xref: /dragonfly/sys/kern/subr_bus.c (revision 768af85b)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  * $DragonFly: src/sys/kern/subr_bus.c,v 1.46 2008/10/03 00:26:21 hasso Exp $
28  */
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/queue.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/kobj.h>
38 #include <sys/bus_private.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/device.h>
44 #include <sys/lock.h>
45 #include <sys/conf.h>
46 #include <sys/selinfo.h>
47 #include <sys/uio.h>
48 #include <sys/filio.h>
49 #include <sys/poll.h>
50 #include <sys/signalvar.h>
51 
52 #include <machine/stdarg.h>	/* for device_printf() */
53 
54 #include <sys/thread2.h>
55 #include <sys/mplock2.h>
56 
57 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
58 
59 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
60 
61 #ifdef BUS_DEBUG
62 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
63 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
64 #define DRIVERNAME(d)	((d)? d->name : "no driver")
65 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
66 
67 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
68  * prevent syslog from deleting initial spaces
69  */
70 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
71 
72 static void	print_device_short(device_t dev, int indent);
73 static void	print_device(device_t dev, int indent);
74 void		print_device_tree_short(device_t dev, int indent);
75 void		print_device_tree(device_t dev, int indent);
76 static void	print_driver_short(driver_t *driver, int indent);
77 static void	print_driver(driver_t *driver, int indent);
78 static void	print_driver_list(driver_list_t drivers, int indent);
79 static void	print_devclass_short(devclass_t dc, int indent);
80 static void	print_devclass(devclass_t dc, int indent);
81 void		print_devclass_list_short(void);
82 void		print_devclass_list(void);
83 
84 #else
85 /* Make the compiler ignore the function calls */
86 #define PDEBUG(a)			/* nop */
87 #define DEVICENAME(d)			/* nop */
88 #define DRIVERNAME(d)			/* nop */
89 #define DEVCLANAME(d)			/* nop */
90 
91 #define print_device_short(d,i)		/* nop */
92 #define print_device(d,i)		/* nop */
93 #define print_device_tree_short(d,i)	/* nop */
94 #define print_device_tree(d,i)		/* nop */
95 #define print_driver_short(d,i)		/* nop */
96 #define print_driver(d,i)		/* nop */
97 #define print_driver_list(d,i)		/* nop */
98 #define print_devclass_short(d,i)	/* nop */
99 #define print_devclass(d,i)		/* nop */
100 #define print_devclass_list_short()	/* nop */
101 #define print_devclass_list()		/* nop */
102 #endif
103 
104 static void	device_attach_async(device_t dev);
105 static void	device_attach_thread(void *arg);
106 static int	device_doattach(device_t dev);
107 
108 static int do_async_attach = 0;
109 static int numasyncthreads;
110 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
111 
112 /*
113  * /dev/devctl implementation
114  */
115 
116 /*
117  * This design allows only one reader for /dev/devctl.  This is not desirable
118  * in the long run, but will get a lot of hair out of this implementation.
119  * Maybe we should make this device a clonable device.
120  *
121  * Also note: we specifically do not attach a device to the device_t tree
122  * to avoid potential chicken and egg problems.  One could argue that all
123  * of this belongs to the root node.  One could also further argue that the
124  * sysctl interface that we have not might more properly be an ioctl
125  * interface, but at this stage of the game, I'm not inclined to rock that
126  * boat.
127  *
128  * I'm also not sure that the SIGIO support is done correctly or not, as
129  * I copied it from a driver that had SIGIO support that likely hasn't been
130  * tested since 3.4 or 2.2.8!
131  */
132 
133 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
134 static int devctl_disable = 0;
135 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
136 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
137     sysctl_devctl_disable, "I", "devctl disable");
138 
139 #define	CDEV_MAJOR	188
140 
141 static d_open_t		devopen;
142 static d_close_t	devclose;
143 static d_read_t		devread;
144 static d_ioctl_t	devioctl;
145 static d_poll_t		devpoll;
146 
147 static struct dev_ops devctl_ops = {
148 	{ "devctl", CDEV_MAJOR, 0 },
149 	.d_open =	devopen,
150 	.d_close =	devclose,
151 	.d_read =	devread,
152 	.d_ioctl =	devioctl,
153 	.d_poll =	devpoll,
154 };
155 
156 struct dev_event_info
157 {
158 	char *dei_data;
159 	TAILQ_ENTRY(dev_event_info) dei_link;
160 };
161 
162 TAILQ_HEAD(devq, dev_event_info);
163 
164 static struct dev_softc
165 {
166 	int	inuse;
167 	int	nonblock;
168 	struct lock lock;
169 	struct selinfo sel;
170 	struct devq devq;
171 	struct proc *async_proc;
172 } devsoftc;
173 
174 static void
175 devinit(void)
176 {
177 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
178 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
179 	TAILQ_INIT(&devsoftc.devq);
180 }
181 
182 static int
183 devopen(struct dev_open_args *ap)
184 {
185 	if (devsoftc.inuse)
186 		return (EBUSY);
187 	/* move to init */
188 	devsoftc.inuse = 1;
189 	devsoftc.nonblock = 0;
190 	devsoftc.async_proc = NULL;
191 	return (0);
192 }
193 
194 static int
195 devclose(struct dev_close_args *ap)
196 {
197 	devsoftc.inuse = 0;
198 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
199 	wakeup(&devsoftc);
200 	lockmgr(&devsoftc.lock, LK_RELEASE);
201 
202 	return (0);
203 }
204 
205 /*
206  * The read channel for this device is used to report changes to
207  * userland in realtime.  We are required to free the data as well as
208  * the n1 object because we allocate them separately.  Also note that
209  * we return one record at a time.  If you try to read this device a
210  * character at a time, you will lose the rest of the data.  Listening
211  * programs are expected to cope.
212  */
213 static int
214 devread(struct dev_read_args *ap)
215 {
216 	struct uio *uio = ap->a_uio;
217 	struct dev_event_info *n1;
218 	int rv;
219 
220 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
221 	while (TAILQ_EMPTY(&devsoftc.devq)) {
222 		if (devsoftc.nonblock) {
223 			lockmgr(&devsoftc.lock, LK_RELEASE);
224 			return (EAGAIN);
225 		}
226 		tsleep_interlock(&devsoftc, PCATCH);
227 		lockmgr(&devsoftc.lock, LK_RELEASE);
228 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
229 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
230 		if (rv) {
231 			/*
232 			 * Need to translate ERESTART to EINTR here? -- jake
233 			 */
234 			lockmgr(&devsoftc.lock, LK_RELEASE);
235 			return (rv);
236 		}
237 	}
238 	n1 = TAILQ_FIRST(&devsoftc.devq);
239 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
240 	lockmgr(&devsoftc.lock, LK_RELEASE);
241 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
242 	kfree(n1->dei_data, M_BUS);
243 	kfree(n1, M_BUS);
244 	return (rv);
245 }
246 
247 static	int
248 devioctl(struct dev_ioctl_args *ap)
249 {
250 	switch (ap->a_cmd) {
251 
252 	case FIONBIO:
253 		if (*(int*)ap->a_data)
254 			devsoftc.nonblock = 1;
255 		else
256 			devsoftc.nonblock = 0;
257 		return (0);
258 	case FIOASYNC:
259 		if (*(int*)ap->a_data)
260 			devsoftc.async_proc = curproc;
261 		else
262 			devsoftc.async_proc = NULL;
263 		return (0);
264 
265 		/* (un)Support for other fcntl() calls. */
266 	case FIOCLEX:
267 	case FIONCLEX:
268 	case FIONREAD:
269 	case FIOSETOWN:
270 	case FIOGETOWN:
271 	default:
272 		break;
273 	}
274 	return (ENOTTY);
275 }
276 
277 static	int
278 devpoll(struct dev_poll_args *ap)
279 {
280 	int	revents = 0;
281 
282 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
283 	if (ap->a_events & (POLLIN | POLLRDNORM)) {
284 		if (!TAILQ_EMPTY(&devsoftc.devq))
285 			revents = ap->a_events & (POLLIN | POLLRDNORM);
286 		else
287 			selrecord(curthread, &devsoftc.sel);
288 	}
289 	lockmgr(&devsoftc.lock, LK_RELEASE);
290 
291 	ap->a_events = revents;
292 	return (0);
293 }
294 
295 /**
296  * @brief Return whether the userland process is running
297  */
298 boolean_t
299 devctl_process_running(void)
300 {
301 	return (devsoftc.inuse == 1);
302 }
303 
304 /**
305  * @brief Queue data to be read from the devctl device
306  *
307  * Generic interface to queue data to the devctl device.  It is
308  * assumed that @p data is properly formatted.  It is further assumed
309  * that @p data is allocated using the M_BUS malloc type.
310  */
311 void
312 devctl_queue_data(char *data)
313 {
314 	struct dev_event_info *n1 = NULL;
315 	struct proc *p;
316 
317 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
318 	if (n1 == NULL)
319 		return;
320 	n1->dei_data = data;
321 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
322 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
323 	wakeup(&devsoftc);
324 	lockmgr(&devsoftc.lock, LK_RELEASE);
325 	get_mplock();	/* XXX */
326 	selwakeup(&devsoftc.sel);
327 	rel_mplock();	/* XXX */
328 	p = devsoftc.async_proc;
329 	if (p != NULL)
330 		ksignal(p, SIGIO);
331 }
332 
333 /**
334  * @brief Send a 'notification' to userland, using standard ways
335  */
336 void
337 devctl_notify(const char *system, const char *subsystem, const char *type,
338     const char *data)
339 {
340 	int len = 0;
341 	char *msg;
342 
343 	if (system == NULL)
344 		return;		/* BOGUS!  Must specify system. */
345 	if (subsystem == NULL)
346 		return;		/* BOGUS!  Must specify subsystem. */
347 	if (type == NULL)
348 		return;		/* BOGUS!  Must specify type. */
349 	len += strlen(" system=") + strlen(system);
350 	len += strlen(" subsystem=") + strlen(subsystem);
351 	len += strlen(" type=") + strlen(type);
352 	/* add in the data message plus newline. */
353 	if (data != NULL)
354 		len += strlen(data);
355 	len += 3;	/* '!', '\n', and NUL */
356 	msg = kmalloc(len, M_BUS, M_NOWAIT);
357 	if (msg == NULL)
358 		return;		/* Drop it on the floor */
359 	if (data != NULL)
360 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
361 		    system, subsystem, type, data);
362 	else
363 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
364 		    system, subsystem, type);
365 	devctl_queue_data(msg);
366 }
367 
368 /*
369  * Common routine that tries to make sending messages as easy as possible.
370  * We allocate memory for the data, copy strings into that, but do not
371  * free it unless there's an error.  The dequeue part of the driver should
372  * free the data.  We don't send data when the device is disabled.  We do
373  * send data, even when we have no listeners, because we wish to avoid
374  * races relating to startup and restart of listening applications.
375  *
376  * devaddq is designed to string together the type of event, with the
377  * object of that event, plus the plug and play info and location info
378  * for that event.  This is likely most useful for devices, but less
379  * useful for other consumers of this interface.  Those should use
380  * the devctl_queue_data() interface instead.
381  */
382 static void
383 devaddq(const char *type, const char *what, device_t dev)
384 {
385 	char *data = NULL;
386 	char *loc = NULL;
387 	char *pnp = NULL;
388 	const char *parstr;
389 
390 	if (devctl_disable)
391 		return;
392 	data = kmalloc(1024, M_BUS, M_NOWAIT);
393 	if (data == NULL)
394 		goto bad;
395 
396 	/* get the bus specific location of this device */
397 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
398 	if (loc == NULL)
399 		goto bad;
400 	*loc = '\0';
401 	bus_child_location_str(dev, loc, 1024);
402 
403 	/* Get the bus specific pnp info of this device */
404 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
405 	if (pnp == NULL)
406 		goto bad;
407 	*pnp = '\0';
408 	bus_child_pnpinfo_str(dev, pnp, 1024);
409 
410 	/* Get the parent of this device, or / if high enough in the tree. */
411 	if (device_get_parent(dev) == NULL)
412 		parstr = ".";	/* Or '/' ? */
413 	else
414 		parstr = device_get_nameunit(device_get_parent(dev));
415 	/* String it all together. */
416 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
417 	  parstr);
418 	kfree(loc, M_BUS);
419 	kfree(pnp, M_BUS);
420 	devctl_queue_data(data);
421 	return;
422 bad:
423 	kfree(pnp, M_BUS);
424 	kfree(loc, M_BUS);
425 	kfree(data, M_BUS);
426 	return;
427 }
428 
429 /*
430  * A device was added to the tree.  We are called just after it successfully
431  * attaches (that is, probe and attach success for this device).  No call
432  * is made if a device is merely parented into the tree.  See devnomatch
433  * if probe fails.  If attach fails, no notification is sent (but maybe
434  * we should have a different message for this).
435  */
436 static void
437 devadded(device_t dev)
438 {
439 	char *pnp = NULL;
440 	char *tmp = NULL;
441 
442 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
443 	if (pnp == NULL)
444 		goto fail;
445 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
446 	if (tmp == NULL)
447 		goto fail;
448 	*pnp = '\0';
449 	bus_child_pnpinfo_str(dev, pnp, 1024);
450 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
451 	devaddq("+", tmp, dev);
452 fail:
453 	if (pnp != NULL)
454 		kfree(pnp, M_BUS);
455 	if (tmp != NULL)
456 		kfree(tmp, M_BUS);
457 	return;
458 }
459 
460 /*
461  * A device was removed from the tree.  We are called just before this
462  * happens.
463  */
464 static void
465 devremoved(device_t dev)
466 {
467 	char *pnp = NULL;
468 	char *tmp = NULL;
469 
470 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
471 	if (pnp == NULL)
472 		goto fail;
473 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
474 	if (tmp == NULL)
475 		goto fail;
476 	*pnp = '\0';
477 	bus_child_pnpinfo_str(dev, pnp, 1024);
478 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
479 	devaddq("-", tmp, dev);
480 fail:
481 	if (pnp != NULL)
482 		kfree(pnp, M_BUS);
483 	if (tmp != NULL)
484 		kfree(tmp, M_BUS);
485 	return;
486 }
487 
488 /*
489  * Called when there's no match for this device.  This is only called
490  * the first time that no match happens, so we don't keep getitng this
491  * message.  Should that prove to be undesirable, we can change it.
492  * This is called when all drivers that can attach to a given bus
493  * decline to accept this device.  Other errrors may not be detected.
494  */
495 static void
496 devnomatch(device_t dev)
497 {
498 	devaddq("?", "", dev);
499 }
500 
501 static int
502 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
503 {
504 	struct dev_event_info *n1;
505 	int dis, error;
506 
507 	dis = devctl_disable;
508 	error = sysctl_handle_int(oidp, &dis, 0, req);
509 	if (error || !req->newptr)
510 		return (error);
511 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
512 	devctl_disable = dis;
513 	if (dis) {
514 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
515 			n1 = TAILQ_FIRST(&devsoftc.devq);
516 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
517 			kfree(n1->dei_data, M_BUS);
518 			kfree(n1, M_BUS);
519 		}
520 	}
521 	lockmgr(&devsoftc.lock, LK_RELEASE);
522 	return (0);
523 }
524 
525 /* End of /dev/devctl code */
526 
527 TAILQ_HEAD(,device)	bus_data_devices;
528 static int bus_data_generation = 1;
529 
530 kobj_method_t null_methods[] = {
531 	{ 0, 0 }
532 };
533 
534 DEFINE_CLASS(null, null_methods, 0);
535 
536 /*
537  * Devclass implementation
538  */
539 
540 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
541 
542 static devclass_t
543 devclass_find_internal(const char *classname, const char *parentname,
544 		       int create)
545 {
546 	devclass_t dc;
547 
548 	PDEBUG(("looking for %s", classname));
549 	if (classname == NULL)
550 		return(NULL);
551 
552 	TAILQ_FOREACH(dc, &devclasses, link)
553 		if (!strcmp(dc->name, classname))
554 			break;
555 
556 	if (create && !dc) {
557 		PDEBUG(("creating %s", classname));
558 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
559 			    M_BUS, M_INTWAIT | M_ZERO);
560 		if (!dc)
561 			return(NULL);
562 		dc->parent = NULL;
563 		dc->name = (char*) (dc + 1);
564 		strcpy(dc->name, classname);
565 		dc->devices = NULL;
566 		dc->maxunit = 0;
567 		TAILQ_INIT(&dc->drivers);
568 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
569 
570 		bus_data_generation_update();
571 
572 	}
573 	if (parentname && dc && !dc->parent)
574 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
575 
576 	return(dc);
577 }
578 
579 devclass_t
580 devclass_create(const char *classname)
581 {
582 	return(devclass_find_internal(classname, NULL, TRUE));
583 }
584 
585 devclass_t
586 devclass_find(const char *classname)
587 {
588 	return(devclass_find_internal(classname, NULL, FALSE));
589 }
590 
591 device_t
592 devclass_find_unit(const char *classname, int unit)
593 {
594 	devclass_t dc;
595 
596 	if ((dc = devclass_find(classname)) != NULL)
597 	    return(devclass_get_device(dc, unit));
598 	return (NULL);
599 }
600 
601 int
602 devclass_add_driver(devclass_t dc, driver_t *driver)
603 {
604 	driverlink_t dl;
605 	device_t dev;
606 	int i;
607 
608 	PDEBUG(("%s", DRIVERNAME(driver)));
609 
610 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
611 	if (!dl)
612 		return(ENOMEM);
613 
614 	/*
615 	 * Compile the driver's methods. Also increase the reference count
616 	 * so that the class doesn't get freed when the last instance
617 	 * goes. This means we can safely use static methods and avoids a
618 	 * double-free in devclass_delete_driver.
619 	 */
620 	kobj_class_instantiate(driver);
621 
622 	/*
623 	 * Make sure the devclass which the driver is implementing exists.
624 	 */
625 	devclass_find_internal(driver->name, NULL, TRUE);
626 
627 	dl->driver = driver;
628 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
629 
630 	/*
631 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
632 	 * but only if the bus has already been attached (otherwise we
633 	 * might probe too early).
634 	 *
635 	 * This is what will cause a newly loaded module to be associated
636 	 * with hardware.  bus_generic_driver_added() is typically what ends
637 	 * up being called.
638 	 */
639 	for (i = 0; i < dc->maxunit; i++) {
640 		if ((dev = dc->devices[i]) != NULL) {
641 			if (dev->state >= DS_ATTACHED)
642 				BUS_DRIVER_ADDED(dev, driver);
643 		}
644 	}
645 
646 	bus_data_generation_update();
647 	return(0);
648 }
649 
650 int
651 devclass_delete_driver(devclass_t busclass, driver_t *driver)
652 {
653 	devclass_t dc = devclass_find(driver->name);
654 	driverlink_t dl;
655 	device_t dev;
656 	int i;
657 	int error;
658 
659 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
660 
661 	if (!dc)
662 		return(0);
663 
664 	/*
665 	 * Find the link structure in the bus' list of drivers.
666 	 */
667 	TAILQ_FOREACH(dl, &busclass->drivers, link)
668 		if (dl->driver == driver)
669 			break;
670 
671 	if (!dl) {
672 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
673 		return(ENOENT);
674 	}
675 
676 	/*
677 	 * Disassociate from any devices.  We iterate through all the
678 	 * devices in the devclass of the driver and detach any which are
679 	 * using the driver and which have a parent in the devclass which
680 	 * we are deleting from.
681 	 *
682 	 * Note that since a driver can be in multiple devclasses, we
683 	 * should not detach devices which are not children of devices in
684 	 * the affected devclass.
685 	 */
686 	for (i = 0; i < dc->maxunit; i++)
687 		if (dc->devices[i]) {
688 			dev = dc->devices[i];
689 			if (dev->driver == driver && dev->parent &&
690 			    dev->parent->devclass == busclass) {
691 				if ((error = device_detach(dev)) != 0)
692 					return(error);
693 				device_set_driver(dev, NULL);
694 		    	}
695 		}
696 
697 	TAILQ_REMOVE(&busclass->drivers, dl, link);
698 	kfree(dl, M_BUS);
699 
700 	kobj_class_uninstantiate(driver);
701 
702 	bus_data_generation_update();
703 	return(0);
704 }
705 
706 static driverlink_t
707 devclass_find_driver_internal(devclass_t dc, const char *classname)
708 {
709 	driverlink_t dl;
710 
711 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
712 
713 	TAILQ_FOREACH(dl, &dc->drivers, link)
714 		if (!strcmp(dl->driver->name, classname))
715 			return(dl);
716 
717 	PDEBUG(("not found"));
718 	return(NULL);
719 }
720 
721 kobj_class_t
722 devclass_find_driver(devclass_t dc, const char *classname)
723 {
724 	driverlink_t dl;
725 
726 	dl = devclass_find_driver_internal(dc, classname);
727 	if (dl)
728 		return(dl->driver);
729 	else
730 		return(NULL);
731 }
732 
733 const char *
734 devclass_get_name(devclass_t dc)
735 {
736 	return(dc->name);
737 }
738 
739 device_t
740 devclass_get_device(devclass_t dc, int unit)
741 {
742 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
743 		return(NULL);
744 	return(dc->devices[unit]);
745 }
746 
747 void *
748 devclass_get_softc(devclass_t dc, int unit)
749 {
750 	device_t dev;
751 
752 	dev = devclass_get_device(dc, unit);
753 	if (!dev)
754 		return(NULL);
755 
756 	return(device_get_softc(dev));
757 }
758 
759 int
760 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
761 {
762 	int i;
763 	int count;
764 	device_t *list;
765 
766 	count = 0;
767 	for (i = 0; i < dc->maxunit; i++)
768 		if (dc->devices[i])
769 			count++;
770 
771 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
772 	if (list == NULL)
773 		return(ENOMEM);
774 
775 	count = 0;
776 	for (i = 0; i < dc->maxunit; i++)
777 		if (dc->devices[i]) {
778 			list[count] = dc->devices[i];
779 			count++;
780 		}
781 
782 	*devlistp = list;
783 	*devcountp = count;
784 
785 	return(0);
786 }
787 
788 /**
789  * @brief Get a list of drivers in the devclass
790  *
791  * An array containing a list of pointers to all the drivers in the
792  * given devclass is allocated and returned in @p *listp.  The number
793  * of drivers in the array is returned in @p *countp. The caller should
794  * free the array using @c free(p, M_TEMP).
795  *
796  * @param dc            the devclass to examine
797  * @param listp         gives location for array pointer return value
798  * @param countp        gives location for number of array elements
799  *                      return value
800  *
801  * @retval 0            success
802  * @retval ENOMEM       the array allocation failed
803  */
804 int
805 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
806 {
807         driverlink_t dl;
808         driver_t **list;
809         int count;
810 
811         count = 0;
812         TAILQ_FOREACH(dl, &dc->drivers, link)
813                 count++;
814         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
815         if (list == NULL)
816                 return (ENOMEM);
817 
818         count = 0;
819         TAILQ_FOREACH(dl, &dc->drivers, link) {
820                 list[count] = dl->driver;
821                 count++;
822         }
823         *listp = list;
824         *countp = count;
825 
826         return (0);
827 }
828 
829 /**
830  * @brief Get the number of devices in a devclass
831  *
832  * @param dc		the devclass to examine
833  */
834 int
835 devclass_get_count(devclass_t dc)
836 {
837 	int count, i;
838 
839 	count = 0;
840 	for (i = 0; i < dc->maxunit; i++)
841 		if (dc->devices[i])
842 			count++;
843 	return (count);
844 }
845 
846 int
847 devclass_get_maxunit(devclass_t dc)
848 {
849 	return(dc->maxunit);
850 }
851 
852 void
853 devclass_set_parent(devclass_t dc, devclass_t pdc)
854 {
855         dc->parent = pdc;
856 }
857 
858 devclass_t
859 devclass_get_parent(devclass_t dc)
860 {
861 	return(dc->parent);
862 }
863 
864 static int
865 devclass_alloc_unit(devclass_t dc, int *unitp)
866 {
867 	int unit = *unitp;
868 
869 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
870 
871 	/* If we have been given a wired unit number, check for existing device */
872 	if (unit != -1) {
873 		if (unit >= 0 && unit < dc->maxunit &&
874 		    dc->devices[unit] != NULL) {
875 			if (bootverbose)
876 				kprintf("%s-: %s%d exists, using next available unit number\n",
877 				       dc->name, dc->name, unit);
878 			/* find the next available slot */
879 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
880 				;
881 		}
882 	} else {
883 		/* Unwired device, find the next available slot for it */
884 		unit = 0;
885 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
886 			unit++;
887 	}
888 
889 	/*
890 	 * We've selected a unit beyond the length of the table, so let's
891 	 * extend the table to make room for all units up to and including
892 	 * this one.
893 	 */
894 	if (unit >= dc->maxunit) {
895 		device_t *newlist;
896 		int newsize;
897 
898 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
899 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
900 				 M_INTWAIT | M_ZERO);
901 		if (newlist == NULL)
902 			return(ENOMEM);
903 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
904 		if (dc->devices)
905 			kfree(dc->devices, M_BUS);
906 		dc->devices = newlist;
907 		dc->maxunit = newsize;
908 	}
909 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
910 
911 	*unitp = unit;
912 	return(0);
913 }
914 
915 static int
916 devclass_add_device(devclass_t dc, device_t dev)
917 {
918 	int buflen, error;
919 
920 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
921 
922 	buflen = strlen(dc->name) + 5;
923 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
924 	if (!dev->nameunit)
925 		return(ENOMEM);
926 
927 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
928 		kfree(dev->nameunit, M_BUS);
929 		dev->nameunit = NULL;
930 		return(error);
931 	}
932 	dc->devices[dev->unit] = dev;
933 	dev->devclass = dc;
934 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
935 
936 	return(0);
937 }
938 
939 static int
940 devclass_delete_device(devclass_t dc, device_t dev)
941 {
942 	if (!dc || !dev)
943 		return(0);
944 
945 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
946 
947 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
948 		panic("devclass_delete_device: inconsistent device class");
949 	dc->devices[dev->unit] = NULL;
950 	if (dev->flags & DF_WILDCARD)
951 		dev->unit = -1;
952 	dev->devclass = NULL;
953 	kfree(dev->nameunit, M_BUS);
954 	dev->nameunit = NULL;
955 
956 	return(0);
957 }
958 
959 static device_t
960 make_device(device_t parent, const char *name, int unit)
961 {
962 	device_t dev;
963 	devclass_t dc;
964 
965 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
966 
967 	if (name != NULL) {
968 		dc = devclass_find_internal(name, NULL, TRUE);
969 		if (!dc) {
970 			kprintf("make_device: can't find device class %s\n", name);
971 			return(NULL);
972 		}
973 	} else
974 		dc = NULL;
975 
976 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
977 	if (!dev)
978 		return(0);
979 
980 	dev->parent = parent;
981 	TAILQ_INIT(&dev->children);
982 	kobj_init((kobj_t) dev, &null_class);
983 	dev->driver = NULL;
984 	dev->devclass = NULL;
985 	dev->unit = unit;
986 	dev->nameunit = NULL;
987 	dev->desc = NULL;
988 	dev->busy = 0;
989 	dev->devflags = 0;
990 	dev->flags = DF_ENABLED;
991 	dev->order = 0;
992 	if (unit == -1)
993 		dev->flags |= DF_WILDCARD;
994 	if (name) {
995 		dev->flags |= DF_FIXEDCLASS;
996 		if (devclass_add_device(dc, dev) != 0) {
997 			kobj_delete((kobj_t)dev, M_BUS);
998 			return(NULL);
999 		}
1000     	}
1001 	dev->ivars = NULL;
1002 	dev->softc = NULL;
1003 
1004 	dev->state = DS_NOTPRESENT;
1005 
1006 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1007 	bus_data_generation_update();
1008 
1009 	return(dev);
1010 }
1011 
1012 static int
1013 device_print_child(device_t dev, device_t child)
1014 {
1015 	int retval = 0;
1016 
1017 	if (device_is_alive(child))
1018 		retval += BUS_PRINT_CHILD(dev, child);
1019 	else
1020 		retval += device_printf(child, " not found\n");
1021 
1022 	return(retval);
1023 }
1024 
1025 device_t
1026 device_add_child(device_t dev, const char *name, int unit)
1027 {
1028 	return device_add_child_ordered(dev, 0, name, unit);
1029 }
1030 
1031 device_t
1032 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1033 {
1034 	device_t child;
1035 	device_t place;
1036 
1037 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1038 		order, unit));
1039 
1040 	child = make_device(dev, name, unit);
1041 	if (child == NULL)
1042 		return child;
1043 	child->order = order;
1044 
1045 	TAILQ_FOREACH(place, &dev->children, link)
1046 		if (place->order > order)
1047 			break;
1048 
1049 	if (place) {
1050 		/*
1051 		 * The device 'place' is the first device whose order is
1052 		 * greater than the new child.
1053 		 */
1054 		TAILQ_INSERT_BEFORE(place, child, link);
1055 	} else {
1056 		/*
1057 		 * The new child's order is greater or equal to the order of
1058 		 * any existing device. Add the child to the tail of the list.
1059 		 */
1060 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1061     	}
1062 
1063 	bus_data_generation_update();
1064 	return(child);
1065 }
1066 
1067 int
1068 device_delete_child(device_t dev, device_t child)
1069 {
1070 	int error;
1071 	device_t grandchild;
1072 
1073 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1074 
1075 	/* remove children first */
1076 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1077         	error = device_delete_child(child, grandchild);
1078 		if (error)
1079 			return(error);
1080 	}
1081 
1082 	if ((error = device_detach(child)) != 0)
1083 		return(error);
1084 	if (child->devclass)
1085 		devclass_delete_device(child->devclass, child);
1086 	TAILQ_REMOVE(&dev->children, child, link);
1087 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1088 	device_set_desc(child, NULL);
1089 	kobj_delete((kobj_t)child, M_BUS);
1090 
1091 	bus_data_generation_update();
1092 	return(0);
1093 }
1094 
1095 /**
1096  * @brief Find a device given a unit number
1097  *
1098  * This is similar to devclass_get_devices() but only searches for
1099  * devices which have @p dev as a parent.
1100  *
1101  * @param dev		the parent device to search
1102  * @param unit		the unit number to search for.  If the unit is -1,
1103  *			return the first child of @p dev which has name
1104  *			@p classname (that is, the one with the lowest unit.)
1105  *
1106  * @returns		the device with the given unit number or @c
1107  *			NULL if there is no such device
1108  */
1109 device_t
1110 device_find_child(device_t dev, const char *classname, int unit)
1111 {
1112 	devclass_t dc;
1113 	device_t child;
1114 
1115 	dc = devclass_find(classname);
1116 	if (!dc)
1117 		return(NULL);
1118 
1119 	if (unit != -1) {
1120 		child = devclass_get_device(dc, unit);
1121 		if (child && child->parent == dev)
1122 			return (child);
1123 	} else {
1124 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1125 			child = devclass_get_device(dc, unit);
1126 			if (child && child->parent == dev)
1127 				return (child);
1128 		}
1129 	}
1130 	return(NULL);
1131 }
1132 
1133 static driverlink_t
1134 first_matching_driver(devclass_t dc, device_t dev)
1135 {
1136 	if (dev->devclass)
1137 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1138 	else
1139 		return(TAILQ_FIRST(&dc->drivers));
1140 }
1141 
1142 static driverlink_t
1143 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1144 {
1145 	if (dev->devclass) {
1146 		driverlink_t dl;
1147 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1148 			if (!strcmp(dev->devclass->name, dl->driver->name))
1149 				return(dl);
1150 		return(NULL);
1151 	} else
1152 		return(TAILQ_NEXT(last, link));
1153 }
1154 
1155 static int
1156 device_probe_child(device_t dev, device_t child)
1157 {
1158 	devclass_t dc;
1159 	driverlink_t best = 0;
1160 	driverlink_t dl;
1161 	int result, pri = 0;
1162 	int hasclass = (child->devclass != 0);
1163 
1164 	dc = dev->devclass;
1165 	if (!dc)
1166 		panic("device_probe_child: parent device has no devclass");
1167 
1168 	if (child->state == DS_ALIVE)
1169 		return(0);
1170 
1171 	for (; dc; dc = dc->parent) {
1172     		for (dl = first_matching_driver(dc, child); dl;
1173 		     dl = next_matching_driver(dc, child, dl)) {
1174 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1175 			device_set_driver(child, dl->driver);
1176 			if (!hasclass)
1177 				device_set_devclass(child, dl->driver->name);
1178 			result = DEVICE_PROBE(child);
1179 			if (!hasclass)
1180 				device_set_devclass(child, 0);
1181 
1182 			/*
1183 			 * If the driver returns SUCCESS, there can be
1184 			 * no higher match for this device.
1185 			 */
1186 			if (result == 0) {
1187 				best = dl;
1188 				pri = 0;
1189 				break;
1190 			}
1191 
1192 			/*
1193 			 * The driver returned an error so it
1194 			 * certainly doesn't match.
1195 			 */
1196 			if (result > 0) {
1197 				device_set_driver(child, 0);
1198 				continue;
1199 			}
1200 
1201 			/*
1202 			 * A priority lower than SUCCESS, remember the
1203 			 * best matching driver. Initialise the value
1204 			 * of pri for the first match.
1205 			 */
1206 			if (best == 0 || result > pri) {
1207 				best = dl;
1208 				pri = result;
1209 				continue;
1210 			}
1211 	        }
1212 		/*
1213 	         * If we have unambiguous match in this devclass,
1214 	         * don't look in the parent.
1215 	         */
1216 	        if (best && pri == 0)
1217 	    	        break;
1218 	}
1219 
1220 	/*
1221 	 * If we found a driver, change state and initialise the devclass.
1222 	 */
1223 	if (best) {
1224 		if (!child->devclass)
1225 			device_set_devclass(child, best->driver->name);
1226 		device_set_driver(child, best->driver);
1227 		if (pri < 0) {
1228 			/*
1229 			 * A bit bogus. Call the probe method again to make
1230 			 * sure that we have the right description.
1231 			 */
1232 			DEVICE_PROBE(child);
1233 		}
1234 
1235 		bus_data_generation_update();
1236 		child->state = DS_ALIVE;
1237 		return(0);
1238 	}
1239 
1240 	return(ENXIO);
1241 }
1242 
1243 device_t
1244 device_get_parent(device_t dev)
1245 {
1246 	return dev->parent;
1247 }
1248 
1249 int
1250 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1251 {
1252 	int count;
1253 	device_t child;
1254 	device_t *list;
1255 
1256 	count = 0;
1257 	TAILQ_FOREACH(child, &dev->children, link)
1258 		count++;
1259 
1260 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1261 	if (!list)
1262 		return(ENOMEM);
1263 
1264 	count = 0;
1265 	TAILQ_FOREACH(child, &dev->children, link) {
1266 		list[count] = child;
1267 		count++;
1268 	}
1269 
1270 	*devlistp = list;
1271 	*devcountp = count;
1272 
1273 	return(0);
1274 }
1275 
1276 driver_t *
1277 device_get_driver(device_t dev)
1278 {
1279 	return(dev->driver);
1280 }
1281 
1282 devclass_t
1283 device_get_devclass(device_t dev)
1284 {
1285 	return(dev->devclass);
1286 }
1287 
1288 const char *
1289 device_get_name(device_t dev)
1290 {
1291 	if (dev->devclass)
1292 		return devclass_get_name(dev->devclass);
1293 	return(NULL);
1294 }
1295 
1296 const char *
1297 device_get_nameunit(device_t dev)
1298 {
1299 	return(dev->nameunit);
1300 }
1301 
1302 int
1303 device_get_unit(device_t dev)
1304 {
1305 	return(dev->unit);
1306 }
1307 
1308 const char *
1309 device_get_desc(device_t dev)
1310 {
1311 	return(dev->desc);
1312 }
1313 
1314 uint32_t
1315 device_get_flags(device_t dev)
1316 {
1317 	return(dev->devflags);
1318 }
1319 
1320 int
1321 device_print_prettyname(device_t dev)
1322 {
1323 	const char *name = device_get_name(dev);
1324 
1325 	if (name == 0)
1326 		return kprintf("unknown: ");
1327 	else
1328 		return kprintf("%s%d: ", name, device_get_unit(dev));
1329 }
1330 
1331 int
1332 device_printf(device_t dev, const char * fmt, ...)
1333 {
1334 	__va_list ap;
1335 	int retval;
1336 
1337 	retval = device_print_prettyname(dev);
1338 	__va_start(ap, fmt);
1339 	retval += kvprintf(fmt, ap);
1340 	__va_end(ap);
1341 	return retval;
1342 }
1343 
1344 static void
1345 device_set_desc_internal(device_t dev, const char* desc, int copy)
1346 {
1347 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1348 		kfree(dev->desc, M_BUS);
1349 		dev->flags &= ~DF_DESCMALLOCED;
1350 		dev->desc = NULL;
1351 	}
1352 
1353 	if (copy && desc) {
1354 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1355 		if (dev->desc) {
1356 			strcpy(dev->desc, desc);
1357 			dev->flags |= DF_DESCMALLOCED;
1358 		}
1359 	} else {
1360 		/* Avoid a -Wcast-qual warning */
1361 		dev->desc = (char *)(uintptr_t) desc;
1362 	}
1363 
1364 	bus_data_generation_update();
1365 }
1366 
1367 void
1368 device_set_desc(device_t dev, const char* desc)
1369 {
1370 	device_set_desc_internal(dev, desc, FALSE);
1371 }
1372 
1373 void
1374 device_set_desc_copy(device_t dev, const char* desc)
1375 {
1376 	device_set_desc_internal(dev, desc, TRUE);
1377 }
1378 
1379 void
1380 device_set_flags(device_t dev, uint32_t flags)
1381 {
1382 	dev->devflags = flags;
1383 }
1384 
1385 void *
1386 device_get_softc(device_t dev)
1387 {
1388 	return dev->softc;
1389 }
1390 
1391 void
1392 device_set_softc(device_t dev, void *softc)
1393 {
1394 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1395 		kfree(dev->softc, M_BUS);
1396 	dev->softc = softc;
1397 	if (dev->softc)
1398 		dev->flags |= DF_EXTERNALSOFTC;
1399 	else
1400 		dev->flags &= ~DF_EXTERNALSOFTC;
1401 }
1402 
1403 void
1404 device_set_async_attach(device_t dev, int enable)
1405 {
1406 	if (enable)
1407 		dev->flags |= DF_ASYNCPROBE;
1408 	else
1409 		dev->flags &= ~DF_ASYNCPROBE;
1410 }
1411 
1412 void *
1413 device_get_ivars(device_t dev)
1414 {
1415 	return dev->ivars;
1416 }
1417 
1418 void
1419 device_set_ivars(device_t dev, void * ivars)
1420 {
1421 	if (!dev)
1422 		return;
1423 
1424 	dev->ivars = ivars;
1425 }
1426 
1427 device_state_t
1428 device_get_state(device_t dev)
1429 {
1430 	return(dev->state);
1431 }
1432 
1433 void
1434 device_enable(device_t dev)
1435 {
1436 	dev->flags |= DF_ENABLED;
1437 }
1438 
1439 void
1440 device_disable(device_t dev)
1441 {
1442 	dev->flags &= ~DF_ENABLED;
1443 }
1444 
1445 /*
1446  * YYY cannot block
1447  */
1448 void
1449 device_busy(device_t dev)
1450 {
1451 	if (dev->state < DS_ATTACHED)
1452 		panic("device_busy: called for unattached device");
1453 	if (dev->busy == 0 && dev->parent)
1454 		device_busy(dev->parent);
1455 	dev->busy++;
1456 	dev->state = DS_BUSY;
1457 }
1458 
1459 /*
1460  * YYY cannot block
1461  */
1462 void
1463 device_unbusy(device_t dev)
1464 {
1465 	if (dev->state != DS_BUSY)
1466 		panic("device_unbusy: called for non-busy device");
1467 	dev->busy--;
1468 	if (dev->busy == 0) {
1469 		if (dev->parent)
1470 			device_unbusy(dev->parent);
1471 		dev->state = DS_ATTACHED;
1472 	}
1473 }
1474 
1475 void
1476 device_quiet(device_t dev)
1477 {
1478 	dev->flags |= DF_QUIET;
1479 }
1480 
1481 void
1482 device_verbose(device_t dev)
1483 {
1484 	dev->flags &= ~DF_QUIET;
1485 }
1486 
1487 int
1488 device_is_quiet(device_t dev)
1489 {
1490 	return((dev->flags & DF_QUIET) != 0);
1491 }
1492 
1493 int
1494 device_is_enabled(device_t dev)
1495 {
1496 	return((dev->flags & DF_ENABLED) != 0);
1497 }
1498 
1499 int
1500 device_is_alive(device_t dev)
1501 {
1502 	return(dev->state >= DS_ALIVE);
1503 }
1504 
1505 int
1506 device_is_attached(device_t dev)
1507 {
1508 	return(dev->state >= DS_ATTACHED);
1509 }
1510 
1511 int
1512 device_set_devclass(device_t dev, const char *classname)
1513 {
1514 	devclass_t dc;
1515 	int error;
1516 
1517 	if (!classname) {
1518 		if (dev->devclass)
1519 			devclass_delete_device(dev->devclass, dev);
1520 		return(0);
1521 	}
1522 
1523 	if (dev->devclass) {
1524 		kprintf("device_set_devclass: device class already set\n");
1525 		return(EINVAL);
1526 	}
1527 
1528 	dc = devclass_find_internal(classname, NULL, TRUE);
1529 	if (!dc)
1530 		return(ENOMEM);
1531 
1532 	error = devclass_add_device(dc, dev);
1533 
1534 	bus_data_generation_update();
1535 	return(error);
1536 }
1537 
1538 int
1539 device_set_driver(device_t dev, driver_t *driver)
1540 {
1541 	if (dev->state >= DS_ATTACHED)
1542 		return(EBUSY);
1543 
1544 	if (dev->driver == driver)
1545 		return(0);
1546 
1547 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1548 		kfree(dev->softc, M_BUS);
1549 		dev->softc = NULL;
1550 	}
1551 	kobj_delete((kobj_t) dev, 0);
1552 	dev->driver = driver;
1553 	if (driver) {
1554 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1555 		if (!(dev->flags & DF_EXTERNALSOFTC)) {
1556 			dev->softc = kmalloc(driver->size, M_BUS,
1557 					    M_INTWAIT | M_ZERO);
1558 			if (!dev->softc) {
1559 				kobj_delete((kobj_t)dev, 0);
1560 				kobj_init((kobj_t) dev, &null_class);
1561 				dev->driver = NULL;
1562 				return(ENOMEM);
1563 	    		}
1564 		}
1565 	} else {
1566 		kobj_init((kobj_t) dev, &null_class);
1567 	}
1568 
1569 	bus_data_generation_update();
1570 	return(0);
1571 }
1572 
1573 int
1574 device_probe_and_attach(device_t dev)
1575 {
1576 	device_t bus = dev->parent;
1577 	int error = 0;
1578 
1579 	if (dev->state >= DS_ALIVE)
1580 		return(0);
1581 
1582 	if ((dev->flags & DF_ENABLED) == 0) {
1583 		if (bootverbose) {
1584 			device_print_prettyname(dev);
1585 			kprintf("not probed (disabled)\n");
1586 		}
1587 		return(0);
1588 	}
1589 
1590 	error = device_probe_child(bus, dev);
1591 	if (error) {
1592 		if (!(dev->flags & DF_DONENOMATCH)) {
1593 			BUS_PROBE_NOMATCH(bus, dev);
1594 			devnomatch(dev);
1595 			dev->flags |= DF_DONENOMATCH;
1596 		}
1597 		return(error);
1598 	}
1599 
1600 	/*
1601 	 * Output the exact device chain prior to the attach in case the
1602 	 * system locks up during attach, and generate the full info after
1603 	 * the attach so correct irq and other information is displayed.
1604 	 */
1605 	if (bootverbose && !device_is_quiet(dev)) {
1606 		device_t tmp;
1607 
1608 		kprintf("%s", device_get_nameunit(dev));
1609 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1610 			kprintf(".%s", device_get_nameunit(tmp));
1611 		kprintf("\n");
1612 	}
1613 	if (!device_is_quiet(dev))
1614 		device_print_child(bus, dev);
1615 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1616 		kprintf("%s: probing asynchronously\n",
1617 			device_get_nameunit(dev));
1618 		dev->state = DS_INPROGRESS;
1619 		device_attach_async(dev);
1620 		error = 0;
1621 	} else {
1622 		error = device_doattach(dev);
1623 	}
1624 	return(error);
1625 }
1626 
1627 /*
1628  * Device is known to be alive, do the attach asynchronously.
1629  *
1630  * The MP lock is held by all threads.
1631  */
1632 static void
1633 device_attach_async(device_t dev)
1634 {
1635 	thread_t td;
1636 
1637 	atomic_add_int(&numasyncthreads, 1);
1638 	lwkt_create(device_attach_thread, dev, &td, NULL,
1639 		    0, 0, (dev->desc ? dev->desc : "devattach"));
1640 }
1641 
1642 static void
1643 device_attach_thread(void *arg)
1644 {
1645 	device_t dev = arg;
1646 
1647 	(void)device_doattach(dev);
1648 	atomic_subtract_int(&numasyncthreads, 1);
1649 	wakeup(&numasyncthreads);
1650 }
1651 
1652 /*
1653  * Device is known to be alive, do the attach (synchronous or asynchronous)
1654  */
1655 static int
1656 device_doattach(device_t dev)
1657 {
1658 	device_t bus = dev->parent;
1659 	int hasclass = (dev->devclass != 0);
1660 	int error;
1661 
1662 	error = DEVICE_ATTACH(dev);
1663 	if (error == 0) {
1664 		dev->state = DS_ATTACHED;
1665 		if (bootverbose && !device_is_quiet(dev))
1666 			device_print_child(bus, dev);
1667 		devadded(dev);
1668 	} else {
1669 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1670 		       dev->driver->name, dev->unit, error);
1671 		/* Unset the class that was set in device_probe_child */
1672 		if (!hasclass)
1673 			device_set_devclass(dev, 0);
1674 		device_set_driver(dev, NULL);
1675 		dev->state = DS_NOTPRESENT;
1676 	}
1677 	return(error);
1678 }
1679 
1680 int
1681 device_detach(device_t dev)
1682 {
1683 	int error;
1684 
1685 	PDEBUG(("%s", DEVICENAME(dev)));
1686 	if (dev->state == DS_BUSY)
1687 		return(EBUSY);
1688 	if (dev->state != DS_ATTACHED)
1689 		return(0);
1690 
1691 	if ((error = DEVICE_DETACH(dev)) != 0)
1692 		return(error);
1693 	devremoved(dev);
1694 	device_printf(dev, "detached\n");
1695 	if (dev->parent)
1696 		BUS_CHILD_DETACHED(dev->parent, dev);
1697 
1698 	if (!(dev->flags & DF_FIXEDCLASS))
1699 		devclass_delete_device(dev->devclass, dev);
1700 
1701 	dev->state = DS_NOTPRESENT;
1702 	device_set_driver(dev, NULL);
1703 
1704 	return(0);
1705 }
1706 
1707 int
1708 device_shutdown(device_t dev)
1709 {
1710 	if (dev->state < DS_ATTACHED)
1711 		return 0;
1712 	PDEBUG(("%s", DEVICENAME(dev)));
1713 	return DEVICE_SHUTDOWN(dev);
1714 }
1715 
1716 int
1717 device_set_unit(device_t dev, int unit)
1718 {
1719 	devclass_t dc;
1720 	int err;
1721 
1722 	dc = device_get_devclass(dev);
1723 	if (unit < dc->maxunit && dc->devices[unit])
1724 		return(EBUSY);
1725 	err = devclass_delete_device(dc, dev);
1726 	if (err)
1727 		return(err);
1728 	dev->unit = unit;
1729 	err = devclass_add_device(dc, dev);
1730 	if (err)
1731 		return(err);
1732 
1733 	bus_data_generation_update();
1734 	return(0);
1735 }
1736 
1737 /*======================================*/
1738 /*
1739  * Access functions for device resources.
1740  */
1741 
1742 /* Supplied by config(8) in ioconf.c */
1743 extern struct config_device config_devtab[];
1744 extern int devtab_count;
1745 
1746 /* Runtime version */
1747 struct config_device *devtab = config_devtab;
1748 
1749 static int
1750 resource_new_name(const char *name, int unit)
1751 {
1752 	struct config_device *new;
1753 
1754 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1755 		     M_INTWAIT | M_ZERO);
1756 	if (new == NULL)
1757 		return(-1);
1758 	if (devtab && devtab_count > 0)
1759 		bcopy(devtab, new, devtab_count * sizeof(*new));
1760 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1761 	if (new[devtab_count].name == NULL) {
1762 		kfree(new, M_TEMP);
1763 		return(-1);
1764 	}
1765 	strcpy(new[devtab_count].name, name);
1766 	new[devtab_count].unit = unit;
1767 	new[devtab_count].resource_count = 0;
1768 	new[devtab_count].resources = NULL;
1769 	if (devtab && devtab != config_devtab)
1770 		kfree(devtab, M_TEMP);
1771 	devtab = new;
1772 	return devtab_count++;
1773 }
1774 
1775 static int
1776 resource_new_resname(int j, const char *resname, resource_type type)
1777 {
1778 	struct config_resource *new;
1779 	int i;
1780 
1781 	i = devtab[j].resource_count;
1782 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1783 	if (new == NULL)
1784 		return(-1);
1785 	if (devtab[j].resources && i > 0)
1786 		bcopy(devtab[j].resources, new, i * sizeof(*new));
1787 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
1788 	if (new[i].name == NULL) {
1789 		kfree(new, M_TEMP);
1790 		return(-1);
1791 	}
1792 	strcpy(new[i].name, resname);
1793 	new[i].type = type;
1794 	if (devtab[j].resources)
1795 		kfree(devtab[j].resources, M_TEMP);
1796 	devtab[j].resources = new;
1797 	devtab[j].resource_count = i + 1;
1798 	return(i);
1799 }
1800 
1801 static int
1802 resource_match_string(int i, const char *resname, const char *value)
1803 {
1804 	int j;
1805 	struct config_resource *res;
1806 
1807 	for (j = 0, res = devtab[i].resources;
1808 	     j < devtab[i].resource_count; j++, res++)
1809 		if (!strcmp(res->name, resname)
1810 		    && res->type == RES_STRING
1811 		    && !strcmp(res->u.stringval, value))
1812 			return(j);
1813 	return(-1);
1814 }
1815 
1816 static int
1817 resource_find(const char *name, int unit, const char *resname,
1818 	      struct config_resource **result)
1819 {
1820 	int i, j;
1821 	struct config_resource *res;
1822 
1823 	/*
1824 	 * First check specific instances, then generic.
1825 	 */
1826 	for (i = 0; i < devtab_count; i++) {
1827 		if (devtab[i].unit < 0)
1828 			continue;
1829 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1830 			res = devtab[i].resources;
1831 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1832 				if (!strcmp(res->name, resname)) {
1833 					*result = res;
1834 					return(0);
1835 				}
1836 		}
1837 	}
1838 	for (i = 0; i < devtab_count; i++) {
1839 		if (devtab[i].unit >= 0)
1840 			continue;
1841 		/* XXX should this `&& devtab[i].unit == unit' be here? */
1842 		/* XXX if so, then the generic match does nothing */
1843 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1844 			res = devtab[i].resources;
1845 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1846 				if (!strcmp(res->name, resname)) {
1847 					*result = res;
1848 					return(0);
1849 				}
1850 		}
1851 	}
1852 	return(ENOENT);
1853 }
1854 
1855 int
1856 resource_int_value(const char *name, int unit, const char *resname, int *result)
1857 {
1858 	int error;
1859 	struct config_resource *res;
1860 
1861 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1862 		return(error);
1863 	if (res->type != RES_INT)
1864 		return(EFTYPE);
1865 	*result = res->u.intval;
1866 	return(0);
1867 }
1868 
1869 int
1870 resource_long_value(const char *name, int unit, const char *resname,
1871 		    long *result)
1872 {
1873 	int error;
1874 	struct config_resource *res;
1875 
1876 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1877 		return(error);
1878 	if (res->type != RES_LONG)
1879 		return(EFTYPE);
1880 	*result = res->u.longval;
1881 	return(0);
1882 }
1883 
1884 int
1885 resource_string_value(const char *name, int unit, const char *resname,
1886 		      char **result)
1887 {
1888 	int error;
1889 	struct config_resource *res;
1890 
1891 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1892 		return(error);
1893 	if (res->type != RES_STRING)
1894 		return(EFTYPE);
1895 	*result = res->u.stringval;
1896 	return(0);
1897 }
1898 
1899 int
1900 resource_query_string(int i, const char *resname, const char *value)
1901 {
1902 	if (i < 0)
1903 		i = 0;
1904 	else
1905 		i = i + 1;
1906 	for (; i < devtab_count; i++)
1907 		if (resource_match_string(i, resname, value) >= 0)
1908 			return(i);
1909 	return(-1);
1910 }
1911 
1912 int
1913 resource_locate(int i, const char *resname)
1914 {
1915 	if (i < 0)
1916 		i = 0;
1917 	else
1918 		i = i + 1;
1919 	for (; i < devtab_count; i++)
1920 		if (!strcmp(devtab[i].name, resname))
1921 			return(i);
1922 	return(-1);
1923 }
1924 
1925 int
1926 resource_count(void)
1927 {
1928 	return(devtab_count);
1929 }
1930 
1931 char *
1932 resource_query_name(int i)
1933 {
1934 	return(devtab[i].name);
1935 }
1936 
1937 int
1938 resource_query_unit(int i)
1939 {
1940 	return(devtab[i].unit);
1941 }
1942 
1943 static int
1944 resource_create(const char *name, int unit, const char *resname,
1945 		resource_type type, struct config_resource **result)
1946 {
1947 	int i, j;
1948 	struct config_resource *res = NULL;
1949 
1950 	for (i = 0; i < devtab_count; i++)
1951 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1952 			res = devtab[i].resources;
1953 			break;
1954 		}
1955 	if (res == NULL) {
1956 		i = resource_new_name(name, unit);
1957 		if (i < 0)
1958 			return(ENOMEM);
1959 		res = devtab[i].resources;
1960 	}
1961 	for (j = 0; j < devtab[i].resource_count; j++, res++)
1962 		if (!strcmp(res->name, resname)) {
1963 			*result = res;
1964 			return(0);
1965 		}
1966 	j = resource_new_resname(i, resname, type);
1967 	if (j < 0)
1968 		return(ENOMEM);
1969 	res = &devtab[i].resources[j];
1970 	*result = res;
1971 	return(0);
1972 }
1973 
1974 int
1975 resource_set_int(const char *name, int unit, const char *resname, int value)
1976 {
1977 	int error;
1978 	struct config_resource *res;
1979 
1980 	error = resource_create(name, unit, resname, RES_INT, &res);
1981 	if (error)
1982 		return(error);
1983 	if (res->type != RES_INT)
1984 		return(EFTYPE);
1985 	res->u.intval = value;
1986 	return(0);
1987 }
1988 
1989 int
1990 resource_set_long(const char *name, int unit, const char *resname, long value)
1991 {
1992 	int error;
1993 	struct config_resource *res;
1994 
1995 	error = resource_create(name, unit, resname, RES_LONG, &res);
1996 	if (error)
1997 		return(error);
1998 	if (res->type != RES_LONG)
1999 		return(EFTYPE);
2000 	res->u.longval = value;
2001 	return(0);
2002 }
2003 
2004 int
2005 resource_set_string(const char *name, int unit, const char *resname,
2006 		    const char *value)
2007 {
2008 	int error;
2009 	struct config_resource *res;
2010 
2011 	error = resource_create(name, unit, resname, RES_STRING, &res);
2012 	if (error)
2013 		return(error);
2014 	if (res->type != RES_STRING)
2015 		return(EFTYPE);
2016 	if (res->u.stringval)
2017 		kfree(res->u.stringval, M_TEMP);
2018 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2019 	if (res->u.stringval == NULL)
2020 		return(ENOMEM);
2021 	strcpy(res->u.stringval, value);
2022 	return(0);
2023 }
2024 
2025 static void
2026 resource_cfgload(void *dummy __unused)
2027 {
2028 	struct config_resource *res, *cfgres;
2029 	int i, j;
2030 	int error;
2031 	char *name, *resname;
2032 	int unit;
2033 	resource_type type;
2034 	char *stringval;
2035 	int config_devtab_count;
2036 
2037 	config_devtab_count = devtab_count;
2038 	devtab = NULL;
2039 	devtab_count = 0;
2040 
2041 	for (i = 0; i < config_devtab_count; i++) {
2042 		name = config_devtab[i].name;
2043 		unit = config_devtab[i].unit;
2044 
2045 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2046 			cfgres = config_devtab[i].resources;
2047 			resname = cfgres[j].name;
2048 			type = cfgres[j].type;
2049 			error = resource_create(name, unit, resname, type,
2050 						&res);
2051 			if (error) {
2052 				kprintf("create resource %s%d: error %d\n",
2053 					name, unit, error);
2054 				continue;
2055 			}
2056 			if (res->type != type) {
2057 				kprintf("type mismatch %s%d: %d != %d\n",
2058 					name, unit, res->type, type);
2059 				continue;
2060 			}
2061 			switch (type) {
2062 			case RES_INT:
2063 				res->u.intval = cfgres[j].u.intval;
2064 				break;
2065 			case RES_LONG:
2066 				res->u.longval = cfgres[j].u.longval;
2067 				break;
2068 			case RES_STRING:
2069 				if (res->u.stringval)
2070 					kfree(res->u.stringval, M_TEMP);
2071 				stringval = cfgres[j].u.stringval;
2072 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2073 							  M_TEMP, M_INTWAIT);
2074 				if (res->u.stringval == NULL)
2075 					break;
2076 				strcpy(res->u.stringval, stringval);
2077 				break;
2078 			default:
2079 				panic("unknown resource type %d", type);
2080 			}
2081 		}
2082 	}
2083 }
2084 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0)
2085 
2086 
2087 /*======================================*/
2088 /*
2089  * Some useful method implementations to make life easier for bus drivers.
2090  */
2091 
2092 void
2093 resource_list_init(struct resource_list *rl)
2094 {
2095 	SLIST_INIT(rl);
2096 }
2097 
2098 void
2099 resource_list_free(struct resource_list *rl)
2100 {
2101 	struct resource_list_entry *rle;
2102 
2103 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2104 		if (rle->res)
2105 			panic("resource_list_free: resource entry is busy");
2106 		SLIST_REMOVE_HEAD(rl, link);
2107 		kfree(rle, M_BUS);
2108 	}
2109 }
2110 
2111 void
2112 resource_list_add(struct resource_list *rl,
2113 		  int type, int rid,
2114 		  u_long start, u_long end, u_long count)
2115 {
2116 	struct resource_list_entry *rle;
2117 
2118 	rle = resource_list_find(rl, type, rid);
2119 	if (rle == NULL) {
2120 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2121 			     M_INTWAIT);
2122 		if (!rle)
2123 			panic("resource_list_add: can't record entry");
2124 		SLIST_INSERT_HEAD(rl, rle, link);
2125 		rle->type = type;
2126 		rle->rid = rid;
2127 		rle->res = NULL;
2128 	}
2129 
2130 	if (rle->res)
2131 		panic("resource_list_add: resource entry is busy");
2132 
2133 	rle->start = start;
2134 	rle->end = end;
2135 	rle->count = count;
2136 }
2137 
2138 struct resource_list_entry*
2139 resource_list_find(struct resource_list *rl,
2140 		   int type, int rid)
2141 {
2142 	struct resource_list_entry *rle;
2143 
2144 	SLIST_FOREACH(rle, rl, link)
2145 		if (rle->type == type && rle->rid == rid)
2146 			return(rle);
2147 	return(NULL);
2148 }
2149 
2150 void
2151 resource_list_delete(struct resource_list *rl,
2152 		     int type, int rid)
2153 {
2154 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2155 
2156 	if (rle) {
2157 		if (rle->res != NULL)
2158 			panic("resource_list_delete: resource has not been released");
2159 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2160 		kfree(rle, M_BUS);
2161 	}
2162 }
2163 
2164 struct resource *
2165 resource_list_alloc(struct resource_list *rl,
2166 		    device_t bus, device_t child,
2167 		    int type, int *rid,
2168 		    u_long start, u_long end,
2169 		    u_long count, u_int flags)
2170 {
2171 	struct resource_list_entry *rle = 0;
2172 	int passthrough = (device_get_parent(child) != bus);
2173 	int isdefault = (start == 0UL && end == ~0UL);
2174 
2175 	if (passthrough) {
2176 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2177 					  type, rid,
2178 					  start, end, count, flags));
2179 	}
2180 
2181 	rle = resource_list_find(rl, type, *rid);
2182 
2183 	if (!rle)
2184 		return(0);		/* no resource of that type/rid */
2185 
2186 	if (rle->res)
2187 		panic("resource_list_alloc: resource entry is busy");
2188 
2189 	if (isdefault) {
2190 		start = rle->start;
2191 		count = max(count, rle->count);
2192 		end = max(rle->end, start + count - 1);
2193 	}
2194 
2195 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2196 				      type, rid, start, end, count, flags);
2197 
2198 	/*
2199 	 * Record the new range.
2200 	 */
2201 	if (rle->res) {
2202 		rle->start = rman_get_start(rle->res);
2203 		rle->end = rman_get_end(rle->res);
2204 		rle->count = count;
2205 	}
2206 
2207 	return(rle->res);
2208 }
2209 
2210 int
2211 resource_list_release(struct resource_list *rl,
2212 		      device_t bus, device_t child,
2213 		      int type, int rid, struct resource *res)
2214 {
2215 	struct resource_list_entry *rle = 0;
2216 	int passthrough = (device_get_parent(child) != bus);
2217 	int error;
2218 
2219 	if (passthrough) {
2220 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2221 					    type, rid, res));
2222 	}
2223 
2224 	rle = resource_list_find(rl, type, rid);
2225 
2226 	if (!rle)
2227 		panic("resource_list_release: can't find resource");
2228 	if (!rle->res)
2229 		panic("resource_list_release: resource entry is not busy");
2230 
2231 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2232 				     type, rid, res);
2233 	if (error)
2234 		return(error);
2235 
2236 	rle->res = NULL;
2237 	return(0);
2238 }
2239 
2240 int
2241 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2242 			 const char *format)
2243 {
2244 	struct resource_list_entry *rle;
2245 	int printed, retval;
2246 
2247 	printed = 0;
2248 	retval = 0;
2249 	/* Yes, this is kinda cheating */
2250 	SLIST_FOREACH(rle, rl, link) {
2251 		if (rle->type == type) {
2252 			if (printed == 0)
2253 				retval += kprintf(" %s ", name);
2254 			else
2255 				retval += kprintf(",");
2256 			printed++;
2257 			retval += kprintf(format, rle->start);
2258 			if (rle->count > 1) {
2259 				retval += kprintf("-");
2260 				retval += kprintf(format, rle->start +
2261 						 rle->count - 1);
2262 			}
2263 		}
2264 	}
2265 	return(retval);
2266 }
2267 
2268 /*
2269  * Generic driver/device identify functions.  These will install a device
2270  * rendezvous point under the parent using the same name as the driver
2271  * name, which will at a later time be probed and attached.
2272  *
2273  * These functions are used when the parent does not 'scan' its bus for
2274  * matching devices, or for the particular devices using these functions,
2275  * or when the device is a pseudo or synthesized device (such as can be
2276  * found under firewire and ppbus).
2277  */
2278 int
2279 bus_generic_identify(driver_t *driver, device_t parent)
2280 {
2281 	if (parent->state == DS_ATTACHED)
2282 		return (0);
2283 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2284 	return (0);
2285 }
2286 
2287 int
2288 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2289 {
2290 	if (parent->state == DS_ATTACHED)
2291 		return (0);
2292 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2293 	return (0);
2294 }
2295 
2296 /*
2297  * Call DEVICE_IDENTIFY for each driver.
2298  */
2299 int
2300 bus_generic_probe(device_t dev)
2301 {
2302 	devclass_t dc = dev->devclass;
2303 	driverlink_t dl;
2304 
2305 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2306 		DEVICE_IDENTIFY(dl->driver, dev);
2307 	}
2308 
2309 	return(0);
2310 }
2311 
2312 /*
2313  * This is an aweful hack due to the isa bus and autoconf code not
2314  * probing the ISA devices until after everything else has configured.
2315  * The ISA bus did a dummy attach long ago so we have to set it back
2316  * to an earlier state so the probe thinks its the initial probe and
2317  * not a bus rescan.
2318  *
2319  * XXX remove by properly defering the ISA bus scan.
2320  */
2321 int
2322 bus_generic_probe_hack(device_t dev)
2323 {
2324 	if (dev->state == DS_ATTACHED) {
2325 		dev->state = DS_ALIVE;
2326 		bus_generic_probe(dev);
2327 		dev->state = DS_ATTACHED;
2328 	}
2329 	return (0);
2330 }
2331 
2332 int
2333 bus_generic_attach(device_t dev)
2334 {
2335 	device_t child;
2336 
2337 	TAILQ_FOREACH(child, &dev->children, link) {
2338 		device_probe_and_attach(child);
2339 	}
2340 
2341 	return(0);
2342 }
2343 
2344 int
2345 bus_generic_detach(device_t dev)
2346 {
2347 	device_t child;
2348 	int error;
2349 
2350 	if (dev->state != DS_ATTACHED)
2351 		return(EBUSY);
2352 
2353 	TAILQ_FOREACH(child, &dev->children, link)
2354 		if ((error = device_detach(child)) != 0)
2355 			return(error);
2356 
2357 	return 0;
2358 }
2359 
2360 int
2361 bus_generic_shutdown(device_t dev)
2362 {
2363 	device_t child;
2364 
2365 	TAILQ_FOREACH(child, &dev->children, link)
2366 		device_shutdown(child);
2367 
2368 	return(0);
2369 }
2370 
2371 int
2372 bus_generic_suspend(device_t dev)
2373 {
2374 	int error;
2375 	device_t child, child2;
2376 
2377 	TAILQ_FOREACH(child, &dev->children, link) {
2378 		error = DEVICE_SUSPEND(child);
2379 		if (error) {
2380 			for (child2 = TAILQ_FIRST(&dev->children);
2381 			     child2 && child2 != child;
2382 			     child2 = TAILQ_NEXT(child2, link))
2383 				DEVICE_RESUME(child2);
2384 			return(error);
2385 		}
2386 	}
2387 	return(0);
2388 }
2389 
2390 int
2391 bus_generic_resume(device_t dev)
2392 {
2393 	device_t child;
2394 
2395 	TAILQ_FOREACH(child, &dev->children, link)
2396 		DEVICE_RESUME(child);
2397 		/* if resume fails, there's nothing we can usefully do... */
2398 
2399 	return(0);
2400 }
2401 
2402 int
2403 bus_print_child_header(device_t dev, device_t child)
2404 {
2405 	int retval = 0;
2406 
2407 	if (device_get_desc(child))
2408 		retval += device_printf(child, "<%s>", device_get_desc(child));
2409 	else
2410 		retval += kprintf("%s", device_get_nameunit(child));
2411 	if (bootverbose) {
2412 		if (child->state != DS_ATTACHED)
2413 			kprintf(" [tentative]");
2414 		else
2415 			kprintf(" [attached!]");
2416 	}
2417 	return(retval);
2418 }
2419 
2420 int
2421 bus_print_child_footer(device_t dev, device_t child)
2422 {
2423 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2424 }
2425 
2426 device_t
2427 bus_generic_add_child(device_t dev, device_t child, int order,
2428 		      const char *name, int unit)
2429 {
2430 	if (dev->parent)
2431 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2432 	else
2433 		dev = device_add_child_ordered(child, order, name, unit);
2434 	return(dev);
2435 
2436 }
2437 
2438 int
2439 bus_generic_print_child(device_t dev, device_t child)
2440 {
2441 	int retval = 0;
2442 
2443 	retval += bus_print_child_header(dev, child);
2444 	retval += bus_print_child_footer(dev, child);
2445 
2446 	return(retval);
2447 }
2448 
2449 int
2450 bus_generic_read_ivar(device_t dev, device_t child, int index,
2451 		      uintptr_t * result)
2452 {
2453 	int error;
2454 
2455 	if (dev->parent)
2456 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2457 	else
2458 		error = ENOENT;
2459 	return (error);
2460 }
2461 
2462 int
2463 bus_generic_write_ivar(device_t dev, device_t child, int index,
2464 		       uintptr_t value)
2465 {
2466 	int error;
2467 
2468 	if (dev->parent)
2469 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2470 	else
2471 		error = ENOENT;
2472 	return (error);
2473 }
2474 
2475 /*
2476  * Resource list are used for iterations, do not recurse.
2477  */
2478 struct resource_list *
2479 bus_generic_get_resource_list(device_t dev, device_t child)
2480 {
2481 	return (NULL);
2482 }
2483 
2484 void
2485 bus_generic_driver_added(device_t dev, driver_t *driver)
2486 {
2487 	device_t child;
2488 
2489 	DEVICE_IDENTIFY(driver, dev);
2490 	TAILQ_FOREACH(child, &dev->children, link) {
2491 		if (child->state == DS_NOTPRESENT)
2492 			device_probe_and_attach(child);
2493 	}
2494 }
2495 
2496 int
2497 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2498 		       int flags, driver_intr_t *intr, void *arg,
2499 		       void **cookiep, lwkt_serialize_t serializer)
2500 {
2501 	/* Propagate up the bus hierarchy until someone handles it. */
2502 	if (dev->parent)
2503 		return(BUS_SETUP_INTR(dev->parent, child, irq, flags,
2504 				      intr, arg, cookiep, serializer));
2505 	else
2506 		return(EINVAL);
2507 }
2508 
2509 int
2510 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2511 			  void *cookie)
2512 {
2513 	/* Propagate up the bus hierarchy until someone handles it. */
2514 	if (dev->parent)
2515 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2516 	else
2517 		return(EINVAL);
2518 }
2519 
2520 int
2521 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2522 {
2523 	if (dev->parent)
2524 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2525 	else
2526 		return(0);
2527 }
2528 
2529 void
2530 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2531 {
2532 	if (dev->parent)
2533 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2534 }
2535 
2536 int
2537 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
2538     enum intr_polarity pol)
2539 {
2540 	/* Propagate up the bus hierarchy until someone handles it. */
2541 	if (dev->parent)
2542 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
2543 	else
2544 		return(EINVAL);
2545 }
2546 
2547 struct resource *
2548 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2549 			   u_long start, u_long end, u_long count, u_int flags)
2550 {
2551 	/* Propagate up the bus hierarchy until someone handles it. */
2552 	if (dev->parent)
2553 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2554 					   start, end, count, flags));
2555 	else
2556 		return(NULL);
2557 }
2558 
2559 int
2560 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2561 			     struct resource *r)
2562 {
2563 	/* Propagate up the bus hierarchy until someone handles it. */
2564 	if (dev->parent)
2565 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2566 	else
2567 		return(EINVAL);
2568 }
2569 
2570 int
2571 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2572 			      struct resource *r)
2573 {
2574 	/* Propagate up the bus hierarchy until someone handles it. */
2575 	if (dev->parent)
2576 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2577 	else
2578 		return(EINVAL);
2579 }
2580 
2581 int
2582 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2583 				int rid, struct resource *r)
2584 {
2585 	/* Propagate up the bus hierarchy until someone handles it. */
2586 	if (dev->parent)
2587 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2588 					       r));
2589 	else
2590 		return(EINVAL);
2591 }
2592 
2593 int
2594 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2595 			 u_long *startp, u_long *countp)
2596 {
2597 	int error;
2598 
2599 	error = ENOENT;
2600 	if (dev->parent) {
2601 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2602 					 startp, countp);
2603 	}
2604 	return (error);
2605 }
2606 
2607 int
2608 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2609 			u_long start, u_long count)
2610 {
2611 	int error;
2612 
2613 	error = EINVAL;
2614 	if (dev->parent) {
2615 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2616 					 start, count);
2617 	}
2618 	return (error);
2619 }
2620 
2621 void
2622 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2623 {
2624 	if (dev->parent)
2625 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2626 }
2627 
2628 int
2629 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2630     u_long *startp, u_long *countp)
2631 {
2632 	struct resource_list *rl = NULL;
2633 	struct resource_list_entry *rle = NULL;
2634 
2635 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2636 	if (!rl)
2637 		return(EINVAL);
2638 
2639 	rle = resource_list_find(rl, type, rid);
2640 	if (!rle)
2641 		return(ENOENT);
2642 
2643 	if (startp)
2644 		*startp = rle->start;
2645 	if (countp)
2646 		*countp = rle->count;
2647 
2648 	return(0);
2649 }
2650 
2651 int
2652 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2653     u_long start, u_long count)
2654 {
2655 	struct resource_list *rl = NULL;
2656 
2657 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2658 	if (!rl)
2659 		return(EINVAL);
2660 
2661 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
2662 
2663 	return(0);
2664 }
2665 
2666 void
2667 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2668 {
2669 	struct resource_list *rl = NULL;
2670 
2671 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2672 	if (!rl)
2673 		return;
2674 
2675 	resource_list_delete(rl, type, rid);
2676 }
2677 
2678 int
2679 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2680     int rid, struct resource *r)
2681 {
2682 	struct resource_list *rl = NULL;
2683 
2684 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2685 	if (!rl)
2686 		return(EINVAL);
2687 
2688 	return(resource_list_release(rl, dev, child, type, rid, r));
2689 }
2690 
2691 struct resource *
2692 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2693     int *rid, u_long start, u_long end, u_long count, u_int flags)
2694 {
2695 	struct resource_list *rl = NULL;
2696 
2697 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2698 	if (!rl)
2699 		return(NULL);
2700 
2701 	return(resource_list_alloc(rl, dev, child, type, rid,
2702 	    start, end, count, flags));
2703 }
2704 
2705 int
2706 bus_generic_child_present(device_t bus, device_t child)
2707 {
2708 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2709 }
2710 
2711 
2712 /*
2713  * Some convenience functions to make it easier for drivers to use the
2714  * resource-management functions.  All these really do is hide the
2715  * indirection through the parent's method table, making for slightly
2716  * less-wordy code.  In the future, it might make sense for this code
2717  * to maintain some sort of a list of resources allocated by each device.
2718  */
2719 int
2720 bus_alloc_resources(device_t dev, struct resource_spec *rs,
2721     struct resource **res)
2722 {
2723 	int i;
2724 
2725 	for (i = 0; rs[i].type != -1; i++)
2726 	        res[i] = NULL;
2727 	for (i = 0; rs[i].type != -1; i++) {
2728 		res[i] = bus_alloc_resource_any(dev,
2729 		    rs[i].type, &rs[i].rid, rs[i].flags);
2730 		if (res[i] == NULL) {
2731 			bus_release_resources(dev, rs, res);
2732 			return (ENXIO);
2733 		}
2734 	}
2735 	return (0);
2736 }
2737 
2738 void
2739 bus_release_resources(device_t dev, const struct resource_spec *rs,
2740     struct resource **res)
2741 {
2742 	int i;
2743 
2744 	for (i = 0; rs[i].type != -1; i++)
2745 		if (res[i] != NULL) {
2746 			bus_release_resource(
2747 			    dev, rs[i].type, rs[i].rid, res[i]);
2748 			res[i] = NULL;
2749 		}
2750 }
2751 
2752 struct resource *
2753 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
2754 		   u_long count, u_int flags)
2755 {
2756 	if (dev->parent == 0)
2757 		return(0);
2758 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2759 				  count, flags));
2760 }
2761 
2762 int
2763 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
2764 {
2765 	if (dev->parent == 0)
2766 		return(EINVAL);
2767 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2768 }
2769 
2770 int
2771 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
2772 {
2773 	if (dev->parent == 0)
2774 		return(EINVAL);
2775 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2776 }
2777 
2778 int
2779 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
2780 {
2781 	if (dev->parent == 0)
2782 		return(EINVAL);
2783 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
2784 }
2785 
2786 int
2787 bus_setup_intr(device_t dev, struct resource *r, int flags,
2788 	       driver_intr_t handler, void *arg,
2789 	       void **cookiep, lwkt_serialize_t serializer)
2790 {
2791 	if (dev->parent == 0)
2792 		return(EINVAL);
2793 	return(BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
2794 			      cookiep, serializer));
2795 }
2796 
2797 int
2798 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
2799 {
2800 	if (dev->parent == 0)
2801 		return(EINVAL);
2802 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
2803 }
2804 
2805 void
2806 bus_enable_intr(device_t dev, void *cookie)
2807 {
2808 	if (dev->parent)
2809 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
2810 }
2811 
2812 int
2813 bus_disable_intr(device_t dev, void *cookie)
2814 {
2815 	if (dev->parent)
2816 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
2817 	else
2818 		return(0);
2819 }
2820 
2821 int
2822 bus_set_resource(device_t dev, int type, int rid,
2823 		 u_long start, u_long count)
2824 {
2825 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
2826 				start, count));
2827 }
2828 
2829 int
2830 bus_get_resource(device_t dev, int type, int rid,
2831 		 u_long *startp, u_long *countp)
2832 {
2833 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2834 				startp, countp));
2835 }
2836 
2837 u_long
2838 bus_get_resource_start(device_t dev, int type, int rid)
2839 {
2840 	u_long start, count;
2841 	int error;
2842 
2843 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2844 				 &start, &count);
2845 	if (error)
2846 		return(0);
2847 	return(start);
2848 }
2849 
2850 u_long
2851 bus_get_resource_count(device_t dev, int type, int rid)
2852 {
2853 	u_long start, count;
2854 	int error;
2855 
2856 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2857 				 &start, &count);
2858 	if (error)
2859 		return(0);
2860 	return(count);
2861 }
2862 
2863 void
2864 bus_delete_resource(device_t dev, int type, int rid)
2865 {
2866 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
2867 }
2868 
2869 int
2870 bus_child_present(device_t child)
2871 {
2872 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
2873 }
2874 
2875 int
2876 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
2877 {
2878 	device_t parent;
2879 
2880 	parent = device_get_parent(child);
2881 	if (parent == NULL) {
2882 		*buf = '\0';
2883 		return (0);
2884 	}
2885 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
2886 }
2887 
2888 int
2889 bus_child_location_str(device_t child, char *buf, size_t buflen)
2890 {
2891 	device_t parent;
2892 
2893 	parent = device_get_parent(child);
2894 	if (parent == NULL) {
2895 		*buf = '\0';
2896 		return (0);
2897 	}
2898 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
2899 }
2900 
2901 static int
2902 root_print_child(device_t dev, device_t child)
2903 {
2904 	return(0);
2905 }
2906 
2907 static int
2908 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
2909 		void **cookiep, lwkt_serialize_t serializer)
2910 {
2911 	/*
2912 	 * If an interrupt mapping gets to here something bad has happened.
2913 	 */
2914 	panic("root_setup_intr");
2915 }
2916 
2917 /*
2918  * If we get here, assume that the device is permanant and really is
2919  * present in the system.  Removable bus drivers are expected to intercept
2920  * this call long before it gets here.  We return -1 so that drivers that
2921  * really care can check vs -1 or some ERRNO returned higher in the food
2922  * chain.
2923  */
2924 static int
2925 root_child_present(device_t dev, device_t child)
2926 {
2927 	return(-1);
2928 }
2929 
2930 /*
2931  * XXX NOTE! other defaults may be set in bus_if.m
2932  */
2933 static kobj_method_t root_methods[] = {
2934 	/* Device interface */
2935 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
2936 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
2937 	KOBJMETHOD(device_resume,	bus_generic_resume),
2938 
2939 	/* Bus interface */
2940 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
2941 	KOBJMETHOD(bus_print_child,	root_print_child),
2942 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
2943 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
2944 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
2945 	KOBJMETHOD(bus_child_present,   root_child_present),
2946 
2947 	{ 0, 0 }
2948 };
2949 
2950 static driver_t root_driver = {
2951 	"root",
2952 	root_methods,
2953 	1,			/* no softc */
2954 };
2955 
2956 device_t	root_bus;
2957 devclass_t	root_devclass;
2958 
2959 static int
2960 root_bus_module_handler(module_t mod, int what, void* arg)
2961 {
2962 	switch (what) {
2963 	case MOD_LOAD:
2964 		TAILQ_INIT(&bus_data_devices);
2965 		root_bus = make_device(NULL, "root", 0);
2966 		root_bus->desc = "System root bus";
2967 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
2968 		root_bus->driver = &root_driver;
2969 		root_bus->state = DS_ALIVE;
2970 		root_devclass = devclass_find_internal("root", NULL, FALSE);
2971 		devinit();
2972 		return(0);
2973 
2974 	case MOD_SHUTDOWN:
2975 		device_shutdown(root_bus);
2976 		return(0);
2977 	default:
2978 		return(0);
2979 	}
2980 }
2981 
2982 static moduledata_t root_bus_mod = {
2983 	"rootbus",
2984 	root_bus_module_handler,
2985 	0
2986 };
2987 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
2988 
2989 void
2990 root_bus_configure(void)
2991 {
2992 	int warncount;
2993 	device_t dev;
2994 
2995 	PDEBUG(("."));
2996 
2997 	/*
2998 	 * handle device_identify based device attachments to the root_bus
2999 	 * (typically nexus).
3000 	 */
3001 	bus_generic_probe(root_bus);
3002 
3003 	/*
3004 	 * Probe and attach the devices under root_bus.
3005 	 */
3006 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3007 		device_probe_and_attach(dev);
3008 	}
3009 
3010 	/*
3011 	 * Wait for all asynchronous attaches to complete.  If we don't
3012 	 * our legacy ISA bus scan could steal device unit numbers or
3013 	 * even I/O ports.
3014 	 */
3015 	warncount = 10;
3016 	if (numasyncthreads)
3017 		kprintf("Waiting for async drivers to attach\n");
3018 	while (numasyncthreads > 0) {
3019 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3020 			--warncount;
3021 		if (warncount == 0) {
3022 			kprintf("Warning: Still waiting for %d "
3023 				"drivers to attach\n", numasyncthreads);
3024 		} else if (warncount == -30) {
3025 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3026 			break;
3027 		}
3028 	}
3029 	root_bus->state = DS_ATTACHED;
3030 }
3031 
3032 int
3033 driver_module_handler(module_t mod, int what, void *arg)
3034 {
3035 	int error;
3036 	struct driver_module_data *dmd;
3037 	devclass_t bus_devclass;
3038 	kobj_class_t driver;
3039         const char *parentname;
3040 
3041 	dmd = (struct driver_module_data *)arg;
3042 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3043 	error = 0;
3044 
3045 	switch (what) {
3046 	case MOD_LOAD:
3047 		if (dmd->dmd_chainevh)
3048 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3049 
3050 		driver = dmd->dmd_driver;
3051 		PDEBUG(("Loading module: driver %s on bus %s",
3052 		        DRIVERNAME(driver), dmd->dmd_busname));
3053 
3054 		/*
3055 		 * If the driver has any base classes, make the
3056 		 * devclass inherit from the devclass of the driver's
3057 		 * first base class. This will allow the system to
3058 		 * search for drivers in both devclasses for children
3059 		 * of a device using this driver.
3060 		 */
3061 		if (driver->baseclasses)
3062 			parentname = driver->baseclasses[0]->name;
3063 		else
3064 			parentname = NULL;
3065 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3066 							    parentname, TRUE);
3067 
3068 		error = devclass_add_driver(bus_devclass, driver);
3069 		if (error)
3070 			break;
3071 		break;
3072 
3073 	case MOD_UNLOAD:
3074 		PDEBUG(("Unloading module: driver %s from bus %s",
3075 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3076 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3077 
3078 		if (!error && dmd->dmd_chainevh)
3079 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3080 		break;
3081 	}
3082 
3083 	return (error);
3084 }
3085 
3086 #ifdef BUS_DEBUG
3087 
3088 /*
3089  * The _short versions avoid iteration by not calling anything that prints
3090  * more than oneliners. I love oneliners.
3091  */
3092 
3093 static void
3094 print_device_short(device_t dev, int indent)
3095 {
3096 	if (!dev)
3097 		return;
3098 
3099 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3100 		      dev->unit, dev->desc,
3101 		      (dev->parent? "":"no "),
3102 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3103 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3104 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3105 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3106 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3107 		      (dev->ivars? "":"no "),
3108 		      (dev->softc? "":"no "),
3109 		      dev->busy));
3110 }
3111 
3112 static void
3113 print_device(device_t dev, int indent)
3114 {
3115 	if (!dev)
3116 		return;
3117 
3118 	print_device_short(dev, indent);
3119 
3120 	indentprintf(("Parent:\n"));
3121 	print_device_short(dev->parent, indent+1);
3122 	indentprintf(("Driver:\n"));
3123 	print_driver_short(dev->driver, indent+1);
3124 	indentprintf(("Devclass:\n"));
3125 	print_devclass_short(dev->devclass, indent+1);
3126 }
3127 
3128 /*
3129  * Print the device and all its children (indented).
3130  */
3131 void
3132 print_device_tree_short(device_t dev, int indent)
3133 {
3134 	device_t child;
3135 
3136 	if (!dev)
3137 		return;
3138 
3139 	print_device_short(dev, indent);
3140 
3141 	TAILQ_FOREACH(child, &dev->children, link)
3142 		print_device_tree_short(child, indent+1);
3143 }
3144 
3145 /*
3146  * Print the device and all its children (indented).
3147  */
3148 void
3149 print_device_tree(device_t dev, int indent)
3150 {
3151 	device_t child;
3152 
3153 	if (!dev)
3154 		return;
3155 
3156 	print_device(dev, indent);
3157 
3158 	TAILQ_FOREACH(child, &dev->children, link)
3159 		print_device_tree(child, indent+1);
3160 }
3161 
3162 static void
3163 print_driver_short(driver_t *driver, int indent)
3164 {
3165 	if (!driver)
3166 		return;
3167 
3168 	indentprintf(("driver %s: softc size = %d\n",
3169 		      driver->name, driver->size));
3170 }
3171 
3172 static void
3173 print_driver(driver_t *driver, int indent)
3174 {
3175 	if (!driver)
3176 		return;
3177 
3178 	print_driver_short(driver, indent);
3179 }
3180 
3181 
3182 static void
3183 print_driver_list(driver_list_t drivers, int indent)
3184 {
3185 	driverlink_t driver;
3186 
3187 	TAILQ_FOREACH(driver, &drivers, link)
3188 		print_driver(driver->driver, indent);
3189 }
3190 
3191 static void
3192 print_devclass_short(devclass_t dc, int indent)
3193 {
3194 	if (!dc)
3195 		return;
3196 
3197 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3198 }
3199 
3200 static void
3201 print_devclass(devclass_t dc, int indent)
3202 {
3203 	int i;
3204 
3205 	if (!dc)
3206 		return;
3207 
3208 	print_devclass_short(dc, indent);
3209 	indentprintf(("Drivers:\n"));
3210 	print_driver_list(dc->drivers, indent+1);
3211 
3212 	indentprintf(("Devices:\n"));
3213 	for (i = 0; i < dc->maxunit; i++)
3214 		if (dc->devices[i])
3215 			print_device(dc->devices[i], indent+1);
3216 }
3217 
3218 void
3219 print_devclass_list_short(void)
3220 {
3221 	devclass_t dc;
3222 
3223 	kprintf("Short listing of devclasses, drivers & devices:\n");
3224 	TAILQ_FOREACH(dc, &devclasses, link) {
3225 		print_devclass_short(dc, 0);
3226 	}
3227 }
3228 
3229 void
3230 print_devclass_list(void)
3231 {
3232 	devclass_t dc;
3233 
3234 	kprintf("Full listing of devclasses, drivers & devices:\n");
3235 	TAILQ_FOREACH(dc, &devclasses, link) {
3236 		print_devclass(dc, 0);
3237 	}
3238 }
3239 
3240 #endif
3241 
3242 /*
3243  * Check to see if a device is disabled via a disabled hint.
3244  */
3245 int
3246 resource_disabled(const char *name, int unit)
3247 {
3248 	int error, value;
3249 
3250 	error = resource_int_value(name, unit, "disabled", &value);
3251 	if (error)
3252 	       return(0);
3253 	return(value);
3254 }
3255 
3256 /*
3257  * User-space access to the device tree.
3258  *
3259  * We implement a small set of nodes:
3260  *
3261  * hw.bus			Single integer read method to obtain the
3262  *				current generation count.
3263  * hw.bus.devices		Reads the entire device tree in flat space.
3264  * hw.bus.rman			Resource manager interface
3265  *
3266  * We might like to add the ability to scan devclasses and/or drivers to
3267  * determine what else is currently loaded/available.
3268  */
3269 
3270 static int
3271 sysctl_bus(SYSCTL_HANDLER_ARGS)
3272 {
3273 	struct u_businfo	ubus;
3274 
3275 	ubus.ub_version = BUS_USER_VERSION;
3276 	ubus.ub_generation = bus_data_generation;
3277 
3278 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3279 }
3280 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3281     "bus-related data");
3282 
3283 static int
3284 sysctl_devices(SYSCTL_HANDLER_ARGS)
3285 {
3286 	int			*name = (int *)arg1;
3287 	u_int			namelen = arg2;
3288 	int			index;
3289 	struct device		*dev;
3290 	struct u_device		udev;	/* XXX this is a bit big */
3291 	int			error;
3292 
3293 	if (namelen != 2)
3294 		return (EINVAL);
3295 
3296 	if (bus_data_generation_check(name[0]))
3297 		return (EINVAL);
3298 
3299 	index = name[1];
3300 
3301 	/*
3302 	 * Scan the list of devices, looking for the requested index.
3303 	 */
3304 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3305 		if (index-- == 0)
3306 			break;
3307 	}
3308 	if (dev == NULL)
3309 		return (ENOENT);
3310 
3311 	/*
3312 	 * Populate the return array.
3313 	 */
3314 	bzero(&udev, sizeof(udev));
3315 	udev.dv_handle = (uintptr_t)dev;
3316 	udev.dv_parent = (uintptr_t)dev->parent;
3317 	if (dev->nameunit != NULL)
3318 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3319 	if (dev->desc != NULL)
3320 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3321 	if (dev->driver != NULL && dev->driver->name != NULL)
3322 		strlcpy(udev.dv_drivername, dev->driver->name,
3323 		    sizeof(udev.dv_drivername));
3324 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3325 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3326 	udev.dv_devflags = dev->devflags;
3327 	udev.dv_flags = dev->flags;
3328 	udev.dv_state = dev->state;
3329 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3330 	return (error);
3331 }
3332 
3333 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3334     "system device tree");
3335 
3336 int
3337 bus_data_generation_check(int generation)
3338 {
3339 	if (generation != bus_data_generation)
3340 		return (1);
3341 
3342 	/* XXX generate optimised lists here? */
3343 	return (0);
3344 }
3345 
3346 void
3347 bus_data_generation_update(void)
3348 {
3349 	bus_data_generation++;
3350 }
3351