xref: /dragonfly/sys/kern/subr_bus.c (revision 23265324)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  * $DragonFly: src/sys/kern/subr_bus.c,v 1.35 2006/12/23 00:35:04 swildner Exp $
28  */
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/queue.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #ifdef DEVICE_SYSCTLS
38 #include <sys/sysctl.h>
39 #endif
40 #include <sys/kobj.h>
41 #include <sys/bus_private.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/rman.h>
45 
46 #include <machine/stdarg.h>	/* for device_printf() */
47 
48 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
49 
50 #ifdef BUS_DEBUG
51 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
52 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
53 #define DRIVERNAME(d)	((d)? d->name : "no driver")
54 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
55 
56 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
57  * prevent syslog from deleting initial spaces
58  */
59 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
60 
61 static void	print_device_short(device_t dev, int indent);
62 static void	print_device(device_t dev, int indent);
63 void		print_device_tree_short(device_t dev, int indent);
64 void		print_device_tree(device_t dev, int indent);
65 static void	print_driver_short(driver_t *driver, int indent);
66 static void	print_driver(driver_t *driver, int indent);
67 static void	print_driver_list(driver_list_t drivers, int indent);
68 static void	print_devclass_short(devclass_t dc, int indent);
69 static void	print_devclass(devclass_t dc, int indent);
70 void		print_devclass_list_short(void);
71 void		print_devclass_list(void);
72 
73 #else
74 /* Make the compiler ignore the function calls */
75 #define PDEBUG(a)			/* nop */
76 #define DEVICENAME(d)			/* nop */
77 #define DRIVERNAME(d)			/* nop */
78 #define DEVCLANAME(d)			/* nop */
79 
80 #define print_device_short(d,i)		/* nop */
81 #define print_device(d,i)		/* nop */
82 #define print_device_tree_short(d,i)	/* nop */
83 #define print_device_tree(d,i)		/* nop */
84 #define print_driver_short(d,i)		/* nop */
85 #define print_driver(d,i)		/* nop */
86 #define print_driver_list(d,i)		/* nop */
87 #define print_devclass_short(d,i)	/* nop */
88 #define print_devclass(d,i)		/* nop */
89 #define print_devclass_list_short()	/* nop */
90 #define print_devclass_list()		/* nop */
91 #endif
92 
93 #ifdef DEVICE_SYSCTLS
94 static void	device_register_oids(device_t dev);
95 static void	device_unregister_oids(device_t dev);
96 #endif
97 
98 kobj_method_t null_methods[] = {
99 	{ 0, 0 }
100 };
101 
102 DEFINE_CLASS(null, null_methods, 0);
103 
104 /*
105  * Devclass implementation
106  */
107 
108 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
109 
110 static devclass_t
111 devclass_find_internal(const char *classname, const char *parentname,
112 		       int create)
113 {
114 	devclass_t dc;
115 
116 	PDEBUG(("looking for %s", classname));
117 	if (classname == NULL)
118 		return(NULL);
119 
120 	TAILQ_FOREACH(dc, &devclasses, link)
121 		if (!strcmp(dc->name, classname))
122 			break;
123 
124 	if (create && !dc) {
125 		PDEBUG(("creating %s", classname));
126 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
127 			    M_BUS, M_INTWAIT | M_ZERO);
128 		if (!dc)
129 			return(NULL);
130 		dc->parent = NULL;
131 		dc->name = (char*) (dc + 1);
132 		strcpy(dc->name, classname);
133 		dc->devices = NULL;
134 		dc->maxunit = 0;
135 		TAILQ_INIT(&dc->drivers);
136 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
137 	}
138 	if (parentname && dc && !dc->parent)
139 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
140 
141 	return(dc);
142 }
143 
144 devclass_t
145 devclass_create(const char *classname)
146 {
147 	return(devclass_find_internal(classname, NULL, TRUE));
148 }
149 
150 devclass_t
151 devclass_find(const char *classname)
152 {
153 	return(devclass_find_internal(classname, NULL, FALSE));
154 }
155 
156 device_t
157 devclass_find_unit(const char *classname, int unit)
158 {
159 	devclass_t dc;
160 
161 	if ((dc = devclass_find(classname)) != NULL)
162 	    return(devclass_get_device(dc, unit));
163 	return (NULL);
164 }
165 
166 int
167 devclass_add_driver(devclass_t dc, driver_t *driver)
168 {
169 	driverlink_t dl;
170 	device_t dev;
171 	int i;
172 
173 	PDEBUG(("%s", DRIVERNAME(driver)));
174 
175 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
176 	if (!dl)
177 		return(ENOMEM);
178 
179 	/*
180 	 * Compile the driver's methods. Also increase the reference count
181 	 * so that the class doesn't get freed when the last instance
182 	 * goes. This means we can safely use static methods and avoids a
183 	 * double-free in devclass_delete_driver.
184 	 */
185 	kobj_class_instantiate(driver);
186 
187 	/*
188 	 * Make sure the devclass which the driver is implementing exists.
189 	 */
190 	devclass_find_internal(driver->name, NULL, TRUE);
191 
192 	dl->driver = driver;
193 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
194 
195 	/*
196 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
197 	 * but only if the bus has already been attached (otherwise we
198 	 * might probe too early).
199 	 *
200 	 * This is what will cause a newly loaded module to be associated
201 	 * with hardware.  bus_generic_driver_added() is typically what ends
202 	 * up being called.
203 	 */
204 	for (i = 0; i < dc->maxunit; i++) {
205 		if ((dev = dc->devices[i]) != NULL) {
206 			if (dev->state == DS_ATTACHED)
207 				BUS_DRIVER_ADDED(dev, driver);
208 		}
209 	}
210 
211 	return(0);
212 }
213 
214 int
215 devclass_delete_driver(devclass_t busclass, driver_t *driver)
216 {
217 	devclass_t dc = devclass_find(driver->name);
218 	driverlink_t dl;
219 	device_t dev;
220 	int i;
221 	int error;
222 
223 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
224 
225 	if (!dc)
226 		return(0);
227 
228 	/*
229 	 * Find the link structure in the bus' list of drivers.
230 	 */
231 	TAILQ_FOREACH(dl, &busclass->drivers, link)
232 		if (dl->driver == driver)
233 			break;
234 
235 	if (!dl) {
236 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
237 		return(ENOENT);
238 	}
239 
240 	/*
241 	 * Disassociate from any devices.  We iterate through all the
242 	 * devices in the devclass of the driver and detach any which are
243 	 * using the driver and which have a parent in the devclass which
244 	 * we are deleting from.
245 	 *
246 	 * Note that since a driver can be in multiple devclasses, we
247 	 * should not detach devices which are not children of devices in
248 	 * the affected devclass.
249 	 */
250 	for (i = 0; i < dc->maxunit; i++)
251 		if (dc->devices[i]) {
252 			dev = dc->devices[i];
253 			if (dev->driver == driver && dev->parent &&
254 			    dev->parent->devclass == busclass) {
255 				if ((error = device_detach(dev)) != 0)
256 					return(error);
257 				device_set_driver(dev, NULL);
258 		    	}
259 		}
260 
261 	TAILQ_REMOVE(&busclass->drivers, dl, link);
262 	kfree(dl, M_BUS);
263 
264 	kobj_class_uninstantiate(driver);
265 
266 	return(0);
267 }
268 
269 static driverlink_t
270 devclass_find_driver_internal(devclass_t dc, const char *classname)
271 {
272 	driverlink_t dl;
273 
274 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
275 
276 	TAILQ_FOREACH(dl, &dc->drivers, link)
277 		if (!strcmp(dl->driver->name, classname))
278 			return(dl);
279 
280 	PDEBUG(("not found"));
281 	return(NULL);
282 }
283 
284 kobj_class_t
285 devclass_find_driver(devclass_t dc, const char *classname)
286 {
287 	driverlink_t dl;
288 
289 	dl = devclass_find_driver_internal(dc, classname);
290 	if (dl)
291 		return(dl->driver);
292 	else
293 		return(NULL);
294 }
295 
296 const char *
297 devclass_get_name(devclass_t dc)
298 {
299 	return(dc->name);
300 }
301 
302 device_t
303 devclass_get_device(devclass_t dc, int unit)
304 {
305 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
306 		return(NULL);
307 	return(dc->devices[unit]);
308 }
309 
310 void *
311 devclass_get_softc(devclass_t dc, int unit)
312 {
313 	device_t dev;
314 
315 	dev = devclass_get_device(dc, unit);
316 	if (!dev)
317 		return(NULL);
318 
319 	return(device_get_softc(dev));
320 }
321 
322 int
323 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
324 {
325 	int i;
326 	int count;
327 	device_t *list;
328 
329 	count = 0;
330 	for (i = 0; i < dc->maxunit; i++)
331 		if (dc->devices[i])
332 			count++;
333 
334 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
335 	if (list == NULL)
336 		return(ENOMEM);
337 
338 	count = 0;
339 	for (i = 0; i < dc->maxunit; i++)
340 		if (dc->devices[i]) {
341 			list[count] = dc->devices[i];
342 			count++;
343 		}
344 
345 	*devlistp = list;
346 	*devcountp = count;
347 
348 	return(0);
349 }
350 
351 int
352 devclass_get_maxunit(devclass_t dc)
353 {
354 	return(dc->maxunit);
355 }
356 
357 void
358 devclass_set_parent(devclass_t dc, devclass_t pdc)
359 {
360         dc->parent = pdc;
361 }
362 
363 devclass_t
364 devclass_get_parent(devclass_t dc)
365 {
366 	return(dc->parent);
367 }
368 
369 static int
370 devclass_alloc_unit(devclass_t dc, int *unitp)
371 {
372 	int unit = *unitp;
373 
374 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
375 
376 	/* If we have been given a wired unit number, check for existing device */
377 	if (unit != -1) {
378 		if (unit >= 0 && unit < dc->maxunit &&
379 		    dc->devices[unit] != NULL) {
380 			if (bootverbose)
381 				kprintf("%s-: %s%d exists, using next available unit number\n",
382 				       dc->name, dc->name, unit);
383 			/* find the next available slot */
384 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
385 				;
386 		}
387 	} else {
388 		/* Unwired device, find the next available slot for it */
389 		unit = 0;
390 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
391 			unit++;
392 	}
393 
394 	/*
395 	 * We've selected a unit beyond the length of the table, so let's
396 	 * extend the table to make room for all units up to and including
397 	 * this one.
398 	 */
399 	if (unit >= dc->maxunit) {
400 		device_t *newlist;
401 		int newsize;
402 
403 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
404 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
405 				 M_INTWAIT | M_ZERO);
406 		if (newlist == NULL)
407 			return(ENOMEM);
408 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
409 		if (dc->devices)
410 			kfree(dc->devices, M_BUS);
411 		dc->devices = newlist;
412 		dc->maxunit = newsize;
413 	}
414 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
415 
416 	*unitp = unit;
417 	return(0);
418 }
419 
420 static int
421 devclass_add_device(devclass_t dc, device_t dev)
422 {
423 	int buflen, error;
424 
425 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
426 
427 	buflen = strlen(dc->name) + 5;
428 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
429 	if (!dev->nameunit)
430 		return(ENOMEM);
431 
432 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
433 		kfree(dev->nameunit, M_BUS);
434 		dev->nameunit = NULL;
435 		return(error);
436 	}
437 	dc->devices[dev->unit] = dev;
438 	dev->devclass = dc;
439 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
440 
441 #ifdef DEVICE_SYSCTLS
442 	device_register_oids(dev);
443 #endif
444 
445 	return(0);
446 }
447 
448 static int
449 devclass_delete_device(devclass_t dc, device_t dev)
450 {
451 	if (!dc || !dev)
452 		return(0);
453 
454 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
455 
456 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
457 		panic("devclass_delete_device: inconsistent device class");
458 	dc->devices[dev->unit] = NULL;
459 	if (dev->flags & DF_WILDCARD)
460 		dev->unit = -1;
461 	dev->devclass = NULL;
462 	kfree(dev->nameunit, M_BUS);
463 	dev->nameunit = NULL;
464 
465 #ifdef DEVICE_SYSCTLS
466 	device_unregister_oids(dev);
467 #endif
468 
469 	return(0);
470 }
471 
472 static device_t
473 make_device(device_t parent, const char *name, int unit)
474 {
475 	device_t dev;
476 	devclass_t dc;
477 
478 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
479 
480 	if (name != NULL) {
481 		dc = devclass_find_internal(name, NULL, TRUE);
482 		if (!dc) {
483 			kprintf("make_device: can't find device class %s\n", name);
484 			return(NULL);
485 		}
486 	} else
487 		dc = NULL;
488 
489 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
490 	if (!dev)
491 		return(0);
492 
493 	dev->parent = parent;
494 	TAILQ_INIT(&dev->children);
495 	kobj_init((kobj_t) dev, &null_class);
496 	dev->driver = NULL;
497 	dev->devclass = NULL;
498 	dev->unit = unit;
499 	dev->nameunit = NULL;
500 	dev->desc = NULL;
501 	dev->busy = 0;
502 	dev->devflags = 0;
503 	dev->flags = DF_ENABLED;
504 	dev->order = 0;
505 	if (unit == -1)
506 		dev->flags |= DF_WILDCARD;
507 	if (name) {
508 		dev->flags |= DF_FIXEDCLASS;
509 		if (devclass_add_device(dc, dev) != 0) {
510 			kobj_delete((kobj_t)dev, M_BUS);
511 			return(NULL);
512 		}
513     	}
514 	dev->ivars = NULL;
515 	dev->softc = NULL;
516 
517 	dev->state = DS_NOTPRESENT;
518 
519 	return(dev);
520 }
521 
522 static int
523 device_print_child(device_t dev, device_t child)
524 {
525 	int retval = 0;
526 
527 	if (device_is_alive(child))
528 		retval += BUS_PRINT_CHILD(dev, child);
529 	else
530 		retval += device_printf(child, " not found\n");
531 
532 	return(retval);
533 }
534 
535 device_t
536 device_add_child(device_t dev, const char *name, int unit)
537 {
538 	return device_add_child_ordered(dev, 0, name, unit);
539 }
540 
541 device_t
542 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
543 {
544 	device_t child;
545 	device_t place;
546 
547 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
548 		order, unit));
549 
550 	child = make_device(dev, name, unit);
551 	if (child == NULL)
552 		return child;
553 	child->order = order;
554 
555 	TAILQ_FOREACH(place, &dev->children, link)
556 		if (place->order > order)
557 			break;
558 
559 	if (place) {
560 		/*
561 		 * The device 'place' is the first device whose order is
562 		 * greater than the new child.
563 		 */
564 		TAILQ_INSERT_BEFORE(place, child, link);
565 	} else {
566 		/*
567 		 * The new child's order is greater or equal to the order of
568 		 * any existing device. Add the child to the tail of the list.
569 		 */
570 		TAILQ_INSERT_TAIL(&dev->children, child, link);
571     	}
572 
573 	return(child);
574 }
575 
576 int
577 device_delete_child(device_t dev, device_t child)
578 {
579 	int error;
580 	device_t grandchild;
581 
582 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
583 
584 	/* remove children first */
585 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
586         	error = device_delete_child(child, grandchild);
587 		if (error)
588 			return(error);
589 	}
590 
591 	if ((error = device_detach(child)) != 0)
592 		return(error);
593 	if (child->devclass)
594 		devclass_delete_device(child->devclass, child);
595 	TAILQ_REMOVE(&dev->children, child, link);
596 	device_set_desc(child, NULL);
597 	kobj_delete((kobj_t)child, M_BUS);
598 
599 	return(0);
600 }
601 
602 /*
603  * Find only devices attached to this bus.
604  */
605 device_t
606 device_find_child(device_t dev, const char *classname, int unit)
607 {
608 	devclass_t dc;
609 	device_t child;
610 
611 	dc = devclass_find(classname);
612 	if (!dc)
613 		return(NULL);
614 
615 	child = devclass_get_device(dc, unit);
616 	if (child && child->parent == dev)
617 		return(child);
618 	return(NULL);
619 }
620 
621 static driverlink_t
622 first_matching_driver(devclass_t dc, device_t dev)
623 {
624 	if (dev->devclass)
625 		return(devclass_find_driver_internal(dc, dev->devclass->name));
626 	else
627 		return(TAILQ_FIRST(&dc->drivers));
628 }
629 
630 static driverlink_t
631 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
632 {
633 	if (dev->devclass) {
634 		driverlink_t dl;
635 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
636 			if (!strcmp(dev->devclass->name, dl->driver->name))
637 				return(dl);
638 		return(NULL);
639 	} else
640 		return(TAILQ_NEXT(last, link));
641 }
642 
643 static int
644 device_probe_child(device_t dev, device_t child)
645 {
646 	devclass_t dc;
647 	driverlink_t best = 0;
648 	driverlink_t dl;
649 	int result, pri = 0;
650 	int hasclass = (child->devclass != 0);
651 
652 	dc = dev->devclass;
653 	if (!dc)
654 		panic("device_probe_child: parent device has no devclass");
655 
656 	if (child->state == DS_ALIVE)
657 		return(0);
658 
659 	for (; dc; dc = dc->parent) {
660     		for (dl = first_matching_driver(dc, child); dl;
661 		     dl = next_matching_driver(dc, child, dl)) {
662 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
663 			device_set_driver(child, dl->driver);
664 			if (!hasclass)
665 				device_set_devclass(child, dl->driver->name);
666 			result = DEVICE_PROBE(child);
667 			if (!hasclass)
668 				device_set_devclass(child, 0);
669 
670 			/*
671 			 * If the driver returns SUCCESS, there can be
672 			 * no higher match for this device.
673 			 */
674 			if (result == 0) {
675 				best = dl;
676 				pri = 0;
677 				break;
678 			}
679 
680 			/*
681 			 * The driver returned an error so it
682 			 * certainly doesn't match.
683 			 */
684 			if (result > 0) {
685 				device_set_driver(child, 0);
686 				continue;
687 			}
688 
689 			/*
690 			 * A priority lower than SUCCESS, remember the
691 			 * best matching driver. Initialise the value
692 			 * of pri for the first match.
693 			 */
694 			if (best == 0 || result > pri) {
695 				best = dl;
696 				pri = result;
697 				continue;
698 			}
699 	        }
700 		/*
701 	         * If we have unambiguous match in this devclass,
702 	         * don't look in the parent.
703 	         */
704 	        if (best && pri == 0)
705 	    	        break;
706 	}
707 
708 	/*
709 	 * If we found a driver, change state and initialise the devclass.
710 	 */
711 	if (best) {
712 		if (!child->devclass)
713 			device_set_devclass(child, best->driver->name);
714 		device_set_driver(child, best->driver);
715 		if (pri < 0) {
716 			/*
717 			 * A bit bogus. Call the probe method again to make
718 			 * sure that we have the right description.
719 			 */
720 			DEVICE_PROBE(child);
721 		}
722 		child->state = DS_ALIVE;
723 		return(0);
724 	}
725 
726 	return(ENXIO);
727 }
728 
729 device_t
730 device_get_parent(device_t dev)
731 {
732 	return dev->parent;
733 }
734 
735 int
736 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
737 {
738 	int count;
739 	device_t child;
740 	device_t *list;
741 
742 	count = 0;
743 	TAILQ_FOREACH(child, &dev->children, link)
744 		count++;
745 
746 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
747 	if (!list)
748 		return(ENOMEM);
749 
750 	count = 0;
751 	TAILQ_FOREACH(child, &dev->children, link) {
752 		list[count] = child;
753 		count++;
754 	}
755 
756 	*devlistp = list;
757 	*devcountp = count;
758 
759 	return(0);
760 }
761 
762 driver_t *
763 device_get_driver(device_t dev)
764 {
765 	return(dev->driver);
766 }
767 
768 devclass_t
769 device_get_devclass(device_t dev)
770 {
771 	return(dev->devclass);
772 }
773 
774 const char *
775 device_get_name(device_t dev)
776 {
777 	if (dev->devclass)
778 		return devclass_get_name(dev->devclass);
779 	return(NULL);
780 }
781 
782 const char *
783 device_get_nameunit(device_t dev)
784 {
785 	return(dev->nameunit);
786 }
787 
788 int
789 device_get_unit(device_t dev)
790 {
791 	return(dev->unit);
792 }
793 
794 const char *
795 device_get_desc(device_t dev)
796 {
797 	return(dev->desc);
798 }
799 
800 uint32_t
801 device_get_flags(device_t dev)
802 {
803 	return(dev->devflags);
804 }
805 
806 int
807 device_print_prettyname(device_t dev)
808 {
809 	const char *name = device_get_name(dev);
810 
811 	if (name == 0)
812 		return kprintf("unknown: ");
813 	else
814 		return kprintf("%s%d: ", name, device_get_unit(dev));
815 }
816 
817 int
818 device_printf(device_t dev, const char * fmt, ...)
819 {
820 	__va_list ap;
821 	int retval;
822 
823 	retval = device_print_prettyname(dev);
824 	__va_start(ap, fmt);
825 	retval += kvprintf(fmt, ap);
826 	__va_end(ap);
827 	return retval;
828 }
829 
830 static void
831 device_set_desc_internal(device_t dev, const char* desc, int copy)
832 {
833 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
834 		kfree(dev->desc, M_BUS);
835 		dev->flags &= ~DF_DESCMALLOCED;
836 		dev->desc = NULL;
837 	}
838 
839 	if (copy && desc) {
840 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
841 		if (dev->desc) {
842 			strcpy(dev->desc, desc);
843 			dev->flags |= DF_DESCMALLOCED;
844 		}
845 	} else
846 		/* Avoid a -Wcast-qual warning */
847 		dev->desc = (char *)(uintptr_t) desc;
848 
849 #ifdef DEVICE_SYSCTLS
850 	{
851 		struct sysctl_oid *oid = &dev->oid[1];
852 		oid->oid_arg1 = dev->desc ? dev->desc : "";
853 		oid->oid_arg2 = dev->desc ? strlen(dev->desc) : 0;
854 	}
855 #endif
856 }
857 
858 void
859 device_set_desc(device_t dev, const char* desc)
860 {
861 	device_set_desc_internal(dev, desc, FALSE);
862 }
863 
864 void
865 device_set_desc_copy(device_t dev, const char* desc)
866 {
867 	device_set_desc_internal(dev, desc, TRUE);
868 }
869 
870 void
871 device_set_flags(device_t dev, uint32_t flags)
872 {
873 	dev->devflags = flags;
874 }
875 
876 void *
877 device_get_softc(device_t dev)
878 {
879 	return dev->softc;
880 }
881 
882 void
883 device_set_softc(device_t dev, void *softc)
884 {
885 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
886 		kfree(dev->softc, M_BUS);
887 	dev->softc = softc;
888 	if (dev->softc)
889 		dev->flags |= DF_EXTERNALSOFTC;
890 	else
891 		dev->flags &= ~DF_EXTERNALSOFTC;
892 }
893 
894 void *
895 device_get_ivars(device_t dev)
896 {
897 	return dev->ivars;
898 }
899 
900 void
901 device_set_ivars(device_t dev, void * ivars)
902 {
903 	if (!dev)
904 		return;
905 
906 	dev->ivars = ivars;
907 }
908 
909 device_state_t
910 device_get_state(device_t dev)
911 {
912 	return(dev->state);
913 }
914 
915 void
916 device_enable(device_t dev)
917 {
918 	dev->flags |= DF_ENABLED;
919 }
920 
921 void
922 device_disable(device_t dev)
923 {
924 	dev->flags &= ~DF_ENABLED;
925 }
926 
927 /*
928  * YYY cannot block
929  */
930 void
931 device_busy(device_t dev)
932 {
933 	if (dev->state < DS_ATTACHED)
934 		panic("device_busy: called for unattached device");
935 	if (dev->busy == 0 && dev->parent)
936 		device_busy(dev->parent);
937 	dev->busy++;
938 	dev->state = DS_BUSY;
939 }
940 
941 /*
942  * YYY cannot block
943  */
944 void
945 device_unbusy(device_t dev)
946 {
947 	if (dev->state != DS_BUSY)
948 		panic("device_unbusy: called for non-busy device");
949 	dev->busy--;
950 	if (dev->busy == 0) {
951 		if (dev->parent)
952 			device_unbusy(dev->parent);
953 		dev->state = DS_ATTACHED;
954 	}
955 }
956 
957 void
958 device_quiet(device_t dev)
959 {
960 	dev->flags |= DF_QUIET;
961 }
962 
963 void
964 device_verbose(device_t dev)
965 {
966 	dev->flags &= ~DF_QUIET;
967 }
968 
969 int
970 device_is_quiet(device_t dev)
971 {
972 	return((dev->flags & DF_QUIET) != 0);
973 }
974 
975 int
976 device_is_enabled(device_t dev)
977 {
978 	return((dev->flags & DF_ENABLED) != 0);
979 }
980 
981 int
982 device_is_alive(device_t dev)
983 {
984 	return(dev->state >= DS_ALIVE);
985 }
986 
987 int
988 device_is_attached(device_t dev)
989 {
990 	return(dev->state >= DS_ATTACHED);
991 }
992 
993 int
994 device_set_devclass(device_t dev, const char *classname)
995 {
996 	devclass_t dc;
997 
998 	if (!classname) {
999 		if (dev->devclass)
1000 			devclass_delete_device(dev->devclass, dev);
1001 		return(0);
1002 	}
1003 
1004 	if (dev->devclass) {
1005 		kprintf("device_set_devclass: device class already set\n");
1006 		return(EINVAL);
1007 	}
1008 
1009 	dc = devclass_find_internal(classname, NULL, TRUE);
1010 	if (!dc)
1011 		return(ENOMEM);
1012 
1013 	return(devclass_add_device(dc, dev));
1014 }
1015 
1016 int
1017 device_set_driver(device_t dev, driver_t *driver)
1018 {
1019 	if (dev->state >= DS_ATTACHED)
1020 		return(EBUSY);
1021 
1022 	if (dev->driver == driver)
1023 		return(0);
1024 
1025 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1026 		kfree(dev->softc, M_BUS);
1027 		dev->softc = NULL;
1028 	}
1029 	kobj_delete((kobj_t) dev, 0);
1030 	dev->driver = driver;
1031 	if (driver) {
1032 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1033 		if (!(dev->flags & DF_EXTERNALSOFTC)) {
1034 			dev->softc = kmalloc(driver->size, M_BUS,
1035 					    M_INTWAIT | M_ZERO);
1036 			if (!dev->softc) {
1037 				kobj_delete((kobj_t)dev, 0);
1038 				kobj_init((kobj_t) dev, &null_class);
1039 				dev->driver = NULL;
1040 				return(ENOMEM);
1041 	    		}
1042 		}
1043 	} else
1044 		kobj_init((kobj_t) dev, &null_class);
1045 	return(0);
1046 }
1047 
1048 int
1049 device_probe_and_attach(device_t dev)
1050 {
1051 	device_t bus = dev->parent;
1052 	int error = 0;
1053 	int hasclass = (dev->devclass != 0);
1054 
1055 	if (dev->state >= DS_ALIVE)
1056 		return(0);
1057 
1058 	if ((dev->flags & DF_ENABLED) == 0) {
1059 		if (bootverbose) {
1060 			device_print_prettyname(dev);
1061 			kprintf("not probed (disabled)\n");
1062 		}
1063 		return(0);
1064 	}
1065 
1066 	error = device_probe_child(bus, dev);
1067 	if (error) {
1068 		if (!(dev->flags & DF_DONENOMATCH)) {
1069 			BUS_PROBE_NOMATCH(bus, dev);
1070 			dev->flags |= DF_DONENOMATCH;
1071 		}
1072 		return(error);
1073 	}
1074 
1075 	/*
1076 	 * Output the exact device chain prior to the attach in case the
1077 	 * system locks up during attach, and generate the full info after
1078 	 * the attach so correct irq and other information is displayed.
1079 	 */
1080 	if (bootverbose && !device_is_quiet(dev)) {
1081 		device_t tmp;
1082 
1083 		kprintf("%s", device_get_nameunit(dev));
1084 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1085 			kprintf(".%s", device_get_nameunit(tmp));
1086 		kprintf("\n");
1087 	}
1088 	if (!device_is_quiet(dev))
1089 		device_print_child(bus, dev);
1090 	error = DEVICE_ATTACH(dev);
1091 	if (error == 0) {
1092 		dev->state = DS_ATTACHED;
1093 		if (bootverbose && !device_is_quiet(dev))
1094 			device_print_child(bus, dev);
1095 	} else {
1096 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1097 		       dev->driver->name, dev->unit, error);
1098 		/* Unset the class that was set in device_probe_child */
1099 		if (!hasclass)
1100 			device_set_devclass(dev, 0);
1101 		device_set_driver(dev, NULL);
1102 		dev->state = DS_NOTPRESENT;
1103 	}
1104 
1105 	return(error);
1106 }
1107 
1108 int
1109 device_detach(device_t dev)
1110 {
1111 	int error;
1112 
1113 	PDEBUG(("%s", DEVICENAME(dev)));
1114 	if (dev->state == DS_BUSY)
1115 		return(EBUSY);
1116 	if (dev->state != DS_ATTACHED)
1117 		return(0);
1118 
1119 	if ((error = DEVICE_DETACH(dev)) != 0)
1120 		return(error);
1121 	device_printf(dev, "detached\n");
1122 	if (dev->parent)
1123 		BUS_CHILD_DETACHED(dev->parent, dev);
1124 
1125 	if (!(dev->flags & DF_FIXEDCLASS))
1126 		devclass_delete_device(dev->devclass, dev);
1127 
1128 	dev->state = DS_NOTPRESENT;
1129 	device_set_driver(dev, NULL);
1130 
1131 	return(0);
1132 }
1133 
1134 int
1135 device_shutdown(device_t dev)
1136 {
1137 	if (dev->state < DS_ATTACHED)
1138 		return 0;
1139 	PDEBUG(("%s", DEVICENAME(dev)));
1140 	return DEVICE_SHUTDOWN(dev);
1141 }
1142 
1143 int
1144 device_set_unit(device_t dev, int unit)
1145 {
1146 	devclass_t dc;
1147 	int err;
1148 
1149 	dc = device_get_devclass(dev);
1150 	if (unit < dc->maxunit && dc->devices[unit])
1151 		return(EBUSY);
1152 	err = devclass_delete_device(dc, dev);
1153 	if (err)
1154 		return(err);
1155 	dev->unit = unit;
1156 	err = devclass_add_device(dc, dev);
1157 	return(err);
1158 }
1159 
1160 #ifdef DEVICE_SYSCTLS
1161 
1162 /*
1163  * Sysctl nodes for devices.
1164  */
1165 
1166 SYSCTL_NODE(_hw, OID_AUTO, devices, CTLFLAG_RW, 0, "A list of all devices");
1167 
1168 static int
1169 sysctl_handle_children(SYSCTL_HANDLER_ARGS)
1170 {
1171 	device_t dev = arg1;
1172 	device_t child;
1173 	int first = 1, error = 0;
1174 
1175 	TAILQ_FOREACH(child, &dev->children, link)
1176 		if (child->nameunit) {
1177 			if (!first) {
1178 				error = SYSCTL_OUT(req, ",", 1);
1179 				if (error)
1180 					return error;
1181 			} else
1182 				first = 0;
1183 			error = SYSCTL_OUT(req, child->nameunit,
1184 					   strlen(child->nameunit));
1185 			if (error)
1186 				return(error);
1187 		}
1188 
1189 	error = SYSCTL_OUT(req, "", 1);
1190 
1191 	return(error);
1192 }
1193 
1194 static int
1195 sysctl_handle_state(SYSCTL_HANDLER_ARGS)
1196 {
1197 	device_t dev = arg1;
1198 
1199 	switch (dev->state) {
1200 	case DS_NOTPRESENT:
1201 		return SYSCTL_OUT(req, "notpresent", sizeof("notpresent"));
1202 	case DS_ALIVE:
1203 		return SYSCTL_OUT(req, "alive", sizeof("alive"));
1204 	case DS_ATTACHED:
1205 		return SYSCTL_OUT(req, "attached", sizeof("attached"));
1206 	case DS_BUSY:
1207 		return SYSCTL_OUT(req, "busy", sizeof("busy"));
1208 	default:
1209 		return (0);
1210 	}
1211 }
1212 
1213 static void
1214 device_register_oids(device_t dev)
1215 {
1216 	struct sysctl_oid* oid;
1217 
1218 	oid = &dev->oid[0];
1219 	bzero(oid, sizeof(*oid));
1220 	oid->oid_parent = &sysctl__hw_devices_children;
1221 	oid->oid_number = OID_AUTO;
1222 	oid->oid_kind = CTLTYPE_NODE | CTLFLAG_RW;
1223 	oid->oid_arg1 = &dev->oidlist[0];
1224 	oid->oid_arg2 = 0;
1225 	oid->oid_name = dev->nameunit;
1226 	oid->oid_handler = 0;
1227 	oid->oid_fmt = "N";
1228 	SLIST_INIT(&dev->oidlist[0]);
1229 	sysctl_register_oid(oid);
1230 
1231 	oid = &dev->oid[1];
1232 	bzero(oid, sizeof(*oid));
1233 	oid->oid_parent = &dev->oidlist[0];
1234 	oid->oid_number = OID_AUTO;
1235 	oid->oid_kind = CTLTYPE_STRING | CTLFLAG_RD;
1236 	oid->oid_arg1 = dev->desc ? dev->desc : "";
1237 	oid->oid_arg2 = dev->desc ? strlen(dev->desc) : 0;
1238 	oid->oid_name = "desc";
1239 	oid->oid_handler = sysctl_handle_string;
1240 	oid->oid_fmt = "A";
1241 	sysctl_register_oid(oid);
1242 
1243 	oid = &dev->oid[2];
1244 	bzero(oid, sizeof(*oid));
1245 	oid->oid_parent = &dev->oidlist[0];
1246 	oid->oid_number = OID_AUTO;
1247 	oid->oid_kind = CTLTYPE_INT | CTLFLAG_RD;
1248 	oid->oid_arg1 = dev;
1249 	oid->oid_arg2 = 0;
1250 	oid->oid_name = "children";
1251 	oid->oid_handler = sysctl_handle_children;
1252 	oid->oid_fmt = "A";
1253 	sysctl_register_oid(oid);
1254 
1255 	oid = &dev->oid[3];
1256 	bzero(oid, sizeof(*oid));
1257 	oid->oid_parent = &dev->oidlist[0];
1258 	oid->oid_number = OID_AUTO;
1259 	oid->oid_kind = CTLTYPE_INT | CTLFLAG_RD;
1260 	oid->oid_arg1 = dev;
1261 	oid->oid_arg2 = 0;
1262 	oid->oid_name = "state";
1263 	oid->oid_handler = sysctl_handle_state;
1264 	oid->oid_fmt = "A";
1265 	sysctl_register_oid(oid);
1266 }
1267 
1268 static void
1269 device_unregister_oids(device_t dev)
1270 {
1271 	sysctl_unregister_oid(&dev->oid[0]);
1272 	sysctl_unregister_oid(&dev->oid[1]);
1273 	sysctl_unregister_oid(&dev->oid[2]);
1274 }
1275 
1276 #endif
1277 
1278 /*======================================*/
1279 /*
1280  * Access functions for device resources.
1281  */
1282 
1283 /* Supplied by config(8) in ioconf.c */
1284 extern struct config_device config_devtab[];
1285 extern int devtab_count;
1286 
1287 /* Runtime version */
1288 struct config_device *devtab = config_devtab;
1289 
1290 static int
1291 resource_new_name(const char *name, int unit)
1292 {
1293 	struct config_device *new;
1294 
1295 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1296 		     M_INTWAIT | M_ZERO);
1297 	if (new == NULL)
1298 		return(-1);
1299 	if (devtab && devtab_count > 0)
1300 		bcopy(devtab, new, devtab_count * sizeof(*new));
1301 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1302 	if (new[devtab_count].name == NULL) {
1303 		kfree(new, M_TEMP);
1304 		return(-1);
1305 	}
1306 	strcpy(new[devtab_count].name, name);
1307 	new[devtab_count].unit = unit;
1308 	new[devtab_count].resource_count = 0;
1309 	new[devtab_count].resources = NULL;
1310 	if (devtab && devtab != config_devtab)
1311 		kfree(devtab, M_TEMP);
1312 	devtab = new;
1313 	return devtab_count++;
1314 }
1315 
1316 static int
1317 resource_new_resname(int j, const char *resname, resource_type type)
1318 {
1319 	struct config_resource *new;
1320 	int i;
1321 
1322 	i = devtab[j].resource_count;
1323 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1324 	if (new == NULL)
1325 		return(-1);
1326 	if (devtab[j].resources && i > 0)
1327 		bcopy(devtab[j].resources, new, i * sizeof(*new));
1328 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
1329 	if (new[i].name == NULL) {
1330 		kfree(new, M_TEMP);
1331 		return(-1);
1332 	}
1333 	strcpy(new[i].name, resname);
1334 	new[i].type = type;
1335 	if (devtab[j].resources)
1336 		kfree(devtab[j].resources, M_TEMP);
1337 	devtab[j].resources = new;
1338 	devtab[j].resource_count = i + 1;
1339 	return(i);
1340 }
1341 
1342 static int
1343 resource_match_string(int i, const char *resname, const char *value)
1344 {
1345 	int j;
1346 	struct config_resource *res;
1347 
1348 	for (j = 0, res = devtab[i].resources;
1349 	     j < devtab[i].resource_count; j++, res++)
1350 		if (!strcmp(res->name, resname)
1351 		    && res->type == RES_STRING
1352 		    && !strcmp(res->u.stringval, value))
1353 			return(j);
1354 	return(-1);
1355 }
1356 
1357 static int
1358 resource_find(const char *name, int unit, const char *resname,
1359 	      struct config_resource **result)
1360 {
1361 	int i, j;
1362 	struct config_resource *res;
1363 
1364 	/*
1365 	 * First check specific instances, then generic.
1366 	 */
1367 	for (i = 0; i < devtab_count; i++) {
1368 		if (devtab[i].unit < 0)
1369 			continue;
1370 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1371 			res = devtab[i].resources;
1372 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1373 				if (!strcmp(res->name, resname)) {
1374 					*result = res;
1375 					return(0);
1376 				}
1377 		}
1378 	}
1379 	for (i = 0; i < devtab_count; i++) {
1380 		if (devtab[i].unit >= 0)
1381 			continue;
1382 		/* XXX should this `&& devtab[i].unit == unit' be here? */
1383 		/* XXX if so, then the generic match does nothing */
1384 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1385 			res = devtab[i].resources;
1386 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1387 				if (!strcmp(res->name, resname)) {
1388 					*result = res;
1389 					return(0);
1390 				}
1391 		}
1392 	}
1393 	return(ENOENT);
1394 }
1395 
1396 int
1397 resource_int_value(const char *name, int unit, const char *resname, int *result)
1398 {
1399 	int error;
1400 	struct config_resource *res;
1401 
1402 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1403 		return(error);
1404 	if (res->type != RES_INT)
1405 		return(EFTYPE);
1406 	*result = res->u.intval;
1407 	return(0);
1408 }
1409 
1410 int
1411 resource_long_value(const char *name, int unit, const char *resname,
1412 		    long *result)
1413 {
1414 	int error;
1415 	struct config_resource *res;
1416 
1417 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1418 		return(error);
1419 	if (res->type != RES_LONG)
1420 		return(EFTYPE);
1421 	*result = res->u.longval;
1422 	return(0);
1423 }
1424 
1425 int
1426 resource_string_value(const char *name, int unit, const char *resname,
1427 		      char **result)
1428 {
1429 	int error;
1430 	struct config_resource *res;
1431 
1432 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1433 		return(error);
1434 	if (res->type != RES_STRING)
1435 		return(EFTYPE);
1436 	*result = res->u.stringval;
1437 	return(0);
1438 }
1439 
1440 int
1441 resource_query_string(int i, const char *resname, const char *value)
1442 {
1443 	if (i < 0)
1444 		i = 0;
1445 	else
1446 		i = i + 1;
1447 	for (; i < devtab_count; i++)
1448 		if (resource_match_string(i, resname, value) >= 0)
1449 			return(i);
1450 	return(-1);
1451 }
1452 
1453 int
1454 resource_locate(int i, const char *resname)
1455 {
1456 	if (i < 0)
1457 		i = 0;
1458 	else
1459 		i = i + 1;
1460 	for (; i < devtab_count; i++)
1461 		if (!strcmp(devtab[i].name, resname))
1462 			return(i);
1463 	return(-1);
1464 }
1465 
1466 int
1467 resource_count(void)
1468 {
1469 	return(devtab_count);
1470 }
1471 
1472 char *
1473 resource_query_name(int i)
1474 {
1475 	return(devtab[i].name);
1476 }
1477 
1478 int
1479 resource_query_unit(int i)
1480 {
1481 	return(devtab[i].unit);
1482 }
1483 
1484 static int
1485 resource_create(const char *name, int unit, const char *resname,
1486 		resource_type type, struct config_resource **result)
1487 {
1488 	int i, j;
1489 	struct config_resource *res = NULL;
1490 
1491 	for (i = 0; i < devtab_count; i++)
1492 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1493 			res = devtab[i].resources;
1494 			break;
1495 		}
1496 	if (res == NULL) {
1497 		i = resource_new_name(name, unit);
1498 		if (i < 0)
1499 			return(ENOMEM);
1500 		res = devtab[i].resources;
1501 	}
1502 	for (j = 0; j < devtab[i].resource_count; j++, res++)
1503 		if (!strcmp(res->name, resname)) {
1504 			*result = res;
1505 			return(0);
1506 		}
1507 	j = resource_new_resname(i, resname, type);
1508 	if (j < 0)
1509 		return(ENOMEM);
1510 	res = &devtab[i].resources[j];
1511 	*result = res;
1512 	return(0);
1513 }
1514 
1515 int
1516 resource_set_int(const char *name, int unit, const char *resname, int value)
1517 {
1518 	int error;
1519 	struct config_resource *res;
1520 
1521 	error = resource_create(name, unit, resname, RES_INT, &res);
1522 	if (error)
1523 		return(error);
1524 	if (res->type != RES_INT)
1525 		return(EFTYPE);
1526 	res->u.intval = value;
1527 	return(0);
1528 }
1529 
1530 int
1531 resource_set_long(const char *name, int unit, const char *resname, long value)
1532 {
1533 	int error;
1534 	struct config_resource *res;
1535 
1536 	error = resource_create(name, unit, resname, RES_LONG, &res);
1537 	if (error)
1538 		return(error);
1539 	if (res->type != RES_LONG)
1540 		return(EFTYPE);
1541 	res->u.longval = value;
1542 	return(0);
1543 }
1544 
1545 int
1546 resource_set_string(const char *name, int unit, const char *resname,
1547 		    const char *value)
1548 {
1549 	int error;
1550 	struct config_resource *res;
1551 
1552 	error = resource_create(name, unit, resname, RES_STRING, &res);
1553 	if (error)
1554 		return(error);
1555 	if (res->type != RES_STRING)
1556 		return(EFTYPE);
1557 	if (res->u.stringval)
1558 		kfree(res->u.stringval, M_TEMP);
1559 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
1560 	if (res->u.stringval == NULL)
1561 		return(ENOMEM);
1562 	strcpy(res->u.stringval, value);
1563 	return(0);
1564 }
1565 
1566 static void
1567 resource_cfgload(void *dummy __unused)
1568 {
1569 	struct config_resource *res, *cfgres;
1570 	int i, j;
1571 	int error;
1572 	char *name, *resname;
1573 	int unit;
1574 	resource_type type;
1575 	char *stringval;
1576 	int config_devtab_count;
1577 
1578 	config_devtab_count = devtab_count;
1579 	devtab = NULL;
1580 	devtab_count = 0;
1581 
1582 	for (i = 0; i < config_devtab_count; i++) {
1583 		name = config_devtab[i].name;
1584 		unit = config_devtab[i].unit;
1585 
1586 		for (j = 0; j < config_devtab[i].resource_count; j++) {
1587 			cfgres = config_devtab[i].resources;
1588 			resname = cfgres[j].name;
1589 			type = cfgres[j].type;
1590 			error = resource_create(name, unit, resname, type,
1591 						&res);
1592 			if (error) {
1593 				kprintf("create resource %s%d: error %d\n",
1594 					name, unit, error);
1595 				continue;
1596 			}
1597 			if (res->type != type) {
1598 				kprintf("type mismatch %s%d: %d != %d\n",
1599 					name, unit, res->type, type);
1600 				continue;
1601 			}
1602 			switch (type) {
1603 			case RES_INT:
1604 				res->u.intval = cfgres[j].u.intval;
1605 				break;
1606 			case RES_LONG:
1607 				res->u.longval = cfgres[j].u.longval;
1608 				break;
1609 			case RES_STRING:
1610 				if (res->u.stringval)
1611 					kfree(res->u.stringval, M_TEMP);
1612 				stringval = cfgres[j].u.stringval;
1613 				res->u.stringval = kmalloc(strlen(stringval) + 1,
1614 							  M_TEMP, M_INTWAIT);
1615 				if (res->u.stringval == NULL)
1616 					break;
1617 				strcpy(res->u.stringval, stringval);
1618 				break;
1619 			default:
1620 				panic("unknown resource type %d", type);
1621 			}
1622 		}
1623 	}
1624 }
1625 SYSINIT(cfgload, SI_SUB_KMEM, SI_ORDER_ANY + 50, resource_cfgload, 0)
1626 
1627 
1628 /*======================================*/
1629 /*
1630  * Some useful method implementations to make life easier for bus drivers.
1631  */
1632 
1633 void
1634 resource_list_init(struct resource_list *rl)
1635 {
1636 	SLIST_INIT(rl);
1637 }
1638 
1639 void
1640 resource_list_free(struct resource_list *rl)
1641 {
1642 	struct resource_list_entry *rle;
1643 
1644 	while ((rle = SLIST_FIRST(rl)) != NULL) {
1645 		if (rle->res)
1646 			panic("resource_list_free: resource entry is busy");
1647 		SLIST_REMOVE_HEAD(rl, link);
1648 		kfree(rle, M_BUS);
1649 	}
1650 }
1651 
1652 void
1653 resource_list_add(struct resource_list *rl,
1654 		  int type, int rid,
1655 		  u_long start, u_long end, u_long count)
1656 {
1657 	struct resource_list_entry *rle;
1658 
1659 	rle = resource_list_find(rl, type, rid);
1660 	if (rle == NULL) {
1661 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
1662 			     M_INTWAIT);
1663 		if (!rle)
1664 			panic("resource_list_add: can't record entry");
1665 		SLIST_INSERT_HEAD(rl, rle, link);
1666 		rle->type = type;
1667 		rle->rid = rid;
1668 		rle->res = NULL;
1669 	}
1670 
1671 	if (rle->res)
1672 		panic("resource_list_add: resource entry is busy");
1673 
1674 	rle->start = start;
1675 	rle->end = end;
1676 	rle->count = count;
1677 }
1678 
1679 struct resource_list_entry*
1680 resource_list_find(struct resource_list *rl,
1681 		   int type, int rid)
1682 {
1683 	struct resource_list_entry *rle;
1684 
1685 	SLIST_FOREACH(rle, rl, link)
1686 		if (rle->type == type && rle->rid == rid)
1687 			return(rle);
1688 	return(NULL);
1689 }
1690 
1691 void
1692 resource_list_delete(struct resource_list *rl,
1693 		     int type, int rid)
1694 {
1695 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
1696 
1697 	if (rle) {
1698 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
1699 		kfree(rle, M_BUS);
1700 	}
1701 }
1702 
1703 struct resource *
1704 resource_list_alloc(struct resource_list *rl,
1705 		    device_t bus, device_t child,
1706 		    int type, int *rid,
1707 		    u_long start, u_long end,
1708 		    u_long count, u_int flags)
1709 {
1710 	struct resource_list_entry *rle = 0;
1711 	int passthrough = (device_get_parent(child) != bus);
1712 	int isdefault = (start == 0UL && end == ~0UL);
1713 
1714 	if (passthrough) {
1715 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
1716 					  type, rid,
1717 					  start, end, count, flags));
1718 	}
1719 
1720 	rle = resource_list_find(rl, type, *rid);
1721 
1722 	if (!rle)
1723 		return(0);		/* no resource of that type/rid */
1724 	if (rle->res)
1725 		panic("resource_list_alloc: resource entry is busy");
1726 
1727 	if (isdefault) {
1728 		start = rle->start;
1729 		count = max(count, rle->count);
1730 		end = max(rle->end, start + count - 1);
1731 	}
1732 
1733 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
1734 				      type, rid, start, end, count, flags);
1735 
1736 	/*
1737 	 * Record the new range.
1738 	 */
1739 	if (rle->res) {
1740 		rle->start = rman_get_start(rle->res);
1741 		rle->end = rman_get_end(rle->res);
1742 		rle->count = count;
1743 	}
1744 
1745 	return(rle->res);
1746 }
1747 
1748 int
1749 resource_list_release(struct resource_list *rl,
1750 		      device_t bus, device_t child,
1751 		      int type, int rid, struct resource *res)
1752 {
1753 	struct resource_list_entry *rle = 0;
1754 	int passthrough = (device_get_parent(child) != bus);
1755 	int error;
1756 
1757 	if (passthrough) {
1758 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
1759 					    type, rid, res));
1760 	}
1761 
1762 	rle = resource_list_find(rl, type, rid);
1763 
1764 	if (!rle)
1765 		panic("resource_list_release: can't find resource");
1766 	if (!rle->res)
1767 		panic("resource_list_release: resource entry is not busy");
1768 
1769 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
1770 				     type, rid, res);
1771 	if (error)
1772 		return(error);
1773 
1774 	rle->res = NULL;
1775 	return(0);
1776 }
1777 
1778 int
1779 resource_list_print_type(struct resource_list *rl, const char *name, int type,
1780 			 const char *format)
1781 {
1782 	struct resource_list_entry *rle;
1783 	int printed, retval;
1784 
1785 	printed = 0;
1786 	retval = 0;
1787 	/* Yes, this is kinda cheating */
1788 	SLIST_FOREACH(rle, rl, link) {
1789 		if (rle->type == type) {
1790 			if (printed == 0)
1791 				retval += kprintf(" %s ", name);
1792 			else
1793 				retval += kprintf(",");
1794 			printed++;
1795 			retval += kprintf(format, rle->start);
1796 			if (rle->count > 1) {
1797 				retval += kprintf("-");
1798 				retval += kprintf(format, rle->start +
1799 						 rle->count - 1);
1800 			}
1801 		}
1802 	}
1803 	return(retval);
1804 }
1805 
1806 /*
1807  * Generic driver/device identify functions.  These will install a device
1808  * rendezvous point under the parent using the same name as the driver
1809  * name, which will at a later time be probed and attached.
1810  *
1811  * These functions are used when the parent does not 'scan' its bus for
1812  * matching devices, or for the particular devices using these functions,
1813  * or when the device is a pseudo or synthesized device (such as can be
1814  * found under firewire and ppbus).
1815  */
1816 int
1817 bus_generic_identify(driver_t *driver, device_t parent)
1818 {
1819 	if (parent->state == DS_ATTACHED)
1820 		return (0);
1821 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
1822 	return (0);
1823 }
1824 
1825 int
1826 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
1827 {
1828 	if (parent->state == DS_ATTACHED)
1829 		return (0);
1830 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
1831 	return (0);
1832 }
1833 
1834 /*
1835  * Call DEVICE_IDENTIFY for each driver.
1836  */
1837 int
1838 bus_generic_probe(device_t dev)
1839 {
1840 	devclass_t dc = dev->devclass;
1841 	driverlink_t dl;
1842 
1843 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1844 		DEVICE_IDENTIFY(dl->driver, dev);
1845 	}
1846 
1847 	return(0);
1848 }
1849 
1850 /*
1851  * This is an aweful hack due to the isa bus and autoconf code not
1852  * probing the ISA devices until after everything else has configured.
1853  * The ISA bus did a dummy attach long ago so we have to set it back
1854  * to an earlier state so the probe thinks its the initial probe and
1855  * not a bus rescan.
1856  *
1857  * XXX remove by properly defering the ISA bus scan.
1858  */
1859 int
1860 bus_generic_probe_hack(device_t dev)
1861 {
1862 	if (dev->state == DS_ATTACHED) {
1863 		dev->state = DS_ALIVE;
1864 		bus_generic_probe(dev);
1865 		dev->state = DS_ATTACHED;
1866 	}
1867 	return (0);
1868 }
1869 
1870 int
1871 bus_generic_attach(device_t dev)
1872 {
1873 	device_t child;
1874 
1875 	TAILQ_FOREACH(child, &dev->children, link) {
1876 		device_probe_and_attach(child);
1877 	}
1878 
1879 	return(0);
1880 }
1881 
1882 int
1883 bus_generic_detach(device_t dev)
1884 {
1885 	device_t child;
1886 	int error;
1887 
1888 	if (dev->state != DS_ATTACHED)
1889 		return(EBUSY);
1890 
1891 	TAILQ_FOREACH(child, &dev->children, link)
1892 		if ((error = device_detach(child)) != 0)
1893 			return(error);
1894 
1895 	return 0;
1896 }
1897 
1898 int
1899 bus_generic_shutdown(device_t dev)
1900 {
1901 	device_t child;
1902 
1903 	TAILQ_FOREACH(child, &dev->children, link)
1904 		device_shutdown(child);
1905 
1906 	return(0);
1907 }
1908 
1909 int
1910 bus_generic_suspend(device_t dev)
1911 {
1912 	int error;
1913 	device_t child, child2;
1914 
1915 	TAILQ_FOREACH(child, &dev->children, link) {
1916 		error = DEVICE_SUSPEND(child);
1917 		if (error) {
1918 			for (child2 = TAILQ_FIRST(&dev->children);
1919 			     child2 && child2 != child;
1920 			     child2 = TAILQ_NEXT(child2, link))
1921 				DEVICE_RESUME(child2);
1922 			return(error);
1923 		}
1924 	}
1925 	return(0);
1926 }
1927 
1928 int
1929 bus_generic_resume(device_t dev)
1930 {
1931 	device_t child;
1932 
1933 	TAILQ_FOREACH(child, &dev->children, link)
1934 		DEVICE_RESUME(child);
1935 		/* if resume fails, there's nothing we can usefully do... */
1936 
1937 	return(0);
1938 }
1939 
1940 int
1941 bus_print_child_header(device_t dev, device_t child)
1942 {
1943 	int retval = 0;
1944 
1945 	if (device_get_desc(child))
1946 		retval += device_printf(child, "<%s>", device_get_desc(child));
1947 	else
1948 		retval += kprintf("%s", device_get_nameunit(child));
1949 	if (bootverbose) {
1950 		if (child->state != DS_ATTACHED)
1951 			kprintf(" [tentative]");
1952 		else
1953 			kprintf(" [attached!]");
1954 	}
1955 	return(retval);
1956 }
1957 
1958 int
1959 bus_print_child_footer(device_t dev, device_t child)
1960 {
1961 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
1962 }
1963 
1964 device_t
1965 bus_generic_add_child(device_t dev, device_t child, int order,
1966 		      const char *name, int unit)
1967 {
1968 	if (dev->parent)
1969 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
1970 	else
1971 		dev = device_add_child_ordered(child, order, name, unit);
1972 	return(dev);
1973 
1974 }
1975 
1976 int
1977 bus_generic_print_child(device_t dev, device_t child)
1978 {
1979 	int retval = 0;
1980 
1981 	retval += bus_print_child_header(dev, child);
1982 	retval += bus_print_child_footer(dev, child);
1983 
1984 	return(retval);
1985 }
1986 
1987 int
1988 bus_generic_read_ivar(device_t dev, device_t child, int index,
1989 		      uintptr_t * result)
1990 {
1991 	int error;
1992 
1993 	if (dev->parent)
1994 		error = BUS_READ_IVAR(dev->parent, child, index, result);
1995 	else
1996 		error = ENOENT;
1997 	return (error);
1998 }
1999 
2000 int
2001 bus_generic_write_ivar(device_t dev, device_t child, int index,
2002 		       uintptr_t value)
2003 {
2004 	int error;
2005 
2006 	if (dev->parent)
2007 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2008 	else
2009 		error = ENOENT;
2010 	return (error);
2011 }
2012 
2013 struct resource_list *
2014 bus_generic_get_resource_list(device_t dev, device_t child)
2015 {
2016 	struct resource_list *rl;
2017 
2018 	if (dev->parent)
2019 		rl = BUS_GET_RESOURCE_LIST(dev->parent, child);
2020 	else
2021 		rl = NULL;
2022 	return (rl);
2023 }
2024 
2025 void
2026 bus_generic_driver_added(device_t dev, driver_t *driver)
2027 {
2028 	device_t child;
2029 
2030 	DEVICE_IDENTIFY(driver, dev);
2031 	TAILQ_FOREACH(child, &dev->children, link) {
2032 		if (child->state == DS_NOTPRESENT)
2033 			device_probe_and_attach(child);
2034 	}
2035 }
2036 
2037 int
2038 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2039 		       int flags, driver_intr_t *intr, void *arg,
2040 		       void **cookiep, lwkt_serialize_t serializer)
2041 {
2042 	/* Propagate up the bus hierarchy until someone handles it. */
2043 	if (dev->parent)
2044 		return(BUS_SETUP_INTR(dev->parent, child, irq, flags,
2045 				      intr, arg, cookiep, serializer));
2046 	else
2047 		return(EINVAL);
2048 }
2049 
2050 int
2051 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2052 			  void *cookie)
2053 {
2054 	/* Propagate up the bus hierarchy until someone handles it. */
2055 	if (dev->parent)
2056 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2057 	else
2058 		return(EINVAL);
2059 }
2060 
2061 int
2062 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2063 {
2064 	if (dev->parent)
2065 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2066 	else
2067 		return(0);
2068 }
2069 
2070 void
2071 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2072 {
2073 	if (dev->parent)
2074 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2075 }
2076 
2077 int
2078 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
2079     enum intr_polarity pol)
2080 {
2081 	/* Propagate up the bus hierarchy until someone handles it. */
2082 	if (dev->parent)
2083 		return(BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
2084 	else
2085 		return(EINVAL);
2086 }
2087 
2088 struct resource *
2089 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2090 			   u_long start, u_long end, u_long count, u_int flags)
2091 {
2092 	/* Propagate up the bus hierarchy until someone handles it. */
2093 	if (dev->parent)
2094 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2095 					   start, end, count, flags));
2096 	else
2097 		return(NULL);
2098 }
2099 
2100 int
2101 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2102 			     struct resource *r)
2103 {
2104 	/* Propagate up the bus hierarchy until someone handles it. */
2105 	if (dev->parent)
2106 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2107 	else
2108 		return(EINVAL);
2109 }
2110 
2111 int
2112 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2113 			      struct resource *r)
2114 {
2115 	/* Propagate up the bus hierarchy until someone handles it. */
2116 	if (dev->parent)
2117 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2118 	else
2119 		return(EINVAL);
2120 }
2121 
2122 int
2123 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2124 				int rid, struct resource *r)
2125 {
2126 	/* Propagate up the bus hierarchy until someone handles it. */
2127 	if (dev->parent)
2128 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2129 					       r));
2130 	else
2131 		return(EINVAL);
2132 }
2133 
2134 int
2135 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2136 			 u_long *startp, u_long *countp)
2137 {
2138 	int error;
2139 
2140 	error = ENOENT;
2141 	if (dev->parent) {
2142 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2143 					 startp, countp);
2144 	}
2145 	return (error);
2146 }
2147 
2148 int
2149 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2150 			u_long start, u_long count)
2151 {
2152 	int error;
2153 
2154 	error = EINVAL;
2155 	if (dev->parent) {
2156 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2157 					 start, count);
2158 	}
2159 	return (error);
2160 }
2161 
2162 void
2163 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2164 {
2165 	if (dev->parent)
2166 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2167 }
2168 
2169 int
2170 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2171     u_long *startp, u_long *countp)
2172 {
2173 	struct resource_list *rl = NULL;
2174 	struct resource_list_entry *rle = NULL;
2175 
2176 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2177 	if (!rl)
2178 		return(EINVAL);
2179 
2180 	rle = resource_list_find(rl, type, rid);
2181 	if (!rle)
2182 		return(ENOENT);
2183 
2184 	if (startp)
2185 		*startp = rle->start;
2186 	if (countp)
2187 		*countp = rle->count;
2188 
2189 	return(0);
2190 }
2191 
2192 int
2193 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2194     u_long start, u_long count)
2195 {
2196 	struct resource_list *rl = NULL;
2197 
2198 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2199 	if (!rl)
2200 		return(EINVAL);
2201 
2202 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
2203 
2204 	return(0);
2205 }
2206 
2207 void
2208 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2209 {
2210 	struct resource_list *rl = NULL;
2211 
2212 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2213 	if (!rl)
2214 		return;
2215 
2216 	resource_list_delete(rl, type, rid);
2217 }
2218 
2219 int
2220 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2221     int rid, struct resource *r)
2222 {
2223 	struct resource_list *rl = NULL;
2224 
2225 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2226 	if (!rl)
2227 		return(EINVAL);
2228 
2229 	return(resource_list_release(rl, dev, child, type, rid, r));
2230 }
2231 
2232 struct resource *
2233 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2234     int *rid, u_long start, u_long end, u_long count, u_int flags)
2235 {
2236 	struct resource_list *rl = NULL;
2237 
2238 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2239 	if (!rl)
2240 		return(NULL);
2241 
2242 	return(resource_list_alloc(rl, dev, child, type, rid,
2243 	    start, end, count, flags));
2244 }
2245 
2246 int
2247 bus_generic_child_present(device_t bus, device_t child)
2248 {
2249 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2250 }
2251 
2252 
2253 /*
2254  * Some convenience functions to make it easier for drivers to use the
2255  * resource-management functions.  All these really do is hide the
2256  * indirection through the parent's method table, making for slightly
2257  * less-wordy code.  In the future, it might make sense for this code
2258  * to maintain some sort of a list of resources allocated by each device.
2259  */
2260 struct resource *
2261 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
2262 		   u_long count, u_int flags)
2263 {
2264 	if (dev->parent == 0)
2265 		return(0);
2266 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2267 				  count, flags));
2268 }
2269 
2270 int
2271 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
2272 {
2273 	if (dev->parent == 0)
2274 		return(EINVAL);
2275 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2276 }
2277 
2278 int
2279 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
2280 {
2281 	if (dev->parent == 0)
2282 		return(EINVAL);
2283 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2284 }
2285 
2286 int
2287 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
2288 {
2289 	if (dev->parent == 0)
2290 		return(EINVAL);
2291 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
2292 }
2293 
2294 int
2295 bus_setup_intr(device_t dev, struct resource *r, int flags,
2296 	       driver_intr_t handler, void *arg,
2297 	       void **cookiep, lwkt_serialize_t serializer)
2298 {
2299 	if (dev->parent == 0)
2300 		return(EINVAL);
2301 	return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
2302 			      cookiep, serializer));
2303 }
2304 
2305 int
2306 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
2307 {
2308 	if (dev->parent == 0)
2309 		return(EINVAL);
2310 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
2311 }
2312 
2313 void
2314 bus_enable_intr(device_t dev, void *cookie)
2315 {
2316 	if (dev->parent)
2317 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
2318 }
2319 
2320 int
2321 bus_disable_intr(device_t dev, void *cookie)
2322 {
2323 	if (dev->parent)
2324 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
2325 	else
2326 		return(0);
2327 }
2328 
2329 int
2330 bus_set_resource(device_t dev, int type, int rid,
2331 		 u_long start, u_long count)
2332 {
2333 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
2334 				start, count));
2335 }
2336 
2337 int
2338 bus_get_resource(device_t dev, int type, int rid,
2339 		 u_long *startp, u_long *countp)
2340 {
2341 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2342 				startp, countp));
2343 }
2344 
2345 u_long
2346 bus_get_resource_start(device_t dev, int type, int rid)
2347 {
2348 	u_long start, count;
2349 	int error;
2350 
2351 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2352 				 &start, &count);
2353 	if (error)
2354 		return(0);
2355 	return(start);
2356 }
2357 
2358 u_long
2359 bus_get_resource_count(device_t dev, int type, int rid)
2360 {
2361 	u_long start, count;
2362 	int error;
2363 
2364 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2365 				 &start, &count);
2366 	if (error)
2367 		return(0);
2368 	return(count);
2369 }
2370 
2371 void
2372 bus_delete_resource(device_t dev, int type, int rid)
2373 {
2374 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
2375 }
2376 
2377 int
2378 bus_child_present(device_t child)
2379 {
2380 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
2381 }
2382 
2383 int
2384 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
2385 {
2386 	device_t parent;
2387 
2388 	parent = device_get_parent(child);
2389 	if (parent == NULL) {
2390 		*buf = '\0';
2391 		return (0);
2392 	}
2393 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
2394 }
2395 
2396 int
2397 bus_child_location_str(device_t child, char *buf, size_t buflen)
2398 {
2399 	device_t parent;
2400 
2401 	parent = device_get_parent(child);
2402 	if (parent == NULL) {
2403 		*buf = '\0';
2404 		return (0);
2405 	}
2406 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
2407 }
2408 
2409 static int
2410 root_print_child(device_t dev, device_t child)
2411 {
2412 	return(0);
2413 }
2414 
2415 static int
2416 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
2417 		void **cookiep, lwkt_serialize_t serializer)
2418 {
2419 	/*
2420 	 * If an interrupt mapping gets to here something bad has happened.
2421 	 */
2422 	panic("root_setup_intr");
2423 }
2424 
2425 /*
2426  * If we get here, assume that the device is permanant and really is
2427  * present in the system.  Removable bus drivers are expected to intercept
2428  * this call long before it gets here.  We return -1 so that drivers that
2429  * really care can check vs -1 or some ERRNO returned higher in the food
2430  * chain.
2431  */
2432 static int
2433 root_child_present(device_t dev, device_t child)
2434 {
2435 	return(-1);
2436 }
2437 
2438 /*
2439  * XXX NOTE! other defaults may be set in bus_if.m
2440  */
2441 static kobj_method_t root_methods[] = {
2442 	/* Device interface */
2443 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
2444 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
2445 	KOBJMETHOD(device_resume,	bus_generic_resume),
2446 
2447 	/* Bus interface */
2448 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
2449 	KOBJMETHOD(bus_print_child,	root_print_child),
2450 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
2451 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
2452 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
2453 	KOBJMETHOD(bus_child_present,   root_child_present),
2454 
2455 	{ 0, 0 }
2456 };
2457 
2458 static driver_t root_driver = {
2459 	"root",
2460 	root_methods,
2461 	1,			/* no softc */
2462 };
2463 
2464 device_t	root_bus;
2465 devclass_t	root_devclass;
2466 
2467 static int
2468 root_bus_module_handler(module_t mod, int what, void* arg)
2469 {
2470 	switch (what) {
2471 	case MOD_LOAD:
2472 		root_bus = make_device(NULL, "root", 0);
2473 		root_bus->desc = "System root bus";
2474 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
2475 		root_bus->driver = &root_driver;
2476 		root_bus->state = DS_ALIVE;
2477 		root_devclass = devclass_find_internal("root", NULL, FALSE);
2478 		return(0);
2479 
2480 	case MOD_SHUTDOWN:
2481 		device_shutdown(root_bus);
2482 		return(0);
2483 	default:
2484 		return(0);
2485 	}
2486 }
2487 
2488 static moduledata_t root_bus_mod = {
2489 	"rootbus",
2490 	root_bus_module_handler,
2491 	0
2492 };
2493 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
2494 
2495 void
2496 root_bus_configure(void)
2497 {
2498 	device_t dev;
2499 
2500 	PDEBUG(("."));
2501 
2502 	/*
2503 	 * handle device_identify based device attachments to the root_bus
2504 	 * (typically nexus).
2505 	 */
2506 	bus_generic_probe(root_bus);
2507 
2508 	/*
2509 	 * Probe and attach the devices under root_bus.
2510 	 */
2511 	TAILQ_FOREACH(dev, &root_bus->children, link) {
2512 		device_probe_and_attach(dev);
2513 	}
2514 	root_bus->state = DS_ATTACHED;
2515 }
2516 
2517 int
2518 driver_module_handler(module_t mod, int what, void *arg)
2519 {
2520 	int error;
2521 	struct driver_module_data *dmd;
2522 	devclass_t bus_devclass;
2523 	kobj_class_t driver;
2524         const char *parentname;
2525 
2526 	dmd = (struct driver_module_data *)arg;
2527 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
2528 	error = 0;
2529 
2530 	switch (what) {
2531 	case MOD_LOAD:
2532 		if (dmd->dmd_chainevh)
2533 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
2534 
2535 		driver = dmd->dmd_driver;
2536 		PDEBUG(("Loading module: driver %s on bus %s",
2537 		        DRIVERNAME(driver), dmd->dmd_busname));
2538 		error = devclass_add_driver(bus_devclass, driver);
2539 		if (error)
2540 			break;
2541 
2542 		/*
2543 		 * If the driver has any base classes, make the
2544 		 * devclass inherit from the devclass of the driver's
2545 		 * first base class. This will allow the system to
2546 		 * search for drivers in both devclasses for children
2547 		 * of a device using this driver.
2548 		 */
2549 		if (driver->baseclasses)
2550 			parentname = driver->baseclasses[0]->name;
2551 		else
2552 			parentname = NULL;
2553 	    	*dmd->dmd_devclass = devclass_find_internal(driver->name,
2554 							    parentname, TRUE);
2555 		break;
2556 
2557 	case MOD_UNLOAD:
2558 		PDEBUG(("Unloading module: driver %s from bus %s",
2559 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
2560 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
2561 
2562 		if (!error && dmd->dmd_chainevh)
2563 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
2564 		break;
2565 	}
2566 
2567 	return (error);
2568 }
2569 
2570 #ifdef BUS_DEBUG
2571 
2572 /*
2573  * The _short versions avoid iteration by not calling anything that prints
2574  * more than oneliners. I love oneliners.
2575  */
2576 
2577 static void
2578 print_device_short(device_t dev, int indent)
2579 {
2580 	if (!dev)
2581 		return;
2582 
2583 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
2584 		      dev->unit, dev->desc,
2585 		      (dev->parent? "":"no "),
2586 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
2587 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
2588 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
2589 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
2590 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
2591 		      (dev->ivars? "":"no "),
2592 		      (dev->softc? "":"no "),
2593 		      dev->busy));
2594 }
2595 
2596 static void
2597 print_device(device_t dev, int indent)
2598 {
2599 	if (!dev)
2600 		return;
2601 
2602 	print_device_short(dev, indent);
2603 
2604 	indentprintf(("Parent:\n"));
2605 	print_device_short(dev->parent, indent+1);
2606 	indentprintf(("Driver:\n"));
2607 	print_driver_short(dev->driver, indent+1);
2608 	indentprintf(("Devclass:\n"));
2609 	print_devclass_short(dev->devclass, indent+1);
2610 }
2611 
2612 /*
2613  * Print the device and all its children (indented).
2614  */
2615 void
2616 print_device_tree_short(device_t dev, int indent)
2617 {
2618 	device_t child;
2619 
2620 	if (!dev)
2621 		return;
2622 
2623 	print_device_short(dev, indent);
2624 
2625 	TAILQ_FOREACH(child, &dev->children, link)
2626 		print_device_tree_short(child, indent+1);
2627 }
2628 
2629 /*
2630  * Print the device and all its children (indented).
2631  */
2632 void
2633 print_device_tree(device_t dev, int indent)
2634 {
2635 	device_t child;
2636 
2637 	if (!dev)
2638 		return;
2639 
2640 	print_device(dev, indent);
2641 
2642 	TAILQ_FOREACH(child, &dev->children, link)
2643 		print_device_tree(child, indent+1);
2644 }
2645 
2646 static void
2647 print_driver_short(driver_t *driver, int indent)
2648 {
2649 	if (!driver)
2650 		return;
2651 
2652 	indentprintf(("driver %s: softc size = %d\n",
2653 		      driver->name, driver->size));
2654 }
2655 
2656 static void
2657 print_driver(driver_t *driver, int indent)
2658 {
2659 	if (!driver)
2660 		return;
2661 
2662 	print_driver_short(driver, indent);
2663 }
2664 
2665 
2666 static void
2667 print_driver_list(driver_list_t drivers, int indent)
2668 {
2669 	driverlink_t driver;
2670 
2671 	TAILQ_FOREACH(driver, &drivers, link)
2672 		print_driver(driver->driver, indent);
2673 }
2674 
2675 static void
2676 print_devclass_short(devclass_t dc, int indent)
2677 {
2678 	if (!dc)
2679 		return;
2680 
2681 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
2682 }
2683 
2684 static void
2685 print_devclass(devclass_t dc, int indent)
2686 {
2687 	int i;
2688 
2689 	if (!dc)
2690 		return;
2691 
2692 	print_devclass_short(dc, indent);
2693 	indentprintf(("Drivers:\n"));
2694 	print_driver_list(dc->drivers, indent+1);
2695 
2696 	indentprintf(("Devices:\n"));
2697 	for (i = 0; i < dc->maxunit; i++)
2698 		if (dc->devices[i])
2699 			print_device(dc->devices[i], indent+1);
2700 }
2701 
2702 void
2703 print_devclass_list_short(void)
2704 {
2705 	devclass_t dc;
2706 
2707 	kprintf("Short listing of devclasses, drivers & devices:\n");
2708 	TAILQ_FOREACH(dc, &devclasses, link) {
2709 		print_devclass_short(dc, 0);
2710 	}
2711 }
2712 
2713 void
2714 print_devclass_list(void)
2715 {
2716 	devclass_t dc;
2717 
2718 	kprintf("Full listing of devclasses, drivers & devices:\n");
2719 	TAILQ_FOREACH(dc, &devclasses, link) {
2720 		print_devclass(dc, 0);
2721 	}
2722 }
2723 
2724 #endif
2725 
2726 /*
2727  * Check to see if a device is disabled via a disabled hint.
2728  */
2729 int
2730 resource_disabled(const char *name, int unit)
2731 {
2732 	int error, value;
2733 
2734 	error = resource_int_value(name, unit, "disabled", &value);
2735 	if (error)
2736 	       return(0);
2737 	return(value);
2738 }
2739