xref: /dragonfly/sys/kern/subr_bus.c (revision 7d84b73d)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  */
28 
29 #include "opt_bus.h"
30 
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/kobj.h>
37 #include <sys/bus_private.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/device.h>
43 #include <sys/lock.h>
44 #include <sys/caps.h>
45 #include <sys/conf.h>
46 #include <sys/uio.h>
47 #include <sys/filio.h>
48 #include <sys/event.h>
49 #include <sys/signalvar.h>
50 #include <sys/machintr.h>
51 #include <sys/vnode.h>
52 
53 #include <machine/stdarg.h>	/* for device_printf() */
54 
55 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
56 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
57 
58 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
59 
60 #ifdef BUS_DEBUG
61 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
62 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
63 #define DRIVERNAME(d)	((d)? d->name : "no driver")
64 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
65 
66 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
67  * prevent syslog from deleting initial spaces
68  */
69 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
70 
71 static void	print_device_short(device_t dev, int indent);
72 static void	print_device(device_t dev, int indent);
73 void		print_device_tree_short(device_t dev, int indent);
74 void		print_device_tree(device_t dev, int indent);
75 static void	print_driver_short(driver_t *driver, int indent);
76 static void	print_driver(driver_t *driver, int indent);
77 static void	print_driver_list(driver_list_t drivers, int indent);
78 static void	print_devclass_short(devclass_t dc, int indent);
79 static void	print_devclass(devclass_t dc, int indent);
80 void		print_devclass_list_short(void);
81 void		print_devclass_list(void);
82 
83 #else
84 /* Make the compiler ignore the function calls */
85 #define PDEBUG(a)			/* nop */
86 #define DEVICENAME(d)			/* nop */
87 #define DRIVERNAME(d)			/* nop */
88 #define DEVCLANAME(d)			/* nop */
89 
90 #define print_device_short(d,i)		/* nop */
91 #define print_device(d,i)		/* nop */
92 #define print_device_tree_short(d,i)	/* nop */
93 #define print_device_tree(d,i)		/* nop */
94 #define print_driver_short(d,i)		/* nop */
95 #define print_driver(d,i)		/* nop */
96 #define print_driver_list(d,i)		/* nop */
97 #define print_devclass_short(d,i)	/* nop */
98 #define print_devclass(d,i)		/* nop */
99 #define print_devclass_list_short()	/* nop */
100 #define print_devclass_list()		/* nop */
101 #endif
102 
103 /*
104  * dev sysctl tree
105  */
106 
107 enum {
108 	DEVCLASS_SYSCTL_PARENT,
109 };
110 
111 static int
112 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
113 {
114 	devclass_t dc = (devclass_t)arg1;
115 	const char *value;
116 
117 	switch (arg2) {
118 	case DEVCLASS_SYSCTL_PARENT:
119 		value = dc->parent ? dc->parent->name : "";
120 		break;
121 	default:
122 		return (EINVAL);
123 	}
124 	return (SYSCTL_OUT(req, value, strlen(value)));
125 }
126 
127 static void
128 devclass_sysctl_init(devclass_t dc)
129 {
130 
131 	if (dc->sysctl_tree != NULL)
132 		return;
133 	sysctl_ctx_init(&dc->sysctl_ctx);
134 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
135 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
136 	    CTLFLAG_RD, NULL, "");
137 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
138 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
139 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
140 	    "parent class");
141 }
142 
143 enum {
144 	DEVICE_SYSCTL_DESC,
145 	DEVICE_SYSCTL_DRIVER,
146 	DEVICE_SYSCTL_LOCATION,
147 	DEVICE_SYSCTL_PNPINFO,
148 	DEVICE_SYSCTL_PARENT,
149 };
150 
151 static int
152 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
153 {
154 	device_t dev = (device_t)arg1;
155 	const char *value;
156 	char *buf;
157 	int error;
158 
159 	buf = NULL;
160 	switch (arg2) {
161 	case DEVICE_SYSCTL_DESC:
162 		value = dev->desc ? dev->desc : "";
163 		break;
164 	case DEVICE_SYSCTL_DRIVER:
165 		value = dev->driver ? dev->driver->name : "";
166 		break;
167 	case DEVICE_SYSCTL_LOCATION:
168 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
169 		bus_child_location_str(dev, buf, 1024);
170 		break;
171 	case DEVICE_SYSCTL_PNPINFO:
172 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
173 		bus_child_pnpinfo_str(dev, buf, 1024);
174 		break;
175 	case DEVICE_SYSCTL_PARENT:
176 		value = dev->parent ? dev->parent->nameunit : "";
177 		break;
178 	default:
179 		return (EINVAL);
180 	}
181 	error = SYSCTL_OUT(req, value, strlen(value));
182 	if (buf != NULL)
183 		kfree(buf, M_BUS);
184 	return (error);
185 }
186 
187 static void
188 device_sysctl_init(device_t dev)
189 {
190 	devclass_t dc = dev->devclass;
191 
192 	if (dev->sysctl_tree != NULL)
193 		return;
194 	devclass_sysctl_init(dc);
195 	sysctl_ctx_init(&dev->sysctl_ctx);
196 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
197 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
198 	    dev->nameunit + strlen(dc->name),
199 	    CTLFLAG_RD, NULL, "");
200 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
201 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
202 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
203 	    "device description");
204 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
205 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
206 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
207 	    "device driver name");
208 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
209 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
210 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
211 	    "device location relative to parent");
212 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
213 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
214 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
215 	    "device identification");
216 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
217 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
218 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
219 	    "parent device");
220 }
221 
222 static void
223 device_sysctl_update(device_t dev)
224 {
225 	devclass_t dc = dev->devclass;
226 
227 	if (dev->sysctl_tree == NULL)
228 		return;
229 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
230 }
231 
232 static void
233 device_sysctl_fini(device_t dev)
234 {
235 	if (dev->sysctl_tree == NULL)
236 		return;
237 	sysctl_ctx_free(&dev->sysctl_ctx);
238 	dev->sysctl_tree = NULL;
239 }
240 
241 static void	device_attach_async(device_t dev);
242 static void	device_attach_thread(void *arg);
243 static int	device_doattach(device_t dev);
244 
245 static int do_async_attach = 0;
246 static int numasyncthreads;
247 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
248 
249 /*
250  * /dev/devctl implementation
251  */
252 
253 /*
254  * This design allows only one reader for /dev/devctl.  This is not desirable
255  * in the long run, but will get a lot of hair out of this implementation.
256  * Maybe we should make this device a clonable device.
257  *
258  * Also note: we specifically do not attach a device to the device_t tree
259  * to avoid potential chicken and egg problems.  One could argue that all
260  * of this belongs to the root node.  One could also further argue that the
261  * sysctl interface that we have not might more properly be an ioctl
262  * interface, but at this stage of the game, I'm not inclined to rock that
263  * boat.
264  *
265  * I'm also not sure that the SIGIO support is done correctly or not, as
266  * I copied it from a driver that had SIGIO support that likely hasn't been
267  * tested since 3.4 or 2.2.8!
268  */
269 
270 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
271 static int devctl_disable = 0;
272 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
273 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
274     sysctl_devctl_disable, "I", "devctl disable");
275 
276 static d_open_t		devopen;
277 static d_close_t	devclose;
278 static d_read_t		devread;
279 static d_ioctl_t	devioctl;
280 static d_kqfilter_t	devkqfilter;
281 
282 static struct dev_ops devctl_ops = {
283 	{ "devctl", 0, D_MPSAFE },
284 	.d_open =	devopen,
285 	.d_close =	devclose,
286 	.d_read =	devread,
287 	.d_ioctl =	devioctl,
288 	.d_kqfilter =	devkqfilter
289 };
290 
291 struct dev_event_info
292 {
293 	char *dei_data;
294 	TAILQ_ENTRY(dev_event_info) dei_link;
295 };
296 
297 TAILQ_HEAD(devq, dev_event_info);
298 
299 static struct dev_softc
300 {
301 	int	inuse;
302 	struct lock lock;
303 	struct kqinfo kq;
304 	struct devq devq;
305 	struct proc *async_proc;
306 } devsoftc;
307 
308 /*
309  * Chicken-and-egg problem with devfs, get the queue operational early.
310  */
311 static void
312 predevinit(void)
313 {
314 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
315 	TAILQ_INIT(&devsoftc.devq);
316 }
317 SYSINIT(predevinit, SI_SUB_CREATE_INIT, SI_ORDER_ANY, predevinit, 0);
318 
319 static void
320 devinit(void)
321 {
322 	/*
323 	 * WARNING! make_dev() can call back into devctl_queue_data()
324 	 *	    immediately.
325 	 */
326 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
327 }
328 
329 static int
330 devopen(struct dev_open_args *ap)
331 {
332 	/*
333 	 * Disallow access to disk volumes if RESTRICTEDROOT
334 	 */
335 	if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT))
336 		return (EPERM);
337 
338 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
339 	if (devsoftc.inuse) {
340 		lockmgr(&devsoftc.lock, LK_RELEASE);
341 		return (EBUSY);
342 	}
343 	/* move to init */
344 	devsoftc.inuse = 1;
345 	devsoftc.async_proc = NULL;
346 	lockmgr(&devsoftc.lock, LK_RELEASE);
347 
348 	return (0);
349 }
350 
351 static int
352 devclose(struct dev_close_args *ap)
353 {
354 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
355 	devsoftc.inuse = 0;
356 	wakeup(&devsoftc);
357 	lockmgr(&devsoftc.lock, LK_RELEASE);
358 
359 	return (0);
360 }
361 
362 /*
363  * The read channel for this device is used to report changes to
364  * userland in realtime.  We are required to free the data as well as
365  * the n1 object because we allocate them separately.  Also note that
366  * we return one record at a time.  If you try to read this device a
367  * character at a time, you will lose the rest of the data.  Listening
368  * programs are expected to cope.
369  */
370 static int
371 devread(struct dev_read_args *ap)
372 {
373 	struct uio *uio = ap->a_uio;
374 	struct dev_event_info *n1;
375 	int rv;
376 
377 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
378 	while (TAILQ_EMPTY(&devsoftc.devq)) {
379 		if (ap->a_ioflag & IO_NDELAY) {
380 			lockmgr(&devsoftc.lock, LK_RELEASE);
381 			return (EAGAIN);
382 		}
383 		tsleep_interlock(&devsoftc, PCATCH);
384 		lockmgr(&devsoftc.lock, LK_RELEASE);
385 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
386 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
387 		if (rv) {
388 			/*
389 			 * Need to translate ERESTART to EINTR here? -- jake
390 			 */
391 			lockmgr(&devsoftc.lock, LK_RELEASE);
392 			return (rv);
393 		}
394 	}
395 	n1 = TAILQ_FIRST(&devsoftc.devq);
396 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
397 	lockmgr(&devsoftc.lock, LK_RELEASE);
398 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
399 	kfree(n1->dei_data, M_BUS);
400 	kfree(n1, M_BUS);
401 	return (rv);
402 }
403 
404 static	int
405 devioctl(struct dev_ioctl_args *ap)
406 {
407 	switch (ap->a_cmd) {
408 
409 	case FIONBIO:
410 		return (0);
411 	case FIOASYNC:
412 		if (*(int*)ap->a_data)
413 			devsoftc.async_proc = curproc;
414 		else
415 			devsoftc.async_proc = NULL;
416 		return (0);
417 
418 		/* (un)Support for other fcntl() calls. */
419 	case FIOCLEX:
420 	case FIONCLEX:
421 	case FIONREAD:
422 	case FIOSETOWN:
423 	case FIOGETOWN:
424 	default:
425 		break;
426 	}
427 	return (ENOTTY);
428 }
429 
430 static void dev_filter_detach(struct knote *);
431 static int dev_filter_read(struct knote *, long);
432 
433 static struct filterops dev_filtops =
434 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, NULL,
435 	  dev_filter_detach, dev_filter_read };
436 
437 static int
438 devkqfilter(struct dev_kqfilter_args *ap)
439 {
440 	struct knote *kn = ap->a_kn;
441 	struct klist *klist;
442 
443 	ap->a_result = 0;
444 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
445 
446 	switch (kn->kn_filter) {
447 	case EVFILT_READ:
448 		kn->kn_fop = &dev_filtops;
449 		break;
450 	default:
451 		ap->a_result = EOPNOTSUPP;
452 		lockmgr(&devsoftc.lock, LK_RELEASE);
453 		return (0);
454 	}
455 
456 	klist = &devsoftc.kq.ki_note;
457 	knote_insert(klist, kn);
458 
459 	lockmgr(&devsoftc.lock, LK_RELEASE);
460 
461 	return (0);
462 }
463 
464 static void
465 dev_filter_detach(struct knote *kn)
466 {
467 	struct klist *klist;
468 
469 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
470 	klist = &devsoftc.kq.ki_note;
471 	knote_remove(klist, kn);
472 	lockmgr(&devsoftc.lock, LK_RELEASE);
473 }
474 
475 static int
476 dev_filter_read(struct knote *kn, long hint)
477 {
478 	int ready = 0;
479 
480 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
481 	if (!TAILQ_EMPTY(&devsoftc.devq))
482 		ready = 1;
483 	lockmgr(&devsoftc.lock, LK_RELEASE);
484 
485 	return (ready);
486 }
487 
488 
489 /**
490  * @brief Return whether the userland process is running
491  */
492 boolean_t
493 devctl_process_running(void)
494 {
495 	return (devsoftc.inuse == 1);
496 }
497 
498 /**
499  * @brief Queue data to be read from the devctl device
500  *
501  * Generic interface to queue data to the devctl device.  It is
502  * assumed that @p data is properly formatted.  It is further assumed
503  * that @p data is allocated using the M_BUS malloc type.
504  */
505 void
506 devctl_queue_data(char *data)
507 {
508 	struct dev_event_info *n1 = NULL;
509 	struct proc *p;
510 
511 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
512 	if (n1 == NULL)
513 		return;
514 	n1->dei_data = data;
515 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
516 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
517 	wakeup(&devsoftc);
518 	lockmgr(&devsoftc.lock, LK_RELEASE);
519 	KNOTE(&devsoftc.kq.ki_note, 0);
520 	p = devsoftc.async_proc;
521 	if (p != NULL)
522 		ksignal(p, SIGIO);
523 }
524 
525 /**
526  * @brief Send a 'notification' to userland, using standard ways
527  */
528 void
529 devctl_notify(const char *system, const char *subsystem, const char *type,
530     const char *data)
531 {
532 	int len = 0;
533 	char *msg;
534 
535 	if (system == NULL)
536 		return;		/* BOGUS!  Must specify system. */
537 	if (subsystem == NULL)
538 		return;		/* BOGUS!  Must specify subsystem. */
539 	if (type == NULL)
540 		return;		/* BOGUS!  Must specify type. */
541 	len += strlen(" system=") + strlen(system);
542 	len += strlen(" subsystem=") + strlen(subsystem);
543 	len += strlen(" type=") + strlen(type);
544 	/* add in the data message plus newline. */
545 	if (data != NULL)
546 		len += strlen(data);
547 	len += 3;	/* '!', '\n', and NUL */
548 	msg = kmalloc(len, M_BUS, M_NOWAIT);
549 	if (msg == NULL)
550 		return;		/* Drop it on the floor */
551 	if (data != NULL)
552 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
553 		    system, subsystem, type, data);
554 	else
555 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
556 		    system, subsystem, type);
557 	devctl_queue_data(msg);
558 }
559 
560 /*
561  * Common routine that tries to make sending messages as easy as possible.
562  * We allocate memory for the data, copy strings into that, but do not
563  * free it unless there's an error.  The dequeue part of the driver should
564  * free the data.  We don't send data when the device is disabled.  We do
565  * send data, even when we have no listeners, because we wish to avoid
566  * races relating to startup and restart of listening applications.
567  *
568  * devaddq is designed to string together the type of event, with the
569  * object of that event, plus the plug and play info and location info
570  * for that event.  This is likely most useful for devices, but less
571  * useful for other consumers of this interface.  Those should use
572  * the devctl_queue_data() interface instead.
573  */
574 static void
575 devaddq(const char *type, const char *what, device_t dev)
576 {
577 	char *data = NULL;
578 	char *loc = NULL;
579 	char *pnp = NULL;
580 	const char *parstr;
581 
582 	if (devctl_disable)
583 		return;
584 	data = kmalloc(1024, M_BUS, M_NOWAIT);
585 	if (data == NULL)
586 		goto bad;
587 
588 	/* get the bus specific location of this device */
589 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
590 	if (loc == NULL)
591 		goto bad;
592 	*loc = '\0';
593 	bus_child_location_str(dev, loc, 1024);
594 
595 	/* Get the bus specific pnp info of this device */
596 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
597 	if (pnp == NULL)
598 		goto bad;
599 	*pnp = '\0';
600 	bus_child_pnpinfo_str(dev, pnp, 1024);
601 
602 	/* Get the parent of this device, or / if high enough in the tree. */
603 	if (device_get_parent(dev) == NULL)
604 		parstr = ".";	/* Or '/' ? */
605 	else
606 		parstr = device_get_nameunit(device_get_parent(dev));
607 	/* String it all together. */
608 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
609 	  parstr);
610 	kfree(loc, M_BUS);
611 	kfree(pnp, M_BUS);
612 	devctl_queue_data(data);
613 	return;
614 bad:
615 	if (pnp != NULL)
616 		kfree(pnp, M_BUS);
617 	if (loc != NULL)
618 		kfree(loc, M_BUS);
619 	if (loc != NULL)
620 		kfree(data, M_BUS);
621 	return;
622 }
623 
624 /*
625  * A device was added to the tree.  We are called just after it successfully
626  * attaches (that is, probe and attach success for this device).  No call
627  * is made if a device is merely parented into the tree.  See devnomatch
628  * if probe fails.  If attach fails, no notification is sent (but maybe
629  * we should have a different message for this).
630  */
631 static void
632 devadded(device_t dev)
633 {
634 	char *pnp = NULL;
635 	char *tmp = NULL;
636 
637 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
638 	if (pnp == NULL)
639 		goto fail;
640 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
641 	if (tmp == NULL)
642 		goto fail;
643 	*pnp = '\0';
644 	bus_child_pnpinfo_str(dev, pnp, 1024);
645 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
646 	devaddq("+", tmp, dev);
647 fail:
648 	if (pnp != NULL)
649 		kfree(pnp, M_BUS);
650 	if (tmp != NULL)
651 		kfree(tmp, M_BUS);
652 	return;
653 }
654 
655 /*
656  * A device was removed from the tree.  We are called just before this
657  * happens.
658  */
659 static void
660 devremoved(device_t dev)
661 {
662 	char *pnp = NULL;
663 	char *tmp = NULL;
664 
665 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
666 	if (pnp == NULL)
667 		goto fail;
668 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
669 	if (tmp == NULL)
670 		goto fail;
671 	*pnp = '\0';
672 	bus_child_pnpinfo_str(dev, pnp, 1024);
673 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
674 	devaddq("-", tmp, dev);
675 fail:
676 	if (pnp != NULL)
677 		kfree(pnp, M_BUS);
678 	if (tmp != NULL)
679 		kfree(tmp, M_BUS);
680 	return;
681 }
682 
683 /*
684  * Called when there's no match for this device.  This is only called
685  * the first time that no match happens, so we don't keep getitng this
686  * message.  Should that prove to be undesirable, we can change it.
687  * This is called when all drivers that can attach to a given bus
688  * decline to accept this device.  Other errrors may not be detected.
689  */
690 static void
691 devnomatch(device_t dev)
692 {
693 	devaddq("?", "", dev);
694 }
695 
696 static int
697 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
698 {
699 	struct dev_event_info *n1;
700 	int dis, error;
701 
702 	dis = devctl_disable;
703 	error = sysctl_handle_int(oidp, &dis, 0, req);
704 	if (error || !req->newptr)
705 		return (error);
706 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
707 	devctl_disable = dis;
708 	if (dis) {
709 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
710 			n1 = TAILQ_FIRST(&devsoftc.devq);
711 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
712 			kfree(n1->dei_data, M_BUS);
713 			kfree(n1, M_BUS);
714 		}
715 	}
716 	lockmgr(&devsoftc.lock, LK_RELEASE);
717 	return (0);
718 }
719 
720 /* End of /dev/devctl code */
721 
722 TAILQ_HEAD(,bsd_device)	bus_data_devices;
723 static int bus_data_generation = 1;
724 
725 kobj_method_t null_methods[] = {
726 	{ 0, 0 }
727 };
728 
729 DEFINE_CLASS(null, null_methods, 0);
730 
731 /*
732  * Devclass implementation
733  */
734 
735 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
736 
737 static devclass_t
738 devclass_find_internal(const char *classname, const char *parentname,
739 		       int create)
740 {
741 	devclass_t dc;
742 
743 	PDEBUG(("looking for %s", classname));
744 	if (classname == NULL)
745 		return(NULL);
746 
747 	TAILQ_FOREACH(dc, &devclasses, link)
748 		if (!strcmp(dc->name, classname))
749 			break;
750 
751 	if (create && !dc) {
752 		PDEBUG(("creating %s", classname));
753 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
754 			    M_BUS, M_INTWAIT | M_ZERO);
755 		dc->parent = NULL;
756 		dc->name = (char*) (dc + 1);
757 		strcpy(dc->name, classname);
758 		dc->devices = NULL;
759 		dc->maxunit = 0;
760 		TAILQ_INIT(&dc->drivers);
761 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
762 
763 		bus_data_generation_update();
764 
765 	}
766 
767 	/*
768 	 * If a parent class is specified, then set that as our parent so
769 	 * that this devclass will support drivers for the parent class as
770 	 * well.  If the parent class has the same name don't do this though
771 	 * as it creates a cycle that can trigger an infinite loop in
772 	 * device_probe_child() if a device exists for which there is no
773 	 * suitable driver.
774 	 */
775 	if (parentname && dc && !dc->parent &&
776 	    strcmp(classname, parentname) != 0)
777 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
778 
779 	return(dc);
780 }
781 
782 devclass_t
783 devclass_create(const char *classname)
784 {
785 	return(devclass_find_internal(classname, NULL, TRUE));
786 }
787 
788 devclass_t
789 devclass_find(const char *classname)
790 {
791 	return(devclass_find_internal(classname, NULL, FALSE));
792 }
793 
794 device_t
795 devclass_find_unit(const char *classname, int unit)
796 {
797 	devclass_t dc;
798 
799 	if ((dc = devclass_find(classname)) != NULL)
800 	    return(devclass_get_device(dc, unit));
801 	return (NULL);
802 }
803 
804 int
805 devclass_add_driver(devclass_t dc, driver_t *driver)
806 {
807 	driverlink_t dl;
808 	device_t dev;
809 	int i;
810 
811 	PDEBUG(("%s", DRIVERNAME(driver)));
812 
813 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
814 
815 	/*
816 	 * Compile the driver's methods. Also increase the reference count
817 	 * so that the class doesn't get freed when the last instance
818 	 * goes. This means we can safely use static methods and avoids a
819 	 * double-free in devclass_delete_driver.
820 	 */
821 	kobj_class_instantiate(driver);
822 
823 	/*
824 	 * Make sure the devclass which the driver is implementing exists.
825 	 */
826 	devclass_find_internal(driver->name, NULL, TRUE);
827 
828 	dl->driver = driver;
829 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
830 
831 	/*
832 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
833 	 * but only if the bus has already been attached (otherwise we
834 	 * might probe too early).
835 	 *
836 	 * This is what will cause a newly loaded module to be associated
837 	 * with hardware.  bus_generic_driver_added() is typically what ends
838 	 * up being called.
839 	 */
840 	for (i = 0; i < dc->maxunit; i++) {
841 		if ((dev = dc->devices[i]) != NULL) {
842 			if (dev->state >= DS_ATTACHED)
843 				BUS_DRIVER_ADDED(dev, driver);
844 		}
845 	}
846 
847 	bus_data_generation_update();
848 	return(0);
849 }
850 
851 int
852 devclass_delete_driver(devclass_t busclass, driver_t *driver)
853 {
854 	devclass_t dc = devclass_find(driver->name);
855 	driverlink_t dl;
856 	device_t dev;
857 	int i;
858 	int error;
859 
860 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
861 
862 	if (!dc)
863 		return(0);
864 
865 	/*
866 	 * Find the link structure in the bus' list of drivers.
867 	 */
868 	TAILQ_FOREACH(dl, &busclass->drivers, link)
869 		if (dl->driver == driver)
870 			break;
871 
872 	if (!dl) {
873 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
874 		return(ENOENT);
875 	}
876 
877 	/*
878 	 * Disassociate from any devices.  We iterate through all the
879 	 * devices in the devclass of the driver and detach any which are
880 	 * using the driver and which have a parent in the devclass which
881 	 * we are deleting from.
882 	 *
883 	 * Note that since a driver can be in multiple devclasses, we
884 	 * should not detach devices which are not children of devices in
885 	 * the affected devclass.
886 	 */
887 	for (i = 0; i < dc->maxunit; i++)
888 		if (dc->devices[i]) {
889 			dev = dc->devices[i];
890 			if (dev->driver == driver && dev->parent &&
891 			    dev->parent->devclass == busclass) {
892 				if ((error = device_detach(dev)) != 0)
893 					return(error);
894 				device_set_driver(dev, NULL);
895 		    	}
896 		}
897 
898 	TAILQ_REMOVE(&busclass->drivers, dl, link);
899 	kfree(dl, M_BUS);
900 
901 	kobj_class_uninstantiate(driver);
902 
903 	bus_data_generation_update();
904 	return(0);
905 }
906 
907 static driverlink_t
908 devclass_find_driver_internal(devclass_t dc, const char *classname)
909 {
910 	driverlink_t dl;
911 
912 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
913 
914 	TAILQ_FOREACH(dl, &dc->drivers, link)
915 		if (!strcmp(dl->driver->name, classname))
916 			return(dl);
917 
918 	PDEBUG(("not found"));
919 	return(NULL);
920 }
921 
922 kobj_class_t
923 devclass_find_driver(devclass_t dc, const char *classname)
924 {
925 	driverlink_t dl;
926 
927 	dl = devclass_find_driver_internal(dc, classname);
928 	if (dl)
929 		return(dl->driver);
930 	else
931 		return(NULL);
932 }
933 
934 const char *
935 devclass_get_name(devclass_t dc)
936 {
937 	return(dc->name);
938 }
939 
940 device_t
941 devclass_get_device(devclass_t dc, int unit)
942 {
943 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
944 		return(NULL);
945 	return(dc->devices[unit]);
946 }
947 
948 void *
949 devclass_get_softc(devclass_t dc, int unit)
950 {
951 	device_t dev;
952 
953 	dev = devclass_get_device(dc, unit);
954 	if (!dev)
955 		return(NULL);
956 
957 	return(device_get_softc(dev));
958 }
959 
960 int
961 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
962 {
963 	int i;
964 	int count;
965 	device_t *list;
966 
967 	count = 0;
968 	for (i = 0; i < dc->maxunit; i++)
969 		if (dc->devices[i])
970 			count++;
971 
972 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
973 
974 	count = 0;
975 	for (i = 0; i < dc->maxunit; i++)
976 		if (dc->devices[i]) {
977 			list[count] = dc->devices[i];
978 			count++;
979 		}
980 
981 	*devlistp = list;
982 	*devcountp = count;
983 
984 	return(0);
985 }
986 
987 /**
988  * @brief Get a list of drivers in the devclass
989  *
990  * An array containing a list of pointers to all the drivers in the
991  * given devclass is allocated and returned in @p *listp.  The number
992  * of drivers in the array is returned in @p *countp. The caller should
993  * free the array using @c free(p, M_TEMP).
994  *
995  * @param dc            the devclass to examine
996  * @param listp         gives location for array pointer return value
997  * @param countp        gives location for number of array elements
998  *                      return value
999  *
1000  * @retval 0            success
1001  * @retval ENOMEM       the array allocation failed
1002  */
1003 int
1004 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1005 {
1006         driverlink_t dl;
1007         driver_t **list;
1008         int count;
1009 
1010         count = 0;
1011         TAILQ_FOREACH(dl, &dc->drivers, link)
1012                 count++;
1013         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1014         if (list == NULL)
1015                 return (ENOMEM);
1016 
1017         count = 0;
1018         TAILQ_FOREACH(dl, &dc->drivers, link) {
1019                 list[count] = dl->driver;
1020                 count++;
1021         }
1022         *listp = list;
1023         *countp = count;
1024 
1025         return (0);
1026 }
1027 
1028 /**
1029  * @brief Get the number of devices in a devclass
1030  *
1031  * @param dc		the devclass to examine
1032  */
1033 int
1034 devclass_get_count(devclass_t dc)
1035 {
1036 	int count, i;
1037 
1038 	count = 0;
1039 	for (i = 0; i < dc->maxunit; i++)
1040 		if (dc->devices[i])
1041 			count++;
1042 	return (count);
1043 }
1044 
1045 int
1046 devclass_get_maxunit(devclass_t dc)
1047 {
1048 	return(dc->maxunit);
1049 }
1050 
1051 void
1052 devclass_set_parent(devclass_t dc, devclass_t pdc)
1053 {
1054         dc->parent = pdc;
1055 }
1056 
1057 devclass_t
1058 devclass_get_parent(devclass_t dc)
1059 {
1060 	return(dc->parent);
1061 }
1062 
1063 static int
1064 devclass_alloc_unit(devclass_t dc, int *unitp)
1065 {
1066 	int unit = *unitp;
1067 
1068 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1069 
1070 	/* If we have been given a wired unit number, check for existing device */
1071 	if (unit != -1) {
1072 		if (unit >= 0 && unit < dc->maxunit &&
1073 		    dc->devices[unit] != NULL) {
1074 			if (bootverbose)
1075 				kprintf("%s-: %s%d exists, using next available unit number\n",
1076 				       dc->name, dc->name, unit);
1077 			/* find the next available slot */
1078 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
1079 				;
1080 		}
1081 	} else {
1082 		/* Unwired device, find the next available slot for it */
1083 		unit = 0;
1084 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1085 			unit++;
1086 	}
1087 
1088 	/*
1089 	 * We've selected a unit beyond the length of the table, so let's
1090 	 * extend the table to make room for all units up to and including
1091 	 * this one.
1092 	 */
1093 	if (unit >= dc->maxunit) {
1094 		device_t *newlist;
1095 		int newsize;
1096 
1097 		newsize = (unit + 1);
1098 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
1099 				 M_INTWAIT | M_ZERO);
1100 		if (newlist == NULL)
1101 			return(ENOMEM);
1102 		/*
1103 		 * WARNING: Due to gcc builtin optimization,
1104 		 *	    calling bcopy causes gcc to assume
1105 		 *	    that the source and destination args
1106 		 *	    cannot be NULL and optimize-away later
1107 		 *	    conditional tests to determine if dc->devices
1108 		 *	    is NULL.  In this situation, in fact,
1109 		 *	    dc->devices CAN be NULL w/ maxunit == 0.
1110 		 */
1111 		if (dc->devices) {
1112 			bcopy(dc->devices,
1113 			      newlist,
1114 			      sizeof(device_t) * dc->maxunit);
1115 			kfree(dc->devices, M_BUS);
1116 		}
1117 		dc->devices = newlist;
1118 		dc->maxunit = newsize;
1119 	}
1120 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1121 
1122 	*unitp = unit;
1123 	return(0);
1124 }
1125 
1126 static int
1127 devclass_add_device(devclass_t dc, device_t dev)
1128 {
1129 	int buflen, error;
1130 
1131 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1132 
1133 	buflen = strlen(dc->name) + 5;
1134 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
1135 	if (dev->nameunit == NULL)
1136 		return(ENOMEM);
1137 
1138 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1139 		kfree(dev->nameunit, M_BUS);
1140 		dev->nameunit = NULL;
1141 		return(error);
1142 	}
1143 	dc->devices[dev->unit] = dev;
1144 	dev->devclass = dc;
1145 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1146 
1147 	return(0);
1148 }
1149 
1150 static int
1151 devclass_delete_device(devclass_t dc, device_t dev)
1152 {
1153 	if (!dc || !dev)
1154 		return(0);
1155 
1156 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1157 
1158 	if (dev->devclass != dc || dc->devices[dev->unit] != dev) {
1159 		panic("devclass_delete_device: inconsistent device class: "
1160 		      "%p/%p %d %p/%p\n", dev->devclass, dc, dev->unit,
1161 		      dc->devices[dev->unit], dev);
1162 	}
1163 	dc->devices[dev->unit] = NULL;
1164 	if (dev->flags & DF_WILDCARD)
1165 		dev->unit = -1;
1166 	dev->devclass = NULL;
1167 	kfree(dev->nameunit, M_BUS);
1168 	dev->nameunit = NULL;
1169 
1170 	return(0);
1171 }
1172 
1173 static device_t
1174 make_device(device_t parent, const char *name, int unit)
1175 {
1176 	device_t dev;
1177 	devclass_t dc;
1178 
1179 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1180 
1181 	if (name != NULL) {
1182 		dc = devclass_find_internal(name, NULL, TRUE);
1183 		if (!dc) {
1184 			kprintf("make_device: can't find device class %s\n", name);
1185 			return(NULL);
1186 		}
1187 	} else
1188 		dc = NULL;
1189 
1190 	dev = kmalloc(sizeof(struct bsd_device), M_BUS, M_INTWAIT | M_ZERO);
1191 	if (!dev)
1192 		return(0);
1193 
1194 	dev->parent = parent;
1195 	TAILQ_INIT(&dev->children);
1196 	kobj_init((kobj_t) dev, &null_class);
1197 	dev->driver = NULL;
1198 	dev->devclass = NULL;
1199 	dev->unit = unit;
1200 	dev->nameunit = NULL;
1201 	dev->desc = NULL;
1202 	dev->busy = 0;
1203 	dev->devflags = 0;
1204 	dev->flags = DF_ENABLED;
1205 	dev->order = 0;
1206 	if (unit == -1)
1207 		dev->flags |= DF_WILDCARD;
1208 	if (name) {
1209 		dev->flags |= DF_FIXEDCLASS;
1210 		if (devclass_add_device(dc, dev) != 0) {
1211 			kobj_delete((kobj_t)dev, M_BUS);
1212 			return(NULL);
1213 		}
1214     	}
1215 	dev->ivars = NULL;
1216 	dev->softc = NULL;
1217 
1218 	dev->state = DS_NOTPRESENT;
1219 
1220 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1221 	bus_data_generation_update();
1222 
1223 	return(dev);
1224 }
1225 
1226 static int
1227 device_print_child(device_t dev, device_t child)
1228 {
1229 	int retval = 0;
1230 
1231 	if (device_is_alive(child))
1232 		retval += BUS_PRINT_CHILD(dev, child);
1233 	else
1234 		retval += device_printf(child, " not found\n");
1235 
1236 	return(retval);
1237 }
1238 
1239 device_t
1240 device_add_child(device_t dev, const char *name, int unit)
1241 {
1242 	return device_add_child_ordered(dev, 0, name, unit);
1243 }
1244 
1245 device_t
1246 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1247 {
1248 	device_t child;
1249 	device_t place;
1250 
1251 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1252 		order, unit));
1253 
1254 	child = make_device(dev, name, unit);
1255 	if (child == NULL)
1256 		return child;
1257 	child->order = order;
1258 
1259 	TAILQ_FOREACH(place, &dev->children, link) {
1260 		if (place->order > order)
1261 			break;
1262 	}
1263 
1264 	if (place) {
1265 		/*
1266 		 * The device 'place' is the first device whose order is
1267 		 * greater than the new child.
1268 		 */
1269 		TAILQ_INSERT_BEFORE(place, child, link);
1270 	} else {
1271 		/*
1272 		 * The new child's order is greater or equal to the order of
1273 		 * any existing device. Add the child to the tail of the list.
1274 		 */
1275 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1276     	}
1277 
1278 	bus_data_generation_update();
1279 	return(child);
1280 }
1281 
1282 int
1283 device_delete_child(device_t dev, device_t child)
1284 {
1285 	int error;
1286 	device_t grandchild;
1287 
1288 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1289 
1290 	/* remove children first */
1291 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1292         	error = device_delete_child(child, grandchild);
1293 		if (error)
1294 			return(error);
1295 	}
1296 
1297 	if ((error = device_detach(child)) != 0)
1298 		return(error);
1299 	if (child->devclass)
1300 		devclass_delete_device(child->devclass, child);
1301 	TAILQ_REMOVE(&dev->children, child, link);
1302 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1303 	kobj_delete((kobj_t)child, M_BUS);
1304 
1305 	bus_data_generation_update();
1306 	return(0);
1307 }
1308 
1309 /**
1310  * @brief Delete all children devices of the given device, if any.
1311  *
1312  * This function deletes all children devices of the given device, if
1313  * any, using the device_delete_child() function for each device it
1314  * finds. If a child device cannot be deleted, this function will
1315  * return an error code.
1316  *
1317  * @param dev		the parent device
1318  *
1319  * @retval 0		success
1320  * @retval non-zero	a device would not detach
1321  */
1322 int
1323 device_delete_children(device_t dev)
1324 {
1325 	device_t child;
1326 	int error;
1327 
1328 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1329 
1330 	error = 0;
1331 
1332 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1333 		error = device_delete_child(dev, child);
1334 		if (error) {
1335 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1336 			break;
1337 		}
1338 	}
1339 	return (error);
1340 }
1341 
1342 /**
1343  * @brief Find a device given a unit number
1344  *
1345  * This is similar to devclass_get_devices() but only searches for
1346  * devices which have @p dev as a parent.
1347  *
1348  * @param dev		the parent device to search
1349  * @param unit		the unit number to search for.  If the unit is -1,
1350  *			return the first child of @p dev which has name
1351  *			@p classname (that is, the one with the lowest unit.)
1352  *
1353  * @returns		the device with the given unit number or @c
1354  *			NULL if there is no such device
1355  */
1356 device_t
1357 device_find_child(device_t dev, const char *classname, int unit)
1358 {
1359 	devclass_t dc;
1360 	device_t child;
1361 
1362 	dc = devclass_find(classname);
1363 	if (!dc)
1364 		return(NULL);
1365 
1366 	if (unit != -1) {
1367 		child = devclass_get_device(dc, unit);
1368 		if (child && child->parent == dev)
1369 			return (child);
1370 	} else {
1371 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1372 			child = devclass_get_device(dc, unit);
1373 			if (child && child->parent == dev)
1374 				return (child);
1375 		}
1376 	}
1377 	return(NULL);
1378 }
1379 
1380 static driverlink_t
1381 first_matching_driver(devclass_t dc, device_t dev)
1382 {
1383 	if (dev->devclass)
1384 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1385 	else
1386 		return(TAILQ_FIRST(&dc->drivers));
1387 }
1388 
1389 static driverlink_t
1390 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1391 {
1392 	if (dev->devclass) {
1393 		driverlink_t dl;
1394 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1395 			if (!strcmp(dev->devclass->name, dl->driver->name))
1396 				return(dl);
1397 		return(NULL);
1398 	} else
1399 		return(TAILQ_NEXT(last, link));
1400 }
1401 
1402 int
1403 device_probe_child(device_t dev, device_t child)
1404 {
1405 	devclass_t dc;
1406 	driverlink_t best = NULL;
1407 	driverlink_t dl;
1408 	int result, pri = 0;
1409 	int hasclass = (child->devclass != NULL);
1410 
1411 	dc = dev->devclass;
1412 	if (!dc)
1413 		panic("device_probe_child: parent device has no devclass");
1414 
1415 	if (child->state == DS_ALIVE)
1416 		return(0);
1417 
1418 	for (; dc; dc = dc->parent) {
1419 		for (dl = first_matching_driver(dc, child); dl;
1420 		     dl = next_matching_driver(dc, child, dl)) {
1421 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1422 			device_set_driver(child, dl->driver);
1423 			if (!hasclass)
1424 				device_set_devclass(child, dl->driver->name);
1425 			result = DEVICE_PROBE(child);
1426 			if (!hasclass)
1427 				device_set_devclass(child, 0);
1428 
1429 			/*
1430 			 * If the driver returns SUCCESS, there can be
1431 			 * no higher match for this device.
1432 			 */
1433 			if (result == 0) {
1434 				best = dl;
1435 				pri = 0;
1436 				break;
1437 			}
1438 
1439 			/*
1440 			 * The driver returned an error so it
1441 			 * certainly doesn't match.
1442 			 */
1443 			if (result > 0) {
1444 				device_set_driver(child, NULL);
1445 				continue;
1446 			}
1447 
1448 			/*
1449 			 * A priority lower than SUCCESS, remember the
1450 			 * best matching driver. Initialise the value
1451 			 * of pri for the first match.
1452 			 */
1453 			if (best == NULL || result > pri) {
1454 				best = dl;
1455 				pri = result;
1456 				continue;
1457 			}
1458 		}
1459 		/*
1460 	         * If we have unambiguous match in this devclass,
1461 	         * don't look in the parent.
1462 	         */
1463 	        if (best && pri == 0)
1464 			break;
1465 	}
1466 
1467 	/*
1468 	 * If we found a driver, change state and initialise the devclass.
1469 	 */
1470 	if (best) {
1471 		if (!child->devclass)
1472 			device_set_devclass(child, best->driver->name);
1473 		device_set_driver(child, best->driver);
1474 		if (pri < 0) {
1475 			/*
1476 			 * A bit bogus. Call the probe method again to make
1477 			 * sure that we have the right description.
1478 			 */
1479 			DEVICE_PROBE(child);
1480 		}
1481 
1482 		bus_data_generation_update();
1483 		child->state = DS_ALIVE;
1484 		return(0);
1485 	}
1486 
1487 	return(ENXIO);
1488 }
1489 
1490 int
1491 device_probe_child_gpri(device_t dev, device_t child, u_int gpri)
1492 {
1493 	devclass_t dc;
1494 	driverlink_t best = NULL;
1495 	driverlink_t dl;
1496 	int result, pri = 0;
1497 	int hasclass = (child->devclass != NULL);
1498 
1499 	dc = dev->devclass;
1500 	if (!dc)
1501 		panic("device_probe_child: parent device has no devclass");
1502 
1503 	if (child->state == DS_ALIVE)
1504 		return(0);
1505 
1506 	for (; dc; dc = dc->parent) {
1507 		for (dl = first_matching_driver(dc, child); dl;
1508 			dl = next_matching_driver(dc, child, dl)) {
1509 			/*
1510 			 * GPRI handling, only probe drivers with the
1511 			 * specific GPRI.
1512 			 */
1513 			if (dl->driver->gpri != gpri)
1514 				continue;
1515 
1516 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1517 			device_set_driver(child, dl->driver);
1518 			if (!hasclass)
1519 				device_set_devclass(child, dl->driver->name);
1520 			result = DEVICE_PROBE(child);
1521 			if (!hasclass)
1522 				device_set_devclass(child, 0);
1523 
1524 			/*
1525 			 * If the driver returns SUCCESS, there can be
1526 			 * no higher match for this device.
1527 			 */
1528 			if (result == 0) {
1529 				best = dl;
1530 				pri = 0;
1531 				break;
1532 			}
1533 
1534 			/*
1535 			 * The driver returned an error so it
1536 			 * certainly doesn't match.
1537 			 */
1538 			if (result > 0) {
1539 				device_set_driver(child, NULL);
1540 				continue;
1541 			}
1542 
1543 			/*
1544 			 * A priority lower than SUCCESS, remember the
1545 			 * best matching driver. Initialise the value
1546 			 * of pri for the first match.
1547 			 */
1548 			if (best == NULL || result > pri) {
1549 				best = dl;
1550 				pri = result;
1551 				continue;
1552 			}
1553 	        }
1554 		/*
1555 	         * If we have unambiguous match in this devclass,
1556 	         * don't look in the parent.
1557 	         */
1558 	        if (best && pri == 0)
1559 			break;
1560 	}
1561 
1562 	/*
1563 	 * If we found a driver, change state and initialise the devclass.
1564 	 */
1565 	if (best) {
1566 		if (!child->devclass)
1567 			device_set_devclass(child, best->driver->name);
1568 		device_set_driver(child, best->driver);
1569 		if (pri < 0) {
1570 			/*
1571 			 * A bit bogus. Call the probe method again to make
1572 			 * sure that we have the right description.
1573 			 */
1574 			DEVICE_PROBE(child);
1575 		}
1576 
1577 		bus_data_generation_update();
1578 		child->state = DS_ALIVE;
1579 		return(0);
1580 	}
1581 
1582 	return(ENXIO);
1583 }
1584 
1585 device_t
1586 device_get_parent(device_t dev)
1587 {
1588 	return dev->parent;
1589 }
1590 
1591 int
1592 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1593 {
1594 	int count;
1595 	device_t child;
1596 	device_t *list;
1597 
1598 	count = 0;
1599 	TAILQ_FOREACH(child, &dev->children, link)
1600 		count++;
1601 
1602 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1603 
1604 	count = 0;
1605 	TAILQ_FOREACH(child, &dev->children, link) {
1606 		list[count] = child;
1607 		count++;
1608 	}
1609 
1610 	*devlistp = list;
1611 	*devcountp = count;
1612 
1613 	return(0);
1614 }
1615 
1616 driver_t *
1617 device_get_driver(device_t dev)
1618 {
1619 	return(dev->driver);
1620 }
1621 
1622 devclass_t
1623 device_get_devclass(device_t dev)
1624 {
1625 	return(dev->devclass);
1626 }
1627 
1628 const char *
1629 device_get_name(device_t dev)
1630 {
1631 	if (dev->devclass)
1632 		return devclass_get_name(dev->devclass);
1633 	return(NULL);
1634 }
1635 
1636 const char *
1637 device_get_nameunit(device_t dev)
1638 {
1639 	return(dev->nameunit);
1640 }
1641 
1642 int
1643 device_get_unit(device_t dev)
1644 {
1645 	return(dev->unit);
1646 }
1647 
1648 const char *
1649 device_get_desc(device_t dev)
1650 {
1651 	return(dev->desc);
1652 }
1653 
1654 uint32_t
1655 device_get_flags(device_t dev)
1656 {
1657 	return(dev->devflags);
1658 }
1659 
1660 struct sysctl_ctx_list *
1661 device_get_sysctl_ctx(device_t dev)
1662 {
1663 	return (&dev->sysctl_ctx);
1664 }
1665 
1666 struct sysctl_oid *
1667 device_get_sysctl_tree(device_t dev)
1668 {
1669 	return (dev->sysctl_tree);
1670 }
1671 
1672 int
1673 device_print_prettyname(device_t dev)
1674 {
1675 	const char *name = device_get_name(dev);
1676 
1677 	if (name == NULL)
1678 		return kprintf("unknown: ");
1679 	else
1680 		return kprintf("%s%d: ", name, device_get_unit(dev));
1681 }
1682 
1683 int
1684 device_printf(device_t dev, const char * fmt, ...)
1685 {
1686 	__va_list ap;
1687 	int retval;
1688 
1689 	retval = device_print_prettyname(dev);
1690 	__va_start(ap, fmt);
1691 	retval += kvprintf(fmt, ap);
1692 	__va_end(ap);
1693 	return retval;
1694 }
1695 
1696 static void
1697 device_set_desc_internal(device_t dev, const char* desc, int copy)
1698 {
1699 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1700 		kfree(dev->desc, M_BUS);
1701 		dev->flags &= ~DF_DESCMALLOCED;
1702 		dev->desc = NULL;
1703 	}
1704 
1705 	if (copy && desc) {
1706 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1707 		if (dev->desc) {
1708 			strcpy(dev->desc, desc);
1709 			dev->flags |= DF_DESCMALLOCED;
1710 		}
1711 	} else {
1712 		/* Avoid a -Wcast-qual warning */
1713 		dev->desc = (char *)(uintptr_t) desc;
1714 	}
1715 
1716 	bus_data_generation_update();
1717 }
1718 
1719 void
1720 device_set_desc(device_t dev, const char* desc)
1721 {
1722 	device_set_desc_internal(dev, desc, FALSE);
1723 }
1724 
1725 void
1726 device_set_desc_copy(device_t dev, const char* desc)
1727 {
1728 	device_set_desc_internal(dev, desc, TRUE);
1729 }
1730 
1731 void
1732 device_set_flags(device_t dev, uint32_t flags)
1733 {
1734 	dev->devflags = flags;
1735 }
1736 
1737 void *
1738 device_get_softc(device_t dev)
1739 {
1740 	return dev->softc;
1741 }
1742 
1743 void
1744 device_set_softc(device_t dev, void *softc)
1745 {
1746 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1747 		kfree(dev->softc, M_BUS);
1748 	dev->softc = softc;
1749 	if (dev->softc)
1750 		dev->flags |= DF_EXTERNALSOFTC;
1751 	else
1752 		dev->flags &= ~DF_EXTERNALSOFTC;
1753 }
1754 
1755 void
1756 device_set_async_attach(device_t dev, int enable)
1757 {
1758 	if (enable)
1759 		dev->flags |= DF_ASYNCPROBE;
1760 	else
1761 		dev->flags &= ~DF_ASYNCPROBE;
1762 }
1763 
1764 void *
1765 device_get_ivars(device_t dev)
1766 {
1767 	return dev->ivars;
1768 }
1769 
1770 void
1771 device_set_ivars(device_t dev, void * ivars)
1772 {
1773 	if (!dev)
1774 		return;
1775 
1776 	dev->ivars = ivars;
1777 }
1778 
1779 device_state_t
1780 device_get_state(device_t dev)
1781 {
1782 	return(dev->state);
1783 }
1784 
1785 void
1786 device_enable(device_t dev)
1787 {
1788 	dev->flags |= DF_ENABLED;
1789 }
1790 
1791 void
1792 device_disable(device_t dev)
1793 {
1794 	dev->flags &= ~DF_ENABLED;
1795 }
1796 
1797 /*
1798  * YYY cannot block
1799  */
1800 void
1801 device_busy(device_t dev)
1802 {
1803 	if (dev->state < DS_ATTACHED)
1804 		panic("device_busy: called for unattached device");
1805 	if (dev->busy == 0 && dev->parent)
1806 		device_busy(dev->parent);
1807 	dev->busy++;
1808 	dev->state = DS_BUSY;
1809 }
1810 
1811 /*
1812  * YYY cannot block
1813  */
1814 void
1815 device_unbusy(device_t dev)
1816 {
1817 	if (dev->state != DS_BUSY)
1818 		panic("device_unbusy: called for non-busy device");
1819 	dev->busy--;
1820 	if (dev->busy == 0) {
1821 		if (dev->parent)
1822 			device_unbusy(dev->parent);
1823 		dev->state = DS_ATTACHED;
1824 	}
1825 }
1826 
1827 void
1828 device_quiet(device_t dev)
1829 {
1830 	dev->flags |= DF_QUIET;
1831 }
1832 
1833 void
1834 device_verbose(device_t dev)
1835 {
1836 	dev->flags &= ~DF_QUIET;
1837 }
1838 
1839 int
1840 device_is_quiet(device_t dev)
1841 {
1842 	return((dev->flags & DF_QUIET) != 0);
1843 }
1844 
1845 int
1846 device_is_enabled(device_t dev)
1847 {
1848 	return((dev->flags & DF_ENABLED) != 0);
1849 }
1850 
1851 int
1852 device_is_alive(device_t dev)
1853 {
1854 	return(dev->state >= DS_ALIVE);
1855 }
1856 
1857 int
1858 device_is_attached(device_t dev)
1859 {
1860 	return(dev->state >= DS_ATTACHED);
1861 }
1862 
1863 int
1864 device_set_devclass(device_t dev, const char *classname)
1865 {
1866 	devclass_t dc;
1867 	int error;
1868 
1869 	if (!classname) {
1870 		if (dev->devclass)
1871 			devclass_delete_device(dev->devclass, dev);
1872 		return(0);
1873 	}
1874 
1875 	if (dev->devclass) {
1876 		kprintf("device_set_devclass: device class already set\n");
1877 		return(EINVAL);
1878 	}
1879 
1880 	dc = devclass_find_internal(classname, NULL, TRUE);
1881 	if (!dc)
1882 		return(ENOMEM);
1883 
1884 	error = devclass_add_device(dc, dev);
1885 
1886 	bus_data_generation_update();
1887 	return(error);
1888 }
1889 
1890 int
1891 device_set_driver(device_t dev, driver_t *driver)
1892 {
1893 	if (dev->state >= DS_ATTACHED)
1894 		return(EBUSY);
1895 
1896 	if (dev->driver == driver)
1897 		return(0);
1898 
1899 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1900 		kfree(dev->softc, M_BUS);
1901 		dev->softc = NULL;
1902 	}
1903 	device_set_desc(dev, NULL);
1904 	kobj_delete((kobj_t) dev, 0);
1905 	dev->driver = driver;
1906 	if (driver) {
1907 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1908 		if (!(dev->flags & DF_EXTERNALSOFTC))
1909 			dev->softc = kmalloc(driver->size, M_BUS,
1910 					    M_INTWAIT | M_ZERO);
1911 	} else {
1912 		kobj_init((kobj_t) dev, &null_class);
1913 	}
1914 
1915 	bus_data_generation_update();
1916 	return(0);
1917 }
1918 
1919 int
1920 device_probe_and_attach(device_t dev)
1921 {
1922 	device_t bus = dev->parent;
1923 	int error = 0;
1924 
1925 	if (dev->state >= DS_ALIVE)
1926 		return(0);
1927 
1928 	if ((dev->flags & DF_ENABLED) == 0) {
1929 		if (bootverbose) {
1930 			device_print_prettyname(dev);
1931 			kprintf("not probed (disabled)\n");
1932 		}
1933 		return(0);
1934 	}
1935 
1936 	error = device_probe_child(bus, dev);
1937 	if (error) {
1938 		if (!(dev->flags & DF_DONENOMATCH)) {
1939 			BUS_PROBE_NOMATCH(bus, dev);
1940 			devnomatch(dev);
1941 			dev->flags |= DF_DONENOMATCH;
1942 		}
1943 		return(error);
1944 	}
1945 
1946 	/*
1947 	 * Output the exact device chain prior to the attach in case the
1948 	 * system locks up during attach, and generate the full info after
1949 	 * the attach so correct irq and other information is displayed.
1950 	 */
1951 	if (bootverbose && !device_is_quiet(dev)) {
1952 		device_t tmp;
1953 
1954 		kprintf("%s", device_get_nameunit(dev));
1955 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1956 			kprintf(".%s", device_get_nameunit(tmp));
1957 		kprintf("\n");
1958 	}
1959 	if (!device_is_quiet(dev))
1960 		device_print_child(bus, dev);
1961 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1962 		kprintf("%s: probing asynchronously\n",
1963 			device_get_nameunit(dev));
1964 		dev->state = DS_INPROGRESS;
1965 		device_attach_async(dev);
1966 		error = 0;
1967 	} else {
1968 		error = device_doattach(dev);
1969 	}
1970 	return(error);
1971 }
1972 
1973 int
1974 device_probe_and_attach_gpri(device_t dev, u_int gpri)
1975 {
1976 	device_t bus = dev->parent;
1977 	int error = 0;
1978 
1979 	if (dev->state >= DS_ALIVE)
1980 		return(0);
1981 
1982 	if ((dev->flags & DF_ENABLED) == 0) {
1983 		if (bootverbose) {
1984 			device_print_prettyname(dev);
1985 			kprintf("not probed (disabled)\n");
1986 		}
1987 		return(0);
1988 	}
1989 
1990 	error = device_probe_child_gpri(bus, dev, gpri);
1991 	if (error) {
1992 #if 0
1993 		if (!(dev->flags & DF_DONENOMATCH)) {
1994 			BUS_PROBE_NOMATCH(bus, dev);
1995 			devnomatch(dev);
1996 			dev->flags |= DF_DONENOMATCH;
1997 		}
1998 #endif
1999 		return(error);
2000 	}
2001 
2002 	/*
2003 	 * Output the exact device chain prior to the attach in case the
2004 	 * system locks up during attach, and generate the full info after
2005 	 * the attach so correct irq and other information is displayed.
2006 	 */
2007 	if (bootverbose && !device_is_quiet(dev)) {
2008 		device_t tmp;
2009 
2010 		kprintf("%s", device_get_nameunit(dev));
2011 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
2012 			kprintf(".%s", device_get_nameunit(tmp));
2013 		kprintf("\n");
2014 	}
2015 	if (!device_is_quiet(dev))
2016 		device_print_child(bus, dev);
2017 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
2018 		kprintf("%s: probing asynchronously\n",
2019 			device_get_nameunit(dev));
2020 		dev->state = DS_INPROGRESS;
2021 		device_attach_async(dev);
2022 		error = 0;
2023 	} else {
2024 		error = device_doattach(dev);
2025 	}
2026 	return(error);
2027 }
2028 
2029 /*
2030  * Device is known to be alive, do the attach asynchronously.
2031  * However, serialize the attaches with the mp lock.
2032  */
2033 static void
2034 device_attach_async(device_t dev)
2035 {
2036 	thread_t td;
2037 
2038 	atomic_add_int(&numasyncthreads, 1);
2039 	lwkt_create(device_attach_thread, dev, &td, NULL,
2040 		    0, 0, "%s", (dev->desc ? dev->desc : "devattach"));
2041 }
2042 
2043 static void
2044 device_attach_thread(void *arg)
2045 {
2046 	device_t dev = arg;
2047 
2048 	(void)device_doattach(dev);
2049 	atomic_subtract_int(&numasyncthreads, 1);
2050 	wakeup(&numasyncthreads);
2051 }
2052 
2053 /*
2054  * Device is known to be alive, do the attach (synchronous or asynchronous)
2055  */
2056 static int
2057 device_doattach(device_t dev)
2058 {
2059 	device_t bus = dev->parent;
2060 	int hasclass = (dev->devclass != NULL);
2061 	int error;
2062 
2063 	device_sysctl_init(dev);
2064 	error = DEVICE_ATTACH(dev);
2065 	if (error == 0) {
2066 		dev->state = DS_ATTACHED;
2067 		if (bootverbose && !device_is_quiet(dev))
2068 			device_print_child(bus, dev);
2069 		device_sysctl_update(dev);
2070 		devadded(dev);
2071 	} else {
2072 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
2073 		       dev->driver->name, dev->unit, error);
2074 		/* Unset the class that was set in device_probe_child */
2075 		if (!hasclass)
2076 			device_set_devclass(dev, 0);
2077 		device_set_driver(dev, NULL);
2078 		dev->state = DS_NOTPRESENT;
2079 		device_sysctl_fini(dev);
2080 	}
2081 	return(error);
2082 }
2083 
2084 int
2085 device_detach(device_t dev)
2086 {
2087 	int error;
2088 
2089 	PDEBUG(("%s", DEVICENAME(dev)));
2090 	if (dev->state == DS_BUSY)
2091 		return(EBUSY);
2092 	if (dev->state != DS_ATTACHED)
2093 		return(0);
2094 
2095 	if ((error = DEVICE_DETACH(dev)) != 0)
2096 		return(error);
2097 	devremoved(dev);
2098 	device_printf(dev, "detached\n");
2099 	if (dev->parent)
2100 		BUS_CHILD_DETACHED(dev->parent, dev);
2101 
2102 	if (!(dev->flags & DF_FIXEDCLASS))
2103 		devclass_delete_device(dev->devclass, dev);
2104 
2105 	dev->state = DS_NOTPRESENT;
2106 	device_set_driver(dev, NULL);
2107 	device_sysctl_fini(dev);
2108 
2109 	return(0);
2110 }
2111 
2112 int
2113 device_shutdown(device_t dev)
2114 {
2115 	if (dev->state < DS_ATTACHED)
2116 		return 0;
2117 	PDEBUG(("%s", DEVICENAME(dev)));
2118 	return DEVICE_SHUTDOWN(dev);
2119 }
2120 
2121 int
2122 device_set_unit(device_t dev, int unit)
2123 {
2124 	devclass_t dc;
2125 	int err;
2126 
2127 	dc = device_get_devclass(dev);
2128 	if (unit < dc->maxunit && dc->devices[unit])
2129 		return(EBUSY);
2130 	err = devclass_delete_device(dc, dev);
2131 	if (err)
2132 		return(err);
2133 	dev->unit = unit;
2134 	err = devclass_add_device(dc, dev);
2135 	if (err)
2136 		return(err);
2137 
2138 	bus_data_generation_update();
2139 	return(0);
2140 }
2141 
2142 /*======================================*/
2143 /*
2144  * Access functions for device resources.
2145  */
2146 
2147 /* Supplied by config(8) in ioconf.c */
2148 extern struct config_device config_devtab[];
2149 extern int devtab_count;
2150 
2151 /* Runtime version */
2152 struct config_device *devtab = config_devtab;
2153 
2154 static int
2155 resource_new_name(const char *name, int unit)
2156 {
2157 	struct config_device *new;
2158 
2159 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
2160 		     M_INTWAIT | M_ZERO);
2161 	if (devtab && devtab_count > 0)
2162 		bcopy(devtab, new, devtab_count * sizeof(*new));
2163 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
2164 	if (new[devtab_count].name == NULL) {
2165 		kfree(new, M_TEMP);
2166 		return(-1);
2167 	}
2168 	strcpy(new[devtab_count].name, name);
2169 	new[devtab_count].unit = unit;
2170 	new[devtab_count].resource_count = 0;
2171 	new[devtab_count].resources = NULL;
2172 	if (devtab && devtab != config_devtab)
2173 		kfree(devtab, M_TEMP);
2174 	devtab = new;
2175 	return devtab_count++;
2176 }
2177 
2178 static int
2179 resource_new_resname(int j, const char *resname, resource_type type)
2180 {
2181 	struct config_resource *new;
2182 	int i;
2183 
2184 	i = devtab[j].resource_count;
2185 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
2186 	if (devtab[j].resources && i > 0)
2187 		bcopy(devtab[j].resources, new, i * sizeof(*new));
2188 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
2189 	if (new[i].name == NULL) {
2190 		kfree(new, M_TEMP);
2191 		return(-1);
2192 	}
2193 	strcpy(new[i].name, resname);
2194 	new[i].type = type;
2195 	if (devtab[j].resources)
2196 		kfree(devtab[j].resources, M_TEMP);
2197 	devtab[j].resources = new;
2198 	devtab[j].resource_count = i + 1;
2199 	return(i);
2200 }
2201 
2202 static int
2203 resource_match_string(int i, const char *resname, const char *value)
2204 {
2205 	int j;
2206 	struct config_resource *res;
2207 
2208 	for (j = 0, res = devtab[i].resources;
2209 	     j < devtab[i].resource_count; j++, res++)
2210 		if (!strcmp(res->name, resname)
2211 		    && res->type == RES_STRING
2212 		    && !strcmp(res->u.stringval, value))
2213 			return(j);
2214 	return(-1);
2215 }
2216 
2217 static int
2218 resource_find(const char *name, int unit, const char *resname,
2219 	      struct config_resource **result)
2220 {
2221 	int i, j;
2222 	struct config_resource *res;
2223 
2224 	/*
2225 	 * First check specific instances, then generic.
2226 	 */
2227 	for (i = 0; i < devtab_count; i++) {
2228 		if (devtab[i].unit < 0)
2229 			continue;
2230 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2231 			res = devtab[i].resources;
2232 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2233 				if (!strcmp(res->name, resname)) {
2234 					*result = res;
2235 					return(0);
2236 				}
2237 		}
2238 	}
2239 	for (i = 0; i < devtab_count; i++) {
2240 		if (devtab[i].unit >= 0)
2241 			continue;
2242 		/* XXX should this `&& devtab[i].unit == unit' be here? */
2243 		/* XXX if so, then the generic match does nothing */
2244 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2245 			res = devtab[i].resources;
2246 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2247 				if (!strcmp(res->name, resname)) {
2248 					*result = res;
2249 					return(0);
2250 				}
2251 		}
2252 	}
2253 	return(ENOENT);
2254 }
2255 
2256 static int
2257 resource_kenv(const char *name, int unit, const char *resname, long *result)
2258 {
2259 	const char *env;
2260 	char buf[64];
2261 
2262 	/*
2263 	 * DragonFly style loader.conf hinting
2264 	 */
2265 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2266 	if ((env = kgetenv(buf)) != NULL) {
2267 		*result = strtol(env, NULL, 0);
2268 		return(0);
2269 	}
2270 
2271 	/*
2272 	 * Also support FreeBSD style loader.conf hinting
2273 	 */
2274 	ksnprintf(buf, sizeof(buf), "hint.%s.%d.%s", name, unit, resname);
2275 	if ((env = kgetenv(buf)) != NULL) {
2276 		*result = strtol(env, NULL, 0);
2277 		return(0);
2278 	}
2279 
2280 	return (ENOENT);
2281 }
2282 
2283 int
2284 resource_int_value(const char *name, int unit, const char *resname, int *result)
2285 {
2286 	struct config_resource *res;
2287 	long kvalue = 0;
2288 	int error;
2289 
2290 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2291 		*result = (int)kvalue;
2292 		return 0;
2293 	}
2294 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2295 		return(error);
2296 	if (res->type != RES_INT)
2297 		return(EFTYPE);
2298 	*result = res->u.intval;
2299 	return(0);
2300 }
2301 
2302 int
2303 resource_long_value(const char *name, int unit, const char *resname,
2304 		    long *result)
2305 {
2306 	struct config_resource *res;
2307 	long kvalue;
2308 	int error;
2309 
2310 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2311 		*result = kvalue;
2312 		return 0;
2313 	}
2314 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2315 		return(error);
2316 	if (res->type != RES_LONG)
2317 		return(EFTYPE);
2318 	*result = res->u.longval;
2319 	return(0);
2320 }
2321 
2322 int
2323 resource_string_value(const char *name, int unit, const char *resname,
2324     const char **result)
2325 {
2326 	int error;
2327 	struct config_resource *res;
2328 	char buf[64];
2329 	const char *env;
2330 
2331 	/*
2332 	 * DragonFly style loader.conf hinting
2333 	 */
2334 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2335 	if ((env = kgetenv(buf)) != NULL) {
2336 		*result = env;
2337 		return 0;
2338 	}
2339 
2340 	/*
2341 	 * Also support FreeBSD style loader.conf hinting
2342 	 */
2343 	ksnprintf(buf, sizeof(buf), "hint.%s.%d.%s", name, unit, resname);
2344 	if ((env = kgetenv(buf)) != NULL) {
2345 		*result = env;
2346 		return 0;
2347 	}
2348 
2349 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2350 		return(error);
2351 	if (res->type != RES_STRING)
2352 		return(EFTYPE);
2353 	*result = res->u.stringval;
2354 	return(0);
2355 }
2356 
2357 int
2358 resource_query_string(int i, const char *resname, const char *value)
2359 {
2360 	if (i < 0)
2361 		i = 0;
2362 	else
2363 		i = i + 1;
2364 	for (; i < devtab_count; i++)
2365 		if (resource_match_string(i, resname, value) >= 0)
2366 			return(i);
2367 	return(-1);
2368 }
2369 
2370 int
2371 resource_locate(int i, const char *resname)
2372 {
2373 	if (i < 0)
2374 		i = 0;
2375 	else
2376 		i = i + 1;
2377 	for (; i < devtab_count; i++)
2378 		if (!strcmp(devtab[i].name, resname))
2379 			return(i);
2380 	return(-1);
2381 }
2382 
2383 int
2384 resource_count(void)
2385 {
2386 	return(devtab_count);
2387 }
2388 
2389 char *
2390 resource_query_name(int i)
2391 {
2392 	return(devtab[i].name);
2393 }
2394 
2395 int
2396 resource_query_unit(int i)
2397 {
2398 	return(devtab[i].unit);
2399 }
2400 
2401 static int
2402 resource_create(const char *name, int unit, const char *resname,
2403 		resource_type type, struct config_resource **result)
2404 {
2405 	int i, j;
2406 	struct config_resource *res = NULL;
2407 
2408 	for (i = 0; i < devtab_count; i++)
2409 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2410 			res = devtab[i].resources;
2411 			break;
2412 		}
2413 	if (res == NULL) {
2414 		i = resource_new_name(name, unit);
2415 		if (i < 0)
2416 			return(ENOMEM);
2417 		res = devtab[i].resources;
2418 	}
2419 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2420 		if (!strcmp(res->name, resname)) {
2421 			*result = res;
2422 			return(0);
2423 		}
2424 	j = resource_new_resname(i, resname, type);
2425 	if (j < 0)
2426 		return(ENOMEM);
2427 	res = &devtab[i].resources[j];
2428 	*result = res;
2429 	return(0);
2430 }
2431 
2432 int
2433 resource_set_int(const char *name, int unit, const char *resname, int value)
2434 {
2435 	int error;
2436 	struct config_resource *res;
2437 
2438 	error = resource_create(name, unit, resname, RES_INT, &res);
2439 	if (error)
2440 		return(error);
2441 	if (res->type != RES_INT)
2442 		return(EFTYPE);
2443 	res->u.intval = value;
2444 	return(0);
2445 }
2446 
2447 int
2448 resource_set_long(const char *name, int unit, const char *resname, long value)
2449 {
2450 	int error;
2451 	struct config_resource *res;
2452 
2453 	error = resource_create(name, unit, resname, RES_LONG, &res);
2454 	if (error)
2455 		return(error);
2456 	if (res->type != RES_LONG)
2457 		return(EFTYPE);
2458 	res->u.longval = value;
2459 	return(0);
2460 }
2461 
2462 int
2463 resource_set_string(const char *name, int unit, const char *resname,
2464 		    const char *value)
2465 {
2466 	int error;
2467 	struct config_resource *res;
2468 
2469 	error = resource_create(name, unit, resname, RES_STRING, &res);
2470 	if (error)
2471 		return(error);
2472 	if (res->type != RES_STRING)
2473 		return(EFTYPE);
2474 	if (res->u.stringval)
2475 		kfree(res->u.stringval, M_TEMP);
2476 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2477 	if (res->u.stringval == NULL)
2478 		return(ENOMEM);
2479 	strcpy(res->u.stringval, value);
2480 	return(0);
2481 }
2482 
2483 static void
2484 resource_cfgload(void *dummy __unused)
2485 {
2486 	struct config_resource *res, *cfgres;
2487 	int i, j;
2488 	int error;
2489 	char *name, *resname;
2490 	int unit;
2491 	resource_type type;
2492 	char *stringval;
2493 	int config_devtab_count;
2494 
2495 	config_devtab_count = devtab_count;
2496 	devtab = NULL;
2497 	devtab_count = 0;
2498 
2499 	for (i = 0; i < config_devtab_count; i++) {
2500 		name = config_devtab[i].name;
2501 		unit = config_devtab[i].unit;
2502 
2503 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2504 			cfgres = config_devtab[i].resources;
2505 			resname = cfgres[j].name;
2506 			type = cfgres[j].type;
2507 			error = resource_create(name, unit, resname, type,
2508 						&res);
2509 			if (error) {
2510 				kprintf("create resource %s%d: error %d\n",
2511 					name, unit, error);
2512 				continue;
2513 			}
2514 			if (res->type != type) {
2515 				kprintf("type mismatch %s%d: %d != %d\n",
2516 					name, unit, res->type, type);
2517 				continue;
2518 			}
2519 			switch (type) {
2520 			case RES_INT:
2521 				res->u.intval = cfgres[j].u.intval;
2522 				break;
2523 			case RES_LONG:
2524 				res->u.longval = cfgres[j].u.longval;
2525 				break;
2526 			case RES_STRING:
2527 				if (res->u.stringval)
2528 					kfree(res->u.stringval, M_TEMP);
2529 				stringval = cfgres[j].u.stringval;
2530 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2531 							  M_TEMP, M_INTWAIT);
2532 				if (res->u.stringval == NULL)
2533 					break;
2534 				strcpy(res->u.stringval, stringval);
2535 				break;
2536 			default:
2537 				panic("unknown resource type %d", type);
2538 			}
2539 		}
2540 	}
2541 }
2542 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0);
2543 
2544 
2545 /*======================================*/
2546 /*
2547  * Some useful method implementations to make life easier for bus drivers.
2548  */
2549 
2550 void
2551 resource_list_init(struct resource_list *rl)
2552 {
2553 	SLIST_INIT(rl);
2554 }
2555 
2556 void
2557 resource_list_free(struct resource_list *rl)
2558 {
2559 	struct resource_list_entry *rle;
2560 
2561 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2562 		if (rle->res)
2563 			panic("resource_list_free: resource entry is busy");
2564 		SLIST_REMOVE_HEAD(rl, link);
2565 		kfree(rle, M_BUS);
2566 	}
2567 }
2568 
2569 void
2570 resource_list_add(struct resource_list *rl, int type, int rid,
2571     u_long start, u_long end, u_long count, int cpuid)
2572 {
2573 	struct resource_list_entry *rle;
2574 
2575 	rle = resource_list_find(rl, type, rid);
2576 	if (rle == NULL) {
2577 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2578 			     M_INTWAIT);
2579 		SLIST_INSERT_HEAD(rl, rle, link);
2580 		rle->type = type;
2581 		rle->rid = rid;
2582 		rle->res = NULL;
2583 		rle->cpuid = -1;
2584 	}
2585 
2586 	if (rle->res)
2587 		panic("resource_list_add: resource entry is busy");
2588 
2589 	rle->start = start;
2590 	rle->end = end;
2591 	rle->count = count;
2592 
2593 	if (cpuid != -1) {
2594 		if (rle->cpuid != -1 && rle->cpuid != cpuid) {
2595 			panic("resource_list_add: moving from cpu%d -> cpu%d",
2596 			    rle->cpuid, cpuid);
2597 		}
2598 		rle->cpuid = cpuid;
2599 	}
2600 }
2601 
2602 struct resource_list_entry*
2603 resource_list_find(struct resource_list *rl,
2604 		   int type, int rid)
2605 {
2606 	struct resource_list_entry *rle;
2607 
2608 	SLIST_FOREACH(rle, rl, link)
2609 		if (rle->type == type && rle->rid == rid)
2610 			return(rle);
2611 	return(NULL);
2612 }
2613 
2614 void
2615 resource_list_delete(struct resource_list *rl,
2616 		     int type, int rid)
2617 {
2618 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2619 
2620 	if (rle) {
2621 		if (rle->res != NULL)
2622 			panic("resource_list_delete: resource has not been released");
2623 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2624 		kfree(rle, M_BUS);
2625 	}
2626 }
2627 
2628 struct resource *
2629 resource_list_alloc(struct resource_list *rl,
2630 		    device_t bus, device_t child,
2631 		    int type, int *rid,
2632 		    u_long start, u_long end,
2633 		    u_long count, u_int flags, int cpuid)
2634 {
2635 	struct resource_list_entry *rle = NULL;
2636 	int passthrough = (device_get_parent(child) != bus);
2637 	int isdefault = (start == 0UL && end == ~0UL);
2638 
2639 	if (passthrough) {
2640 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2641 					  type, rid,
2642 					  start, end, count, flags, cpuid));
2643 	}
2644 
2645 	rle = resource_list_find(rl, type, *rid);
2646 
2647 	if (!rle)
2648 		return(0);		/* no resource of that type/rid */
2649 
2650 	if (rle->res)
2651 		panic("resource_list_alloc: resource entry is busy");
2652 
2653 	if (isdefault) {
2654 		start = rle->start;
2655 		count = ulmax(count, rle->count);
2656 		end = ulmax(rle->end, start + count - 1);
2657 	}
2658 	cpuid = rle->cpuid;
2659 
2660 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2661 				      type, rid, start, end, count,
2662 				      flags, cpuid);
2663 
2664 	/*
2665 	 * Record the new range.
2666 	 */
2667 	if (rle->res) {
2668 		rle->start = rman_get_start(rle->res);
2669 		rle->end = rman_get_end(rle->res);
2670 		rle->count = count;
2671 	}
2672 
2673 	return(rle->res);
2674 }
2675 
2676 int
2677 resource_list_release(struct resource_list *rl,
2678 		      device_t bus, device_t child,
2679 		      int type, int rid, struct resource *res)
2680 {
2681 	struct resource_list_entry *rle = NULL;
2682 	int passthrough = (device_get_parent(child) != bus);
2683 	int error;
2684 
2685 	if (passthrough) {
2686 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2687 					    type, rid, res));
2688 	}
2689 
2690 	rle = resource_list_find(rl, type, rid);
2691 
2692 	if (!rle)
2693 		panic("resource_list_release: can't find resource");
2694 	if (!rle->res)
2695 		panic("resource_list_release: resource entry is not busy");
2696 
2697 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2698 				     type, rid, res);
2699 	if (error)
2700 		return(error);
2701 
2702 	rle->res = NULL;
2703 	return(0);
2704 }
2705 
2706 int
2707 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2708 			 const char *format)
2709 {
2710 	struct resource_list_entry *rle;
2711 	int printed, retval;
2712 
2713 	printed = 0;
2714 	retval = 0;
2715 	/* Yes, this is kinda cheating */
2716 	SLIST_FOREACH(rle, rl, link) {
2717 		if (rle->type == type) {
2718 			if (printed == 0)
2719 				retval += kprintf(" %s ", name);
2720 			else
2721 				retval += kprintf(",");
2722 			printed++;
2723 			retval += kprintf(format, rle->start);
2724 			if (rle->count > 1) {
2725 				retval += kprintf("-");
2726 				retval += kprintf(format, rle->start +
2727 						 rle->count - 1);
2728 			}
2729 		}
2730 	}
2731 	return(retval);
2732 }
2733 
2734 /*
2735  * Generic driver/device identify functions.  These will install a device
2736  * rendezvous point under the parent using the same name as the driver
2737  * name, which will at a later time be probed and attached.
2738  *
2739  * These functions are used when the parent does not 'scan' its bus for
2740  * matching devices, or for the particular devices using these functions,
2741  * or when the device is a pseudo or synthesized device (such as can be
2742  * found under firewire and ppbus).
2743  */
2744 int
2745 bus_generic_identify(driver_t *driver, device_t parent)
2746 {
2747 	if (parent->state == DS_ATTACHED)
2748 		return (0);
2749 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2750 	return (0);
2751 }
2752 
2753 int
2754 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2755 {
2756 	if (parent->state == DS_ATTACHED)
2757 		return (0);
2758 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2759 	return (0);
2760 }
2761 
2762 /*
2763  * Call DEVICE_IDENTIFY for each driver.
2764  */
2765 int
2766 bus_generic_probe(device_t dev)
2767 {
2768 	devclass_t dc = dev->devclass;
2769 	driverlink_t dl;
2770 
2771 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2772 		DEVICE_IDENTIFY(dl->driver, dev);
2773 	}
2774 
2775 	return(0);
2776 }
2777 
2778 /*
2779  * This is an aweful hack due to the isa bus and autoconf code not
2780  * probing the ISA devices until after everything else has configured.
2781  * The ISA bus did a dummy attach long ago so we have to set it back
2782  * to an earlier state so the probe thinks its the initial probe and
2783  * not a bus rescan.
2784  *
2785  * XXX remove by properly defering the ISA bus scan.
2786  */
2787 int
2788 bus_generic_probe_hack(device_t dev)
2789 {
2790 	if (dev->state == DS_ATTACHED) {
2791 		dev->state = DS_ALIVE;
2792 		bus_generic_probe(dev);
2793 		dev->state = DS_ATTACHED;
2794 	}
2795 	return (0);
2796 }
2797 
2798 int
2799 bus_generic_attach(device_t dev)
2800 {
2801 	device_t child;
2802 
2803 	TAILQ_FOREACH(child, &dev->children, link) {
2804 		device_probe_and_attach(child);
2805 	}
2806 
2807 	return(0);
2808 }
2809 
2810 int
2811 bus_generic_attach_gpri(device_t dev, u_int gpri)
2812 {
2813 	device_t child;
2814 
2815 	TAILQ_FOREACH(child, &dev->children, link) {
2816 		device_probe_and_attach_gpri(child, gpri);
2817 	}
2818 
2819 	return(0);
2820 }
2821 
2822 int
2823 bus_generic_detach(device_t dev)
2824 {
2825 	device_t child;
2826 	int error;
2827 
2828 	if (dev->state != DS_ATTACHED)
2829 		return(EBUSY);
2830 
2831 	TAILQ_FOREACH(child, &dev->children, link)
2832 		if ((error = device_detach(child)) != 0)
2833 			return(error);
2834 
2835 	return 0;
2836 }
2837 
2838 int
2839 bus_generic_shutdown(device_t dev)
2840 {
2841 	device_t child;
2842 
2843 	TAILQ_FOREACH(child, &dev->children, link)
2844 		device_shutdown(child);
2845 
2846 	return(0);
2847 }
2848 
2849 int
2850 bus_generic_suspend(device_t dev)
2851 {
2852 	int error;
2853 	device_t child, child2;
2854 
2855 	TAILQ_FOREACH(child, &dev->children, link) {
2856 		error = DEVICE_SUSPEND(child);
2857 		if (error) {
2858 			for (child2 = TAILQ_FIRST(&dev->children);
2859 			     child2 && child2 != child;
2860 			     child2 = TAILQ_NEXT(child2, link))
2861 				DEVICE_RESUME(child2);
2862 			return(error);
2863 		}
2864 	}
2865 	return(0);
2866 }
2867 
2868 int
2869 bus_generic_resume(device_t dev)
2870 {
2871 	device_t child;
2872 
2873 	TAILQ_FOREACH(child, &dev->children, link)
2874 		DEVICE_RESUME(child);
2875 		/* if resume fails, there's nothing we can usefully do... */
2876 
2877 	return(0);
2878 }
2879 
2880 int
2881 bus_print_child_header(device_t dev, device_t child)
2882 {
2883 	int retval = 0;
2884 
2885 	if (device_get_desc(child))
2886 		retval += device_printf(child, "<%s>", device_get_desc(child));
2887 	else
2888 		retval += kprintf("%s", device_get_nameunit(child));
2889 	if (bootverbose) {
2890 		if (child->state != DS_ATTACHED)
2891 			kprintf(" [tentative]");
2892 		else
2893 			kprintf(" [attached!]");
2894 	}
2895 	return(retval);
2896 }
2897 
2898 int
2899 bus_print_child_footer(device_t dev, device_t child)
2900 {
2901 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2902 }
2903 
2904 device_t
2905 bus_generic_add_child(device_t dev, device_t child, int order,
2906 		      const char *name, int unit)
2907 {
2908 	if (dev->parent)
2909 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2910 	else
2911 		dev = device_add_child_ordered(child, order, name, unit);
2912 	return(dev);
2913 
2914 }
2915 
2916 int
2917 bus_generic_print_child(device_t dev, device_t child)
2918 {
2919 	int retval = 0;
2920 
2921 	retval += bus_print_child_header(dev, child);
2922 	retval += bus_print_child_footer(dev, child);
2923 
2924 	return(retval);
2925 }
2926 
2927 int
2928 bus_generic_read_ivar(device_t dev, device_t child, int index,
2929 		      uintptr_t * result)
2930 {
2931 	int error;
2932 
2933 	if (dev->parent)
2934 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2935 	else
2936 		error = ENOENT;
2937 	return (error);
2938 }
2939 
2940 int
2941 bus_generic_write_ivar(device_t dev, device_t child, int index,
2942 		       uintptr_t value)
2943 {
2944 	int error;
2945 
2946 	if (dev->parent)
2947 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2948 	else
2949 		error = ENOENT;
2950 	return (error);
2951 }
2952 
2953 /*
2954  * Resource list are used for iterations, do not recurse.
2955  */
2956 struct resource_list *
2957 bus_generic_get_resource_list(device_t dev, device_t child)
2958 {
2959 	return (NULL);
2960 }
2961 
2962 void
2963 bus_generic_driver_added(device_t dev, driver_t *driver)
2964 {
2965 	device_t child;
2966 
2967 	DEVICE_IDENTIFY(driver, dev);
2968 	TAILQ_FOREACH(child, &dev->children, link) {
2969 		if (child->state == DS_NOTPRESENT)
2970 			device_probe_and_attach(child);
2971 	}
2972 }
2973 
2974 int
2975 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2976     int flags, driver_intr_t *intr, void *arg, void **cookiep,
2977     lwkt_serialize_t serializer, const char *desc)
2978 {
2979 	/* Propagate up the bus hierarchy until someone handles it. */
2980 	if (dev->parent) {
2981 		return BUS_SETUP_INTR(dev->parent, child, irq, flags,
2982 		    intr, arg, cookiep, serializer, desc);
2983 	} else {
2984 		return EINVAL;
2985 	}
2986 }
2987 
2988 int
2989 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2990 			  void *cookie)
2991 {
2992 	/* Propagate up the bus hierarchy until someone handles it. */
2993 	if (dev->parent)
2994 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2995 	else
2996 		return(EINVAL);
2997 }
2998 
2999 int
3000 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
3001 {
3002 	if (dev->parent)
3003 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
3004 	else
3005 		return(0);
3006 }
3007 
3008 void
3009 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
3010 {
3011 	if (dev->parent)
3012 		BUS_ENABLE_INTR(dev->parent, child, cookie);
3013 }
3014 
3015 int
3016 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
3017     enum intr_polarity pol)
3018 {
3019 	/* Propagate up the bus hierarchy until someone handles it. */
3020 	if (dev->parent)
3021 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
3022 	else
3023 		return(EINVAL);
3024 }
3025 
3026 struct resource *
3027 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3028     u_long start, u_long end, u_long count, u_int flags, int cpuid)
3029 {
3030 	/* Propagate up the bus hierarchy until someone handles it. */
3031 	if (dev->parent)
3032 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3033 					   start, end, count, flags, cpuid));
3034 	else
3035 		return(NULL);
3036 }
3037 
3038 int
3039 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3040 			     struct resource *r)
3041 {
3042 	/* Propagate up the bus hierarchy until someone handles it. */
3043 	if (dev->parent)
3044 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
3045 	else
3046 		return(EINVAL);
3047 }
3048 
3049 int
3050 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3051 			      struct resource *r)
3052 {
3053 	/* Propagate up the bus hierarchy until someone handles it. */
3054 	if (dev->parent)
3055 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
3056 	else
3057 		return(EINVAL);
3058 }
3059 
3060 int
3061 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3062 				int rid, struct resource *r)
3063 {
3064 	/* Propagate up the bus hierarchy until someone handles it. */
3065 	if (dev->parent)
3066 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3067 					       r));
3068 	else
3069 		return(EINVAL);
3070 }
3071 
3072 int
3073 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
3074 			 u_long *startp, u_long *countp)
3075 {
3076 	int error;
3077 
3078 	error = ENOENT;
3079 	if (dev->parent) {
3080 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
3081 					 startp, countp);
3082 	}
3083 	return (error);
3084 }
3085 
3086 int
3087 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
3088 			u_long start, u_long count, int cpuid)
3089 {
3090 	int error;
3091 
3092 	error = EINVAL;
3093 	if (dev->parent) {
3094 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
3095 					 start, count, cpuid);
3096 	}
3097 	return (error);
3098 }
3099 
3100 void
3101 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
3102 {
3103 	if (dev->parent)
3104 		BUS_DELETE_RESOURCE(dev, child, type, rid);
3105 }
3106 
3107 /**
3108  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3109  *
3110  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3111  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3112  */
3113 bus_dma_tag_t
3114 bus_generic_get_dma_tag(device_t dev, device_t child)
3115 {
3116 
3117 	/* Propagate up the bus hierarchy until someone handles it. */
3118 	if (dev->parent != NULL)
3119 		return (BUS_GET_DMA_TAG(dev->parent, child));
3120 	return (NULL);
3121 }
3122 
3123 int
3124 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3125     u_long *startp, u_long *countp)
3126 {
3127 	struct resource_list *rl = NULL;
3128 	struct resource_list_entry *rle = NULL;
3129 
3130 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3131 	if (!rl)
3132 		return(EINVAL);
3133 
3134 	rle = resource_list_find(rl, type, rid);
3135 	if (!rle)
3136 		return(ENOENT);
3137 
3138 	if (startp)
3139 		*startp = rle->start;
3140 	if (countp)
3141 		*countp = rle->count;
3142 
3143 	return(0);
3144 }
3145 
3146 int
3147 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3148     u_long start, u_long count, int cpuid)
3149 {
3150 	struct resource_list *rl = NULL;
3151 
3152 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3153 	if (!rl)
3154 		return(EINVAL);
3155 
3156 	resource_list_add(rl, type, rid, start, (start + count - 1), count,
3157 	    cpuid);
3158 
3159 	return(0);
3160 }
3161 
3162 void
3163 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3164 {
3165 	struct resource_list *rl = NULL;
3166 
3167 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3168 	if (!rl)
3169 		return;
3170 
3171 	resource_list_delete(rl, type, rid);
3172 }
3173 
3174 int
3175 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3176     int rid, struct resource *r)
3177 {
3178 	struct resource_list *rl = NULL;
3179 
3180 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3181 	if (!rl)
3182 		return(EINVAL);
3183 
3184 	return(resource_list_release(rl, dev, child, type, rid, r));
3185 }
3186 
3187 struct resource *
3188 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3189     int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid)
3190 {
3191 	struct resource_list *rl = NULL;
3192 
3193 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3194 	if (!rl)
3195 		return(NULL);
3196 
3197 	return(resource_list_alloc(rl, dev, child, type, rid,
3198 	    start, end, count, flags, cpuid));
3199 }
3200 
3201 int
3202 bus_generic_child_present(device_t bus, device_t child)
3203 {
3204 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
3205 }
3206 
3207 
3208 /*
3209  * Some convenience functions to make it easier for drivers to use the
3210  * resource-management functions.  All these really do is hide the
3211  * indirection through the parent's method table, making for slightly
3212  * less-wordy code.  In the future, it might make sense for this code
3213  * to maintain some sort of a list of resources allocated by each device.
3214  */
3215 int
3216 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3217     struct resource **res)
3218 {
3219 	int i;
3220 
3221 	for (i = 0; rs[i].type != -1; i++)
3222 	        res[i] = NULL;
3223 	for (i = 0; rs[i].type != -1; i++) {
3224 		res[i] = bus_alloc_resource_any(dev,
3225 		    rs[i].type, &rs[i].rid, rs[i].flags);
3226 		if (res[i] == NULL) {
3227 			bus_release_resources(dev, rs, res);
3228 			return (ENXIO);
3229 		}
3230 	}
3231 	return (0);
3232 }
3233 
3234 void
3235 bus_release_resources(device_t dev, const struct resource_spec *rs,
3236     struct resource **res)
3237 {
3238 	int i;
3239 
3240 	for (i = 0; rs[i].type != -1; i++)
3241 		if (res[i] != NULL) {
3242 			bus_release_resource(
3243 			    dev, rs[i].type, rs[i].rid, res[i]);
3244 			res[i] = NULL;
3245 		}
3246 }
3247 
3248 struct resource *
3249 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3250 		   u_long count, u_int flags)
3251 {
3252 	if (dev->parent == NULL)
3253 		return(0);
3254 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3255 				  count, flags, -1));
3256 }
3257 
3258 struct resource *
3259 bus_alloc_legacy_irq_resource(device_t dev, int *rid, u_long irq, u_int flags)
3260 {
3261 	if (dev->parent == NULL)
3262 		return(0);
3263 	return BUS_ALLOC_RESOURCE(dev->parent, dev, SYS_RES_IRQ, rid,
3264 	    irq, irq, 1, flags, machintr_legacy_intr_cpuid(irq));
3265 }
3266 
3267 int
3268 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3269 {
3270 	if (dev->parent == NULL)
3271 		return(EINVAL);
3272 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3273 }
3274 
3275 int
3276 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3277 {
3278 	if (dev->parent == NULL)
3279 		return(EINVAL);
3280 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3281 }
3282 
3283 int
3284 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3285 {
3286 	if (dev->parent == NULL)
3287 		return(EINVAL);
3288 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3289 }
3290 
3291 int
3292 bus_setup_intr_descr(device_t dev, struct resource *r, int flags,
3293     driver_intr_t handler, void *arg, void **cookiep,
3294     lwkt_serialize_t serializer, const char *desc)
3295 {
3296 	if (dev->parent == NULL)
3297 		return EINVAL;
3298 	return BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
3299 	    cookiep, serializer, desc);
3300 }
3301 
3302 int
3303 bus_setup_intr(device_t dev, struct resource *r, int flags,
3304     driver_intr_t handler, void *arg, void **cookiep,
3305     lwkt_serialize_t serializer)
3306 {
3307 	return bus_setup_intr_descr(dev, r, flags, handler, arg, cookiep,
3308 	    serializer, NULL);
3309 }
3310 
3311 int
3312 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3313 {
3314 	if (dev->parent == NULL)
3315 		return(EINVAL);
3316 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3317 }
3318 
3319 void
3320 bus_enable_intr(device_t dev, void *cookie)
3321 {
3322 	if (dev->parent)
3323 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
3324 }
3325 
3326 int
3327 bus_disable_intr(device_t dev, void *cookie)
3328 {
3329 	if (dev->parent)
3330 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
3331 	else
3332 		return(0);
3333 }
3334 
3335 int
3336 bus_set_resource(device_t dev, int type, int rid,
3337 		 u_long start, u_long count, int cpuid)
3338 {
3339 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3340 				start, count, cpuid));
3341 }
3342 
3343 int
3344 bus_get_resource(device_t dev, int type, int rid,
3345 		 u_long *startp, u_long *countp)
3346 {
3347 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3348 				startp, countp));
3349 }
3350 
3351 u_long
3352 bus_get_resource_start(device_t dev, int type, int rid)
3353 {
3354 	u_long start, count;
3355 	int error;
3356 
3357 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3358 				 &start, &count);
3359 	if (error)
3360 		return(0);
3361 	return(start);
3362 }
3363 
3364 u_long
3365 bus_get_resource_count(device_t dev, int type, int rid)
3366 {
3367 	u_long start, count;
3368 	int error;
3369 
3370 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3371 				 &start, &count);
3372 	if (error)
3373 		return(0);
3374 	return(count);
3375 }
3376 
3377 void
3378 bus_delete_resource(device_t dev, int type, int rid)
3379 {
3380 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3381 }
3382 
3383 int
3384 bus_child_present(device_t child)
3385 {
3386 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3387 }
3388 
3389 int
3390 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3391 {
3392 	device_t parent;
3393 
3394 	parent = device_get_parent(child);
3395 	if (parent == NULL) {
3396 		*buf = '\0';
3397 		return (0);
3398 	}
3399 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3400 }
3401 
3402 int
3403 bus_child_location_str(device_t child, char *buf, size_t buflen)
3404 {
3405 	device_t parent;
3406 
3407 	parent = device_get_parent(child);
3408 	if (parent == NULL) {
3409 		*buf = '\0';
3410 		return (0);
3411 	}
3412 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3413 }
3414 
3415 /**
3416  * @brief Wrapper function for BUS_GET_DMA_TAG().
3417  *
3418  * This function simply calls the BUS_GET_DMA_TAG() method of the
3419  * parent of @p dev.
3420  */
3421 bus_dma_tag_t
3422 bus_get_dma_tag(device_t dev)
3423 {
3424 	device_t parent;
3425 
3426 	parent = device_get_parent(dev);
3427 	if (parent == NULL)
3428 		return (NULL);
3429 	return (BUS_GET_DMA_TAG(parent, dev));
3430 }
3431 
3432 static int
3433 root_print_child(device_t dev, device_t child)
3434 {
3435 	return(0);
3436 }
3437 
3438 static int
3439 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3440 		void **cookiep, lwkt_serialize_t serializer, const char *desc)
3441 {
3442 	/*
3443 	 * If an interrupt mapping gets to here something bad has happened.
3444 	 */
3445 	panic("root_setup_intr");
3446 }
3447 
3448 /*
3449  * If we get here, assume that the device is permanant and really is
3450  * present in the system.  Removable bus drivers are expected to intercept
3451  * this call long before it gets here.  We return -1 so that drivers that
3452  * really care can check vs -1 or some ERRNO returned higher in the food
3453  * chain.
3454  */
3455 static int
3456 root_child_present(device_t dev, device_t child)
3457 {
3458 	return(-1);
3459 }
3460 
3461 /*
3462  * XXX NOTE! other defaults may be set in bus_if.m
3463  */
3464 static kobj_method_t root_methods[] = {
3465 	/* Device interface */
3466 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3467 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3468 	KOBJMETHOD(device_resume,	bus_generic_resume),
3469 
3470 	/* Bus interface */
3471 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
3472 	KOBJMETHOD(bus_print_child,	root_print_child),
3473 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3474 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3475 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3476 	KOBJMETHOD(bus_child_present,   root_child_present),
3477 
3478 	KOBJMETHOD_END
3479 };
3480 
3481 static driver_t root_driver = {
3482 	"root",
3483 	root_methods,
3484 	1,			/* no softc */
3485 };
3486 
3487 device_t	root_bus;
3488 devclass_t	root_devclass;
3489 
3490 static int
3491 root_bus_module_handler(module_t mod, int what, void* arg)
3492 {
3493 	switch (what) {
3494 	case MOD_LOAD:
3495 		TAILQ_INIT(&bus_data_devices);
3496 		root_bus = make_device(NULL, "root", 0);
3497 		root_bus->desc = "System root bus";
3498 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3499 		root_bus->driver = &root_driver;
3500 		root_bus->state = DS_ALIVE;
3501 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3502 		devinit();
3503 		return(0);
3504 
3505 	case MOD_SHUTDOWN:
3506 		device_shutdown(root_bus);
3507 		return(0);
3508 	default:
3509 		return(0);
3510 	}
3511 }
3512 
3513 static moduledata_t root_bus_mod = {
3514 	"rootbus",
3515 	root_bus_module_handler,
3516 	0
3517 };
3518 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3519 
3520 void
3521 root_bus_configure(void)
3522 {
3523 	int warncount;
3524 	device_t dev;
3525 
3526 	PDEBUG(("."));
3527 
3528 	/*
3529 	 * handle device_identify based device attachments to the root_bus
3530 	 * (typically nexus).
3531 	 */
3532 	bus_generic_probe(root_bus);
3533 
3534 	/*
3535 	 * Probe and attach the devices under root_bus.
3536 	 */
3537 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3538 		device_probe_and_attach(dev);
3539 	}
3540 
3541 	/*
3542 	 * Wait for all asynchronous attaches to complete.  If we don't
3543 	 * our legacy ISA bus scan could steal device unit numbers or
3544 	 * even I/O ports.
3545 	 */
3546 	warncount = 10;
3547 	if (numasyncthreads)
3548 		kprintf("Waiting for async drivers to attach\n");
3549 	while (numasyncthreads > 0) {
3550 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3551 			--warncount;
3552 		if (warncount == 0) {
3553 			kprintf("Warning: Still waiting for %d "
3554 				"drivers to attach\n", numasyncthreads);
3555 		} else if (warncount == -30) {
3556 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3557 			break;
3558 		}
3559 	}
3560 	root_bus->state = DS_ATTACHED;
3561 }
3562 
3563 int
3564 driver_module_handler(module_t mod, int what, void *arg)
3565 {
3566 	int error;
3567 	struct driver_module_data *dmd;
3568 	devclass_t bus_devclass;
3569 	kobj_class_t driver;
3570         const char *parentname;
3571 
3572 	dmd = (struct driver_module_data *)arg;
3573 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3574 	error = 0;
3575 
3576 	switch (what) {
3577 	case MOD_LOAD:
3578 		if (dmd->dmd_chainevh)
3579 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3580 
3581 		driver = dmd->dmd_driver;
3582 		PDEBUG(("Loading module: driver %s on bus %s",
3583 		        DRIVERNAME(driver), dmd->dmd_busname));
3584 
3585 		/*
3586 		 * If the driver has any base classes, make the
3587 		 * devclass inherit from the devclass of the driver's
3588 		 * first base class. This will allow the system to
3589 		 * search for drivers in both devclasses for children
3590 		 * of a device using this driver.
3591 		 */
3592 		if (driver->baseclasses)
3593 			parentname = driver->baseclasses[0]->name;
3594 		else
3595 			parentname = NULL;
3596 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3597 							    parentname, TRUE);
3598 
3599 		error = devclass_add_driver(bus_devclass, driver);
3600 		if (error)
3601 			break;
3602 		break;
3603 
3604 	case MOD_UNLOAD:
3605 		PDEBUG(("Unloading module: driver %s from bus %s",
3606 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3607 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3608 
3609 		if (!error && dmd->dmd_chainevh)
3610 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3611 		break;
3612 	}
3613 
3614 	return (error);
3615 }
3616 
3617 #ifdef BUS_DEBUG
3618 
3619 /*
3620  * The _short versions avoid iteration by not calling anything that prints
3621  * more than oneliners. I love oneliners.
3622  */
3623 
3624 static void
3625 print_device_short(device_t dev, int indent)
3626 {
3627 	if (!dev)
3628 		return;
3629 
3630 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3631 		      dev->unit, dev->desc,
3632 		      (dev->parent? "":"no "),
3633 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3634 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3635 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3636 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3637 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3638 		      (dev->ivars? "":"no "),
3639 		      (dev->softc? "":"no "),
3640 		      dev->busy));
3641 }
3642 
3643 static void
3644 print_device(device_t dev, int indent)
3645 {
3646 	if (!dev)
3647 		return;
3648 
3649 	print_device_short(dev, indent);
3650 
3651 	indentprintf(("Parent:\n"));
3652 	print_device_short(dev->parent, indent+1);
3653 	indentprintf(("Driver:\n"));
3654 	print_driver_short(dev->driver, indent+1);
3655 	indentprintf(("Devclass:\n"));
3656 	print_devclass_short(dev->devclass, indent+1);
3657 }
3658 
3659 /*
3660  * Print the device and all its children (indented).
3661  */
3662 void
3663 print_device_tree_short(device_t dev, int indent)
3664 {
3665 	device_t child;
3666 
3667 	if (!dev)
3668 		return;
3669 
3670 	print_device_short(dev, indent);
3671 
3672 	TAILQ_FOREACH(child, &dev->children, link)
3673 		print_device_tree_short(child, indent+1);
3674 }
3675 
3676 /*
3677  * Print the device and all its children (indented).
3678  */
3679 void
3680 print_device_tree(device_t dev, int indent)
3681 {
3682 	device_t child;
3683 
3684 	if (!dev)
3685 		return;
3686 
3687 	print_device(dev, indent);
3688 
3689 	TAILQ_FOREACH(child, &dev->children, link)
3690 		print_device_tree(child, indent+1);
3691 }
3692 
3693 static void
3694 print_driver_short(driver_t *driver, int indent)
3695 {
3696 	if (!driver)
3697 		return;
3698 
3699 	indentprintf(("driver %s: softc size = %zu\n",
3700 		      driver->name, driver->size));
3701 }
3702 
3703 static void
3704 print_driver(driver_t *driver, int indent)
3705 {
3706 	if (!driver)
3707 		return;
3708 
3709 	print_driver_short(driver, indent);
3710 }
3711 
3712 
3713 static void
3714 print_driver_list(driver_list_t drivers, int indent)
3715 {
3716 	driverlink_t driver;
3717 
3718 	TAILQ_FOREACH(driver, &drivers, link)
3719 		print_driver(driver->driver, indent);
3720 }
3721 
3722 static void
3723 print_devclass_short(devclass_t dc, int indent)
3724 {
3725 	if (!dc)
3726 		return;
3727 
3728 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3729 }
3730 
3731 static void
3732 print_devclass(devclass_t dc, int indent)
3733 {
3734 	int i;
3735 
3736 	if (!dc)
3737 		return;
3738 
3739 	print_devclass_short(dc, indent);
3740 	indentprintf(("Drivers:\n"));
3741 	print_driver_list(dc->drivers, indent+1);
3742 
3743 	indentprintf(("Devices:\n"));
3744 	for (i = 0; i < dc->maxunit; i++)
3745 		if (dc->devices[i])
3746 			print_device(dc->devices[i], indent+1);
3747 }
3748 
3749 void
3750 print_devclass_list_short(void)
3751 {
3752 	devclass_t dc;
3753 
3754 	kprintf("Short listing of devclasses, drivers & devices:\n");
3755 	TAILQ_FOREACH(dc, &devclasses, link) {
3756 		print_devclass_short(dc, 0);
3757 	}
3758 }
3759 
3760 void
3761 print_devclass_list(void)
3762 {
3763 	devclass_t dc;
3764 
3765 	kprintf("Full listing of devclasses, drivers & devices:\n");
3766 	TAILQ_FOREACH(dc, &devclasses, link) {
3767 		print_devclass(dc, 0);
3768 	}
3769 }
3770 
3771 #endif
3772 
3773 /*
3774  * Check to see if a device is disabled via a disabled hint.
3775  */
3776 int
3777 resource_disabled(const char *name, int unit)
3778 {
3779 	int error, value;
3780 
3781 	error = resource_int_value(name, unit, "disabled", &value);
3782 	if (error)
3783 	       return(0);
3784 	return(value);
3785 }
3786 
3787 /*
3788  * User-space access to the device tree.
3789  *
3790  * We implement a small set of nodes:
3791  *
3792  * hw.bus			Single integer read method to obtain the
3793  *				current generation count.
3794  * hw.bus.devices		Reads the entire device tree in flat space.
3795  * hw.bus.rman			Resource manager interface
3796  *
3797  * We might like to add the ability to scan devclasses and/or drivers to
3798  * determine what else is currently loaded/available.
3799  */
3800 
3801 static int
3802 sysctl_bus(SYSCTL_HANDLER_ARGS)
3803 {
3804 	struct u_businfo	ubus;
3805 
3806 	ubus.ub_version = BUS_USER_VERSION;
3807 	ubus.ub_generation = bus_data_generation;
3808 
3809 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3810 }
3811 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3812     "bus-related data");
3813 
3814 static int
3815 sysctl_devices(SYSCTL_HANDLER_ARGS)
3816 {
3817 	int			*name = (int *)arg1;
3818 	u_int			namelen = arg2;
3819 	int			index;
3820 	device_t		dev;
3821 	struct u_device		udev;	/* XXX this is a bit big */
3822 	int			error;
3823 
3824 	if (namelen != 2)
3825 		return (EINVAL);
3826 
3827 	if (bus_data_generation_check(name[0]))
3828 		return (EINVAL);
3829 
3830 	index = name[1];
3831 
3832 	/*
3833 	 * Scan the list of devices, looking for the requested index.
3834 	 */
3835 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3836 		if (index-- == 0)
3837 			break;
3838 	}
3839 	if (dev == NULL)
3840 		return (ENOENT);
3841 
3842 	/*
3843 	 * Populate the return array.
3844 	 */
3845 	bzero(&udev, sizeof(udev));
3846 	udev.dv_handle = (uintptr_t)dev;
3847 	udev.dv_parent = (uintptr_t)dev->parent;
3848 	if (dev->nameunit != NULL)
3849 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3850 	if (dev->desc != NULL)
3851 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3852 	if (dev->driver != NULL && dev->driver->name != NULL)
3853 		strlcpy(udev.dv_drivername, dev->driver->name,
3854 		    sizeof(udev.dv_drivername));
3855 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3856 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3857 	udev.dv_devflags = dev->devflags;
3858 	udev.dv_flags = dev->flags;
3859 	udev.dv_state = dev->state;
3860 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3861 	return (error);
3862 }
3863 
3864 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3865     "system device tree");
3866 
3867 int
3868 bus_data_generation_check(int generation)
3869 {
3870 	if (generation != bus_data_generation)
3871 		return (1);
3872 
3873 	/* XXX generate optimised lists here? */
3874 	return (0);
3875 }
3876 
3877 void
3878 bus_data_generation_update(void)
3879 {
3880 	bus_data_generation++;
3881 }
3882 
3883 const char *
3884 intr_str_polarity(enum intr_polarity pola)
3885 {
3886 	switch (pola) {
3887 	case INTR_POLARITY_LOW:
3888 		return "low";
3889 
3890 	case INTR_POLARITY_HIGH:
3891 		return "high";
3892 
3893 	case INTR_POLARITY_CONFORM:
3894 		return "conform";
3895 	}
3896 	return "unknown";
3897 }
3898 
3899 const char *
3900 intr_str_trigger(enum intr_trigger trig)
3901 {
3902 	switch (trig) {
3903 	case INTR_TRIGGER_EDGE:
3904 		return "edge";
3905 
3906 	case INTR_TRIGGER_LEVEL:
3907 		return "level";
3908 
3909 	case INTR_TRIGGER_CONFORM:
3910 		return "conform";
3911 	}
3912 	return "unknown";
3913 }
3914 
3915 int
3916 device_getenv_int(device_t dev, const char *knob, int def)
3917 {
3918 	char env[128];
3919 
3920 	/* Deprecated; for compat */
3921 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3922 	kgetenv_int(env, &def);
3923 
3924 	/* Prefer dev.driver.unit.knob */
3925 	ksnprintf(env, sizeof(env), "dev.%s.%d.%s",
3926 	    device_get_name(dev), device_get_unit(dev), knob);
3927 	kgetenv_int(env, &def);
3928 
3929 	return def;
3930 }
3931 
3932 void
3933 device_getenv_string(device_t dev, const char *knob, char * __restrict data,
3934     int dlen, const char * __restrict def)
3935 {
3936 	char env[128];
3937 
3938 	strlcpy(data, def, dlen);
3939 
3940 	/* Deprecated; for compat */
3941 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3942 	kgetenv_string(env, data, dlen);
3943 
3944 	/* Prefer dev.driver.unit.knob */
3945 	ksnprintf(env, sizeof(env), "dev.%s.%d.%s",
3946 	    device_get_name(dev), device_get_unit(dev), knob);
3947 	kgetenv_string(env, data, dlen);
3948 }
3949