp;
1943 
1944 		kprintf("%s", device_get_nameunit(dev));
1945 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1946 			kprintf(".%s", device_get_nameunit(tmp));
1947 		kprintf("\n");
1948 	}
1949 	if (!device_is_quiet(dev))
1950 		device_print_child(bus, dev);
1951 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1952 		kprintf("%s: probing asynchronously\n",
1953 			device_get_nameunit(dev));
1954 		dev->state = DS_INPROGRESS;
1955 		device_attach_async(dev);
1956 		error = 0;
1957 	} else {
1958 		error = device_doattach(dev);
1959 	}
1960 	return(error);
1961 }
1962 
1963 int
1964 device_probe_and_attach_gpri(device_t dev, u_int gpri)
1965 {
1966 	device_t bus = dev->parent;
1967 	int error = 0;
1968 
1969 	if (dev->state >= DS_ALIVE)
1970 		return(0);
1971 
1972 	if ((dev->flags & DF_ENABLED) == 0) {
1973 		if (bootverbose) {
1974 			device_print_prettyname(dev);
1975 			kprintf("not probed (disabled)\n");
1976 		}
1977 		return(0);
1978 	}
1979 
1980 	error = device_probe_child_gpri(bus, dev, gpri);
1981 	if (error) {
1982 #if 0
1983 		if (!(dev->flags & DF_DONENOMATCH)) {
1984 			BUS_PROBE_NOMATCH(bus, dev);
1985 			devnomatch(dev);
1986 			dev->flags |= DF_DONENOMATCH;
1987 		}
1988 #endif
1989 		return(error);
1990 	}
1991 
1992 	/*
1993 	 * Output the exact device chain prior to the attach in case the
1994 	 * system locks up during attach, and generate the full info after
1995 	 * the attach so correct irq and other information is displayed.
1996 	 */
1997 	if (bootverbose && !device_is_quiet(dev)) {
1998 		device_t tmp;
1999 
2000 		kprintf("%s", device_get_nameunit(dev));
2001 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
2002 			kprintf(".%s", device_get_nameunit(tmp));
2003 		kprintf("\n");
2004 	}
2005 	if (!device_is_quiet(dev))
2006 		device_print_child(bus, dev);
2007 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
2008 		kprintf("%s: probing asynchronously\n",
2009 			device_get_nameunit(dev));
2010 		dev->state = DS_INPROGRESS;
2011 		device_attach_async(dev);
2012 		error = 0;
2013 	} else {
2014 		error = device_doattach(dev);
2015 	}
2016 	return(error);
2017 }
2018 
2019 /*
2020  * Device is known to be alive, do the attach asynchronously.
2021  * However, serialize the attaches with the mp lock.
2022  */
2023 static void
2024 device_attach_async(device_t dev)
2025 {
2026 	thread_t td;
2027 
2028 	atomic_add_int(&numasyncthreads, 1);
2029 	lwkt_create(device_attach_thread, dev, &td, NULL,
2030 		    0, 0, "%s", (dev->desc ? dev->desc : "devattach"));
2031 }
2032 
2033 static void
2034 device_attach_thread(void *arg)
2035 {
2036 	device_t dev = arg;
2037 
2038 	(void)device_doattach(dev);
2039 	atomic_subtract_int(&numasyncthreads, 1);
2040 	wakeup(&numasyncthreads);
2041 }
2042 
2043 /*
2044  * Device is known to be alive, do the attach (synchronous or asynchronous)
2045  */
2046 static int
2047 device_doattach(device_t dev)
2048 {
2049 	device_t bus = dev->parent;
2050 	int hasclass = (dev->devclass != NULL);
2051 	int error;
2052 
2053 	device_sysctl_init(dev);
2054 	error = DEVICE_ATTACH(dev);
2055 	if (error == 0) {
2056 		dev->state = DS_ATTACHED;
2057 		if (bootverbose && !device_is_quiet(dev))
2058 			device_print_child(bus, dev);
2059 		device_sysctl_update(dev);
2060 		devadded(dev);
2061 	} else {
2062 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
2063 		       dev->driver->name, dev->unit, error);
2064 		/* Unset the class that was set in device_probe_child */
2065 		if (!hasclass)
2066 			device_set_devclass(dev, 0);
2067 		device_set_driver(dev, NULL);
2068 		dev->state = DS_NOTPRESENT;
2069 		device_sysctl_fini(dev);
2070 	}
2071 	return(error);
2072 }
2073 
2074 int
2075 device_detach(device_t dev)
2076 {
2077 	int error;
2078 
2079 	PDEBUG(("%s", DEVICENAME(dev)));
2080 	if (dev->state == DS_BUSY)
2081 		return(EBUSY);
2082 	if (dev->state != DS_ATTACHED)
2083 		return(0);
2084 
2085 	if ((error = DEVICE_DETACH(dev)) != 0)
2086 		return(error);
2087 	devremoved(dev);
2088 	device_printf(dev, "detached\n");
2089 	if (dev->parent)
2090 		BUS_CHILD_DETACHED(dev->parent, dev);
2091 
2092 	if (!(dev->flags & DF_FIXEDCLASS))
2093 		devclass_delete_device(dev->devclass, dev);
2094 
2095 	dev->state = DS_NOTPRESENT;
2096 	device_set_driver(dev, NULL);
2097 	device_sysctl_fini(dev);
2098 
2099 	return(0);
2100 }
2101 
2102 int
2103 device_shutdown(device_t dev)
2104 {
2105 	if (dev->state < DS_ATTACHED)
2106 		return 0;
2107 	PDEBUG(("%s", DEVICENAME(dev)));
2108 	return DEVICE_SHUTDOWN(dev);
2109 }
2110 
2111 int
2112 device_set_unit(device_t dev, int unit)
2113 {
2114 	devclass_t dc;
2115 	int err;
2116 
2117 	dc = device_get_devclass(dev);
2118 	if (unit < dc->maxunit && dc->devices[unit])
2119 		return(EBUSY);
2120 	err = devclass_delete_device(dc, dev);
2121 	if (err)
2122 		return(err);
2123 	dev->unit = unit;
2124 	err = devclass_add_device(dc, dev);
2125 	if (err)
2126 		return(err);
2127 
2128 	bus_data_generation_update();
2129 	return(0);
2130 }
2131 
2132 /*======================================*/
2133 /*
2134  * Access functions for device resources.
2135  */
2136 
2137 /* Supplied by config(8) in ioconf.c */
2138 extern struct config_device config_devtab[];
2139 extern int devtab_count;
2140 
2141 /* Runtime version */
2142 struct config_device *devtab = config_devtab;
2143 
2144 static int
2145 resource_new_name(const char *name, int unit)
2146 {
2147 	struct config_device *new;
2148 
2149 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
2150 		     M_INTWAIT | M_ZERO);
2151 	if (devtab && devtab_count > 0)
2152 		bcopy(devtab, new, devtab_count * sizeof(*new));
2153 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
2154 	if (new[devtab_count].name == NULL) {
2155 		kfree(new, M_TEMP);
2156 		return(-1);
2157 	}
2158 	strcpy(new[devtab_count].name, name);
2159 	new[devtab_count].unit = unit;
2160 	new[devtab_count].resource_count = 0;
2161 	new[devtab_count].resources = NULL;
2162 	if (devtab && devtab != config_devtab)
2163 		kfree(devtab, M_TEMP);
2164 	devtab = new;
2165 	return devtab_count++;
2166 }
2167 
2168 static int
2169 resource_new_resname(int j, const char *resname, resource_type type)
2170 {
2171 	struct config_resource *new;
2172 	int i;
2173 
2174 	i = devtab[j].resource_count;
2175 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
2176 	if (devtab[j].resources && i > 0)
2177 		bcopy(devtab[j].resources, new, i * sizeof(*new));
2178 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
2179 	if (new[i].name == NULL) {
2180 		kfree(new, M_TEMP);
2181 		return(-1);
2182 	}
2183 	strcpy(new[i].name, resname);
2184 	new[i].type = type;
2185 	if (devtab[j].resources)
2186 		kfree(devtab[j].resources, M_TEMP);
2187 	devtab[j].resources = new;
2188 	devtab[j].resource_count = i + 1;
2189 	return(i);
2190 }
2191 
2192 static int
2193 resource_match_string(int i, const char *resname, const char *value)
2194 {
2195 	int j;
2196 	struct config_resource *res;
2197 
2198 	for (j = 0, res = devtab[i].resources;
2199 	     j < devtab[i].resource_count; j++, res++)
2200 		if (!strcmp(res->name, resname)
2201 		    && res->type == RES_STRING
2202 		    && !strcmp(res->u.stringval, value))
2203 			return(j);
2204 	return(-1);
2205 }
2206 
2207 static int
2208 resource_find(const char *name, int unit, const char *resname,
2209 	      struct config_resource **result)
2210 {
2211 	int i, j;
2212 	struct config_resource *res;
2213 
2214 	/*
2215 	 * First check specific instances, then generic.
2216 	 */
2217 	for (i = 0; i < devtab_count; i++) {
2218 		if (devtab[i].unit < 0)
2219 			continue;
2220 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2221 			res = devtab[i].resources;
2222 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2223 				if (!strcmp(res->name, resname)) {
2224 					*result = res;
2225 					return(0);
2226 				}
2227 		}
2228 	}
2229 	for (i = 0; i < devtab_count; i++) {
2230 		if (devtab[i].unit >= 0)
2231 			continue;
2232 		/* XXX should this `&& devtab[i].unit == unit' be here? */
2233 		/* XXX if so, then the generic match does nothing */
2234 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2235 			res = devtab[i].resources;
2236 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2237 				if (!strcmp(res->name, resname)) {
2238 					*result = res;
2239 					return(0);
2240 				}
2241 		}
2242 	}
2243 	return(ENOENT);
2244 }
2245 
2246 static int
2247 resource_kenv(const char *name, int unit, const char *resname, long *result)
2248 {
2249 	const char *env;
2250 	char buf[64];
2251 
2252 	/*
2253 	 * DragonFly style loader.conf hinting
2254 	 */
2255 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2256 	if ((env = kgetenv(buf)) != NULL) {
2257 		*result = strtol(env, NULL, 0);
2258 		return(0);
2259 	}
2260 
2261 	/*
2262 	 * Also support FreeBSD style loader.conf hinting
2263 	 */
2264 	ksnprintf(buf, sizeof(buf), "hint.%s.%d.%s", name, unit, resname);
2265 	if ((env = kgetenv(buf)) != NULL) {
2266 		*result = strtol(env, NULL, 0);
2267 		return(0);
2268 	}
2269 
2270 	return (ENOENT);
2271 }
2272 
2273 int
2274 resource_int_value(const char *name, int unit, const char *resname, int *result)
2275 {
2276 	struct config_resource *res;
2277 	long kvalue = 0;
2278 	int error;
2279 
2280 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2281 		*result = (int)kvalue;
2282 		return 0;
2283 	}
2284 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2285 		return(error);
2286 	if (res->type != RES_INT)
2287 		return(EFTYPE);
2288 	*result = res->u.intval;
2289 	return(0);
2290 }
2291 
2292 int
2293 resource_long_value(const char *name, int unit, const char *resname,
2294 		    long *result)
2295 {
2296 	struct config_resource *res;
2297 	long kvalue;
2298 	int error;
2299 
2300 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2301 		*result = kvalue;
2302 		return 0;
2303 	}
2304 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2305 		return(error);
2306 	if (res->type != RES_LONG)
2307 		return(EFTYPE);
2308 	*result = res->u.longval;
2309 	return(0);
2310 }
2311 
2312 int
2313 resource_string_value(const char *name, int unit, const char *resname,
2314     const char **result)
2315 {
2316 	int error;
2317 	struct config_resource *res;
2318 	char buf[64];
2319 	const char *env;
2320 
2321 	/*
2322 	 * DragonFly style loader.conf hinting
2323 	 */
2324 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2325 	if ((env = kgetenv(buf)) != NULL) {
2326 		*result = env;
2327 		return 0;
2328 	}
2329 
2330 	/*
2331 	 * Also support FreeBSD style loader.conf hinting
2332 	 */
2333 	ksnprintf(buf, sizeof(buf), "hint.%s.%d.%s", name, unit, resname);
2334 	if ((env = kgetenv(buf)) != NULL) {
2335 		*result = env;
2336 		return 0;
2337 	}
2338 
2339 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2340 		return(error);
2341 	if (res->type != RES_STRING)
2342 		return(EFTYPE);
2343 	*result = res->u.stringval;
2344 	return(0);
2345 }
2346 
2347 int
2348 resource_query_string(int i, const char *resname, const char *value)
2349 {
2350 	if (i < 0)
2351 		i = 0;
2352 	else
2353 		i = i + 1;
2354 	for (; i < devtab_count; i++)
2355 		if (resource_match_string(i, resname, value) >= 0)
2356 			return(i);
2357 	return(-1);
2358 }
2359 
2360 int
2361 resource_locate(int i, const char *resname)
2362 {
2363 	if (i < 0)
2364 		i = 0;
2365 	else
2366 		i = i + 1;
2367 	for (; i < devtab_count; i++)
2368 		if (!strcmp(devtab[i].name, resname))
2369 			return(i);
2370 	return(-1);
2371 }
2372 
2373 int
2374 resource_count(void)
2375 {
2376 	return(devtab_count);
2377 }
2378 
2379 char *
2380 resource_query_name(int i)
2381 {
2382 	return(devtab[i].name);
2383 }
2384 
2385 int
2386 resource_query_unit(int i)
2387 {
2388 	return(devtab[i].unit);
2389 }
2390 
2391 static int
2392 resource_create(const char *name, int unit, const char *resname,
2393 		resource_type type, struct config_resource **result)
2394 {
2395 	int i, j;
2396 	struct config_resource *res = NULL;
2397 
2398 	for (i = 0; i < devtab_count; i++)
2399 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2400 			res = devtab[i].resources;
2401 			break;
2402 		}
2403 	if (res == NULL) {
2404 		i = resource_new_name(name, unit);
2405 		if (i < 0)
2406 			return(ENOMEM);
2407 		res = devtab[i].resources;
2408 	}
2409 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2410 		if (!strcmp(res->name, resname)) {
2411 			*result = res;
2412 			return(0);
2413 		}
2414 	j = resource_new_resname(i, resname, type);
2415 	if (j < 0)
2416 		return(ENOMEM);
2417 	res = &devtab[i].resources[j];
2418 	*result = res;
2419 	return(0);
2420 }
2421 
2422 int
2423 resource_set_int(const char *name, int unit, const char *resname, int value)
2424 {
2425 	int error;
2426 	struct config_resource *res;
2427 
2428 	error = resource_create(name, unit, resname, RES_INT, &res);
2429 	if (error)
2430 		return(error);
2431 	if (res->type != RES_INT)
2432 		return(EFTYPE);
2433 	res->u.intval = value;
2434 	return(0);
2435 }
2436 
2437 int
2438 resource_set_long(const char *name, int unit, const char *resname, long value)
2439 {
2440 	int error;
2441 	struct config_resource *res;
2442 
2443 	error = resource_create(name, unit, resname, RES_LONG, &res);
2444 	if (error)
2445 		return(error);
2446 	if (res->type != RES_LONG)
2447 		return(EFTYPE);
2448 	res->u.longval = value;
2449 	return(0);
2450 }
2451 
2452 int
2453 resource_set_string(const char *name, int unit, const char *resname,
2454 		    const char *value)
2455 {
2456 	int error;
2457 	struct config_resource *res;
2458 
2459 	error = resource_create(name, unit, resname, RES_STRING, &res);
2460 	if (error)
2461 		return(error);
2462 	if (res->type != RES_STRING)
2463 		return(EFTYPE);
2464 	if (res->u.stringval)
2465 		kfree(res->u.stringval, M_TEMP);
2466 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2467 	if (res->u.stringval == NULL)
2468 		return(ENOMEM);
2469 	strcpy(res->u.stringval, value);
2470 	return(0);
2471 }
2472 
2473 static void
2474 resource_cfgload(void *dummy __unused)
2475 {
2476 	struct config_resource *res, *cfgres;
2477 	int i, j;
2478 	int error;
2479 	char *name, *resname;
2480 	int unit;
2481 	resource_type type;
2482 	char *stringval;
2483 	int config_devtab_count;
2484 
2485 	config_devtab_count = devtab_count;
2486 	devtab = NULL;
2487 	devtab_count = 0;
2488 
2489 	for (i = 0; i < config_devtab_count; i++) {
2490 		name = config_devtab[i].name;
2491 		unit = config_devtab[i].unit;
2492 
2493 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2494 			cfgres = config_devtab[i].resources;
2495 			resname = cfgres[j].name;
2496 			type = cfgres[j].type;
2497 			error = resource_create(name, unit, resname, type,
2498 						&res);
2499 			if (error) {
2500 				kprintf("create resource %s%d: error %d\n",
2501 					name, unit, error);
2502 				continue;
2503 			}
2504 			if (res->type != type) {
2505 				kprintf("type mismatch %s%d: %d != %d\n",
2506 					name, unit, res->type, type);
2507 				continue;
2508 			}
2509 			switch (type) {
2510 			case RES_INT:
2511 				res->u.intval = cfgres[j].u.intval;
2512 				break;
2513 			case RES_LONG:
2514 				res->u.longval = cfgres[j].u.longval;
2515 				break;
2516 			case RES_STRING:
2517 				if (res->u.stringval)
2518 					kfree(res->u.stringval, M_TEMP);
2519 				stringval = cfgres[j].u.stringval;
2520 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2521 							  M_TEMP, M_INTWAIT);
2522 				if (res->u.stringval == NULL)
2523 					break;
2524 				strcpy(res->u.stringval, stringval);
2525 				break;
2526 			default:
2527 				panic("unknown resource type %d", type);
2528 			}
2529 		}
2530 	}
2531 }
2532 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0);
2533 
2534 
2535 /*======================================*/
2536 /*
2537  * Some useful method implementations to make life easier for bus drivers.
2538  */
2539 
2540 void
2541 resource_list_init(struct resource_list *rl)
2542 {
2543 	SLIST_INIT(rl);
2544 }
2545 
2546 void
2547 resource_list_free(struct resource_list *rl)
2548 {
2549 	struct resource_list_entry *rle;
2550 
2551 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2552 		if (rle->res)
2553 			panic("resource_list_free: resource entry is busy");
2554 		SLIST_REMOVE_HEAD(rl, link);
2555 		kfree(rle, M_BUS);
2556 	}
2557 }
2558 
2559 void
2560 resource_list_add(struct resource_list *rl, int type, int rid,
2561     u_long start, u_long end, u_long count, int cpuid)
2562 {
2563 	struct resource_list_entry *rle;
2564 
2565 	rle = resource_list_find(rl, type, rid);
2566 	if (rle == NULL) {
2567 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2568 			     M_INTWAIT);
2569 		SLIST_INSERT_HEAD(rl, rle, link);
2570 		rle->type = type;
2571 		rle->rid = rid;
2572 		rle->res = NULL;
2573 		rle->cpuid = -1;
2574 	}
2575 
2576 	if (rle->res)
2577 		panic("resource_list_add: resource entry is busy");
2578 
2579 	rle->start = start;
2580 	rle->end = end;
2581 	rle->count = count;
2582 
2583 	if (cpuid != -1) {
2584 		if (rle->cpuid != -1 && rle->cpuid != cpuid) {
2585 			panic("resource_list_add: moving from cpu%d -> cpu%d",
2586 			    rle->cpuid, cpuid);
2587 		}
2588 		rle->cpuid = cpuid;
2589 	}
2590 }
2591 
2592 struct resource_list_entry*
2593 resource_list_find(struct resource_list *rl,
2594 		   int type, int rid)
2595 {
2596 	struct resource_list_entry *rle;
2597 
2598 	SLIST_FOREACH(rle, rl, link)
2599 		if (rle->type == type && rle->rid == rid)
2600 			return(rle);
2601 	return(NULL);
2602 }
2603 
2604 void
2605 resource_list_delete(struct resource_list *rl,
2606 		     int type, int rid)
2607 {
2608 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2609 
2610 	if (rle) {
2611 		if (rle->res != NULL)
2612 			panic("resource_list_delete: resource has not been released");
2613 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2614 		kfree(rle, M_BUS);
2615 	}
2616 }
2617 
2618 struct resource *
2619 resource_list_alloc(struct resource_list *rl,
2620 		    device_t bus, device_t child,
2621 		    int type, int *rid,
2622 		    u_long start, u_long end,
2623 		    u_long count, u_int flags, int cpuid)
2624 {
2625 	struct resource_list_entry *rle = NULL;
2626 	int passthrough = (device_get_parent(child) != bus);
2627 	int isdefault = (start == 0UL && end == ~0UL);
2628 
2629 	if (passthrough) {
2630 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2631 					  type, rid,
2632 					  start, end, count, flags, cpuid));
2633 	}
2634 
2635 	rle = resource_list_find(rl, type, *rid);
2636 
2637 	if (!rle)
2638 		return(0);		/* no resource of that type/rid */
2639 
2640 	if (rle->res)
2641 		panic("resource_list_alloc: resource entry is busy");
2642 
2643 	if (isdefault) {
2644 		start = rle->start;
2645 		count = max(count, rle->count);
2646 		end = max(rle->end, start + count - 1);
2647 	}
2648 	cpuid = rle->cpuid;
2649 
2650 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2651 				      type, rid, start, end, count,
2652 				      flags, cpuid);
2653 
2654 	/*
2655 	 * Record the new range.
2656 	 */
2657 	if (rle->res) {
2658 		rle->start = rman_get_start(rle->res);
2659 		rle->end = rman_get_end(rle->res);
2660 		rle->count = count;
2661 	}
2662 
2663 	return(rle->res);
2664 }
2665 
2666 int
2667 resource_list_release(struct resource_list *rl,
2668 		      device_t bus, device_t child,
2669 		      int type, int rid, struct resource *res)
2670 {
2671 	struct resource_list_entry *rle = NULL;
2672 	int passthrough = (device_get_parent(child) != bus);
2673 	int error;
2674 
2675 	if (passthrough) {
2676 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2677 					    type, rid, res));
2678 	}
2679 
2680 	rle = resource_list_find(rl, type, rid);
2681 
2682 	if (!rle)
2683 		panic("resource_list_release: can't find resource");
2684 	if (!rle->res)
2685 		panic("resource_list_release: resource entry is not busy");
2686 
2687 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2688 				     type, rid, res);
2689 	if (error)
2690 		return(error);
2691 
2692 	rle->res = NULL;
2693 	return(0);
2694 }
2695 
2696 int
2697 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2698 			 const char *format)
2699 {
2700 	struct resource_list_entry *rle;
2701 	int printed, retval;
2702 
2703 	printed = 0;
2704 	retval = 0;
2705 	/* Yes, this is kinda cheating */
2706 	SLIST_FOREACH(rle, rl, link) {
2707 		if (rle->type == type) {
2708 			if (printed == 0)
2709 				retval += kprintf(" %s ", name);
2710 			else
2711 				retval += kprintf(",");
2712 			printed++;
2713 			retval += kprintf(format, rle->start);
2714 			if (rle->count > 1) {
2715 				retval += kprintf("-");
2716 				retval += kprintf(format, rle->start +
2717 						 rle->count - 1);
2718 			}
2719 		}
2720 	}
2721 	return(retval);
2722 }
2723 
2724 /*
2725  * Generic driver/device identify functions.  These will install a device
2726  * rendezvous point under the parent using the same name as the driver
2727  * name, which will at a later time be probed and attached.
2728  *
2729  * These functions are used when the parent does not 'scan' its bus for
2730  * matching devices, or for the particular devices using these functions,
2731  * or when the device is a pseudo or synthesized device (such as can be
2732  * found under firewire and ppbus).
2733  */
2734 int
2735 bus_generic_identify(driver_t *driver, device_t parent)
2736 {
2737 	if (parent->state == DS_ATTACHED)
2738 		return (0);
2739 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2740 	return (0);
2741 }
2742 
2743 int
2744 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2745 {
2746 	if (parent->state == DS_ATTACHED)
2747 		return (0);
2748 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2749 	return (0);
2750 }
2751 
2752 /*
2753  * Call DEVICE_IDENTIFY for each driver.
2754  */
2755 int
2756 bus_generic_probe(device_t dev)
2757 {
2758 	devclass_t dc = dev->devclass;
2759 	driverlink_t dl;
2760 
2761 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2762 		DEVICE_IDENTIFY(dl->driver, dev);
2763 	}
2764 
2765 	return(0);
2766 }
2767 
2768 /*
2769  * This is an aweful hack due to the isa bus and autoconf code not
2770  * probing the ISA devices until after everything else has configured.
2771  * The ISA bus did a dummy attach long ago so we have to set it back
2772  * to an earlier state so the probe thinks its the initial probe and
2773  * not a bus rescan.
2774  *
2775  * XXX remove by properly defering the ISA bus scan.
2776  */
2777 int
2778 bus_generic_probe_hack(device_t dev)
2779 {
2780 	if (dev->state == DS_ATTACHED) {
2781 		dev->state = DS_ALIVE;
2782 		bus_generic_probe(dev);
2783 		dev->state = DS_ATTACHED;
2784 	}
2785 	return (0);
2786 }
2787 
2788 int
2789 bus_generic_attach(device_t dev)
2790 {
2791 	device_t child;
2792 
2793 	TAILQ_FOREACH(child, &dev->children, link) {
2794 		device_probe_and_attach(child);
2795 	}
2796 
2797 	return(0);
2798 }
2799 
2800 int
2801 bus_generic_attach_gpri(device_t dev, u_int gpri)
2802 {
2803 	device_t child;
2804 
2805 	TAILQ_FOREACH(child, &dev->children, link) {
2806 		device_probe_and_attach_gpri(child, gpri);
2807 	}
2808 
2809 	return(0);
2810 }
2811 
2812 int
2813 bus_generic_detach(device_t dev)
2814 {
2815 	device_t child;
2816 	int error;
2817 
2818 	if (dev->state != DS_ATTACHED)
2819 		return(EBUSY);
2820 
2821 	TAILQ_FOREACH(child, &dev->children, link)
2822 		if ((error = device_detach(child)) != 0)
2823 			return(error);
2824 
2825 	return 0;
2826 }
2827 
2828 int
2829 bus_generic_shutdown(device_t dev)
2830 {
2831 	device_t child;
2832 
2833 	TAILQ_FOREACH(child, &dev->children, link)
2834 		device_shutdown(child);
2835 
2836 	return(0);
2837 }
2838 
2839 int
2840 bus_generic_suspend(device_t dev)
2841 {
2842 	int error;
2843 	device_t child, child2;
2844 
2845 	TAILQ_FOREACH(child, &dev->children, link) {
2846 		error = DEVICE_SUSPEND(child);
2847 		if (error) {
2848 			for (child2 = TAILQ_FIRST(&dev->children);
2849 			     child2 && child2 != child;
2850 			     child2 = TAILQ_NEXT(child2, link))
2851 				DEVICE_RESUME(child2);
2852 			return(error);
2853 		}
2854 	}
2855 	return(0);
2856 }
2857 
2858 int
2859 bus_generic_resume(device_t dev)
2860 {
2861 	device_t child;
2862 
2863 	TAILQ_FOREACH(child, &dev->children, link)
2864 		DEVICE_RESUME(child);
2865 		/* if resume fails, there's nothing we can usefully do... */
2866 
2867 	return(0);
2868 }
2869 
2870 int
2871 bus_print_child_header(device_t dev, device_t child)
2872 {
2873 	int retval = 0;
2874 
2875 	if (device_get_desc(child))
2876 		retval += device_printf(child, "<%s>", device_get_desc(child));
2877 	else
2878 		retval += kprintf("%s", device_get_nameunit(child));
2879 	if (bootverbose) {
2880 		if (child->state != DS_ATTACHED)
2881 			kprintf(" [tentative]");
2882 		else
2883 			kprintf(" [attached!]");
2884 	}
2885 	return(retval);
2886 }
2887 
2888 int
2889 bus_print_child_footer(device_t dev, device_t child)
2890 {
2891 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2892 }
2893 
2894 device_t
2895 bus_generic_add_child(device_t dev, device_t child, int order,
2896 		      const char *name, int unit)
2897 {
2898 	if (dev->parent)
2899 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2900 	else
2901 		dev = device_add_child_ordered(child, order, name, unit);
2902 	return(dev);
2903 
2904 }
2905 
2906 int
2907 bus_generic_print_child(device_t dev, device_t child)
2908 {
2909 	int retval = 0;
2910 
2911 	retval += bus_print_child_header(dev, child);
2912 	retval += bus_print_child_footer(dev, child);
2913 
2914 	return(retval);
2915 }
2916 
2917 int
2918 bus_generic_read_ivar(device_t dev, device_t child, int index,
2919 		      uintptr_t * result)
2920 {
2921 	int error;
2922 
2923 	if (dev->parent)
2924 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2925 	else
2926 		error = ENOENT;
2927 	return (error);
2928 }
2929 
2930 int
2931 bus_generic_write_ivar(device_t dev, device_t child, int index,
2932 		       uintptr_t value)
2933 {
2934 	int error;
2935 
2936 	if (dev->parent)
2937 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2938 	else
2939 		error = ENOENT;
2940 	return (error);
2941 }
2942 
2943 /*
2944  * Resource list are used for iterations, do not recurse.
2945  */
2946 struct resource_list *
2947 bus_generic_get_resource_list(device_t dev, device_t child)
2948 {
2949 	return (NULL);
2950 }
2951 
2952 void
2953 bus_generic_driver_added(device_t dev, driver_t *driver)
2954 {
2955 	device_t child;
2956 
2957 	DEVICE_IDENTIFY(driver, dev);
2958 	TAILQ_FOREACH(child, &dev->children, link) {
2959 		if (child->state == DS_NOTPRESENT)
2960 			device_probe_and_attach(child);
2961 	}
2962 }
2963 
2964 int
2965 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2966     int flags, driver_intr_t *intr, void *arg, void **cookiep,
2967     lwkt_serialize_t serializer, const char *desc)
2968 {
2969 	/* Propagate up the bus hierarchy until someone handles it. */
2970 	if (dev->parent) {
2971 		return BUS_SETUP_INTR(dev->parent, child, irq, flags,
2972 		    intr, arg, cookiep, serializer, desc);
2973 	} else {
2974 		return EINVAL;
2975 	}
2976 }
2977 
2978 int
2979 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2980 			  void *cookie)
2981 {
2982 	/* Propagate up the bus hierarchy until someone handles it. */
2983 	if (dev->parent)
2984 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2985 	else
2986 		return(EINVAL);
2987 }
2988 
2989 int
2990 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2991 {
2992 	if (dev->parent)
2993 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2994 	else
2995 		return(0);
2996 }
2997 
2998 void
2999 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
3000 {
3001 	if (dev->parent)
3002 		BUS_ENABLE_INTR(dev->parent, child, cookie);
3003 }
3004 
3005 int
3006 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
3007     enum intr_polarity pol)
3008 {
3009 	/* Propagate up the bus hierarchy until someone handles it. */
3010 	if (dev->parent)
3011 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
3012 	else
3013 		return(EINVAL);
3014 }
3015 
3016 struct resource *
3017 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3018     u_long start, u_long end, u_long count, u_int flags, int cpuid)
3019 {
3020 	/* Propagate up the bus hierarchy until someone handles it. */
3021 	if (dev->parent)
3022 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3023 					   start, end, count, flags, cpuid));
3024 	else
3025 		return(NULL);
3026 }
3027 
3028 int
3029 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3030 			     struct resource *r)
3031 {
3032 	/* Propagate up the bus hierarchy until someone handles it. */
3033 	if (dev->parent)
3034 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
3035 	else
3036 		return(EINVAL);
3037 }
3038 
3039 int
3040 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3041 			      struct resource *r)
3042 {
3043 	/* Propagate up the bus hierarchy until someone handles it. */
3044 	if (dev->parent)
3045 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
3046 	else
3047 		return(EINVAL);
3048 }
3049 
3050 int
3051 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3052 				int rid, struct resource *r)
3053 {
3054 	/* Propagate up the bus hierarchy until someone handles it. */
3055 	if (dev->parent)
3056 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3057 					       r));
3058 	else
3059 		return(EINVAL);
3060 }
3061 
3062 int
3063 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
3064 			 u_long *startp, u_long *countp)
3065 {
3066 	int error;
3067 
3068 	error = ENOENT;
3069 	if (dev->parent) {
3070 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
3071 					 startp, countp);
3072 	}
3073 	return (error);
3074 }
3075 
3076 int
3077 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
3078 			u_long start, u_long count, int cpuid)
3079 {
3080 	int error;
3081 
3082 	error = EINVAL;
3083 	if (dev->parent) {
3084 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
3085 					 start, count, cpuid);
3086 	}
3087 	return (error);
3088 }
3089 
3090 void
3091 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
3092 {
3093 	if (dev->parent)
3094 		BUS_DELETE_RESOURCE(dev, child, type, rid);
3095 }
3096 
3097 /**
3098  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3099  *
3100  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3101  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3102  */
3103 bus_dma_tag_t
3104 bus_generic_get_dma_tag(device_t dev, device_t child)
3105 {
3106 
3107 	/* Propagate up the bus hierarchy until someone handles it. */
3108 	if (dev->parent != NULL)
3109 		return (BUS_GET_DMA_TAG(dev->parent, child));
3110 	return (NULL);
3111 }
3112 
3113 int
3114 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3115     u_long *startp, u_long *countp)
3116 {
3117 	struct resource_list *rl = NULL;
3118 	struct resource_list_entry *rle = NULL;
3119 
3120 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3121 	if (!rl)
3122 		return(EINVAL);
3123 
3124 	rle = resource_list_find(rl, type, rid);
3125 	if (!rle)
3126 		return(ENOENT);
3127 
3128 	if (startp)
3129 		*startp = rle->start;
3130 	if (countp)
3131 		*countp = rle->count;
3132 
3133 	return(0);
3134 }
3135 
3136 int
3137 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3138     u_long start, u_long count, int cpuid)
3139 {
3140 	struct resource_list *rl = NULL;
3141 
3142 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3143 	if (!rl)
3144 		return(EINVAL);
3145 
3146 	resource_list_add(rl, type, rid, start, (start + count - 1), count,
3147 	    cpuid);
3148 
3149 	return(0);
3150 }
3151 
3152 void
3153 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3154 {
3155 	struct resource_list *rl = NULL;
3156 
3157 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3158 	if (!rl)
3159 		return;
3160 
3161 	resource_list_delete(rl, type, rid);
3162 }
3163 
3164 int
3165 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3166     int rid, struct resource *r)
3167 {
3168 	struct resource_list *rl = NULL;
3169 
3170 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3171 	if (!rl)
3172 		return(EINVAL);
3173 
3174 	return(resource_list_release(rl, dev, child, type, rid, r));
3175 }
3176 
3177 struct resource *
3178 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3179     int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid)
3180 {
3181 	struct resource_list *rl = NULL;
3182 
3183 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3184 	if (!rl)
3185 		return(NULL);
3186 
3187 	return(resource_list_alloc(rl, dev, child, type, rid,
3188 	    start, end, count, flags, cpuid));
3189 }
3190 
3191 int
3192 bus_generic_child_present(device_t bus, device_t child)
3193 {
3194 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
3195 }
3196 
3197 
3198 /*
3199  * Some convenience functions to make it easier for drivers to use the
3200  * resource-management functions.  All these really do is hide the
3201  * indirection through the parent's method table, making for slightly
3202  * less-wordy code.  In the future, it might make sense for this code
3203  * to maintain some sort of a list of resources allocated by each device.
3204  */
3205 int
3206 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3207     struct resource **res)
3208 {
3209 	int i;
3210 
3211 	for (i = 0; rs[i].type != -1; i++)
3212 	        res[i] = NULL;
3213 	for (i = 0; rs[i].type != -1; i++) {
3214 		res[i] = bus_alloc_resource_any(dev,
3215 		    rs[i].type, &rs[i].rid, rs[i].flags);
3216 		if (res[i] == NULL) {
3217 			bus_release_resources(dev, rs, res);
3218 			return (ENXIO);
3219 		}
3220 	}
3221 	return (0);
3222 }
3223 
3224 void
3225 bus_release_resources(device_t dev, const struct resource_spec *rs,
3226     struct resource **res)
3227 {
3228 	int i;
3229 
3230 	for (i = 0; rs[i].type != -1; i++)
3231 		if (res[i] != NULL) {
3232 			bus_release_resource(
3233 			    dev, rs[i].type, rs[i].rid, res[i]);
3234 			res[i] = NULL;
3235 		}
3236 }
3237 
3238 struct resource *
3239 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3240 		   u_long count, u_int flags)
3241 {
3242 	if (dev->parent == NULL)
3243 		return(0);
3244 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3245 				  count, flags, -1));
3246 }
3247 
3248 struct resource *
3249 bus_alloc_legacy_irq_resource(device_t dev, int *rid, u_long irq, u_int flags)
3250 {
3251 	if (dev->parent == NULL)
3252 		return(0);
3253 	return BUS_ALLOC_RESOURCE(dev->parent, dev, SYS_RES_IRQ, rid,
3254 	    irq, irq, 1, flags, machintr_legacy_intr_cpuid(irq));
3255 }
3256 
3257 int
3258 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3259 {
3260 	if (dev->parent == NULL)
3261 		return(EINVAL);
3262 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3263 }
3264 
3265 int
3266 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3267 {
3268 	if (dev->parent == NULL)
3269 		return(EINVAL);
3270 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3271 }
3272 
3273 int
3274 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3275 {
3276 	if (dev->parent == NULL)
3277 		return(EINVAL);
3278 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3279 }
3280 
3281 int
3282 bus_setup_intr_descr(device_t dev, struct resource *r, int flags,
3283     driver_intr_t handler, void *arg, void **cookiep,
3284     lwkt_serialize_t serializer, const char *desc)
3285 {
3286 	if (dev->parent == NULL)
3287 		return EINVAL;
3288 	return BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
3289 	    cookiep, serializer, desc);
3290 }
3291 
3292 int
3293 bus_setup_intr(device_t dev, struct resource *r, int flags,
3294     driver_intr_t handler, void *arg, void **cookiep,
3295     lwkt_serialize_t serializer)
3296 {
3297 	return bus_setup_intr_descr(dev, r, flags, handler, arg, cookiep,
3298 	    serializer, NULL);
3299 }
3300 
3301 int
3302 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3303 {
3304 	if (dev->parent == NULL)
3305 		return(EINVAL);
3306 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3307 }
3308 
3309 void
3310 bus_enable_intr(device_t dev, void *cookie)
3311 {
3312 	if (dev->parent)
3313 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
3314 }
3315 
3316 int
3317 bus_disable_intr(device_t dev, void *cookie)
3318 {
3319 	if (dev->parent)
3320 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
3321 	else
3322 		return(0);
3323 }
3324 
3325 int
3326 bus_set_resource(device_t dev, int type, int rid,
3327 		 u_long start, u_long count, int cpuid)
3328 {
3329 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3330 				start, count, cpuid));
3331 }
3332 
3333 int
3334 bus_get_resource(device_t dev, int type, int rid,
3335 		 u_long *startp, u_long *countp)
3336 {
3337 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3338 				startp, countp));
3339 }
3340 
3341 u_long
3342 bus_get_resource_start(device_t dev, int type, int rid)
3343 {
3344 	u_long start, count;
3345 	int error;
3346 
3347 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3348 				 &start, &count);
3349 	if (error)
3350 		return(0);
3351 	return(start);
3352 }
3353 
3354 u_long
3355 bus_get_resource_count(device_t dev, int type, int rid)
3356 {
3357 	u_long start, count;
3358 	int error;
3359 
3360 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3361 				 &start, &count);
3362 	if (error)
3363 		return(0);
3364 	return(count);
3365 }
3366 
3367 void
3368 bus_delete_resource(device_t dev, int type, int rid)
3369 {
3370 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3371 }
3372 
3373 int
3374 bus_child_present(device_t child)
3375 {
3376 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3377 }
3378 
3379 int
3380 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3381 {
3382 	device_t parent;
3383 
3384 	parent = device_get_parent(child);
3385 	if (parent == NULL) {
3386 		*buf = '\0';
3387 		return (0);
3388 	}
3389 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3390 }
3391 
3392 int
3393 bus_child_location_str(device_t child, char *buf, size_t buflen)
3394 {
3395 	device_t parent;
3396 
3397 	parent = device_get_parent(child);
3398 	if (parent == NULL) {
3399 		*buf = '\0';
3400 		return (0);
3401 	}
3402 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3403 }
3404 
3405 /**
3406  * @brief Wrapper function for BUS_GET_DMA_TAG().
3407  *
3408  * This function simply calls the BUS_GET_DMA_TAG() method of the
3409  * parent of @p dev.
3410  */
3411 bus_dma_tag_t
3412 bus_get_dma_tag(device_t dev)
3413 {
3414 	device_t parent;
3415 
3416 	parent = device_get_parent(dev);
3417 	if (parent == NULL)
3418 		return (NULL);
3419 	return (BUS_GET_DMA_TAG(parent, dev));
3420 }
3421 
3422 static int
3423 root_print_child(device_t dev, device_t child)
3424 {
3425 	return(0);
3426 }
3427 
3428 static int
3429 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3430 		void **cookiep, lwkt_serialize_t serializer, const char *desc)
3431 {
3432 	/*
3433 	 * If an interrupt mapping gets to here something bad has happened.
3434 	 */
3435 	panic("root_setup_intr");
3436 }
3437 
3438 /*
3439  * If we get here, assume that the device is permanant and really is
3440  * present in the system.  Removable bus drivers are expected to intercept
3441  * this call long before it gets here.  We return -1 so that drivers that
3442  * really care can check vs -1 or some ERRNO returned higher in the food
3443  * chain.
3444  */
3445 static int
3446 root_child_present(device_t dev, device_t child)
3447 {
3448 	return(-1);
3449 }
3450 
3451 /*
3452  * XXX NOTE! other defaults may be set in bus_if.m
3453  */
3454 static kobj_method_t root_methods[] = {
3455 	/* Device interface */
3456 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3457 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3458 	KOBJMETHOD(device_resume,	bus_generic_resume),
3459 
3460 	/* Bus interface */
3461 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
3462 	KOBJMETHOD(bus_print_child,	root_print_child),
3463 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3464 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3465 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3466 	KOBJMETHOD(bus_child_present,   root_child_present),
3467 
3468 	KOBJMETHOD_END
3469 };
3470 
3471 static driver_t root_driver = {
3472 	"root",
3473 	root_methods,
3474 	1,			/* no softc */
3475 };
3476 
3477 device_t	root_bus;
3478 devclass_t	root_devclass;
3479 
3480 static int
3481 root_bus_module_handler(module_t mod, int what, void* arg)
3482 {
3483 	switch (what) {
3484 	case MOD_LOAD:
3485 		TAILQ_INIT(&bus_data_devices);
3486 		root_bus = make_device(NULL, "root", 0);
3487 		root_bus->desc = "System root bus";
3488 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3489 		root_bus->driver = &root_driver;
3490 		root_bus->state = DS_ALIVE;
3491 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3492 		devinit();
3493 		return(0);
3494 
3495 	case MOD_SHUTDOWN:
3496 		device_shutdown(root_bus);
3497 		return(0);
3498 	default:
3499 		return(0);
3500 	}
3501 }
3502 
3503 static moduledata_t root_bus_mod = {
3504 	"rootbus",
3505 	root_bus_module_handler,
3506 	0
3507 };
3508 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3509 
3510 void
3511 root_bus_configure(void)
3512 {
3513 	int warncount;
3514 	device_t dev;
3515 
3516 	PDEBUG(("."));
3517 
3518 	/*
3519 	 * handle device_identify based device attachments to the root_bus
3520 	 * (typically nexus).
3521 	 */
3522 	bus_generic_probe(root_bus);
3523 
3524 	/*
3525 	 * Probe and attach the devices under root_bus.
3526 	 */
3527 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3528 		device_probe_and_attach(dev);
3529 	}
3530 
3531 	/*
3532 	 * Wait for all asynchronous attaches to complete.  If we don't
3533 	 * our legacy ISA bus scan could steal device unit numbers or
3534 	 * even I/O ports.
3535 	 */
3536 	warncount = 10;
3537 	if (numasyncthreads)
3538 		kprintf("Waiting for async drivers to attach\n");
3539 	while (numasyncthreads > 0) {
3540 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3541 			--warncount;
3542 		if (warncount == 0) {
3543 			kprintf("Warning: Still waiting for %d "
3544 				"drivers to attach\n", numasyncthreads);
3545 		} else if (warncount == -30) {
3546 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3547 			break;
3548 		}
3549 	}
3550 	root_bus->state = DS_ATTACHED;
3551 }
3552 
3553 int
3554 driver_module_handler(module_t mod, int what, void *arg)
3555 {
3556 	int error;
3557 	struct driver_module_data *dmd;
3558 	devclass_t bus_devclass;
3559 	kobj_class_t driver;
3560         const char *parentname;
3561 
3562 	dmd = (struct driver_module_data *)arg;
3563 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3564 	error = 0;
3565 
3566 	switch (what) {
3567 	case MOD_LOAD:
3568 		if (dmd->dmd_chainevh)
3569 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3570 
3571 		driver = dmd->dmd_driver;
3572 		PDEBUG(("Loading module: driver %s on bus %s",
3573 		        DRIVERNAME(driver), dmd->dmd_busname));
3574 
3575 		/*
3576 		 * If the driver has any base classes, make the
3577 		 * devclass inherit from the devclass of the driver's
3578 		 * first base class. This will allow the system to
3579 		 * search for drivers in both devclasses for children
3580 		 * of a device using this driver.
3581 		 */
3582 		if (driver->baseclasses)
3583 			parentname = driver->baseclasses[0]->name;
3584 		else
3585 			parentname = NULL;
3586 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3587 							    parentname, TRUE);
3588 
3589 		error = devclass_add_driver(bus_devclass, driver);
3590 		if (error)
3591 			break;
3592 		break;
3593 
3594 	case MOD_UNLOAD:
3595 		PDEBUG(("Unloading module: driver %s from bus %s",
3596 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3597 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3598 
3599 		if (!error && dmd->dmd_chainevh)
3600 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3601 		break;
3602 	}
3603 
3604 	return (error);
3605 }
3606 
3607 #ifdef BUS_DEBUG
3608 
3609 /*
3610  * The _short versions avoid iteration by not calling anything that prints
3611  * more than oneliners. I love oneliners.
3612  */
3613 
3614 static void
3615 print_device_short(device_t dev, int indent)
3616 {
3617 	if (!dev)
3618 		return;
3619 
3620 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3621 		      dev->unit, dev->desc,
3622 		      (dev->parent? "":"no "),
3623 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3624 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3625 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3626 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3627 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3628 		      (dev->ivars? "":"no "),
3629 		      (dev->softc? "":"no "),
3630 		      dev->busy));
3631 }
3632 
3633 static void
3634 print_device(device_t dev, int indent)
3635 {
3636 	if (!dev)
3637 		return;
3638 
3639 	print_device_short(dev, indent);
3640 
3641 	indentprintf(("Parent:\n"));
3642 	print_device_short(dev->parent, indent+1);
3643 	indentprintf(("Driver:\n"));
3644 	print_driver_short(dev->driver, indent+1);
3645 	indentprintf(("Devclass:\n"));
3646 	print_devclass_short(dev->devclass, indent+1);
3647 }
3648 
3649 /*
3650  * Print the device and all its children (indented).
3651  */
3652 void
3653 print_device_tree_short(device_t dev, int indent)
3654 {
3655 	device_t child;
3656 
3657 	if (!dev)
3658 		return;
3659 
3660 	print_device_short(dev, indent);
3661 
3662 	TAILQ_FOREACH(child, &dev->children, link)
3663 		print_device_tree_short(child, indent+1);
3664 }
3665 
3666 /*
3667  * Print the device and all its children (indented).
3668  */
3669 void
3670 print_device_tree(device_t dev, int indent)
3671 {
3672 	device_t child;
3673 
3674 	if (!dev)
3675 		return;
3676 
3677 	print_device(dev, indent);
3678 
3679 	TAILQ_FOREACH(child, &dev->children, link)
3680 		print_device_tree(child, indent+1);
3681 }
3682 
3683 static void
3684 print_driver_short(driver_t *driver, int indent)
3685 {
3686 	if (!driver)
3687 		return;
3688 
3689 	indentprintf(("driver %s: softc size = %zu\n",
3690 		      driver->name, driver->size));
3691 }
3692 
3693 static void
3694 print_driver(driver_t *driver, int indent)
3695 {
3696 	if (!driver)
3697 		return;
3698 
3699 	print_driver_short(driver, indent);
3700 }
3701 
3702 
3703 static void
3704 print_driver_list(driver_list_t drivers, int indent)
3705 {
3706 	driverlink_t driver;
3707 
3708 	TAILQ_FOREACH(driver, &drivers, link)
3709 		print_driver(driver->driver, indent);
3710 }
3711 
3712 static void
3713 print_devclass_short(devclass_t dc, int indent)
3714 {
3715 	if (!dc)
3716 		return;
3717 
3718 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3719 }
3720 
3721 static void
3722 print_devclass(devclass_t dc, int indent)
3723 {
3724 	int i;
3725 
3726 	if (!dc)
3727 		return;
3728 
3729 	print_devclass_short(dc, indent);
3730 	indentprintf(("Drivers:\n"));
3731 	print_driver_list(dc->drivers, indent+1);
3732 
3733 	indentprintf(("Devices:\n"));
3734 	for (i = 0; i < dc->maxunit; i++)
3735 		if (dc->devices[i])
3736 			print_device(dc->devices[i], indent+1);
3737 }
3738 
3739 void
3740 print_devclass_list_short(void)
3741 {
3742 	devclass_t dc;
3743 
3744 	kprintf("Short listing of devclasses, drivers & devices:\n");
3745 	TAILQ_FOREACH(dc, &devclasses, link) {
3746 		print_devclass_short(dc, 0);
3747 	}
3748 }
3749 
3750 void
3751 print_devclass_list(void)
3752 {
3753 	devclass_t dc;
3754 
3755 	kprintf("Full listing of devclasses, drivers & devices:\n");
3756 	TAILQ_FOREACH(dc, &devclasses, link) {
3757 		print_devclass(dc, 0);
3758 	}
3759 }
3760 
3761 #endif
3762 
3763 /*
3764  * Check to see if a device is disabled via a disabled hint.
3765  */
3766 int
3767 resource_disabled(const char *name, int unit)
3768 {
3769 	int error, value;
3770 
3771 	error = resource_int_value(name, unit, "disabled", &value);
3772 	if (error)
3773 	       return(0);
3774 	return(value);
3775 }
3776 
3777 /*
3778  * User-space access to the device tree.
3779  *
3780  * We implement a small set of nodes:
3781  *
3782  * hw.bus			Single integer read method to obtain the
3783  *				current generation count.
3784  * hw.bus.devices		Reads the entire device tree in flat space.
3785  * hw.bus.rman			Resource manager interface
3786  *
3787  * We might like to add the ability to scan devclasses and/or drivers to
3788  * determine what else is currently loaded/available.
3789  */
3790 
3791 static int
3792 sysctl_bus(SYSCTL_HANDLER_ARGS)
3793 {
3794 	struct u_businfo	ubus;
3795 
3796 	ubus.ub_version = BUS_USER_VERSION;
3797 	ubus.ub_generation = bus_data_generation;
3798 
3799 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3800 }
3801 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3802     "bus-related data");
3803 
3804 static int
3805 sysctl_devices(SYSCTL_HANDLER_ARGS)
3806 {
3807 	int			*name = (int *)arg1;
3808 	u_int			namelen = arg2;
3809 	int			index;
3810 	device_t		dev;
3811 	struct u_device		udev;	/* XXX this is a bit big */
3812 	int			error;
3813 
3814 	if (namelen != 2)
3815 		return (EINVAL);
3816 
3817 	if (bus_data_generation_check(name[0]))
3818 		return (EINVAL);
3819 
3820 	index = name[1];
3821 
3822 	/*
3823 	 * Scan the list of devices, looking for the requested index.
3824 	 */
3825 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3826 		if (index-- == 0)
3827 			break;
3828 	}
3829 	if (dev == NULL)
3830 		return (ENOENT);
3831 
3832 	/*
3833 	 * Populate the return array.
3834 	 */
3835 	bzero(&udev, sizeof(udev));
3836 	udev.dv_handle = (uintptr_t)dev;
3837 	udev.dv_parent = (uintptr_t)dev->parent;
3838 	if (dev->nameunit != NULL)
3839 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3840 	if (dev->desc != NULL)
3841 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3842 	if (dev->driver != NULL && dev->driver->name != NULL)
3843 		strlcpy(udev.dv_drivername, dev->driver->name,
3844 		    sizeof(udev.dv_drivername));
3845 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3846 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3847 	udev.dv_devflags = dev->devflags;
3848 	udev.dv_flags = dev->flags;
3849 	udev.dv_state = dev->state;
3850 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3851 	return (error);
3852 }
3853 
3854 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3855     "system device tree");
3856 
3857 int
3858 bus_data_generation_check(int generation)
3859 {
3860 	if (generation != bus_data_generation)
3861 		return (1);
3862 
3863 	/* XXX generate optimised lists here? */
3864 	return (0);
3865 }
3866 
3867 void
3868 bus_data_generation_update(void)
3869 {
3870 	bus_data_generation++;
3871 }
3872 
3873 const char *
3874 intr_str_polarity(enum intr_polarity pola)
3875 {
3876 	switch (pola) {
3877 	case INTR_POLARITY_LOW:
3878 		return "low";
3879 
3880 	case INTR_POLARITY_HIGH:
3881 		return "high";
3882 
3883 	case INTR_POLARITY_CONFORM:
3884 		return "conform";
3885 	}
3886 	return "unknown";
3887 }
3888 
3889 const char *
3890 intr_str_trigger(enum intr_trigger trig)
3891 {
3892 	switch (trig) {
3893 	case INTR_TRIGGER_EDGE:
3894 		return "edge";
3895 
3896 	case INTR_TRIGGER_LEVEL:
3897 		return "level";
3898 
3899 	case INTR_TRIGGER_CONFORM:
3900 		return "conform";
3901 	}
3902 	return "unknown";
3903 }
3904 
3905 int
3906 device_getenv_int(device_t dev, const char *knob, int def)
3907 {
3908 	char env[128];
3909 
3910 	/* Deprecated; for compat */
3911 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3912 	kgetenv_int(env, &def);
3913 
3914 	/* Prefer dev.driver.unit.knob */
3915 	ksnprintf(env, sizeof(env), "dev.%s.%d.%s",
3916 	    device_get_name(dev), device_get_unit(dev), knob);
3917 	kgetenv_int(env, &def);
3918 
3919 	return def;
3920 }
3921 
3922 void
3923 device_getenv_string(device_t dev, const char *knob, char * __restrict data,
3924     int dlen, const char * __restrict def)
3925 {
3926 	char env[128];
3927 
3928 	strlcpy(data, def, dlen);
3929 
3930 	/* Deprecated; for compat */
3931 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3932 	kgetenv_string(env, data, dlen);
3933 
3934 	/* Prefer dev.driver.unit.knob */
3935 	ksnprintf(env, sizeof(env), "dev.%s.%d.%s",
3936 	    device_get_name(dev), device_get_unit(dev), knob);
3937 	kgetenv_string(env, data, dlen);
3938 }
3939