xref: /dragonfly/sys/kern/subr_bus.c (revision 10cbe914)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  */
28 
29 #include "opt_bus.h"
30 
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/kobj.h>
37 #include <sys/bus_private.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/device.h>
43 #include <sys/lock.h>
44 #include <sys/conf.h>
45 #include <sys/uio.h>
46 #include <sys/filio.h>
47 #include <sys/event.h>
48 #include <sys/signalvar.h>
49 
50 #include <machine/stdarg.h>	/* for device_printf() */
51 
52 #include <sys/thread2.h>
53 #include <sys/mplock2.h>
54 
55 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
56 
57 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
58 
59 #ifdef BUS_DEBUG
60 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
61 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
62 #define DRIVERNAME(d)	((d)? d->name : "no driver")
63 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
64 
65 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
66  * prevent syslog from deleting initial spaces
67  */
68 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
69 
70 static void	print_device_short(device_t dev, int indent);
71 static void	print_device(device_t dev, int indent);
72 void		print_device_tree_short(device_t dev, int indent);
73 void		print_device_tree(device_t dev, int indent);
74 static void	print_driver_short(driver_t *driver, int indent);
75 static void	print_driver(driver_t *driver, int indent);
76 static void	print_driver_list(driver_list_t drivers, int indent);
77 static void	print_devclass_short(devclass_t dc, int indent);
78 static void	print_devclass(devclass_t dc, int indent);
79 void		print_devclass_list_short(void);
80 void		print_devclass_list(void);
81 
82 #else
83 /* Make the compiler ignore the function calls */
84 #define PDEBUG(a)			/* nop */
85 #define DEVICENAME(d)			/* nop */
86 #define DRIVERNAME(d)			/* nop */
87 #define DEVCLANAME(d)			/* nop */
88 
89 #define print_device_short(d,i)		/* nop */
90 #define print_device(d,i)		/* nop */
91 #define print_device_tree_short(d,i)	/* nop */
92 #define print_device_tree(d,i)		/* nop */
93 #define print_driver_short(d,i)		/* nop */
94 #define print_driver(d,i)		/* nop */
95 #define print_driver_list(d,i)		/* nop */
96 #define print_devclass_short(d,i)	/* nop */
97 #define print_devclass(d,i)		/* nop */
98 #define print_devclass_list_short()	/* nop */
99 #define print_devclass_list()		/* nop */
100 #endif
101 
102 static void	device_attach_async(device_t dev);
103 static void	device_attach_thread(void *arg);
104 static int	device_doattach(device_t dev);
105 
106 static int do_async_attach = 0;
107 static int numasyncthreads;
108 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
109 
110 /*
111  * /dev/devctl implementation
112  */
113 
114 /*
115  * This design allows only one reader for /dev/devctl.  This is not desirable
116  * in the long run, but will get a lot of hair out of this implementation.
117  * Maybe we should make this device a clonable device.
118  *
119  * Also note: we specifically do not attach a device to the device_t tree
120  * to avoid potential chicken and egg problems.  One could argue that all
121  * of this belongs to the root node.  One could also further argue that the
122  * sysctl interface that we have not might more properly be an ioctl
123  * interface, but at this stage of the game, I'm not inclined to rock that
124  * boat.
125  *
126  * I'm also not sure that the SIGIO support is done correctly or not, as
127  * I copied it from a driver that had SIGIO support that likely hasn't been
128  * tested since 3.4 or 2.2.8!
129  */
130 
131 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
132 static int devctl_disable = 0;
133 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
134 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
135     sysctl_devctl_disable, "I", "devctl disable");
136 
137 static d_open_t		devopen;
138 static d_close_t	devclose;
139 static d_read_t		devread;
140 static d_ioctl_t	devioctl;
141 static d_kqfilter_t	devkqfilter;
142 
143 static struct dev_ops devctl_ops = {
144 	{ "devctl", 0, 0 },
145 	.d_open =	devopen,
146 	.d_close =	devclose,
147 	.d_read =	devread,
148 	.d_ioctl =	devioctl,
149 	.d_kqfilter =	devkqfilter
150 };
151 
152 struct dev_event_info
153 {
154 	char *dei_data;
155 	TAILQ_ENTRY(dev_event_info) dei_link;
156 };
157 
158 TAILQ_HEAD(devq, dev_event_info);
159 
160 static struct dev_softc
161 {
162 	int	inuse;
163 	int	nonblock;
164 	struct lock lock;
165 	struct kqinfo kq;
166 	struct devq devq;
167 	struct proc *async_proc;
168 } devsoftc;
169 
170 static void
171 devinit(void)
172 {
173 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
174 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
175 	TAILQ_INIT(&devsoftc.devq);
176 }
177 
178 static int
179 devopen(struct dev_open_args *ap)
180 {
181 	if (devsoftc.inuse)
182 		return (EBUSY);
183 	/* move to init */
184 	devsoftc.inuse = 1;
185 	devsoftc.nonblock = 0;
186 	devsoftc.async_proc = NULL;
187 	return (0);
188 }
189 
190 static int
191 devclose(struct dev_close_args *ap)
192 {
193 	devsoftc.inuse = 0;
194 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
195 	wakeup(&devsoftc);
196 	lockmgr(&devsoftc.lock, LK_RELEASE);
197 
198 	return (0);
199 }
200 
201 /*
202  * The read channel for this device is used to report changes to
203  * userland in realtime.  We are required to free the data as well as
204  * the n1 object because we allocate them separately.  Also note that
205  * we return one record at a time.  If you try to read this device a
206  * character at a time, you will lose the rest of the data.  Listening
207  * programs are expected to cope.
208  */
209 static int
210 devread(struct dev_read_args *ap)
211 {
212 	struct uio *uio = ap->a_uio;
213 	struct dev_event_info *n1;
214 	int rv;
215 
216 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
217 	while (TAILQ_EMPTY(&devsoftc.devq)) {
218 		if (devsoftc.nonblock) {
219 			lockmgr(&devsoftc.lock, LK_RELEASE);
220 			return (EAGAIN);
221 		}
222 		tsleep_interlock(&devsoftc, PCATCH);
223 		lockmgr(&devsoftc.lock, LK_RELEASE);
224 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
225 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
226 		if (rv) {
227 			/*
228 			 * Need to translate ERESTART to EINTR here? -- jake
229 			 */
230 			lockmgr(&devsoftc.lock, LK_RELEASE);
231 			return (rv);
232 		}
233 	}
234 	n1 = TAILQ_FIRST(&devsoftc.devq);
235 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
236 	lockmgr(&devsoftc.lock, LK_RELEASE);
237 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
238 	kfree(n1->dei_data, M_BUS);
239 	kfree(n1, M_BUS);
240 	return (rv);
241 }
242 
243 static	int
244 devioctl(struct dev_ioctl_args *ap)
245 {
246 	switch (ap->a_cmd) {
247 
248 	case FIONBIO:
249 		if (*(int*)ap->a_data)
250 			devsoftc.nonblock = 1;
251 		else
252 			devsoftc.nonblock = 0;
253 		return (0);
254 	case FIOASYNC:
255 		if (*(int*)ap->a_data)
256 			devsoftc.async_proc = curproc;
257 		else
258 			devsoftc.async_proc = NULL;
259 		return (0);
260 
261 		/* (un)Support for other fcntl() calls. */
262 	case FIOCLEX:
263 	case FIONCLEX:
264 	case FIONREAD:
265 	case FIOSETOWN:
266 	case FIOGETOWN:
267 	default:
268 		break;
269 	}
270 	return (ENOTTY);
271 }
272 
273 static void dev_filter_detach(struct knote *);
274 static int dev_filter_read(struct knote *, long);
275 
276 static struct filterops dev_filtops =
277 	{ FILTEROP_ISFD, NULL, dev_filter_detach, dev_filter_read };
278 
279 static int
280 devkqfilter(struct dev_kqfilter_args *ap)
281 {
282 	struct knote *kn = ap->a_kn;
283 	struct klist *klist;
284 
285 	ap->a_result = 0;
286 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
287 
288 	switch (kn->kn_filter) {
289 	case EVFILT_READ:
290 		kn->kn_fop = &dev_filtops;
291 		break;
292 	default:
293 		ap->a_result = EOPNOTSUPP;
294 		lockmgr(&devsoftc.lock, LK_RELEASE);
295 		return (0);
296 	}
297 
298 	klist = &devsoftc.kq.ki_note;
299 	knote_insert(klist, kn);
300 
301 	lockmgr(&devsoftc.lock, LK_RELEASE);
302 
303 	return (0);
304 }
305 
306 static void
307 dev_filter_detach(struct knote *kn)
308 {
309 	struct klist *klist;
310 
311 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
312 	klist = &devsoftc.kq.ki_note;
313 	knote_remove(klist, kn);
314 	lockmgr(&devsoftc.lock, LK_RELEASE);
315 }
316 
317 static int
318 dev_filter_read(struct knote *kn, long hint)
319 {
320 	int ready = 0;
321 
322 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
323 	if (!TAILQ_EMPTY(&devsoftc.devq))
324 		ready = 1;
325 	lockmgr(&devsoftc.lock, LK_RELEASE);
326 
327 	return (ready);
328 }
329 
330 
331 /**
332  * @brief Return whether the userland process is running
333  */
334 boolean_t
335 devctl_process_running(void)
336 {
337 	return (devsoftc.inuse == 1);
338 }
339 
340 /**
341  * @brief Queue data to be read from the devctl device
342  *
343  * Generic interface to queue data to the devctl device.  It is
344  * assumed that @p data is properly formatted.  It is further assumed
345  * that @p data is allocated using the M_BUS malloc type.
346  */
347 void
348 devctl_queue_data(char *data)
349 {
350 	struct dev_event_info *n1 = NULL;
351 	struct proc *p;
352 
353 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
354 	if (n1 == NULL)
355 		return;
356 	n1->dei_data = data;
357 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
358 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
359 	wakeup(&devsoftc);
360 	lockmgr(&devsoftc.lock, LK_RELEASE);
361 	get_mplock();	/* XXX */
362 	KNOTE(&devsoftc.kq.ki_note, 0);
363 	rel_mplock();	/* XXX */
364 	p = devsoftc.async_proc;
365 	if (p != NULL)
366 		ksignal(p, SIGIO);
367 }
368 
369 /**
370  * @brief Send a 'notification' to userland, using standard ways
371  */
372 void
373 devctl_notify(const char *system, const char *subsystem, const char *type,
374     const char *data)
375 {
376 	int len = 0;
377 	char *msg;
378 
379 	if (system == NULL)
380 		return;		/* BOGUS!  Must specify system. */
381 	if (subsystem == NULL)
382 		return;		/* BOGUS!  Must specify subsystem. */
383 	if (type == NULL)
384 		return;		/* BOGUS!  Must specify type. */
385 	len += strlen(" system=") + strlen(system);
386 	len += strlen(" subsystem=") + strlen(subsystem);
387 	len += strlen(" type=") + strlen(type);
388 	/* add in the data message plus newline. */
389 	if (data != NULL)
390 		len += strlen(data);
391 	len += 3;	/* '!', '\n', and NUL */
392 	msg = kmalloc(len, M_BUS, M_NOWAIT);
393 	if (msg == NULL)
394 		return;		/* Drop it on the floor */
395 	if (data != NULL)
396 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
397 		    system, subsystem, type, data);
398 	else
399 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
400 		    system, subsystem, type);
401 	devctl_queue_data(msg);
402 }
403 
404 /*
405  * Common routine that tries to make sending messages as easy as possible.
406  * We allocate memory for the data, copy strings into that, but do not
407  * free it unless there's an error.  The dequeue part of the driver should
408  * free the data.  We don't send data when the device is disabled.  We do
409  * send data, even when we have no listeners, because we wish to avoid
410  * races relating to startup and restart of listening applications.
411  *
412  * devaddq is designed to string together the type of event, with the
413  * object of that event, plus the plug and play info and location info
414  * for that event.  This is likely most useful for devices, but less
415  * useful for other consumers of this interface.  Those should use
416  * the devctl_queue_data() interface instead.
417  */
418 static void
419 devaddq(const char *type, const char *what, device_t dev)
420 {
421 	char *data = NULL;
422 	char *loc = NULL;
423 	char *pnp = NULL;
424 	const char *parstr;
425 
426 	if (devctl_disable)
427 		return;
428 	data = kmalloc(1024, M_BUS, M_NOWAIT);
429 	if (data == NULL)
430 		goto bad;
431 
432 	/* get the bus specific location of this device */
433 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
434 	if (loc == NULL)
435 		goto bad;
436 	*loc = '\0';
437 	bus_child_location_str(dev, loc, 1024);
438 
439 	/* Get the bus specific pnp info of this device */
440 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
441 	if (pnp == NULL)
442 		goto bad;
443 	*pnp = '\0';
444 	bus_child_pnpinfo_str(dev, pnp, 1024);
445 
446 	/* Get the parent of this device, or / if high enough in the tree. */
447 	if (device_get_parent(dev) == NULL)
448 		parstr = ".";	/* Or '/' ? */
449 	else
450 		parstr = device_get_nameunit(device_get_parent(dev));
451 	/* String it all together. */
452 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
453 	  parstr);
454 	kfree(loc, M_BUS);
455 	kfree(pnp, M_BUS);
456 	devctl_queue_data(data);
457 	return;
458 bad:
459 	kfree(pnp, M_BUS);
460 	kfree(loc, M_BUS);
461 	kfree(data, M_BUS);
462 	return;
463 }
464 
465 /*
466  * A device was added to the tree.  We are called just after it successfully
467  * attaches (that is, probe and attach success for this device).  No call
468  * is made if a device is merely parented into the tree.  See devnomatch
469  * if probe fails.  If attach fails, no notification is sent (but maybe
470  * we should have a different message for this).
471  */
472 static void
473 devadded(device_t dev)
474 {
475 	char *pnp = NULL;
476 	char *tmp = NULL;
477 
478 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
479 	if (pnp == NULL)
480 		goto fail;
481 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
482 	if (tmp == NULL)
483 		goto fail;
484 	*pnp = '\0';
485 	bus_child_pnpinfo_str(dev, pnp, 1024);
486 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
487 	devaddq("+", tmp, dev);
488 fail:
489 	if (pnp != NULL)
490 		kfree(pnp, M_BUS);
491 	if (tmp != NULL)
492 		kfree(tmp, M_BUS);
493 	return;
494 }
495 
496 /*
497  * A device was removed from the tree.  We are called just before this
498  * happens.
499  */
500 static void
501 devremoved(device_t dev)
502 {
503 	char *pnp = NULL;
504 	char *tmp = NULL;
505 
506 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
507 	if (pnp == NULL)
508 		goto fail;
509 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
510 	if (tmp == NULL)
511 		goto fail;
512 	*pnp = '\0';
513 	bus_child_pnpinfo_str(dev, pnp, 1024);
514 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
515 	devaddq("-", tmp, dev);
516 fail:
517 	if (pnp != NULL)
518 		kfree(pnp, M_BUS);
519 	if (tmp != NULL)
520 		kfree(tmp, M_BUS);
521 	return;
522 }
523 
524 /*
525  * Called when there's no match for this device.  This is only called
526  * the first time that no match happens, so we don't keep getitng this
527  * message.  Should that prove to be undesirable, we can change it.
528  * This is called when all drivers that can attach to a given bus
529  * decline to accept this device.  Other errrors may not be detected.
530  */
531 static void
532 devnomatch(device_t dev)
533 {
534 	devaddq("?", "", dev);
535 }
536 
537 static int
538 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
539 {
540 	struct dev_event_info *n1;
541 	int dis, error;
542 
543 	dis = devctl_disable;
544 	error = sysctl_handle_int(oidp, &dis, 0, req);
545 	if (error || !req->newptr)
546 		return (error);
547 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
548 	devctl_disable = dis;
549 	if (dis) {
550 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
551 			n1 = TAILQ_FIRST(&devsoftc.devq);
552 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
553 			kfree(n1->dei_data, M_BUS);
554 			kfree(n1, M_BUS);
555 		}
556 	}
557 	lockmgr(&devsoftc.lock, LK_RELEASE);
558 	return (0);
559 }
560 
561 /* End of /dev/devctl code */
562 
563 TAILQ_HEAD(,device)	bus_data_devices;
564 static int bus_data_generation = 1;
565 
566 kobj_method_t null_methods[] = {
567 	{ 0, 0 }
568 };
569 
570 DEFINE_CLASS(null, null_methods, 0);
571 
572 /*
573  * Devclass implementation
574  */
575 
576 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
577 
578 static devclass_t
579 devclass_find_internal(const char *classname, const char *parentname,
580 		       int create)
581 {
582 	devclass_t dc;
583 
584 	PDEBUG(("looking for %s", classname));
585 	if (classname == NULL)
586 		return(NULL);
587 
588 	TAILQ_FOREACH(dc, &devclasses, link)
589 		if (!strcmp(dc->name, classname))
590 			break;
591 
592 	if (create && !dc) {
593 		PDEBUG(("creating %s", classname));
594 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
595 			    M_BUS, M_INTWAIT | M_ZERO);
596 		if (!dc)
597 			return(NULL);
598 		dc->parent = NULL;
599 		dc->name = (char*) (dc + 1);
600 		strcpy(dc->name, classname);
601 		dc->devices = NULL;
602 		dc->maxunit = 0;
603 		TAILQ_INIT(&dc->drivers);
604 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
605 
606 		bus_data_generation_update();
607 
608 	}
609 	if (parentname && dc && !dc->parent)
610 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
611 
612 	return(dc);
613 }
614 
615 devclass_t
616 devclass_create(const char *classname)
617 {
618 	return(devclass_find_internal(classname, NULL, TRUE));
619 }
620 
621 devclass_t
622 devclass_find(const char *classname)
623 {
624 	return(devclass_find_internal(classname, NULL, FALSE));
625 }
626 
627 device_t
628 devclass_find_unit(const char *classname, int unit)
629 {
630 	devclass_t dc;
631 
632 	if ((dc = devclass_find(classname)) != NULL)
633 	    return(devclass_get_device(dc, unit));
634 	return (NULL);
635 }
636 
637 int
638 devclass_add_driver(devclass_t dc, driver_t *driver)
639 {
640 	driverlink_t dl;
641 	device_t dev;
642 	int i;
643 
644 	PDEBUG(("%s", DRIVERNAME(driver)));
645 
646 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
647 	if (!dl)
648 		return(ENOMEM);
649 
650 	/*
651 	 * Compile the driver's methods. Also increase the reference count
652 	 * so that the class doesn't get freed when the last instance
653 	 * goes. This means we can safely use static methods and avoids a
654 	 * double-free in devclass_delete_driver.
655 	 */
656 	kobj_class_instantiate(driver);
657 
658 	/*
659 	 * Make sure the devclass which the driver is implementing exists.
660 	 */
661 	devclass_find_internal(driver->name, NULL, TRUE);
662 
663 	dl->driver = driver;
664 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
665 
666 	/*
667 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
668 	 * but only if the bus has already been attached (otherwise we
669 	 * might probe too early).
670 	 *
671 	 * This is what will cause a newly loaded module to be associated
672 	 * with hardware.  bus_generic_driver_added() is typically what ends
673 	 * up being called.
674 	 */
675 	for (i = 0; i < dc->maxunit; i++) {
676 		if ((dev = dc->devices[i]) != NULL) {
677 			if (dev->state >= DS_ATTACHED)
678 				BUS_DRIVER_ADDED(dev, driver);
679 		}
680 	}
681 
682 	bus_data_generation_update();
683 	return(0);
684 }
685 
686 int
687 devclass_delete_driver(devclass_t busclass, driver_t *driver)
688 {
689 	devclass_t dc = devclass_find(driver->name);
690 	driverlink_t dl;
691 	device_t dev;
692 	int i;
693 	int error;
694 
695 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
696 
697 	if (!dc)
698 		return(0);
699 
700 	/*
701 	 * Find the link structure in the bus' list of drivers.
702 	 */
703 	TAILQ_FOREACH(dl, &busclass->drivers, link)
704 		if (dl->driver == driver)
705 			break;
706 
707 	if (!dl) {
708 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
709 		return(ENOENT);
710 	}
711 
712 	/*
713 	 * Disassociate from any devices.  We iterate through all the
714 	 * devices in the devclass of the driver and detach any which are
715 	 * using the driver and which have a parent in the devclass which
716 	 * we are deleting from.
717 	 *
718 	 * Note that since a driver can be in multiple devclasses, we
719 	 * should not detach devices which are not children of devices in
720 	 * the affected devclass.
721 	 */
722 	for (i = 0; i < dc->maxunit; i++)
723 		if (dc->devices[i]) {
724 			dev = dc->devices[i];
725 			if (dev->driver == driver && dev->parent &&
726 			    dev->parent->devclass == busclass) {
727 				if ((error = device_detach(dev)) != 0)
728 					return(error);
729 				device_set_driver(dev, NULL);
730 		    	}
731 		}
732 
733 	TAILQ_REMOVE(&busclass->drivers, dl, link);
734 	kfree(dl, M_BUS);
735 
736 	kobj_class_uninstantiate(driver);
737 
738 	bus_data_generation_update();
739 	return(0);
740 }
741 
742 static driverlink_t
743 devclass_find_driver_internal(devclass_t dc, const char *classname)
744 {
745 	driverlink_t dl;
746 
747 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
748 
749 	TAILQ_FOREACH(dl, &dc->drivers, link)
750 		if (!strcmp(dl->driver->name, classname))
751 			return(dl);
752 
753 	PDEBUG(("not found"));
754 	return(NULL);
755 }
756 
757 kobj_class_t
758 devclass_find_driver(devclass_t dc, const char *classname)
759 {
760 	driverlink_t dl;
761 
762 	dl = devclass_find_driver_internal(dc, classname);
763 	if (dl)
764 		return(dl->driver);
765 	else
766 		return(NULL);
767 }
768 
769 const char *
770 devclass_get_name(devclass_t dc)
771 {
772 	return(dc->name);
773 }
774 
775 device_t
776 devclass_get_device(devclass_t dc, int unit)
777 {
778 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
779 		return(NULL);
780 	return(dc->devices[unit]);
781 }
782 
783 void *
784 devclass_get_softc(devclass_t dc, int unit)
785 {
786 	device_t dev;
787 
788 	dev = devclass_get_device(dc, unit);
789 	if (!dev)
790 		return(NULL);
791 
792 	return(device_get_softc(dev));
793 }
794 
795 int
796 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
797 {
798 	int i;
799 	int count;
800 	device_t *list;
801 
802 	count = 0;
803 	for (i = 0; i < dc->maxunit; i++)
804 		if (dc->devices[i])
805 			count++;
806 
807 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
808 	if (list == NULL)
809 		return(ENOMEM);
810 
811 	count = 0;
812 	for (i = 0; i < dc->maxunit; i++)
813 		if (dc->devices[i]) {
814 			list[count] = dc->devices[i];
815 			count++;
816 		}
817 
818 	*devlistp = list;
819 	*devcountp = count;
820 
821 	return(0);
822 }
823 
824 /**
825  * @brief Get a list of drivers in the devclass
826  *
827  * An array containing a list of pointers to all the drivers in the
828  * given devclass is allocated and returned in @p *listp.  The number
829  * of drivers in the array is returned in @p *countp. The caller should
830  * free the array using @c free(p, M_TEMP).
831  *
832  * @param dc            the devclass to examine
833  * @param listp         gives location for array pointer return value
834  * @param countp        gives location for number of array elements
835  *                      return value
836  *
837  * @retval 0            success
838  * @retval ENOMEM       the array allocation failed
839  */
840 int
841 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
842 {
843         driverlink_t dl;
844         driver_t **list;
845         int count;
846 
847         count = 0;
848         TAILQ_FOREACH(dl, &dc->drivers, link)
849                 count++;
850         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
851         if (list == NULL)
852                 return (ENOMEM);
853 
854         count = 0;
855         TAILQ_FOREACH(dl, &dc->drivers, link) {
856                 list[count] = dl->driver;
857                 count++;
858         }
859         *listp = list;
860         *countp = count;
861 
862         return (0);
863 }
864 
865 /**
866  * @brief Get the number of devices in a devclass
867  *
868  * @param dc		the devclass to examine
869  */
870 int
871 devclass_get_count(devclass_t dc)
872 {
873 	int count, i;
874 
875 	count = 0;
876 	for (i = 0; i < dc->maxunit; i++)
877 		if (dc->devices[i])
878 			count++;
879 	return (count);
880 }
881 
882 int
883 devclass_get_maxunit(devclass_t dc)
884 {
885 	return(dc->maxunit);
886 }
887 
888 void
889 devclass_set_parent(devclass_t dc, devclass_t pdc)
890 {
891         dc->parent = pdc;
892 }
893 
894 devclass_t
895 devclass_get_parent(devclass_t dc)
896 {
897 	return(dc->parent);
898 }
899 
900 static int
901 devclass_alloc_unit(devclass_t dc, int *unitp)
902 {
903 	int unit = *unitp;
904 
905 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
906 
907 	/* If we have been given a wired unit number, check for existing device */
908 	if (unit != -1) {
909 		if (unit >= 0 && unit < dc->maxunit &&
910 		    dc->devices[unit] != NULL) {
911 			if (bootverbose)
912 				kprintf("%s-: %s%d exists, using next available unit number\n",
913 				       dc->name, dc->name, unit);
914 			/* find the next available slot */
915 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
916 				;
917 		}
918 	} else {
919 		/* Unwired device, find the next available slot for it */
920 		unit = 0;
921 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
922 			unit++;
923 	}
924 
925 	/*
926 	 * We've selected a unit beyond the length of the table, so let's
927 	 * extend the table to make room for all units up to and including
928 	 * this one.
929 	 */
930 	if (unit >= dc->maxunit) {
931 		device_t *newlist;
932 		int newsize;
933 
934 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
935 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
936 				 M_INTWAIT | M_ZERO);
937 		if (newlist == NULL)
938 			return(ENOMEM);
939 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
940 		if (dc->devices)
941 			kfree(dc->devices, M_BUS);
942 		dc->devices = newlist;
943 		dc->maxunit = newsize;
944 	}
945 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
946 
947 	*unitp = unit;
948 	return(0);
949 }
950 
951 static int
952 devclass_add_device(devclass_t dc, device_t dev)
953 {
954 	int buflen, error;
955 
956 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
957 
958 	buflen = strlen(dc->name) + 5;
959 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
960 	if (!dev->nameunit)
961 		return(ENOMEM);
962 
963 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
964 		kfree(dev->nameunit, M_BUS);
965 		dev->nameunit = NULL;
966 		return(error);
967 	}
968 	dc->devices[dev->unit] = dev;
969 	dev->devclass = dc;
970 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
971 
972 	return(0);
973 }
974 
975 static int
976 devclass_delete_device(devclass_t dc, device_t dev)
977 {
978 	if (!dc || !dev)
979 		return(0);
980 
981 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
982 
983 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
984 		panic("devclass_delete_device: inconsistent device class");
985 	dc->devices[dev->unit] = NULL;
986 	if (dev->flags & DF_WILDCARD)
987 		dev->unit = -1;
988 	dev->devclass = NULL;
989 	kfree(dev->nameunit, M_BUS);
990 	dev->nameunit = NULL;
991 
992 	return(0);
993 }
994 
995 static device_t
996 make_device(device_t parent, const char *name, int unit)
997 {
998 	device_t dev;
999 	devclass_t dc;
1000 
1001 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1002 
1003 	if (name != NULL) {
1004 		dc = devclass_find_internal(name, NULL, TRUE);
1005 		if (!dc) {
1006 			kprintf("make_device: can't find device class %s\n", name);
1007 			return(NULL);
1008 		}
1009 	} else
1010 		dc = NULL;
1011 
1012 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
1013 	if (!dev)
1014 		return(0);
1015 
1016 	dev->parent = parent;
1017 	TAILQ_INIT(&dev->children);
1018 	kobj_init((kobj_t) dev, &null_class);
1019 	dev->driver = NULL;
1020 	dev->devclass = NULL;
1021 	dev->unit = unit;
1022 	dev->nameunit = NULL;
1023 	dev->desc = NULL;
1024 	dev->busy = 0;
1025 	dev->devflags = 0;
1026 	dev->flags = DF_ENABLED;
1027 	dev->order = 0;
1028 	if (unit == -1)
1029 		dev->flags |= DF_WILDCARD;
1030 	if (name) {
1031 		dev->flags |= DF_FIXEDCLASS;
1032 		if (devclass_add_device(dc, dev) != 0) {
1033 			kobj_delete((kobj_t)dev, M_BUS);
1034 			return(NULL);
1035 		}
1036     	}
1037 	dev->ivars = NULL;
1038 	dev->softc = NULL;
1039 
1040 	dev->state = DS_NOTPRESENT;
1041 
1042 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1043 	bus_data_generation_update();
1044 
1045 	return(dev);
1046 }
1047 
1048 static int
1049 device_print_child(device_t dev, device_t child)
1050 {
1051 	int retval = 0;
1052 
1053 	if (device_is_alive(child))
1054 		retval += BUS_PRINT_CHILD(dev, child);
1055 	else
1056 		retval += device_printf(child, " not found\n");
1057 
1058 	return(retval);
1059 }
1060 
1061 device_t
1062 device_add_child(device_t dev, const char *name, int unit)
1063 {
1064 	return device_add_child_ordered(dev, 0, name, unit);
1065 }
1066 
1067 device_t
1068 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1069 {
1070 	device_t child;
1071 	device_t place;
1072 
1073 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1074 		order, unit));
1075 
1076 	child = make_device(dev, name, unit);
1077 	if (child == NULL)
1078 		return child;
1079 	child->order = order;
1080 
1081 	TAILQ_FOREACH(place, &dev->children, link)
1082 		if (place->order > order)
1083 			break;
1084 
1085 	if (place) {
1086 		/*
1087 		 * The device 'place' is the first device whose order is
1088 		 * greater than the new child.
1089 		 */
1090 		TAILQ_INSERT_BEFORE(place, child, link);
1091 	} else {
1092 		/*
1093 		 * The new child's order is greater or equal to the order of
1094 		 * any existing device. Add the child to the tail of the list.
1095 		 */
1096 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1097     	}
1098 
1099 	bus_data_generation_update();
1100 	return(child);
1101 }
1102 
1103 int
1104 device_delete_child(device_t dev, device_t child)
1105 {
1106 	int error;
1107 	device_t grandchild;
1108 
1109 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1110 
1111 	/* remove children first */
1112 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1113         	error = device_delete_child(child, grandchild);
1114 		if (error)
1115 			return(error);
1116 	}
1117 
1118 	if ((error = device_detach(child)) != 0)
1119 		return(error);
1120 	if (child->devclass)
1121 		devclass_delete_device(child->devclass, child);
1122 	TAILQ_REMOVE(&dev->children, child, link);
1123 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1124 	device_set_desc(child, NULL);
1125 	kobj_delete((kobj_t)child, M_BUS);
1126 
1127 	bus_data_generation_update();
1128 	return(0);
1129 }
1130 
1131 /**
1132  * @brief Find a device given a unit number
1133  *
1134  * This is similar to devclass_get_devices() but only searches for
1135  * devices which have @p dev as a parent.
1136  *
1137  * @param dev		the parent device to search
1138  * @param unit		the unit number to search for.  If the unit is -1,
1139  *			return the first child of @p dev which has name
1140  *			@p classname (that is, the one with the lowest unit.)
1141  *
1142  * @returns		the device with the given unit number or @c
1143  *			NULL if there is no such device
1144  */
1145 device_t
1146 device_find_child(device_t dev, const char *classname, int unit)
1147 {
1148 	devclass_t dc;
1149 	device_t child;
1150 
1151 	dc = devclass_find(classname);
1152 	if (!dc)
1153 		return(NULL);
1154 
1155 	if (unit != -1) {
1156 		child = devclass_get_device(dc, unit);
1157 		if (child && child->parent == dev)
1158 			return (child);
1159 	} else {
1160 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1161 			child = devclass_get_device(dc, unit);
1162 			if (child && child->parent == dev)
1163 				return (child);
1164 		}
1165 	}
1166 	return(NULL);
1167 }
1168 
1169 static driverlink_t
1170 first_matching_driver(devclass_t dc, device_t dev)
1171 {
1172 	if (dev->devclass)
1173 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1174 	else
1175 		return(TAILQ_FIRST(&dc->drivers));
1176 }
1177 
1178 static driverlink_t
1179 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1180 {
1181 	if (dev->devclass) {
1182 		driverlink_t dl;
1183 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1184 			if (!strcmp(dev->devclass->name, dl->driver->name))
1185 				return(dl);
1186 		return(NULL);
1187 	} else
1188 		return(TAILQ_NEXT(last, link));
1189 }
1190 
1191 static int
1192 device_probe_child(device_t dev, device_t child)
1193 {
1194 	devclass_t dc;
1195 	driverlink_t best = 0;
1196 	driverlink_t dl;
1197 	int result, pri = 0;
1198 	int hasclass = (child->devclass != 0);
1199 
1200 	dc = dev->devclass;
1201 	if (!dc)
1202 		panic("device_probe_child: parent device has no devclass");
1203 
1204 	if (child->state == DS_ALIVE)
1205 		return(0);
1206 
1207 	for (; dc; dc = dc->parent) {
1208     		for (dl = first_matching_driver(dc, child); dl;
1209 		     dl = next_matching_driver(dc, child, dl)) {
1210 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1211 			device_set_driver(child, dl->driver);
1212 			if (!hasclass)
1213 				device_set_devclass(child, dl->driver->name);
1214 			result = DEVICE_PROBE(child);
1215 			if (!hasclass)
1216 				device_set_devclass(child, 0);
1217 
1218 			/*
1219 			 * If the driver returns SUCCESS, there can be
1220 			 * no higher match for this device.
1221 			 */
1222 			if (result == 0) {
1223 				best = dl;
1224 				pri = 0;
1225 				break;
1226 			}
1227 
1228 			/*
1229 			 * The driver returned an error so it
1230 			 * certainly doesn't match.
1231 			 */
1232 			if (result > 0) {
1233 				device_set_driver(child, 0);
1234 				continue;
1235 			}
1236 
1237 			/*
1238 			 * A priority lower than SUCCESS, remember the
1239 			 * best matching driver. Initialise the value
1240 			 * of pri for the first match.
1241 			 */
1242 			if (best == 0 || result > pri) {
1243 				best = dl;
1244 				pri = result;
1245 				continue;
1246 			}
1247 	        }
1248 		/*
1249 	         * If we have unambiguous match in this devclass,
1250 	         * don't look in the parent.
1251 	         */
1252 	        if (best && pri == 0)
1253 	    	        break;
1254 	}
1255 
1256 	/*
1257 	 * If we found a driver, change state and initialise the devclass.
1258 	 */
1259 	if (best) {
1260 		if (!child->devclass)
1261 			device_set_devclass(child, best->driver->name);
1262 		device_set_driver(child, best->driver);
1263 		if (pri < 0) {
1264 			/*
1265 			 * A bit bogus. Call the probe method again to make
1266 			 * sure that we have the right description.
1267 			 */
1268 			DEVICE_PROBE(child);
1269 		}
1270 
1271 		bus_data_generation_update();
1272 		child->state = DS_ALIVE;
1273 		return(0);
1274 	}
1275 
1276 	return(ENXIO);
1277 }
1278 
1279 device_t
1280 device_get_parent(device_t dev)
1281 {
1282 	return dev->parent;
1283 }
1284 
1285 int
1286 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1287 {
1288 	int count;
1289 	device_t child;
1290 	device_t *list;
1291 
1292 	count = 0;
1293 	TAILQ_FOREACH(child, &dev->children, link)
1294 		count++;
1295 
1296 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1297 	if (!list)
1298 		return(ENOMEM);
1299 
1300 	count = 0;
1301 	TAILQ_FOREACH(child, &dev->children, link) {
1302 		list[count] = child;
1303 		count++;
1304 	}
1305 
1306 	*devlistp = list;
1307 	*devcountp = count;
1308 
1309 	return(0);
1310 }
1311 
1312 driver_t *
1313 device_get_driver(device_t dev)
1314 {
1315 	return(dev->driver);
1316 }
1317 
1318 devclass_t
1319 device_get_devclass(device_t dev)
1320 {
1321 	return(dev->devclass);
1322 }
1323 
1324 const char *
1325 device_get_name(device_t dev)
1326 {
1327 	if (dev->devclass)
1328 		return devclass_get_name(dev->devclass);
1329 	return(NULL);
1330 }
1331 
1332 const char *
1333 device_get_nameunit(device_t dev)
1334 {
1335 	return(dev->nameunit);
1336 }
1337 
1338 int
1339 device_get_unit(device_t dev)
1340 {
1341 	return(dev->unit);
1342 }
1343 
1344 const char *
1345 device_get_desc(device_t dev)
1346 {
1347 	return(dev->desc);
1348 }
1349 
1350 uint32_t
1351 device_get_flags(device_t dev)
1352 {
1353 	return(dev->devflags);
1354 }
1355 
1356 int
1357 device_print_prettyname(device_t dev)
1358 {
1359 	const char *name = device_get_name(dev);
1360 
1361 	if (name == 0)
1362 		return kprintf("unknown: ");
1363 	else
1364 		return kprintf("%s%d: ", name, device_get_unit(dev));
1365 }
1366 
1367 int
1368 device_printf(device_t dev, const char * fmt, ...)
1369 {
1370 	__va_list ap;
1371 	int retval;
1372 
1373 	retval = device_print_prettyname(dev);
1374 	__va_start(ap, fmt);
1375 	retval += kvprintf(fmt, ap);
1376 	__va_end(ap);
1377 	return retval;
1378 }
1379 
1380 static void
1381 device_set_desc_internal(device_t dev, const char* desc, int copy)
1382 {
1383 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1384 		kfree(dev->desc, M_BUS);
1385 		dev->flags &= ~DF_DESCMALLOCED;
1386 		dev->desc = NULL;
1387 	}
1388 
1389 	if (copy && desc) {
1390 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1391 		if (dev->desc) {
1392 			strcpy(dev->desc, desc);
1393 			dev->flags |= DF_DESCMALLOCED;
1394 		}
1395 	} else {
1396 		/* Avoid a -Wcast-qual warning */
1397 		dev->desc = (char *)(uintptr_t) desc;
1398 	}
1399 
1400 	bus_data_generation_update();
1401 }
1402 
1403 void
1404 device_set_desc(device_t dev, const char* desc)
1405 {
1406 	device_set_desc_internal(dev, desc, FALSE);
1407 }
1408 
1409 void
1410 device_set_desc_copy(device_t dev, const char* desc)
1411 {
1412 	device_set_desc_internal(dev, desc, TRUE);
1413 }
1414 
1415 void
1416 device_set_flags(device_t dev, uint32_t flags)
1417 {
1418 	dev->devflags = flags;
1419 }
1420 
1421 void *
1422 device_get_softc(device_t dev)
1423 {
1424 	return dev->softc;
1425 }
1426 
1427 void
1428 device_set_softc(device_t dev, void *softc)
1429 {
1430 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1431 		kfree(dev->softc, M_BUS);
1432 	dev->softc = softc;
1433 	if (dev->softc)
1434 		dev->flags |= DF_EXTERNALSOFTC;
1435 	else
1436 		dev->flags &= ~DF_EXTERNALSOFTC;
1437 }
1438 
1439 void
1440 device_set_async_attach(device_t dev, int enable)
1441 {
1442 	if (enable)
1443 		dev->flags |= DF_ASYNCPROBE;
1444 	else
1445 		dev->flags &= ~DF_ASYNCPROBE;
1446 }
1447 
1448 void *
1449 device_get_ivars(device_t dev)
1450 {
1451 	return dev->ivars;
1452 }
1453 
1454 void
1455 device_set_ivars(device_t dev, void * ivars)
1456 {
1457 	if (!dev)
1458 		return;
1459 
1460 	dev->ivars = ivars;
1461 }
1462 
1463 device_state_t
1464 device_get_state(device_t dev)
1465 {
1466 	return(dev->state);
1467 }
1468 
1469 void
1470 device_enable(device_t dev)
1471 {
1472 	dev->flags |= DF_ENABLED;
1473 }
1474 
1475 void
1476 device_disable(device_t dev)
1477 {
1478 	dev->flags &= ~DF_ENABLED;
1479 }
1480 
1481 /*
1482  * YYY cannot block
1483  */
1484 void
1485 device_busy(device_t dev)
1486 {
1487 	if (dev->state < DS_ATTACHED)
1488 		panic("device_busy: called for unattached device");
1489 	if (dev->busy == 0 && dev->parent)
1490 		device_busy(dev->parent);
1491 	dev->busy++;
1492 	dev->state = DS_BUSY;
1493 }
1494 
1495 /*
1496  * YYY cannot block
1497  */
1498 void
1499 device_unbusy(device_t dev)
1500 {
1501 	if (dev->state != DS_BUSY)
1502 		panic("device_unbusy: called for non-busy device");
1503 	dev->busy--;
1504 	if (dev->busy == 0) {
1505 		if (dev->parent)
1506 			device_unbusy(dev->parent);
1507 		dev->state = DS_ATTACHED;
1508 	}
1509 }
1510 
1511 void
1512 device_quiet(device_t dev)
1513 {
1514 	dev->flags |= DF_QUIET;
1515 }
1516 
1517 void
1518 device_verbose(device_t dev)
1519 {
1520 	dev->flags &= ~DF_QUIET;
1521 }
1522 
1523 int
1524 device_is_quiet(device_t dev)
1525 {
1526 	return((dev->flags & DF_QUIET) != 0);
1527 }
1528 
1529 int
1530 device_is_enabled(device_t dev)
1531 {
1532 	return((dev->flags & DF_ENABLED) != 0);
1533 }
1534 
1535 int
1536 device_is_alive(device_t dev)
1537 {
1538 	return(dev->state >= DS_ALIVE);
1539 }
1540 
1541 int
1542 device_is_attached(device_t dev)
1543 {
1544 	return(dev->state >= DS_ATTACHED);
1545 }
1546 
1547 int
1548 device_set_devclass(device_t dev, const char *classname)
1549 {
1550 	devclass_t dc;
1551 	int error;
1552 
1553 	if (!classname) {
1554 		if (dev->devclass)
1555 			devclass_delete_device(dev->devclass, dev);
1556 		return(0);
1557 	}
1558 
1559 	if (dev->devclass) {
1560 		kprintf("device_set_devclass: device class already set\n");
1561 		return(EINVAL);
1562 	}
1563 
1564 	dc = devclass_find_internal(classname, NULL, TRUE);
1565 	if (!dc)
1566 		return(ENOMEM);
1567 
1568 	error = devclass_add_device(dc, dev);
1569 
1570 	bus_data_generation_update();
1571 	return(error);
1572 }
1573 
1574 int
1575 device_set_driver(device_t dev, driver_t *driver)
1576 {
1577 	if (dev->state >= DS_ATTACHED)
1578 		return(EBUSY);
1579 
1580 	if (dev->driver == driver)
1581 		return(0);
1582 
1583 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1584 		kfree(dev->softc, M_BUS);
1585 		dev->softc = NULL;
1586 	}
1587 	kobj_delete((kobj_t) dev, 0);
1588 	dev->driver = driver;
1589 	if (driver) {
1590 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1591 		if (!(dev->flags & DF_EXTERNALSOFTC)) {
1592 			dev->softc = kmalloc(driver->size, M_BUS,
1593 					    M_INTWAIT | M_ZERO);
1594 			if (!dev->softc) {
1595 				kobj_delete((kobj_t)dev, 0);
1596 				kobj_init((kobj_t) dev, &null_class);
1597 				dev->driver = NULL;
1598 				return(ENOMEM);
1599 	    		}
1600 		}
1601 	} else {
1602 		kobj_init((kobj_t) dev, &null_class);
1603 	}
1604 
1605 	bus_data_generation_update();
1606 	return(0);
1607 }
1608 
1609 int
1610 device_probe_and_attach(device_t dev)
1611 {
1612 	device_t bus = dev->parent;
1613 	int error = 0;
1614 
1615 	if (dev->state >= DS_ALIVE)
1616 		return(0);
1617 
1618 	if ((dev->flags & DF_ENABLED) == 0) {
1619 		if (bootverbose) {
1620 			device_print_prettyname(dev);
1621 			kprintf("not probed (disabled)\n");
1622 		}
1623 		return(0);
1624 	}
1625 
1626 	error = device_probe_child(bus, dev);
1627 	if (error) {
1628 		if (!(dev->flags & DF_DONENOMATCH)) {
1629 			BUS_PROBE_NOMATCH(bus, dev);
1630 			devnomatch(dev);
1631 			dev->flags |= DF_DONENOMATCH;
1632 		}
1633 		return(error);
1634 	}
1635 
1636 	/*
1637 	 * Output the exact device chain prior to the attach in case the
1638 	 * system locks up during attach, and generate the full info after
1639 	 * the attach so correct irq and other information is displayed.
1640 	 */
1641 	if (bootverbose && !device_is_quiet(dev)) {
1642 		device_t tmp;
1643 
1644 		kprintf("%s", device_get_nameunit(dev));
1645 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1646 			kprintf(".%s", device_get_nameunit(tmp));
1647 		kprintf("\n");
1648 	}
1649 	if (!device_is_quiet(dev))
1650 		device_print_child(bus, dev);
1651 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1652 		kprintf("%s: probing asynchronously\n",
1653 			device_get_nameunit(dev));
1654 		dev->state = DS_INPROGRESS;
1655 		device_attach_async(dev);
1656 		error = 0;
1657 	} else {
1658 		error = device_doattach(dev);
1659 	}
1660 	return(error);
1661 }
1662 
1663 /*
1664  * Device is known to be alive, do the attach asynchronously.
1665  * However, serialize the attaches with the mp lock.
1666  */
1667 static void
1668 device_attach_async(device_t dev)
1669 {
1670 	thread_t td;
1671 
1672 	atomic_add_int(&numasyncthreads, 1);
1673 	lwkt_create(device_attach_thread, dev, &td, NULL,
1674 		    0, 0, (dev->desc ? dev->desc : "devattach"));
1675 }
1676 
1677 static void
1678 device_attach_thread(void *arg)
1679 {
1680 	device_t dev = arg;
1681 
1682 	get_mplock();	/* XXX replace with devattach_token later */
1683 	(void)device_doattach(dev);
1684 	atomic_subtract_int(&numasyncthreads, 1);
1685 	wakeup(&numasyncthreads);
1686 	rel_mplock();	/* XXX replace with devattach_token later */
1687 }
1688 
1689 /*
1690  * Device is known to be alive, do the attach (synchronous or asynchronous)
1691  */
1692 static int
1693 device_doattach(device_t dev)
1694 {
1695 	device_t bus = dev->parent;
1696 	int hasclass = (dev->devclass != 0);
1697 	int error;
1698 
1699 	error = DEVICE_ATTACH(dev);
1700 	if (error == 0) {
1701 		dev->state = DS_ATTACHED;
1702 		if (bootverbose && !device_is_quiet(dev))
1703 			device_print_child(bus, dev);
1704 		devadded(dev);
1705 	} else {
1706 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1707 		       dev->driver->name, dev->unit, error);
1708 		/* Unset the class that was set in device_probe_child */
1709 		if (!hasclass)
1710 			device_set_devclass(dev, 0);
1711 		device_set_driver(dev, NULL);
1712 		dev->state = DS_NOTPRESENT;
1713 	}
1714 	return(error);
1715 }
1716 
1717 int
1718 device_detach(device_t dev)
1719 {
1720 	int error;
1721 
1722 	PDEBUG(("%s", DEVICENAME(dev)));
1723 	if (dev->state == DS_BUSY)
1724 		return(EBUSY);
1725 	if (dev->state != DS_ATTACHED)
1726 		return(0);
1727 
1728 	if ((error = DEVICE_DETACH(dev)) != 0)
1729 		return(error);
1730 	devremoved(dev);
1731 	device_printf(dev, "detached\n");
1732 	if (dev->parent)
1733 		BUS_CHILD_DETACHED(dev->parent, dev);
1734 
1735 	if (!(dev->flags & DF_FIXEDCLASS))
1736 		devclass_delete_device(dev->devclass, dev);
1737 
1738 	dev->state = DS_NOTPRESENT;
1739 	device_set_driver(dev, NULL);
1740 
1741 	return(0);
1742 }
1743 
1744 int
1745 device_shutdown(device_t dev)
1746 {
1747 	if (dev->state < DS_ATTACHED)
1748 		return 0;
1749 	PDEBUG(("%s", DEVICENAME(dev)));
1750 	return DEVICE_SHUTDOWN(dev);
1751 }
1752 
1753 int
1754 device_set_unit(device_t dev, int unit)
1755 {
1756 	devclass_t dc;
1757 	int err;
1758 
1759 	dc = device_get_devclass(dev);
1760 	if (unit < dc->maxunit && dc->devices[unit])
1761 		return(EBUSY);
1762 	err = devclass_delete_device(dc, dev);
1763 	if (err)
1764 		return(err);
1765 	dev->unit = unit;
1766 	err = devclass_add_device(dc, dev);
1767 	if (err)
1768 		return(err);
1769 
1770 	bus_data_generation_update();
1771 	return(0);
1772 }
1773 
1774 /*======================================*/
1775 /*
1776  * Access functions for device resources.
1777  */
1778 
1779 /* Supplied by config(8) in ioconf.c */
1780 extern struct config_device config_devtab[];
1781 extern int devtab_count;
1782 
1783 /* Runtime version */
1784 struct config_device *devtab = config_devtab;
1785 
1786 static int
1787 resource_new_name(const char *name, int unit)
1788 {
1789 	struct config_device *new;
1790 
1791 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1792 		     M_INTWAIT | M_ZERO);
1793 	if (new == NULL)
1794 		return(-1);
1795 	if (devtab && devtab_count > 0)
1796 		bcopy(devtab, new, devtab_count * sizeof(*new));
1797 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1798 	if (new[devtab_count].name == NULL) {
1799 		kfree(new, M_TEMP);
1800 		return(-1);
1801 	}
1802 	strcpy(new[devtab_count].name, name);
1803 	new[devtab_count].unit = unit;
1804 	new[devtab_count].resource_count = 0;
1805 	new[devtab_count].resources = NULL;
1806 	if (devtab && devtab != config_devtab)
1807 		kfree(devtab, M_TEMP);
1808 	devtab = new;
1809 	return devtab_count++;
1810 }
1811 
1812 static int
1813 resource_new_resname(int j, const char *resname, resource_type type)
1814 {
1815 	struct config_resource *new;
1816 	int i;
1817 
1818 	i = devtab[j].resource_count;
1819 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1820 	if (new == NULL)
1821 		return(-1);
1822 	if (devtab[j].resources && i > 0)
1823 		bcopy(devtab[j].resources, new, i * sizeof(*new));
1824 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
1825 	if (new[i].name == NULL) {
1826 		kfree(new, M_TEMP);
1827 		return(-1);
1828 	}
1829 	strcpy(new[i].name, resname);
1830 	new[i].type = type;
1831 	if (devtab[j].resources)
1832 		kfree(devtab[j].resources, M_TEMP);
1833 	devtab[j].resources = new;
1834 	devtab[j].resource_count = i + 1;
1835 	return(i);
1836 }
1837 
1838 static int
1839 resource_match_string(int i, const char *resname, const char *value)
1840 {
1841 	int j;
1842 	struct config_resource *res;
1843 
1844 	for (j = 0, res = devtab[i].resources;
1845 	     j < devtab[i].resource_count; j++, res++)
1846 		if (!strcmp(res->name, resname)
1847 		    && res->type == RES_STRING
1848 		    && !strcmp(res->u.stringval, value))
1849 			return(j);
1850 	return(-1);
1851 }
1852 
1853 static int
1854 resource_find(const char *name, int unit, const char *resname,
1855 	      struct config_resource **result)
1856 {
1857 	int i, j;
1858 	struct config_resource *res;
1859 
1860 	/*
1861 	 * First check specific instances, then generic.
1862 	 */
1863 	for (i = 0; i < devtab_count; i++) {
1864 		if (devtab[i].unit < 0)
1865 			continue;
1866 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1867 			res = devtab[i].resources;
1868 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1869 				if (!strcmp(res->name, resname)) {
1870 					*result = res;
1871 					return(0);
1872 				}
1873 		}
1874 	}
1875 	for (i = 0; i < devtab_count; i++) {
1876 		if (devtab[i].unit >= 0)
1877 			continue;
1878 		/* XXX should this `&& devtab[i].unit == unit' be here? */
1879 		/* XXX if so, then the generic match does nothing */
1880 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1881 			res = devtab[i].resources;
1882 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1883 				if (!strcmp(res->name, resname)) {
1884 					*result = res;
1885 					return(0);
1886 				}
1887 		}
1888 	}
1889 	return(ENOENT);
1890 }
1891 
1892 int
1893 resource_int_value(const char *name, int unit, const char *resname, int *result)
1894 {
1895 	int error;
1896 	struct config_resource *res;
1897 
1898 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1899 		return(error);
1900 	if (res->type != RES_INT)
1901 		return(EFTYPE);
1902 	*result = res->u.intval;
1903 	return(0);
1904 }
1905 
1906 int
1907 resource_long_value(const char *name, int unit, const char *resname,
1908 		    long *result)
1909 {
1910 	int error;
1911 	struct config_resource *res;
1912 
1913 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1914 		return(error);
1915 	if (res->type != RES_LONG)
1916 		return(EFTYPE);
1917 	*result = res->u.longval;
1918 	return(0);
1919 }
1920 
1921 int
1922 resource_string_value(const char *name, int unit, const char *resname,
1923 		      char **result)
1924 {
1925 	int error;
1926 	struct config_resource *res;
1927 
1928 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1929 		return(error);
1930 	if (res->type != RES_STRING)
1931 		return(EFTYPE);
1932 	*result = res->u.stringval;
1933 	return(0);
1934 }
1935 
1936 int
1937 resource_query_string(int i, const char *resname, const char *value)
1938 {
1939 	if (i < 0)
1940 		i = 0;
1941 	else
1942 		i = i + 1;
1943 	for (; i < devtab_count; i++)
1944 		if (resource_match_string(i, resname, value) >= 0)
1945 			return(i);
1946 	return(-1);
1947 }
1948 
1949 int
1950 resource_locate(int i, const char *resname)
1951 {
1952 	if (i < 0)
1953 		i = 0;
1954 	else
1955 		i = i + 1;
1956 	for (; i < devtab_count; i++)
1957 		if (!strcmp(devtab[i].name, resname))
1958 			return(i);
1959 	return(-1);
1960 }
1961 
1962 int
1963 resource_count(void)
1964 {
1965 	return(devtab_count);
1966 }
1967 
1968 char *
1969 resource_query_name(int i)
1970 {
1971 	return(devtab[i].name);
1972 }
1973 
1974 int
1975 resource_query_unit(int i)
1976 {
1977 	return(devtab[i].unit);
1978 }
1979 
1980 static int
1981 resource_create(const char *name, int unit, const char *resname,
1982 		resource_type type, struct config_resource **result)
1983 {
1984 	int i, j;
1985 	struct config_resource *res = NULL;
1986 
1987 	for (i = 0; i < devtab_count; i++)
1988 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1989 			res = devtab[i].resources;
1990 			break;
1991 		}
1992 	if (res == NULL) {
1993 		i = resource_new_name(name, unit);
1994 		if (i < 0)
1995 			return(ENOMEM);
1996 		res = devtab[i].resources;
1997 	}
1998 	for (j = 0; j < devtab[i].resource_count; j++, res++)
1999 		if (!strcmp(res->name, resname)) {
2000 			*result = res;
2001 			return(0);
2002 		}
2003 	j = resource_new_resname(i, resname, type);
2004 	if (j < 0)
2005 		return(ENOMEM);
2006 	res = &devtab[i].resources[j];
2007 	*result = res;
2008 	return(0);
2009 }
2010 
2011 int
2012 resource_set_int(const char *name, int unit, const char *resname, int value)
2013 {
2014 	int error;
2015 	struct config_resource *res;
2016 
2017 	error = resource_create(name, unit, resname, RES_INT, &res);
2018 	if (error)
2019 		return(error);
2020 	if (res->type != RES_INT)
2021 		return(EFTYPE);
2022 	res->u.intval = value;
2023 	return(0);
2024 }
2025 
2026 int
2027 resource_set_long(const char *name, int unit, const char *resname, long value)
2028 {
2029 	int error;
2030 	struct config_resource *res;
2031 
2032 	error = resource_create(name, unit, resname, RES_LONG, &res);
2033 	if (error)
2034 		return(error);
2035 	if (res->type != RES_LONG)
2036 		return(EFTYPE);
2037 	res->u.longval = value;
2038 	return(0);
2039 }
2040 
2041 int
2042 resource_set_string(const char *name, int unit, const char *resname,
2043 		    const char *value)
2044 {
2045 	int error;
2046 	struct config_resource *res;
2047 
2048 	error = resource_create(name, unit, resname, RES_STRING, &res);
2049 	if (error)
2050 		return(error);
2051 	if (res->type != RES_STRING)
2052 		return(EFTYPE);
2053 	if (res->u.stringval)
2054 		kfree(res->u.stringval, M_TEMP);
2055 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2056 	if (res->u.stringval == NULL)
2057 		return(ENOMEM);
2058 	strcpy(res->u.stringval, value);
2059 	return(0);
2060 }
2061 
2062 static void
2063 resource_cfgload(void *dummy __unused)
2064 {
2065 	struct config_resource *res, *cfgres;
2066 	int i, j;
2067 	int error;
2068 	char *name, *resname;
2069 	int unit;
2070 	resource_type type;
2071 	char *stringval;
2072 	int config_devtab_count;
2073 
2074 	config_devtab_count = devtab_count;
2075 	devtab = NULL;
2076 	devtab_count = 0;
2077 
2078 	for (i = 0; i < config_devtab_count; i++) {
2079 		name = config_devtab[i].name;
2080 		unit = config_devtab[i].unit;
2081 
2082 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2083 			cfgres = config_devtab[i].resources;
2084 			resname = cfgres[j].name;
2085 			type = cfgres[j].type;
2086 			error = resource_create(name, unit, resname, type,
2087 						&res);
2088 			if (error) {
2089 				kprintf("create resource %s%d: error %d\n",
2090 					name, unit, error);
2091 				continue;
2092 			}
2093 			if (res->type != type) {
2094 				kprintf("type mismatch %s%d: %d != %d\n",
2095 					name, unit, res->type, type);
2096 				continue;
2097 			}
2098 			switch (type) {
2099 			case RES_INT:
2100 				res->u.intval = cfgres[j].u.intval;
2101 				break;
2102 			case RES_LONG:
2103 				res->u.longval = cfgres[j].u.longval;
2104 				break;
2105 			case RES_STRING:
2106 				if (res->u.stringval)
2107 					kfree(res->u.stringval, M_TEMP);
2108 				stringval = cfgres[j].u.stringval;
2109 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2110 							  M_TEMP, M_INTWAIT);
2111 				if (res->u.stringval == NULL)
2112 					break;
2113 				strcpy(res->u.stringval, stringval);
2114 				break;
2115 			default:
2116 				panic("unknown resource type %d", type);
2117 			}
2118 		}
2119 	}
2120 }
2121 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0)
2122 
2123 
2124 /*======================================*/
2125 /*
2126  * Some useful method implementations to make life easier for bus drivers.
2127  */
2128 
2129 void
2130 resource_list_init(struct resource_list *rl)
2131 {
2132 	SLIST_INIT(rl);
2133 }
2134 
2135 void
2136 resource_list_free(struct resource_list *rl)
2137 {
2138 	struct resource_list_entry *rle;
2139 
2140 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2141 		if (rle->res)
2142 			panic("resource_list_free: resource entry is busy");
2143 		SLIST_REMOVE_HEAD(rl, link);
2144 		kfree(rle, M_BUS);
2145 	}
2146 }
2147 
2148 void
2149 resource_list_add(struct resource_list *rl,
2150 		  int type, int rid,
2151 		  u_long start, u_long end, u_long count)
2152 {
2153 	struct resource_list_entry *rle;
2154 
2155 	rle = resource_list_find(rl, type, rid);
2156 	if (rle == NULL) {
2157 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2158 			     M_INTWAIT);
2159 		if (!rle)
2160 			panic("resource_list_add: can't record entry");
2161 		SLIST_INSERT_HEAD(rl, rle, link);
2162 		rle->type = type;
2163 		rle->rid = rid;
2164 		rle->res = NULL;
2165 	}
2166 
2167 	if (rle->res)
2168 		panic("resource_list_add: resource entry is busy");
2169 
2170 	rle->start = start;
2171 	rle->end = end;
2172 	rle->count = count;
2173 }
2174 
2175 struct resource_list_entry*
2176 resource_list_find(struct resource_list *rl,
2177 		   int type, int rid)
2178 {
2179 	struct resource_list_entry *rle;
2180 
2181 	SLIST_FOREACH(rle, rl, link)
2182 		if (rle->type == type && rle->rid == rid)
2183 			return(rle);
2184 	return(NULL);
2185 }
2186 
2187 void
2188 resource_list_delete(struct resource_list *rl,
2189 		     int type, int rid)
2190 {
2191 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2192 
2193 	if (rle) {
2194 		if (rle->res != NULL)
2195 			panic("resource_list_delete: resource has not been released");
2196 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2197 		kfree(rle, M_BUS);
2198 	}
2199 }
2200 
2201 struct resource *
2202 resource_list_alloc(struct resource_list *rl,
2203 		    device_t bus, device_t child,
2204 		    int type, int *rid,
2205 		    u_long start, u_long end,
2206 		    u_long count, u_int flags)
2207 {
2208 	struct resource_list_entry *rle = 0;
2209 	int passthrough = (device_get_parent(child) != bus);
2210 	int isdefault = (start == 0UL && end == ~0UL);
2211 
2212 	if (passthrough) {
2213 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2214 					  type, rid,
2215 					  start, end, count, flags));
2216 	}
2217 
2218 	rle = resource_list_find(rl, type, *rid);
2219 
2220 	if (!rle)
2221 		return(0);		/* no resource of that type/rid */
2222 
2223 	if (rle->res)
2224 		panic("resource_list_alloc: resource entry is busy");
2225 
2226 	if (isdefault) {
2227 		start = rle->start;
2228 		count = max(count, rle->count);
2229 		end = max(rle->end, start + count - 1);
2230 	}
2231 
2232 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2233 				      type, rid, start, end, count, flags);
2234 
2235 	/*
2236 	 * Record the new range.
2237 	 */
2238 	if (rle->res) {
2239 		rle->start = rman_get_start(rle->res);
2240 		rle->end = rman_get_end(rle->res);
2241 		rle->count = count;
2242 	}
2243 
2244 	return(rle->res);
2245 }
2246 
2247 int
2248 resource_list_release(struct resource_list *rl,
2249 		      device_t bus, device_t child,
2250 		      int type, int rid, struct resource *res)
2251 {
2252 	struct resource_list_entry *rle = 0;
2253 	int passthrough = (device_get_parent(child) != bus);
2254 	int error;
2255 
2256 	if (passthrough) {
2257 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2258 					    type, rid, res));
2259 	}
2260 
2261 	rle = resource_list_find(rl, type, rid);
2262 
2263 	if (!rle)
2264 		panic("resource_list_release: can't find resource");
2265 	if (!rle->res)
2266 		panic("resource_list_release: resource entry is not busy");
2267 
2268 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2269 				     type, rid, res);
2270 	if (error)
2271 		return(error);
2272 
2273 	rle->res = NULL;
2274 	return(0);
2275 }
2276 
2277 int
2278 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2279 			 const char *format)
2280 {
2281 	struct resource_list_entry *rle;
2282 	int printed, retval;
2283 
2284 	printed = 0;
2285 	retval = 0;
2286 	/* Yes, this is kinda cheating */
2287 	SLIST_FOREACH(rle, rl, link) {
2288 		if (rle->type == type) {
2289 			if (printed == 0)
2290 				retval += kprintf(" %s ", name);
2291 			else
2292 				retval += kprintf(",");
2293 			printed++;
2294 			retval += kprintf(format, rle->start);
2295 			if (rle->count > 1) {
2296 				retval += kprintf("-");
2297 				retval += kprintf(format, rle->start +
2298 						 rle->count - 1);
2299 			}
2300 		}
2301 	}
2302 	return(retval);
2303 }
2304 
2305 /*
2306  * Generic driver/device identify functions.  These will install a device
2307  * rendezvous point under the parent using the same name as the driver
2308  * name, which will at a later time be probed and attached.
2309  *
2310  * These functions are used when the parent does not 'scan' its bus for
2311  * matching devices, or for the particular devices using these functions,
2312  * or when the device is a pseudo or synthesized device (such as can be
2313  * found under firewire and ppbus).
2314  */
2315 int
2316 bus_generic_identify(driver_t *driver, device_t parent)
2317 {
2318 	if (parent->state == DS_ATTACHED)
2319 		return (0);
2320 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2321 	return (0);
2322 }
2323 
2324 int
2325 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2326 {
2327 	if (parent->state == DS_ATTACHED)
2328 		return (0);
2329 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2330 	return (0);
2331 }
2332 
2333 /*
2334  * Call DEVICE_IDENTIFY for each driver.
2335  */
2336 int
2337 bus_generic_probe(device_t dev)
2338 {
2339 	devclass_t dc = dev->devclass;
2340 	driverlink_t dl;
2341 
2342 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2343 		DEVICE_IDENTIFY(dl->driver, dev);
2344 	}
2345 
2346 	return(0);
2347 }
2348 
2349 /*
2350  * This is an aweful hack due to the isa bus and autoconf code not
2351  * probing the ISA devices until after everything else has configured.
2352  * The ISA bus did a dummy attach long ago so we have to set it back
2353  * to an earlier state so the probe thinks its the initial probe and
2354  * not a bus rescan.
2355  *
2356  * XXX remove by properly defering the ISA bus scan.
2357  */
2358 int
2359 bus_generic_probe_hack(device_t dev)
2360 {
2361 	if (dev->state == DS_ATTACHED) {
2362 		dev->state = DS_ALIVE;
2363 		bus_generic_probe(dev);
2364 		dev->state = DS_ATTACHED;
2365 	}
2366 	return (0);
2367 }
2368 
2369 int
2370 bus_generic_attach(device_t dev)
2371 {
2372 	device_t child;
2373 
2374 	TAILQ_FOREACH(child, &dev->children, link) {
2375 		device_probe_and_attach(child);
2376 	}
2377 
2378 	return(0);
2379 }
2380 
2381 int
2382 bus_generic_detach(device_t dev)
2383 {
2384 	device_t child;
2385 	int error;
2386 
2387 	if (dev->state != DS_ATTACHED)
2388 		return(EBUSY);
2389 
2390 	TAILQ_FOREACH(child, &dev->children, link)
2391 		if ((error = device_detach(child)) != 0)
2392 			return(error);
2393 
2394 	return 0;
2395 }
2396 
2397 int
2398 bus_generic_shutdown(device_t dev)
2399 {
2400 	device_t child;
2401 
2402 	TAILQ_FOREACH(child, &dev->children, link)
2403 		device_shutdown(child);
2404 
2405 	return(0);
2406 }
2407 
2408 int
2409 bus_generic_suspend(device_t dev)
2410 {
2411 	int error;
2412 	device_t child, child2;
2413 
2414 	TAILQ_FOREACH(child, &dev->children, link) {
2415 		error = DEVICE_SUSPEND(child);
2416 		if (error) {
2417 			for (child2 = TAILQ_FIRST(&dev->children);
2418 			     child2 && child2 != child;
2419 			     child2 = TAILQ_NEXT(child2, link))
2420 				DEVICE_RESUME(child2);
2421 			return(error);
2422 		}
2423 	}
2424 	return(0);
2425 }
2426 
2427 int
2428 bus_generic_resume(device_t dev)
2429 {
2430 	device_t child;
2431 
2432 	TAILQ_FOREACH(child, &dev->children, link)
2433 		DEVICE_RESUME(child);
2434 		/* if resume fails, there's nothing we can usefully do... */
2435 
2436 	return(0);
2437 }
2438 
2439 int
2440 bus_print_child_header(device_t dev, device_t child)
2441 {
2442 	int retval = 0;
2443 
2444 	if (device_get_desc(child))
2445 		retval += device_printf(child, "<%s>", device_get_desc(child));
2446 	else
2447 		retval += kprintf("%s", device_get_nameunit(child));
2448 	if (bootverbose) {
2449 		if (child->state != DS_ATTACHED)
2450 			kprintf(" [tentative]");
2451 		else
2452 			kprintf(" [attached!]");
2453 	}
2454 	return(retval);
2455 }
2456 
2457 int
2458 bus_print_child_footer(device_t dev, device_t child)
2459 {
2460 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2461 }
2462 
2463 device_t
2464 bus_generic_add_child(device_t dev, device_t child, int order,
2465 		      const char *name, int unit)
2466 {
2467 	if (dev->parent)
2468 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2469 	else
2470 		dev = device_add_child_ordered(child, order, name, unit);
2471 	return(dev);
2472 
2473 }
2474 
2475 int
2476 bus_generic_print_child(device_t dev, device_t child)
2477 {
2478 	int retval = 0;
2479 
2480 	retval += bus_print_child_header(dev, child);
2481 	retval += bus_print_child_footer(dev, child);
2482 
2483 	return(retval);
2484 }
2485 
2486 int
2487 bus_generic_read_ivar(device_t dev, device_t child, int index,
2488 		      uintptr_t * result)
2489 {
2490 	int error;
2491 
2492 	if (dev->parent)
2493 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2494 	else
2495 		error = ENOENT;
2496 	return (error);
2497 }
2498 
2499 int
2500 bus_generic_write_ivar(device_t dev, device_t child, int index,
2501 		       uintptr_t value)
2502 {
2503 	int error;
2504 
2505 	if (dev->parent)
2506 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2507 	else
2508 		error = ENOENT;
2509 	return (error);
2510 }
2511 
2512 /*
2513  * Resource list are used for iterations, do not recurse.
2514  */
2515 struct resource_list *
2516 bus_generic_get_resource_list(device_t dev, device_t child)
2517 {
2518 	return (NULL);
2519 }
2520 
2521 void
2522 bus_generic_driver_added(device_t dev, driver_t *driver)
2523 {
2524 	device_t child;
2525 
2526 	DEVICE_IDENTIFY(driver, dev);
2527 	TAILQ_FOREACH(child, &dev->children, link) {
2528 		if (child->state == DS_NOTPRESENT)
2529 			device_probe_and_attach(child);
2530 	}
2531 }
2532 
2533 int
2534 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2535 		       int flags, driver_intr_t *intr, void *arg,
2536 		       void **cookiep, lwkt_serialize_t serializer)
2537 {
2538 	/* Propagate up the bus hierarchy until someone handles it. */
2539 	if (dev->parent)
2540 		return(BUS_SETUP_INTR(dev->parent, child, irq, flags,
2541 				      intr, arg, cookiep, serializer));
2542 	else
2543 		return(EINVAL);
2544 }
2545 
2546 int
2547 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2548 			  void *cookie)
2549 {
2550 	/* Propagate up the bus hierarchy until someone handles it. */
2551 	if (dev->parent)
2552 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2553 	else
2554 		return(EINVAL);
2555 }
2556 
2557 int
2558 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2559 {
2560 	if (dev->parent)
2561 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2562 	else
2563 		return(0);
2564 }
2565 
2566 void
2567 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2568 {
2569 	if (dev->parent)
2570 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2571 }
2572 
2573 int
2574 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
2575     enum intr_polarity pol)
2576 {
2577 	/* Propagate up the bus hierarchy until someone handles it. */
2578 	if (dev->parent)
2579 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
2580 	else
2581 		return(EINVAL);
2582 }
2583 
2584 struct resource *
2585 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2586 			   u_long start, u_long end, u_long count, u_int flags)
2587 {
2588 	/* Propagate up the bus hierarchy until someone handles it. */
2589 	if (dev->parent)
2590 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2591 					   start, end, count, flags));
2592 	else
2593 		return(NULL);
2594 }
2595 
2596 int
2597 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2598 			     struct resource *r)
2599 {
2600 	/* Propagate up the bus hierarchy until someone handles it. */
2601 	if (dev->parent)
2602 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2603 	else
2604 		return(EINVAL);
2605 }
2606 
2607 int
2608 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2609 			      struct resource *r)
2610 {
2611 	/* Propagate up the bus hierarchy until someone handles it. */
2612 	if (dev->parent)
2613 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2614 	else
2615 		return(EINVAL);
2616 }
2617 
2618 int
2619 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2620 				int rid, struct resource *r)
2621 {
2622 	/* Propagate up the bus hierarchy until someone handles it. */
2623 	if (dev->parent)
2624 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2625 					       r));
2626 	else
2627 		return(EINVAL);
2628 }
2629 
2630 int
2631 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2632 			 u_long *startp, u_long *countp)
2633 {
2634 	int error;
2635 
2636 	error = ENOENT;
2637 	if (dev->parent) {
2638 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2639 					 startp, countp);
2640 	}
2641 	return (error);
2642 }
2643 
2644 int
2645 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2646 			u_long start, u_long count)
2647 {
2648 	int error;
2649 
2650 	error = EINVAL;
2651 	if (dev->parent) {
2652 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2653 					 start, count);
2654 	}
2655 	return (error);
2656 }
2657 
2658 void
2659 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2660 {
2661 	if (dev->parent)
2662 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2663 }
2664 
2665 int
2666 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2667     u_long *startp, u_long *countp)
2668 {
2669 	struct resource_list *rl = NULL;
2670 	struct resource_list_entry *rle = NULL;
2671 
2672 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2673 	if (!rl)
2674 		return(EINVAL);
2675 
2676 	rle = resource_list_find(rl, type, rid);
2677 	if (!rle)
2678 		return(ENOENT);
2679 
2680 	if (startp)
2681 		*startp = rle->start;
2682 	if (countp)
2683 		*countp = rle->count;
2684 
2685 	return(0);
2686 }
2687 
2688 int
2689 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2690     u_long start, u_long count)
2691 {
2692 	struct resource_list *rl = NULL;
2693 
2694 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2695 	if (!rl)
2696 		return(EINVAL);
2697 
2698 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
2699 
2700 	return(0);
2701 }
2702 
2703 void
2704 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2705 {
2706 	struct resource_list *rl = NULL;
2707 
2708 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2709 	if (!rl)
2710 		return;
2711 
2712 	resource_list_delete(rl, type, rid);
2713 }
2714 
2715 int
2716 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2717     int rid, struct resource *r)
2718 {
2719 	struct resource_list *rl = NULL;
2720 
2721 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2722 	if (!rl)
2723 		return(EINVAL);
2724 
2725 	return(resource_list_release(rl, dev, child, type, rid, r));
2726 }
2727 
2728 struct resource *
2729 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2730     int *rid, u_long start, u_long end, u_long count, u_int flags)
2731 {
2732 	struct resource_list *rl = NULL;
2733 
2734 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2735 	if (!rl)
2736 		return(NULL);
2737 
2738 	return(resource_list_alloc(rl, dev, child, type, rid,
2739 	    start, end, count, flags));
2740 }
2741 
2742 int
2743 bus_generic_child_present(device_t bus, device_t child)
2744 {
2745 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2746 }
2747 
2748 
2749 /*
2750  * Some convenience functions to make it easier for drivers to use the
2751  * resource-management functions.  All these really do is hide the
2752  * indirection through the parent's method table, making for slightly
2753  * less-wordy code.  In the future, it might make sense for this code
2754  * to maintain some sort of a list of resources allocated by each device.
2755  */
2756 int
2757 bus_alloc_resources(device_t dev, struct resource_spec *rs,
2758     struct resource **res)
2759 {
2760 	int i;
2761 
2762 	for (i = 0; rs[i].type != -1; i++)
2763 	        res[i] = NULL;
2764 	for (i = 0; rs[i].type != -1; i++) {
2765 		res[i] = bus_alloc_resource_any(dev,
2766 		    rs[i].type, &rs[i].rid, rs[i].flags);
2767 		if (res[i] == NULL) {
2768 			bus_release_resources(dev, rs, res);
2769 			return (ENXIO);
2770 		}
2771 	}
2772 	return (0);
2773 }
2774 
2775 void
2776 bus_release_resources(device_t dev, const struct resource_spec *rs,
2777     struct resource **res)
2778 {
2779 	int i;
2780 
2781 	for (i = 0; rs[i].type != -1; i++)
2782 		if (res[i] != NULL) {
2783 			bus_release_resource(
2784 			    dev, rs[i].type, rs[i].rid, res[i]);
2785 			res[i] = NULL;
2786 		}
2787 }
2788 
2789 struct resource *
2790 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
2791 		   u_long count, u_int flags)
2792 {
2793 	if (dev->parent == 0)
2794 		return(0);
2795 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2796 				  count, flags));
2797 }
2798 
2799 int
2800 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
2801 {
2802 	if (dev->parent == 0)
2803 		return(EINVAL);
2804 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2805 }
2806 
2807 int
2808 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
2809 {
2810 	if (dev->parent == 0)
2811 		return(EINVAL);
2812 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2813 }
2814 
2815 int
2816 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
2817 {
2818 	if (dev->parent == 0)
2819 		return(EINVAL);
2820 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
2821 }
2822 
2823 int
2824 bus_setup_intr(device_t dev, struct resource *r, int flags,
2825 	       driver_intr_t handler, void *arg,
2826 	       void **cookiep, lwkt_serialize_t serializer)
2827 {
2828 	if (dev->parent == 0)
2829 		return(EINVAL);
2830 	return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
2831 			      cookiep, serializer));
2832 }
2833 
2834 int
2835 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
2836 {
2837 	if (dev->parent == 0)
2838 		return(EINVAL);
2839 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
2840 }
2841 
2842 void
2843 bus_enable_intr(device_t dev, void *cookie)
2844 {
2845 	if (dev->parent)
2846 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
2847 }
2848 
2849 int
2850 bus_disable_intr(device_t dev, void *cookie)
2851 {
2852 	if (dev->parent)
2853 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
2854 	else
2855 		return(0);
2856 }
2857 
2858 int
2859 bus_set_resource(device_t dev, int type, int rid,
2860 		 u_long start, u_long count)
2861 {
2862 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
2863 				start, count));
2864 }
2865 
2866 int
2867 bus_get_resource(device_t dev, int type, int rid,
2868 		 u_long *startp, u_long *countp)
2869 {
2870 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2871 				startp, countp));
2872 }
2873 
2874 u_long
2875 bus_get_resource_start(device_t dev, int type, int rid)
2876 {
2877 	u_long start, count;
2878 	int error;
2879 
2880 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2881 				 &start, &count);
2882 	if (error)
2883 		return(0);
2884 	return(start);
2885 }
2886 
2887 u_long
2888 bus_get_resource_count(device_t dev, int type, int rid)
2889 {
2890 	u_long start, count;
2891 	int error;
2892 
2893 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2894 				 &start, &count);
2895 	if (error)
2896 		return(0);
2897 	return(count);
2898 }
2899 
2900 void
2901 bus_delete_resource(device_t dev, int type, int rid)
2902 {
2903 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
2904 }
2905 
2906 int
2907 bus_child_present(device_t child)
2908 {
2909 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
2910 }
2911 
2912 int
2913 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
2914 {
2915 	device_t parent;
2916 
2917 	parent = device_get_parent(child);
2918 	if (parent == NULL) {
2919 		*buf = '\0';
2920 		return (0);
2921 	}
2922 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
2923 }
2924 
2925 int
2926 bus_child_location_str(device_t child, char *buf, size_t buflen)
2927 {
2928 	device_t parent;
2929 
2930 	parent = device_get_parent(child);
2931 	if (parent == NULL) {
2932 		*buf = '\0';
2933 		return (0);
2934 	}
2935 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
2936 }
2937 
2938 static int
2939 root_print_child(device_t dev, device_t child)
2940 {
2941 	return(0);
2942 }
2943 
2944 static int
2945 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
2946 		void **cookiep, lwkt_serialize_t serializer)
2947 {
2948 	/*
2949 	 * If an interrupt mapping gets to here something bad has happened.
2950 	 */
2951 	panic("root_setup_intr");
2952 }
2953 
2954 /*
2955  * If we get here, assume that the device is permanant and really is
2956  * present in the system.  Removable bus drivers are expected to intercept
2957  * this call long before it gets here.  We return -1 so that drivers that
2958  * really care can check vs -1 or some ERRNO returned higher in the food
2959  * chain.
2960  */
2961 static int
2962 root_child_present(device_t dev, device_t child)
2963 {
2964 	return(-1);
2965 }
2966 
2967 /*
2968  * XXX NOTE! other defaults may be set in bus_if.m
2969  */
2970 static kobj_method_t root_methods[] = {
2971 	/* Device interface */
2972 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
2973 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
2974 	KOBJMETHOD(device_resume,	bus_generic_resume),
2975 
2976 	/* Bus interface */
2977 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
2978 	KOBJMETHOD(bus_print_child,	root_print_child),
2979 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
2980 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
2981 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
2982 	KOBJMETHOD(bus_child_present,   root_child_present),
2983 
2984 	{ 0, 0 }
2985 };
2986 
2987 static driver_t root_driver = {
2988 	"root",
2989 	root_methods,
2990 	1,			/* no softc */
2991 };
2992 
2993 device_t	root_bus;
2994 devclass_t	root_devclass;
2995 
2996 static int
2997 root_bus_module_handler(module_t mod, int what, void* arg)
2998 {
2999 	switch (what) {
3000 	case MOD_LOAD:
3001 		TAILQ_INIT(&bus_data_devices);
3002 		root_bus = make_device(NULL, "root", 0);
3003 		root_bus->desc = "System root bus";
3004 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3005 		root_bus->driver = &root_driver;
3006 		root_bus->state = DS_ALIVE;
3007 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3008 		devinit();
3009 		return(0);
3010 
3011 	case MOD_SHUTDOWN:
3012 		device_shutdown(root_bus);
3013 		return(0);
3014 	default:
3015 		return(0);
3016 	}
3017 }
3018 
3019 static moduledata_t root_bus_mod = {
3020 	"rootbus",
3021 	root_bus_module_handler,
3022 	0
3023 };
3024 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3025 
3026 void
3027 root_bus_configure(void)
3028 {
3029 	int warncount;
3030 	device_t dev;
3031 
3032 	PDEBUG(("."));
3033 
3034 	/*
3035 	 * handle device_identify based device attachments to the root_bus
3036 	 * (typically nexus).
3037 	 */
3038 	bus_generic_probe(root_bus);
3039 
3040 	/*
3041 	 * Probe and attach the devices under root_bus.
3042 	 */
3043 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3044 		device_probe_and_attach(dev);
3045 	}
3046 
3047 	/*
3048 	 * Wait for all asynchronous attaches to complete.  If we don't
3049 	 * our legacy ISA bus scan could steal device unit numbers or
3050 	 * even I/O ports.
3051 	 */
3052 	warncount = 10;
3053 	if (numasyncthreads)
3054 		kprintf("Waiting for async drivers to attach\n");
3055 	while (numasyncthreads > 0) {
3056 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3057 			--warncount;
3058 		if (warncount == 0) {
3059 			kprintf("Warning: Still waiting for %d "
3060 				"drivers to attach\n", numasyncthreads);
3061 		} else if (warncount == -30) {
3062 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3063 			break;
3064 		}
3065 	}
3066 	root_bus->state = DS_ATTACHED;
3067 }
3068 
3069 int
3070 driver_module_handler(module_t mod, int what, void *arg)
3071 {
3072 	int error;
3073 	struct driver_module_data *dmd;
3074 	devclass_t bus_devclass;
3075 	kobj_class_t driver;
3076         const char *parentname;
3077 
3078 	dmd = (struct driver_module_data *)arg;
3079 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3080 	error = 0;
3081 
3082 	switch (what) {
3083 	case MOD_LOAD:
3084 		if (dmd->dmd_chainevh)
3085 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3086 
3087 		driver = dmd->dmd_driver;
3088 		PDEBUG(("Loading module: driver %s on bus %s",
3089 		        DRIVERNAME(driver), dmd->dmd_busname));
3090 
3091 		/*
3092 		 * If the driver has any base classes, make the
3093 		 * devclass inherit from the devclass of the driver's
3094 		 * first base class. This will allow the system to
3095 		 * search for drivers in both devclasses for children
3096 		 * of a device using this driver.
3097 		 */
3098 		if (driver->baseclasses)
3099 			parentname = driver->baseclasses[0]->name;
3100 		else
3101 			parentname = NULL;
3102 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3103 							    parentname, TRUE);
3104 
3105 		error = devclass_add_driver(bus_devclass, driver);
3106 		if (error)
3107 			break;
3108 		break;
3109 
3110 	case MOD_UNLOAD:
3111 		PDEBUG(("Unloading module: driver %s from bus %s",
3112 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3113 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3114 
3115 		if (!error && dmd->dmd_chainevh)
3116 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3117 		break;
3118 	}
3119 
3120 	return (error);
3121 }
3122 
3123 #ifdef BUS_DEBUG
3124 
3125 /*
3126  * The _short versions avoid iteration by not calling anything that prints
3127  * more than oneliners. I love oneliners.
3128  */
3129 
3130 static void
3131 print_device_short(device_t dev, int indent)
3132 {
3133 	if (!dev)
3134 		return;
3135 
3136 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3137 		      dev->unit, dev->desc,
3138 		      (dev->parent? "":"no "),
3139 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3140 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3141 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3142 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3143 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3144 		      (dev->ivars? "":"no "),
3145 		      (dev->softc? "":"no "),
3146 		      dev->busy));
3147 }
3148 
3149 static void
3150 print_device(device_t dev, int indent)
3151 {
3152 	if (!dev)
3153 		return;
3154 
3155 	print_device_short(dev, indent);
3156 
3157 	indentprintf(("Parent:\n"));
3158 	print_device_short(dev->parent, indent+1);
3159 	indentprintf(("Driver:\n"));
3160 	print_driver_short(dev->driver, indent+1);
3161 	indentprintf(("Devclass:\n"));
3162 	print_devclass_short(dev->devclass, indent+1);
3163 }
3164 
3165 /*
3166  * Print the device and all its children (indented).
3167  */
3168 void
3169 print_device_tree_short(device_t dev, int indent)
3170 {
3171 	device_t child;
3172 
3173 	if (!dev)
3174 		return;
3175 
3176 	print_device_short(dev, indent);
3177 
3178 	TAILQ_FOREACH(child, &dev->children, link)
3179 		print_device_tree_short(child, indent+1);
3180 }
3181 
3182 /*
3183  * Print the device and all its children (indented).
3184  */
3185 void
3186 print_device_tree(device_t dev, int indent)
3187 {
3188 	device_t child;
3189 
3190 	if (!dev)
3191 		return;
3192 
3193 	print_device(dev, indent);
3194 
3195 	TAILQ_FOREACH(child, &dev->children, link)
3196 		print_device_tree(child, indent+1);
3197 }
3198 
3199 static void
3200 print_driver_short(driver_t *driver, int indent)
3201 {
3202 	if (!driver)
3203 		return;
3204 
3205 	indentprintf(("driver %s: softc size = %zu\n",
3206 		      driver->name, driver->size));
3207 }
3208 
3209 static void
3210 print_driver(driver_t *driver, int indent)
3211 {
3212 	if (!driver)
3213 		return;
3214 
3215 	print_driver_short(driver, indent);
3216 }
3217 
3218 
3219 static void
3220 print_driver_list(driver_list_t drivers, int indent)
3221 {
3222 	driverlink_t driver;
3223 
3224 	TAILQ_FOREACH(driver, &drivers, link)
3225 		print_driver(driver->driver, indent);
3226 }
3227 
3228 static void
3229 print_devclass_short(devclass_t dc, int indent)
3230 {
3231 	if (!dc)
3232 		return;
3233 
3234 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3235 }
3236 
3237 static void
3238 print_devclass(devclass_t dc, int indent)
3239 {
3240 	int i;
3241 
3242 	if (!dc)
3243 		return;
3244 
3245 	print_devclass_short(dc, indent);
3246 	indentprintf(("Drivers:\n"));
3247 	print_driver_list(dc->drivers, indent+1);
3248 
3249 	indentprintf(("Devices:\n"));
3250 	for (i = 0; i < dc->maxunit; i++)
3251 		if (dc->devices[i])
3252 			print_device(dc->devices[i], indent+1);
3253 }
3254 
3255 void
3256 print_devclass_list_short(void)
3257 {
3258 	devclass_t dc;
3259 
3260 	kprintf("Short listing of devclasses, drivers & devices:\n");
3261 	TAILQ_FOREACH(dc, &devclasses, link) {
3262 		print_devclass_short(dc, 0);
3263 	}
3264 }
3265 
3266 void
3267 print_devclass_list(void)
3268 {
3269 	devclass_t dc;
3270 
3271 	kprintf("Full listing of devclasses, drivers & devices:\n");
3272 	TAILQ_FOREACH(dc, &devclasses, link) {
3273 		print_devclass(dc, 0);
3274 	}
3275 }
3276 
3277 #endif
3278 
3279 /*
3280  * Check to see if a device is disabled via a disabled hint.
3281  */
3282 int
3283 resource_disabled(const char *name, int unit)
3284 {
3285 	int error, value;
3286 
3287 	error = resource_int_value(name, unit, "disabled", &value);
3288 	if (error)
3289 	       return(0);
3290 	return(value);
3291 }
3292 
3293 /*
3294  * User-space access to the device tree.
3295  *
3296  * We implement a small set of nodes:
3297  *
3298  * hw.bus			Single integer read method to obtain the
3299  *				current generation count.
3300  * hw.bus.devices		Reads the entire device tree in flat space.
3301  * hw.bus.rman			Resource manager interface
3302  *
3303  * We might like to add the ability to scan devclasses and/or drivers to
3304  * determine what else is currently loaded/available.
3305  */
3306 
3307 static int
3308 sysctl_bus(SYSCTL_HANDLER_ARGS)
3309 {
3310 	struct u_businfo	ubus;
3311 
3312 	ubus.ub_version = BUS_USER_VERSION;
3313 	ubus.ub_generation = bus_data_generation;
3314 
3315 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3316 }
3317 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3318     "bus-related data");
3319 
3320 static int
3321 sysctl_devices(SYSCTL_HANDLER_ARGS)
3322 {
3323 	int			*name = (int *)arg1;
3324 	u_int			namelen = arg2;
3325 	int			index;
3326 	struct device		*dev;
3327 	struct u_device		udev;	/* XXX this is a bit big */
3328 	int			error;
3329 
3330 	if (namelen != 2)
3331 		return (EINVAL);
3332 
3333 	if (bus_data_generation_check(name[0]))
3334 		return (EINVAL);
3335 
3336 	index = name[1];
3337 
3338 	/*
3339 	 * Scan the list of devices, looking for the requested index.
3340 	 */
3341 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3342 		if (index-- == 0)
3343 			break;
3344 	}
3345 	if (dev == NULL)
3346 		return (ENOENT);
3347 
3348 	/*
3349 	 * Populate the return array.
3350 	 */
3351 	bzero(&udev, sizeof(udev));
3352 	udev.dv_handle = (uintptr_t)dev;
3353 	udev.dv_parent = (uintptr_t)dev->parent;
3354 	if (dev->nameunit != NULL)
3355 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3356 	if (dev->desc != NULL)
3357 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3358 	if (dev->driver != NULL && dev->driver->name != NULL)
3359 		strlcpy(udev.dv_drivername, dev->driver->name,
3360 		    sizeof(udev.dv_drivername));
3361 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3362 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3363 	udev.dv_devflags = dev->devflags;
3364 	udev.dv_flags = dev->flags;
3365 	udev.dv_state = dev->state;
3366 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3367 	return (error);
3368 }
3369 
3370 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3371     "system device tree");
3372 
3373 int
3374 bus_data_generation_check(int generation)
3375 {
3376 	if (generation != bus_data_generation)
3377 		return (1);
3378 
3379 	/* XXX generate optimised lists here? */
3380 	return (0);
3381 }
3382 
3383 void
3384 bus_data_generation_update(void)
3385 {
3386 	bus_data_generation++;
3387 }
3388