xref: /dragonfly/sys/kern/subr_bus.c (revision 8accc937)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  */
28 
29 #include "opt_bus.h"
30 
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/kobj.h>
37 #include <sys/bus_private.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/device.h>
43 #include <sys/lock.h>
44 #include <sys/conf.h>
45 #include <sys/uio.h>
46 #include <sys/filio.h>
47 #include <sys/event.h>
48 #include <sys/signalvar.h>
49 #include <sys/machintr.h>
50 
51 #include <machine/stdarg.h>	/* for device_printf() */
52 
53 #include <sys/thread2.h>
54 #include <sys/mplock2.h>
55 
56 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
57 
58 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
59 
60 #ifdef BUS_DEBUG
61 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
62 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
63 #define DRIVERNAME(d)	((d)? d->name : "no driver")
64 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
65 
66 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
67  * prevent syslog from deleting initial spaces
68  */
69 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
70 
71 static void	print_device_short(device_t dev, int indent);
72 static void	print_device(device_t dev, int indent);
73 void		print_device_tree_short(device_t dev, int indent);
74 void		print_device_tree(device_t dev, int indent);
75 static void	print_driver_short(driver_t *driver, int indent);
76 static void	print_driver(driver_t *driver, int indent);
77 static void	print_driver_list(driver_list_t drivers, int indent);
78 static void	print_devclass_short(devclass_t dc, int indent);
79 static void	print_devclass(devclass_t dc, int indent);
80 void		print_devclass_list_short(void);
81 void		print_devclass_list(void);
82 
83 #else
84 /* Make the compiler ignore the function calls */
85 #define PDEBUG(a)			/* nop */
86 #define DEVICENAME(d)			/* nop */
87 #define DRIVERNAME(d)			/* nop */
88 #define DEVCLANAME(d)			/* nop */
89 
90 #define print_device_short(d,i)		/* nop */
91 #define print_device(d,i)		/* nop */
92 #define print_device_tree_short(d,i)	/* nop */
93 #define print_device_tree(d,i)		/* nop */
94 #define print_driver_short(d,i)		/* nop */
95 #define print_driver(d,i)		/* nop */
96 #define print_driver_list(d,i)		/* nop */
97 #define print_devclass_short(d,i)	/* nop */
98 #define print_devclass(d,i)		/* nop */
99 #define print_devclass_list_short()	/* nop */
100 #define print_devclass_list()		/* nop */
101 #endif
102 
103 static void	device_attach_async(device_t dev);
104 static void	device_attach_thread(void *arg);
105 static int	device_doattach(device_t dev);
106 
107 static int do_async_attach = 0;
108 static int numasyncthreads;
109 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
110 
111 /*
112  * /dev/devctl implementation
113  */
114 
115 /*
116  * This design allows only one reader for /dev/devctl.  This is not desirable
117  * in the long run, but will get a lot of hair out of this implementation.
118  * Maybe we should make this device a clonable device.
119  *
120  * Also note: we specifically do not attach a device to the device_t tree
121  * to avoid potential chicken and egg problems.  One could argue that all
122  * of this belongs to the root node.  One could also further argue that the
123  * sysctl interface that we have not might more properly be an ioctl
124  * interface, but at this stage of the game, I'm not inclined to rock that
125  * boat.
126  *
127  * I'm also not sure that the SIGIO support is done correctly or not, as
128  * I copied it from a driver that had SIGIO support that likely hasn't been
129  * tested since 3.4 or 2.2.8!
130  */
131 
132 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
133 static int devctl_disable = 0;
134 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
135 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
136     sysctl_devctl_disable, "I", "devctl disable");
137 
138 static d_open_t		devopen;
139 static d_close_t	devclose;
140 static d_read_t		devread;
141 static d_ioctl_t	devioctl;
142 static d_kqfilter_t	devkqfilter;
143 
144 static struct dev_ops devctl_ops = {
145 	{ "devctl", 0, 0 },
146 	.d_open =	devopen,
147 	.d_close =	devclose,
148 	.d_read =	devread,
149 	.d_ioctl =	devioctl,
150 	.d_kqfilter =	devkqfilter
151 };
152 
153 struct dev_event_info
154 {
155 	char *dei_data;
156 	TAILQ_ENTRY(dev_event_info) dei_link;
157 };
158 
159 TAILQ_HEAD(devq, dev_event_info);
160 
161 static struct dev_softc
162 {
163 	int	inuse;
164 	int	nonblock;
165 	struct lock lock;
166 	struct kqinfo kq;
167 	struct devq devq;
168 	struct proc *async_proc;
169 } devsoftc;
170 
171 static void
172 devinit(void)
173 {
174 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
175 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
176 	TAILQ_INIT(&devsoftc.devq);
177 }
178 
179 static int
180 devopen(struct dev_open_args *ap)
181 {
182 	if (devsoftc.inuse)
183 		return (EBUSY);
184 	/* move to init */
185 	devsoftc.inuse = 1;
186 	devsoftc.nonblock = 0;
187 	devsoftc.async_proc = NULL;
188 	return (0);
189 }
190 
191 static int
192 devclose(struct dev_close_args *ap)
193 {
194 	devsoftc.inuse = 0;
195 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
196 	wakeup(&devsoftc);
197 	lockmgr(&devsoftc.lock, LK_RELEASE);
198 
199 	return (0);
200 }
201 
202 /*
203  * The read channel for this device is used to report changes to
204  * userland in realtime.  We are required to free the data as well as
205  * the n1 object because we allocate them separately.  Also note that
206  * we return one record at a time.  If you try to read this device a
207  * character at a time, you will lose the rest of the data.  Listening
208  * programs are expected to cope.
209  */
210 static int
211 devread(struct dev_read_args *ap)
212 {
213 	struct uio *uio = ap->a_uio;
214 	struct dev_event_info *n1;
215 	int rv;
216 
217 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
218 	while (TAILQ_EMPTY(&devsoftc.devq)) {
219 		if (devsoftc.nonblock) {
220 			lockmgr(&devsoftc.lock, LK_RELEASE);
221 			return (EAGAIN);
222 		}
223 		tsleep_interlock(&devsoftc, PCATCH);
224 		lockmgr(&devsoftc.lock, LK_RELEASE);
225 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
226 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
227 		if (rv) {
228 			/*
229 			 * Need to translate ERESTART to EINTR here? -- jake
230 			 */
231 			lockmgr(&devsoftc.lock, LK_RELEASE);
232 			return (rv);
233 		}
234 	}
235 	n1 = TAILQ_FIRST(&devsoftc.devq);
236 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
237 	lockmgr(&devsoftc.lock, LK_RELEASE);
238 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
239 	kfree(n1->dei_data, M_BUS);
240 	kfree(n1, M_BUS);
241 	return (rv);
242 }
243 
244 static	int
245 devioctl(struct dev_ioctl_args *ap)
246 {
247 	switch (ap->a_cmd) {
248 
249 	case FIONBIO:
250 		if (*(int*)ap->a_data)
251 			devsoftc.nonblock = 1;
252 		else
253 			devsoftc.nonblock = 0;
254 		return (0);
255 	case FIOASYNC:
256 		if (*(int*)ap->a_data)
257 			devsoftc.async_proc = curproc;
258 		else
259 			devsoftc.async_proc = NULL;
260 		return (0);
261 
262 		/* (un)Support for other fcntl() calls. */
263 	case FIOCLEX:
264 	case FIONCLEX:
265 	case FIONREAD:
266 	case FIOSETOWN:
267 	case FIOGETOWN:
268 	default:
269 		break;
270 	}
271 	return (ENOTTY);
272 }
273 
274 static void dev_filter_detach(struct knote *);
275 static int dev_filter_read(struct knote *, long);
276 
277 static struct filterops dev_filtops =
278 	{ FILTEROP_ISFD, NULL, dev_filter_detach, dev_filter_read };
279 
280 static int
281 devkqfilter(struct dev_kqfilter_args *ap)
282 {
283 	struct knote *kn = ap->a_kn;
284 	struct klist *klist;
285 
286 	ap->a_result = 0;
287 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
288 
289 	switch (kn->kn_filter) {
290 	case EVFILT_READ:
291 		kn->kn_fop = &dev_filtops;
292 		break;
293 	default:
294 		ap->a_result = EOPNOTSUPP;
295 		lockmgr(&devsoftc.lock, LK_RELEASE);
296 		return (0);
297 	}
298 
299 	klist = &devsoftc.kq.ki_note;
300 	knote_insert(klist, kn);
301 
302 	lockmgr(&devsoftc.lock, LK_RELEASE);
303 
304 	return (0);
305 }
306 
307 static void
308 dev_filter_detach(struct knote *kn)
309 {
310 	struct klist *klist;
311 
312 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
313 	klist = &devsoftc.kq.ki_note;
314 	knote_remove(klist, kn);
315 	lockmgr(&devsoftc.lock, LK_RELEASE);
316 }
317 
318 static int
319 dev_filter_read(struct knote *kn, long hint)
320 {
321 	int ready = 0;
322 
323 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
324 	if (!TAILQ_EMPTY(&devsoftc.devq))
325 		ready = 1;
326 	lockmgr(&devsoftc.lock, LK_RELEASE);
327 
328 	return (ready);
329 }
330 
331 
332 /**
333  * @brief Return whether the userland process is running
334  */
335 boolean_t
336 devctl_process_running(void)
337 {
338 	return (devsoftc.inuse == 1);
339 }
340 
341 /**
342  * @brief Queue data to be read from the devctl device
343  *
344  * Generic interface to queue data to the devctl device.  It is
345  * assumed that @p data is properly formatted.  It is further assumed
346  * that @p data is allocated using the M_BUS malloc type.
347  */
348 void
349 devctl_queue_data(char *data)
350 {
351 	struct dev_event_info *n1 = NULL;
352 	struct proc *p;
353 
354 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
355 	if (n1 == NULL)
356 		return;
357 	n1->dei_data = data;
358 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
359 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
360 	wakeup(&devsoftc);
361 	lockmgr(&devsoftc.lock, LK_RELEASE);
362 	get_mplock();	/* XXX */
363 	KNOTE(&devsoftc.kq.ki_note, 0);
364 	rel_mplock();	/* XXX */
365 	p = devsoftc.async_proc;
366 	if (p != NULL)
367 		ksignal(p, SIGIO);
368 }
369 
370 /**
371  * @brief Send a 'notification' to userland, using standard ways
372  */
373 void
374 devctl_notify(const char *system, const char *subsystem, const char *type,
375     const char *data)
376 {
377 	int len = 0;
378 	char *msg;
379 
380 	if (system == NULL)
381 		return;		/* BOGUS!  Must specify system. */
382 	if (subsystem == NULL)
383 		return;		/* BOGUS!  Must specify subsystem. */
384 	if (type == NULL)
385 		return;		/* BOGUS!  Must specify type. */
386 	len += strlen(" system=") + strlen(system);
387 	len += strlen(" subsystem=") + strlen(subsystem);
388 	len += strlen(" type=") + strlen(type);
389 	/* add in the data message plus newline. */
390 	if (data != NULL)
391 		len += strlen(data);
392 	len += 3;	/* '!', '\n', and NUL */
393 	msg = kmalloc(len, M_BUS, M_NOWAIT);
394 	if (msg == NULL)
395 		return;		/* Drop it on the floor */
396 	if (data != NULL)
397 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
398 		    system, subsystem, type, data);
399 	else
400 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
401 		    system, subsystem, type);
402 	devctl_queue_data(msg);
403 }
404 
405 /*
406  * Common routine that tries to make sending messages as easy as possible.
407  * We allocate memory for the data, copy strings into that, but do not
408  * free it unless there's an error.  The dequeue part of the driver should
409  * free the data.  We don't send data when the device is disabled.  We do
410  * send data, even when we have no listeners, because we wish to avoid
411  * races relating to startup and restart of listening applications.
412  *
413  * devaddq is designed to string together the type of event, with the
414  * object of that event, plus the plug and play info and location info
415  * for that event.  This is likely most useful for devices, but less
416  * useful for other consumers of this interface.  Those should use
417  * the devctl_queue_data() interface instead.
418  */
419 static void
420 devaddq(const char *type, const char *what, device_t dev)
421 {
422 	char *data = NULL;
423 	char *loc = NULL;
424 	char *pnp = NULL;
425 	const char *parstr;
426 
427 	if (devctl_disable)
428 		return;
429 	data = kmalloc(1024, M_BUS, M_NOWAIT);
430 	if (data == NULL)
431 		goto bad;
432 
433 	/* get the bus specific location of this device */
434 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
435 	if (loc == NULL)
436 		goto bad;
437 	*loc = '\0';
438 	bus_child_location_str(dev, loc, 1024);
439 
440 	/* Get the bus specific pnp info of this device */
441 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
442 	if (pnp == NULL)
443 		goto bad;
444 	*pnp = '\0';
445 	bus_child_pnpinfo_str(dev, pnp, 1024);
446 
447 	/* Get the parent of this device, or / if high enough in the tree. */
448 	if (device_get_parent(dev) == NULL)
449 		parstr = ".";	/* Or '/' ? */
450 	else
451 		parstr = device_get_nameunit(device_get_parent(dev));
452 	/* String it all together. */
453 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
454 	  parstr);
455 	kfree(loc, M_BUS);
456 	kfree(pnp, M_BUS);
457 	devctl_queue_data(data);
458 	return;
459 bad:
460 	kfree(pnp, M_BUS);
461 	kfree(loc, M_BUS);
462 	kfree(data, M_BUS);
463 	return;
464 }
465 
466 /*
467  * A device was added to the tree.  We are called just after it successfully
468  * attaches (that is, probe and attach success for this device).  No call
469  * is made if a device is merely parented into the tree.  See devnomatch
470  * if probe fails.  If attach fails, no notification is sent (but maybe
471  * we should have a different message for this).
472  */
473 static void
474 devadded(device_t dev)
475 {
476 	char *pnp = NULL;
477 	char *tmp = NULL;
478 
479 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
480 	if (pnp == NULL)
481 		goto fail;
482 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
483 	if (tmp == NULL)
484 		goto fail;
485 	*pnp = '\0';
486 	bus_child_pnpinfo_str(dev, pnp, 1024);
487 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
488 	devaddq("+", tmp, dev);
489 fail:
490 	if (pnp != NULL)
491 		kfree(pnp, M_BUS);
492 	if (tmp != NULL)
493 		kfree(tmp, M_BUS);
494 	return;
495 }
496 
497 /*
498  * A device was removed from the tree.  We are called just before this
499  * happens.
500  */
501 static void
502 devremoved(device_t dev)
503 {
504 	char *pnp = NULL;
505 	char *tmp = NULL;
506 
507 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
508 	if (pnp == NULL)
509 		goto fail;
510 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
511 	if (tmp == NULL)
512 		goto fail;
513 	*pnp = '\0';
514 	bus_child_pnpinfo_str(dev, pnp, 1024);
515 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
516 	devaddq("-", tmp, dev);
517 fail:
518 	if (pnp != NULL)
519 		kfree(pnp, M_BUS);
520 	if (tmp != NULL)
521 		kfree(tmp, M_BUS);
522 	return;
523 }
524 
525 /*
526  * Called when there's no match for this device.  This is only called
527  * the first time that no match happens, so we don't keep getitng this
528  * message.  Should that prove to be undesirable, we can change it.
529  * This is called when all drivers that can attach to a given bus
530  * decline to accept this device.  Other errrors may not be detected.
531  */
532 static void
533 devnomatch(device_t dev)
534 {
535 	devaddq("?", "", dev);
536 }
537 
538 static int
539 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
540 {
541 	struct dev_event_info *n1;
542 	int dis, error;
543 
544 	dis = devctl_disable;
545 	error = sysctl_handle_int(oidp, &dis, 0, req);
546 	if (error || !req->newptr)
547 		return (error);
548 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
549 	devctl_disable = dis;
550 	if (dis) {
551 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
552 			n1 = TAILQ_FIRST(&devsoftc.devq);
553 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
554 			kfree(n1->dei_data, M_BUS);
555 			kfree(n1, M_BUS);
556 		}
557 	}
558 	lockmgr(&devsoftc.lock, LK_RELEASE);
559 	return (0);
560 }
561 
562 /* End of /dev/devctl code */
563 
564 TAILQ_HEAD(,device)	bus_data_devices;
565 static int bus_data_generation = 1;
566 
567 kobj_method_t null_methods[] = {
568 	{ 0, 0 }
569 };
570 
571 DEFINE_CLASS(null, null_methods, 0);
572 
573 /*
574  * Devclass implementation
575  */
576 
577 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
578 
579 static devclass_t
580 devclass_find_internal(const char *classname, const char *parentname,
581 		       int create)
582 {
583 	devclass_t dc;
584 
585 	PDEBUG(("looking for %s", classname));
586 	if (classname == NULL)
587 		return(NULL);
588 
589 	TAILQ_FOREACH(dc, &devclasses, link)
590 		if (!strcmp(dc->name, classname))
591 			break;
592 
593 	if (create && !dc) {
594 		PDEBUG(("creating %s", classname));
595 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
596 			    M_BUS, M_INTWAIT | M_ZERO);
597 		if (!dc)
598 			return(NULL);
599 		dc->parent = NULL;
600 		dc->name = (char*) (dc + 1);
601 		strcpy(dc->name, classname);
602 		dc->devices = NULL;
603 		dc->maxunit = 0;
604 		TAILQ_INIT(&dc->drivers);
605 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
606 
607 		bus_data_generation_update();
608 
609 	}
610 
611 	/*
612 	 * If a parent class is specified, then set that as our parent so
613 	 * that this devclass will support drivers for the parent class as
614 	 * well.  If the parent class has the same name don't do this though
615 	 * as it creates a cycle that can trigger an infinite loop in
616 	 * device_probe_child() if a device exists for which there is no
617 	 * suitable driver.
618 	 */
619 	if (parentname && dc && !dc->parent &&
620 	    strcmp(classname, parentname) != 0)
621 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
622 
623 	return(dc);
624 }
625 
626 devclass_t
627 devclass_create(const char *classname)
628 {
629 	return(devclass_find_internal(classname, NULL, TRUE));
630 }
631 
632 devclass_t
633 devclass_find(const char *classname)
634 {
635 	return(devclass_find_internal(classname, NULL, FALSE));
636 }
637 
638 device_t
639 devclass_find_unit(const char *classname, int unit)
640 {
641 	devclass_t dc;
642 
643 	if ((dc = devclass_find(classname)) != NULL)
644 	    return(devclass_get_device(dc, unit));
645 	return (NULL);
646 }
647 
648 int
649 devclass_add_driver(devclass_t dc, driver_t *driver)
650 {
651 	driverlink_t dl;
652 	device_t dev;
653 	int i;
654 
655 	PDEBUG(("%s", DRIVERNAME(driver)));
656 
657 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
658 	if (!dl)
659 		return(ENOMEM);
660 
661 	/*
662 	 * Compile the driver's methods. Also increase the reference count
663 	 * so that the class doesn't get freed when the last instance
664 	 * goes. This means we can safely use static methods and avoids a
665 	 * double-free in devclass_delete_driver.
666 	 */
667 	kobj_class_instantiate(driver);
668 
669 	/*
670 	 * Make sure the devclass which the driver is implementing exists.
671 	 */
672 	devclass_find_internal(driver->name, NULL, TRUE);
673 
674 	dl->driver = driver;
675 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
676 
677 	/*
678 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
679 	 * but only if the bus has already been attached (otherwise we
680 	 * might probe too early).
681 	 *
682 	 * This is what will cause a newly loaded module to be associated
683 	 * with hardware.  bus_generic_driver_added() is typically what ends
684 	 * up being called.
685 	 */
686 	for (i = 0; i < dc->maxunit; i++) {
687 		if ((dev = dc->devices[i]) != NULL) {
688 			if (dev->state >= DS_ATTACHED)
689 				BUS_DRIVER_ADDED(dev, driver);
690 		}
691 	}
692 
693 	bus_data_generation_update();
694 	return(0);
695 }
696 
697 int
698 devclass_delete_driver(devclass_t busclass, driver_t *driver)
699 {
700 	devclass_t dc = devclass_find(driver->name);
701 	driverlink_t dl;
702 	device_t dev;
703 	int i;
704 	int error;
705 
706 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
707 
708 	if (!dc)
709 		return(0);
710 
711 	/*
712 	 * Find the link structure in the bus' list of drivers.
713 	 */
714 	TAILQ_FOREACH(dl, &busclass->drivers, link)
715 		if (dl->driver == driver)
716 			break;
717 
718 	if (!dl) {
719 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
720 		return(ENOENT);
721 	}
722 
723 	/*
724 	 * Disassociate from any devices.  We iterate through all the
725 	 * devices in the devclass of the driver and detach any which are
726 	 * using the driver and which have a parent in the devclass which
727 	 * we are deleting from.
728 	 *
729 	 * Note that since a driver can be in multiple devclasses, we
730 	 * should not detach devices which are not children of devices in
731 	 * the affected devclass.
732 	 */
733 	for (i = 0; i < dc->maxunit; i++)
734 		if (dc->devices[i]) {
735 			dev = dc->devices[i];
736 			if (dev->driver == driver && dev->parent &&
737 			    dev->parent->devclass == busclass) {
738 				if ((error = device_detach(dev)) != 0)
739 					return(error);
740 				device_set_driver(dev, NULL);
741 		    	}
742 		}
743 
744 	TAILQ_REMOVE(&busclass->drivers, dl, link);
745 	kfree(dl, M_BUS);
746 
747 	kobj_class_uninstantiate(driver);
748 
749 	bus_data_generation_update();
750 	return(0);
751 }
752 
753 static driverlink_t
754 devclass_find_driver_internal(devclass_t dc, const char *classname)
755 {
756 	driverlink_t dl;
757 
758 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
759 
760 	TAILQ_FOREACH(dl, &dc->drivers, link)
761 		if (!strcmp(dl->driver->name, classname))
762 			return(dl);
763 
764 	PDEBUG(("not found"));
765 	return(NULL);
766 }
767 
768 kobj_class_t
769 devclass_find_driver(devclass_t dc, const char *classname)
770 {
771 	driverlink_t dl;
772 
773 	dl = devclass_find_driver_internal(dc, classname);
774 	if (dl)
775 		return(dl->driver);
776 	else
777 		return(NULL);
778 }
779 
780 const char *
781 devclass_get_name(devclass_t dc)
782 {
783 	return(dc->name);
784 }
785 
786 device_t
787 devclass_get_device(devclass_t dc, int unit)
788 {
789 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
790 		return(NULL);
791 	return(dc->devices[unit]);
792 }
793 
794 void *
795 devclass_get_softc(devclass_t dc, int unit)
796 {
797 	device_t dev;
798 
799 	dev = devclass_get_device(dc, unit);
800 	if (!dev)
801 		return(NULL);
802 
803 	return(device_get_softc(dev));
804 }
805 
806 int
807 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
808 {
809 	int i;
810 	int count;
811 	device_t *list;
812 
813 	count = 0;
814 	for (i = 0; i < dc->maxunit; i++)
815 		if (dc->devices[i])
816 			count++;
817 
818 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
819 	if (list == NULL)
820 		return(ENOMEM);
821 
822 	count = 0;
823 	for (i = 0; i < dc->maxunit; i++)
824 		if (dc->devices[i]) {
825 			list[count] = dc->devices[i];
826 			count++;
827 		}
828 
829 	*devlistp = list;
830 	*devcountp = count;
831 
832 	return(0);
833 }
834 
835 /**
836  * @brief Get a list of drivers in the devclass
837  *
838  * An array containing a list of pointers to all the drivers in the
839  * given devclass is allocated and returned in @p *listp.  The number
840  * of drivers in the array is returned in @p *countp. The caller should
841  * free the array using @c free(p, M_TEMP).
842  *
843  * @param dc            the devclass to examine
844  * @param listp         gives location for array pointer return value
845  * @param countp        gives location for number of array elements
846  *                      return value
847  *
848  * @retval 0            success
849  * @retval ENOMEM       the array allocation failed
850  */
851 int
852 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
853 {
854         driverlink_t dl;
855         driver_t **list;
856         int count;
857 
858         count = 0;
859         TAILQ_FOREACH(dl, &dc->drivers, link)
860                 count++;
861         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
862         if (list == NULL)
863                 return (ENOMEM);
864 
865         count = 0;
866         TAILQ_FOREACH(dl, &dc->drivers, link) {
867                 list[count] = dl->driver;
868                 count++;
869         }
870         *listp = list;
871         *countp = count;
872 
873         return (0);
874 }
875 
876 /**
877  * @brief Get the number of devices in a devclass
878  *
879  * @param dc		the devclass to examine
880  */
881 int
882 devclass_get_count(devclass_t dc)
883 {
884 	int count, i;
885 
886 	count = 0;
887 	for (i = 0; i < dc->maxunit; i++)
888 		if (dc->devices[i])
889 			count++;
890 	return (count);
891 }
892 
893 int
894 devclass_get_maxunit(devclass_t dc)
895 {
896 	return(dc->maxunit);
897 }
898 
899 void
900 devclass_set_parent(devclass_t dc, devclass_t pdc)
901 {
902         dc->parent = pdc;
903 }
904 
905 devclass_t
906 devclass_get_parent(devclass_t dc)
907 {
908 	return(dc->parent);
909 }
910 
911 static int
912 devclass_alloc_unit(devclass_t dc, int *unitp)
913 {
914 	int unit = *unitp;
915 
916 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
917 
918 	/* If we have been given a wired unit number, check for existing device */
919 	if (unit != -1) {
920 		if (unit >= 0 && unit < dc->maxunit &&
921 		    dc->devices[unit] != NULL) {
922 			if (bootverbose)
923 				kprintf("%s-: %s%d exists, using next available unit number\n",
924 				       dc->name, dc->name, unit);
925 			/* find the next available slot */
926 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
927 				;
928 		}
929 	} else {
930 		/* Unwired device, find the next available slot for it */
931 		unit = 0;
932 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
933 			unit++;
934 	}
935 
936 	/*
937 	 * We've selected a unit beyond the length of the table, so let's
938 	 * extend the table to make room for all units up to and including
939 	 * this one.
940 	 */
941 	if (unit >= dc->maxunit) {
942 		device_t *newlist;
943 		int newsize;
944 
945 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
946 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
947 				 M_INTWAIT | M_ZERO);
948 		if (newlist == NULL)
949 			return(ENOMEM);
950 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
951 		if (dc->devices)
952 			kfree(dc->devices, M_BUS);
953 		dc->devices = newlist;
954 		dc->maxunit = newsize;
955 	}
956 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
957 
958 	*unitp = unit;
959 	return(0);
960 }
961 
962 static int
963 devclass_add_device(devclass_t dc, device_t dev)
964 {
965 	int buflen, error;
966 
967 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
968 
969 	buflen = strlen(dc->name) + 5;
970 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
971 	if (!dev->nameunit)
972 		return(ENOMEM);
973 
974 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
975 		kfree(dev->nameunit, M_BUS);
976 		dev->nameunit = NULL;
977 		return(error);
978 	}
979 	dc->devices[dev->unit] = dev;
980 	dev->devclass = dc;
981 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
982 
983 	return(0);
984 }
985 
986 static int
987 devclass_delete_device(devclass_t dc, device_t dev)
988 {
989 	if (!dc || !dev)
990 		return(0);
991 
992 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
993 
994 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
995 		panic("devclass_delete_device: inconsistent device class");
996 	dc->devices[dev->unit] = NULL;
997 	if (dev->flags & DF_WILDCARD)
998 		dev->unit = -1;
999 	dev->devclass = NULL;
1000 	kfree(dev->nameunit, M_BUS);
1001 	dev->nameunit = NULL;
1002 
1003 	return(0);
1004 }
1005 
1006 static device_t
1007 make_device(device_t parent, const char *name, int unit)
1008 {
1009 	device_t dev;
1010 	devclass_t dc;
1011 
1012 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1013 
1014 	if (name != NULL) {
1015 		dc = devclass_find_internal(name, NULL, TRUE);
1016 		if (!dc) {
1017 			kprintf("make_device: can't find device class %s\n", name);
1018 			return(NULL);
1019 		}
1020 	} else
1021 		dc = NULL;
1022 
1023 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
1024 	if (!dev)
1025 		return(0);
1026 
1027 	dev->parent = parent;
1028 	TAILQ_INIT(&dev->children);
1029 	kobj_init((kobj_t) dev, &null_class);
1030 	dev->driver = NULL;
1031 	dev->devclass = NULL;
1032 	dev->unit = unit;
1033 	dev->nameunit = NULL;
1034 	dev->desc = NULL;
1035 	dev->busy = 0;
1036 	dev->devflags = 0;
1037 	dev->flags = DF_ENABLED;
1038 	dev->order = 0;
1039 	if (unit == -1)
1040 		dev->flags |= DF_WILDCARD;
1041 	if (name) {
1042 		dev->flags |= DF_FIXEDCLASS;
1043 		if (devclass_add_device(dc, dev) != 0) {
1044 			kobj_delete((kobj_t)dev, M_BUS);
1045 			return(NULL);
1046 		}
1047     	}
1048 	dev->ivars = NULL;
1049 	dev->softc = NULL;
1050 
1051 	dev->state = DS_NOTPRESENT;
1052 
1053 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1054 	bus_data_generation_update();
1055 
1056 	return(dev);
1057 }
1058 
1059 static int
1060 device_print_child(device_t dev, device_t child)
1061 {
1062 	int retval = 0;
1063 
1064 	if (device_is_alive(child))
1065 		retval += BUS_PRINT_CHILD(dev, child);
1066 	else
1067 		retval += device_printf(child, " not found\n");
1068 
1069 	return(retval);
1070 }
1071 
1072 device_t
1073 device_add_child(device_t dev, const char *name, int unit)
1074 {
1075 	return device_add_child_ordered(dev, 0, name, unit);
1076 }
1077 
1078 device_t
1079 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1080 {
1081 	device_t child;
1082 	device_t place;
1083 
1084 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1085 		order, unit));
1086 
1087 	child = make_device(dev, name, unit);
1088 	if (child == NULL)
1089 		return child;
1090 	child->order = order;
1091 
1092 	TAILQ_FOREACH(place, &dev->children, link)
1093 		if (place->order > order)
1094 			break;
1095 
1096 	if (place) {
1097 		/*
1098 		 * The device 'place' is the first device whose order is
1099 		 * greater than the new child.
1100 		 */
1101 		TAILQ_INSERT_BEFORE(place, child, link);
1102 	} else {
1103 		/*
1104 		 * The new child's order is greater or equal to the order of
1105 		 * any existing device. Add the child to the tail of the list.
1106 		 */
1107 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1108     	}
1109 
1110 	bus_data_generation_update();
1111 	return(child);
1112 }
1113 
1114 int
1115 device_delete_child(device_t dev, device_t child)
1116 {
1117 	int error;
1118 	device_t grandchild;
1119 
1120 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1121 
1122 	/* remove children first */
1123 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1124         	error = device_delete_child(child, grandchild);
1125 		if (error)
1126 			return(error);
1127 	}
1128 
1129 	if ((error = device_detach(child)) != 0)
1130 		return(error);
1131 	if (child->devclass)
1132 		devclass_delete_device(child->devclass, child);
1133 	TAILQ_REMOVE(&dev->children, child, link);
1134 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1135 	device_set_desc(child, NULL);
1136 	kobj_delete((kobj_t)child, M_BUS);
1137 
1138 	bus_data_generation_update();
1139 	return(0);
1140 }
1141 
1142 /**
1143  * @brief Delete all children devices of the given device, if any.
1144  *
1145  * This function deletes all children devices of the given device, if
1146  * any, using the device_delete_child() function for each device it
1147  * finds. If a child device cannot be deleted, this function will
1148  * return an error code.
1149  *
1150  * @param dev		the parent device
1151  *
1152  * @retval 0		success
1153  * @retval non-zero	a device would not detach
1154  */
1155 int
1156 device_delete_children(device_t dev)
1157 {
1158 	device_t child;
1159 	int error;
1160 
1161 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1162 
1163 	error = 0;
1164 
1165 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1166 		error = device_delete_child(dev, child);
1167 		if (error) {
1168 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1169 			break;
1170 		}
1171 	}
1172 	return (error);
1173 }
1174 
1175 /**
1176  * @brief Find a device given a unit number
1177  *
1178  * This is similar to devclass_get_devices() but only searches for
1179  * devices which have @p dev as a parent.
1180  *
1181  * @param dev		the parent device to search
1182  * @param unit		the unit number to search for.  If the unit is -1,
1183  *			return the first child of @p dev which has name
1184  *			@p classname (that is, the one with the lowest unit.)
1185  *
1186  * @returns		the device with the given unit number or @c
1187  *			NULL if there is no such device
1188  */
1189 device_t
1190 device_find_child(device_t dev, const char *classname, int unit)
1191 {
1192 	devclass_t dc;
1193 	device_t child;
1194 
1195 	dc = devclass_find(classname);
1196 	if (!dc)
1197 		return(NULL);
1198 
1199 	if (unit != -1) {
1200 		child = devclass_get_device(dc, unit);
1201 		if (child && child->parent == dev)
1202 			return (child);
1203 	} else {
1204 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1205 			child = devclass_get_device(dc, unit);
1206 			if (child && child->parent == dev)
1207 				return (child);
1208 		}
1209 	}
1210 	return(NULL);
1211 }
1212 
1213 static driverlink_t
1214 first_matching_driver(devclass_t dc, device_t dev)
1215 {
1216 	if (dev->devclass)
1217 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1218 	else
1219 		return(TAILQ_FIRST(&dc->drivers));
1220 }
1221 
1222 static driverlink_t
1223 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1224 {
1225 	if (dev->devclass) {
1226 		driverlink_t dl;
1227 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1228 			if (!strcmp(dev->devclass->name, dl->driver->name))
1229 				return(dl);
1230 		return(NULL);
1231 	} else
1232 		return(TAILQ_NEXT(last, link));
1233 }
1234 
1235 int
1236 device_probe_child(device_t dev, device_t child)
1237 {
1238 	devclass_t dc;
1239 	driverlink_t best = NULL;
1240 	driverlink_t dl;
1241 	int result, pri = 0;
1242 	int hasclass = (child->devclass != NULL);
1243 
1244 	dc = dev->devclass;
1245 	if (!dc)
1246 		panic("device_probe_child: parent device has no devclass");
1247 
1248 	if (child->state == DS_ALIVE)
1249 		return(0);
1250 
1251 	for (; dc; dc = dc->parent) {
1252     		for (dl = first_matching_driver(dc, child); dl;
1253 		     dl = next_matching_driver(dc, child, dl)) {
1254 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1255 			device_set_driver(child, dl->driver);
1256 			if (!hasclass)
1257 				device_set_devclass(child, dl->driver->name);
1258 			result = DEVICE_PROBE(child);
1259 			if (!hasclass)
1260 				device_set_devclass(child, 0);
1261 
1262 			/*
1263 			 * If the driver returns SUCCESS, there can be
1264 			 * no higher match for this device.
1265 			 */
1266 			if (result == 0) {
1267 				best = dl;
1268 				pri = 0;
1269 				break;
1270 			}
1271 
1272 			/*
1273 			 * The driver returned an error so it
1274 			 * certainly doesn't match.
1275 			 */
1276 			if (result > 0) {
1277 				device_set_driver(child, 0);
1278 				continue;
1279 			}
1280 
1281 			/*
1282 			 * A priority lower than SUCCESS, remember the
1283 			 * best matching driver. Initialise the value
1284 			 * of pri for the first match.
1285 			 */
1286 			if (best == NULL || result > pri) {
1287 				best = dl;
1288 				pri = result;
1289 				continue;
1290 			}
1291 	        }
1292 		/*
1293 	         * If we have unambiguous match in this devclass,
1294 	         * don't look in the parent.
1295 	         */
1296 	        if (best && pri == 0)
1297 	    	        break;
1298 	}
1299 
1300 	/*
1301 	 * If we found a driver, change state and initialise the devclass.
1302 	 */
1303 	if (best) {
1304 		if (!child->devclass)
1305 			device_set_devclass(child, best->driver->name);
1306 		device_set_driver(child, best->driver);
1307 		if (pri < 0) {
1308 			/*
1309 			 * A bit bogus. Call the probe method again to make
1310 			 * sure that we have the right description.
1311 			 */
1312 			DEVICE_PROBE(child);
1313 		}
1314 
1315 		bus_data_generation_update();
1316 		child->state = DS_ALIVE;
1317 		return(0);
1318 	}
1319 
1320 	return(ENXIO);
1321 }
1322 
1323 device_t
1324 device_get_parent(device_t dev)
1325 {
1326 	return dev->parent;
1327 }
1328 
1329 int
1330 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1331 {
1332 	int count;
1333 	device_t child;
1334 	device_t *list;
1335 
1336 	count = 0;
1337 	TAILQ_FOREACH(child, &dev->children, link)
1338 		count++;
1339 
1340 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1341 	if (!list)
1342 		return(ENOMEM);
1343 
1344 	count = 0;
1345 	TAILQ_FOREACH(child, &dev->children, link) {
1346 		list[count] = child;
1347 		count++;
1348 	}
1349 
1350 	*devlistp = list;
1351 	*devcountp = count;
1352 
1353 	return(0);
1354 }
1355 
1356 driver_t *
1357 device_get_driver(device_t dev)
1358 {
1359 	return(dev->driver);
1360 }
1361 
1362 devclass_t
1363 device_get_devclass(device_t dev)
1364 {
1365 	return(dev->devclass);
1366 }
1367 
1368 const char *
1369 device_get_name(device_t dev)
1370 {
1371 	if (dev->devclass)
1372 		return devclass_get_name(dev->devclass);
1373 	return(NULL);
1374 }
1375 
1376 const char *
1377 device_get_nameunit(device_t dev)
1378 {
1379 	return(dev->nameunit);
1380 }
1381 
1382 int
1383 device_get_unit(device_t dev)
1384 {
1385 	return(dev->unit);
1386 }
1387 
1388 const char *
1389 device_get_desc(device_t dev)
1390 {
1391 	return(dev->desc);
1392 }
1393 
1394 uint32_t
1395 device_get_flags(device_t dev)
1396 {
1397 	return(dev->devflags);
1398 }
1399 
1400 int
1401 device_print_prettyname(device_t dev)
1402 {
1403 	const char *name = device_get_name(dev);
1404 
1405 	if (name == NULL)
1406 		return kprintf("unknown: ");
1407 	else
1408 		return kprintf("%s%d: ", name, device_get_unit(dev));
1409 }
1410 
1411 int
1412 device_printf(device_t dev, const char * fmt, ...)
1413 {
1414 	__va_list ap;
1415 	int retval;
1416 
1417 	retval = device_print_prettyname(dev);
1418 	__va_start(ap, fmt);
1419 	retval += kvprintf(fmt, ap);
1420 	__va_end(ap);
1421 	return retval;
1422 }
1423 
1424 static void
1425 device_set_desc_internal(device_t dev, const char* desc, int copy)
1426 {
1427 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1428 		kfree(dev->desc, M_BUS);
1429 		dev->flags &= ~DF_DESCMALLOCED;
1430 		dev->desc = NULL;
1431 	}
1432 
1433 	if (copy && desc) {
1434 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1435 		if (dev->desc) {
1436 			strcpy(dev->desc, desc);
1437 			dev->flags |= DF_DESCMALLOCED;
1438 		}
1439 	} else {
1440 		/* Avoid a -Wcast-qual warning */
1441 		dev->desc = (char *)(uintptr_t) desc;
1442 	}
1443 
1444 	bus_data_generation_update();
1445 }
1446 
1447 void
1448 device_set_desc(device_t dev, const char* desc)
1449 {
1450 	device_set_desc_internal(dev, desc, FALSE);
1451 }
1452 
1453 void
1454 device_set_desc_copy(device_t dev, const char* desc)
1455 {
1456 	device_set_desc_internal(dev, desc, TRUE);
1457 }
1458 
1459 void
1460 device_set_flags(device_t dev, uint32_t flags)
1461 {
1462 	dev->devflags = flags;
1463 }
1464 
1465 void *
1466 device_get_softc(device_t dev)
1467 {
1468 	return dev->softc;
1469 }
1470 
1471 void
1472 device_set_softc(device_t dev, void *softc)
1473 {
1474 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1475 		kfree(dev->softc, M_BUS);
1476 	dev->softc = softc;
1477 	if (dev->softc)
1478 		dev->flags |= DF_EXTERNALSOFTC;
1479 	else
1480 		dev->flags &= ~DF_EXTERNALSOFTC;
1481 }
1482 
1483 void
1484 device_set_async_attach(device_t dev, int enable)
1485 {
1486 	if (enable)
1487 		dev->flags |= DF_ASYNCPROBE;
1488 	else
1489 		dev->flags &= ~DF_ASYNCPROBE;
1490 }
1491 
1492 void *
1493 device_get_ivars(device_t dev)
1494 {
1495 	return dev->ivars;
1496 }
1497 
1498 void
1499 device_set_ivars(device_t dev, void * ivars)
1500 {
1501 	if (!dev)
1502 		return;
1503 
1504 	dev->ivars = ivars;
1505 }
1506 
1507 device_state_t
1508 device_get_state(device_t dev)
1509 {
1510 	return(dev->state);
1511 }
1512 
1513 void
1514 device_enable(device_t dev)
1515 {
1516 	dev->flags |= DF_ENABLED;
1517 }
1518 
1519 void
1520 device_disable(device_t dev)
1521 {
1522 	dev->flags &= ~DF_ENABLED;
1523 }
1524 
1525 /*
1526  * YYY cannot block
1527  */
1528 void
1529 device_busy(device_t dev)
1530 {
1531 	if (dev->state < DS_ATTACHED)
1532 		panic("device_busy: called for unattached device");
1533 	if (dev->busy == 0 && dev->parent)
1534 		device_busy(dev->parent);
1535 	dev->busy++;
1536 	dev->state = DS_BUSY;
1537 }
1538 
1539 /*
1540  * YYY cannot block
1541  */
1542 void
1543 device_unbusy(device_t dev)
1544 {
1545 	if (dev->state != DS_BUSY)
1546 		panic("device_unbusy: called for non-busy device");
1547 	dev->busy--;
1548 	if (dev->busy == 0) {
1549 		if (dev->parent)
1550 			device_unbusy(dev->parent);
1551 		dev->state = DS_ATTACHED;
1552 	}
1553 }
1554 
1555 void
1556 device_quiet(device_t dev)
1557 {
1558 	dev->flags |= DF_QUIET;
1559 }
1560 
1561 void
1562 device_verbose(device_t dev)
1563 {
1564 	dev->flags &= ~DF_QUIET;
1565 }
1566 
1567 int
1568 device_is_quiet(device_t dev)
1569 {
1570 	return((dev->flags & DF_QUIET) != 0);
1571 }
1572 
1573 int
1574 device_is_enabled(device_t dev)
1575 {
1576 	return((dev->flags & DF_ENABLED) != 0);
1577 }
1578 
1579 int
1580 device_is_alive(device_t dev)
1581 {
1582 	return(dev->state >= DS_ALIVE);
1583 }
1584 
1585 int
1586 device_is_attached(device_t dev)
1587 {
1588 	return(dev->state >= DS_ATTACHED);
1589 }
1590 
1591 int
1592 device_set_devclass(device_t dev, const char *classname)
1593 {
1594 	devclass_t dc;
1595 	int error;
1596 
1597 	if (!classname) {
1598 		if (dev->devclass)
1599 			devclass_delete_device(dev->devclass, dev);
1600 		return(0);
1601 	}
1602 
1603 	if (dev->devclass) {
1604 		kprintf("device_set_devclass: device class already set\n");
1605 		return(EINVAL);
1606 	}
1607 
1608 	dc = devclass_find_internal(classname, NULL, TRUE);
1609 	if (!dc)
1610 		return(ENOMEM);
1611 
1612 	error = devclass_add_device(dc, dev);
1613 
1614 	bus_data_generation_update();
1615 	return(error);
1616 }
1617 
1618 int
1619 device_set_driver(device_t dev, driver_t *driver)
1620 {
1621 	if (dev->state >= DS_ATTACHED)
1622 		return(EBUSY);
1623 
1624 	if (dev->driver == driver)
1625 		return(0);
1626 
1627 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1628 		kfree(dev->softc, M_BUS);
1629 		dev->softc = NULL;
1630 	}
1631 	kobj_delete((kobj_t) dev, 0);
1632 	dev->driver = driver;
1633 	if (driver) {
1634 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1635 		if (!(dev->flags & DF_EXTERNALSOFTC)) {
1636 			dev->softc = kmalloc(driver->size, M_BUS,
1637 					    M_INTWAIT | M_ZERO);
1638 			if (!dev->softc) {
1639 				kobj_delete((kobj_t)dev, 0);
1640 				kobj_init((kobj_t) dev, &null_class);
1641 				dev->driver = NULL;
1642 				return(ENOMEM);
1643 	    		}
1644 		}
1645 	} else {
1646 		kobj_init((kobj_t) dev, &null_class);
1647 	}
1648 
1649 	bus_data_generation_update();
1650 	return(0);
1651 }
1652 
1653 int
1654 device_probe_and_attach(device_t dev)
1655 {
1656 	device_t bus = dev->parent;
1657 	int error = 0;
1658 
1659 	if (dev->state >= DS_ALIVE)
1660 		return(0);
1661 
1662 	if ((dev->flags & DF_ENABLED) == 0) {
1663 		if (bootverbose) {
1664 			device_print_prettyname(dev);
1665 			kprintf("not probed (disabled)\n");
1666 		}
1667 		return(0);
1668 	}
1669 
1670 	error = device_probe_child(bus, dev);
1671 	if (error) {
1672 		if (!(dev->flags & DF_DONENOMATCH)) {
1673 			BUS_PROBE_NOMATCH(bus, dev);
1674 			devnomatch(dev);
1675 			dev->flags |= DF_DONENOMATCH;
1676 		}
1677 		return(error);
1678 	}
1679 
1680 	/*
1681 	 * Output the exact device chain prior to the attach in case the
1682 	 * system locks up during attach, and generate the full info after
1683 	 * the attach so correct irq and other information is displayed.
1684 	 */
1685 	if (bootverbose && !device_is_quiet(dev)) {
1686 		device_t tmp;
1687 
1688 		kprintf("%s", device_get_nameunit(dev));
1689 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1690 			kprintf(".%s", device_get_nameunit(tmp));
1691 		kprintf("\n");
1692 	}
1693 	if (!device_is_quiet(dev))
1694 		device_print_child(bus, dev);
1695 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1696 		kprintf("%s: probing asynchronously\n",
1697 			device_get_nameunit(dev));
1698 		dev->state = DS_INPROGRESS;
1699 		device_attach_async(dev);
1700 		error = 0;
1701 	} else {
1702 		error = device_doattach(dev);
1703 	}
1704 	return(error);
1705 }
1706 
1707 /*
1708  * Device is known to be alive, do the attach asynchronously.
1709  * However, serialize the attaches with the mp lock.
1710  */
1711 static void
1712 device_attach_async(device_t dev)
1713 {
1714 	thread_t td;
1715 
1716 	atomic_add_int(&numasyncthreads, 1);
1717 	lwkt_create(device_attach_thread, dev, &td, NULL,
1718 		    0, 0, "%s", (dev->desc ? dev->desc : "devattach"));
1719 }
1720 
1721 static void
1722 device_attach_thread(void *arg)
1723 {
1724 	device_t dev = arg;
1725 
1726 	get_mplock();	/* XXX replace with devattach_token later */
1727 	(void)device_doattach(dev);
1728 	atomic_subtract_int(&numasyncthreads, 1);
1729 	wakeup(&numasyncthreads);
1730 	rel_mplock();	/* XXX replace with devattach_token later */
1731 }
1732 
1733 /*
1734  * Device is known to be alive, do the attach (synchronous or asynchronous)
1735  */
1736 static int
1737 device_doattach(device_t dev)
1738 {
1739 	device_t bus = dev->parent;
1740 	int hasclass = (dev->devclass != NULL);
1741 	int error;
1742 
1743 	error = DEVICE_ATTACH(dev);
1744 	if (error == 0) {
1745 		dev->state = DS_ATTACHED;
1746 		if (bootverbose && !device_is_quiet(dev))
1747 			device_print_child(bus, dev);
1748 		devadded(dev);
1749 	} else {
1750 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1751 		       dev->driver->name, dev->unit, error);
1752 		/* Unset the class that was set in device_probe_child */
1753 		if (!hasclass)
1754 			device_set_devclass(dev, 0);
1755 		device_set_driver(dev, NULL);
1756 		dev->state = DS_NOTPRESENT;
1757 	}
1758 	return(error);
1759 }
1760 
1761 int
1762 device_detach(device_t dev)
1763 {
1764 	int error;
1765 
1766 	PDEBUG(("%s", DEVICENAME(dev)));
1767 	if (dev->state == DS_BUSY)
1768 		return(EBUSY);
1769 	if (dev->state != DS_ATTACHED)
1770 		return(0);
1771 
1772 	if ((error = DEVICE_DETACH(dev)) != 0)
1773 		return(error);
1774 	devremoved(dev);
1775 	device_printf(dev, "detached\n");
1776 	if (dev->parent)
1777 		BUS_CHILD_DETACHED(dev->parent, dev);
1778 
1779 	if (!(dev->flags & DF_FIXEDCLASS))
1780 		devclass_delete_device(dev->devclass, dev);
1781 
1782 	dev->state = DS_NOTPRESENT;
1783 	device_set_driver(dev, NULL);
1784 
1785 	return(0);
1786 }
1787 
1788 int
1789 device_shutdown(device_t dev)
1790 {
1791 	if (dev->state < DS_ATTACHED)
1792 		return 0;
1793 	PDEBUG(("%s", DEVICENAME(dev)));
1794 	return DEVICE_SHUTDOWN(dev);
1795 }
1796 
1797 int
1798 device_set_unit(device_t dev, int unit)
1799 {
1800 	devclass_t dc;
1801 	int err;
1802 
1803 	dc = device_get_devclass(dev);
1804 	if (unit < dc->maxunit && dc->devices[unit])
1805 		return(EBUSY);
1806 	err = devclass_delete_device(dc, dev);
1807 	if (err)
1808 		return(err);
1809 	dev->unit = unit;
1810 	err = devclass_add_device(dc, dev);
1811 	if (err)
1812 		return(err);
1813 
1814 	bus_data_generation_update();
1815 	return(0);
1816 }
1817 
1818 /*======================================*/
1819 /*
1820  * Access functions for device resources.
1821  */
1822 
1823 /* Supplied by config(8) in ioconf.c */
1824 extern struct config_device config_devtab[];
1825 extern int devtab_count;
1826 
1827 /* Runtime version */
1828 struct config_device *devtab = config_devtab;
1829 
1830 static int
1831 resource_new_name(const char *name, int unit)
1832 {
1833 	struct config_device *new;
1834 
1835 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1836 		     M_INTWAIT | M_ZERO);
1837 	if (new == NULL)
1838 		return(-1);
1839 	if (devtab && devtab_count > 0)
1840 		bcopy(devtab, new, devtab_count * sizeof(*new));
1841 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1842 	if (new[devtab_count].name == NULL) {
1843 		kfree(new, M_TEMP);
1844 		return(-1);
1845 	}
1846 	strcpy(new[devtab_count].name, name);
1847 	new[devtab_count].unit = unit;
1848 	new[devtab_count].resource_count = 0;
1849 	new[devtab_count].resources = NULL;
1850 	if (devtab && devtab != config_devtab)
1851 		kfree(devtab, M_TEMP);
1852 	devtab = new;
1853 	return devtab_count++;
1854 }
1855 
1856 static int
1857 resource_new_resname(int j, const char *resname, resource_type type)
1858 {
1859 	struct config_resource *new;
1860 	int i;
1861 
1862 	i = devtab[j].resource_count;
1863 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1864 	if (new == NULL)
1865 		return(-1);
1866 	if (devtab[j].resources && i > 0)
1867 		bcopy(devtab[j].resources, new, i * sizeof(*new));
1868 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
1869 	if (new[i].name == NULL) {
1870 		kfree(new, M_TEMP);
1871 		return(-1);
1872 	}
1873 	strcpy(new[i].name, resname);
1874 	new[i].type = type;
1875 	if (devtab[j].resources)
1876 		kfree(devtab[j].resources, M_TEMP);
1877 	devtab[j].resources = new;
1878 	devtab[j].resource_count = i + 1;
1879 	return(i);
1880 }
1881 
1882 static int
1883 resource_match_string(int i, const char *resname, const char *value)
1884 {
1885 	int j;
1886 	struct config_resource *res;
1887 
1888 	for (j = 0, res = devtab[i].resources;
1889 	     j < devtab[i].resource_count; j++, res++)
1890 		if (!strcmp(res->name, resname)
1891 		    && res->type == RES_STRING
1892 		    && !strcmp(res->u.stringval, value))
1893 			return(j);
1894 	return(-1);
1895 }
1896 
1897 static int
1898 resource_find(const char *name, int unit, const char *resname,
1899 	      struct config_resource **result)
1900 {
1901 	int i, j;
1902 	struct config_resource *res;
1903 
1904 	/*
1905 	 * First check specific instances, then generic.
1906 	 */
1907 	for (i = 0; i < devtab_count; i++) {
1908 		if (devtab[i].unit < 0)
1909 			continue;
1910 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1911 			res = devtab[i].resources;
1912 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1913 				if (!strcmp(res->name, resname)) {
1914 					*result = res;
1915 					return(0);
1916 				}
1917 		}
1918 	}
1919 	for (i = 0; i < devtab_count; i++) {
1920 		if (devtab[i].unit >= 0)
1921 			continue;
1922 		/* XXX should this `&& devtab[i].unit == unit' be here? */
1923 		/* XXX if so, then the generic match does nothing */
1924 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1925 			res = devtab[i].resources;
1926 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1927 				if (!strcmp(res->name, resname)) {
1928 					*result = res;
1929 					return(0);
1930 				}
1931 		}
1932 	}
1933 	return(ENOENT);
1934 }
1935 
1936 static int
1937 resource_kenv(const char *name, int unit, const char *resname, long *result)
1938 {
1939 	const char *env;
1940 	char buf[64];
1941 
1942 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
1943 	if ((env = kgetenv(buf)) != NULL) {
1944 		*result = strtol(env, NULL, 0);
1945 		return(0);
1946 	}
1947 	return (ENOENT);
1948 }
1949 
1950 int
1951 resource_int_value(const char *name, int unit, const char *resname, int *result)
1952 {
1953 	struct config_resource *res;
1954 	long kvalue = 0;
1955 	int error;
1956 
1957 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
1958 		*result = (int)kvalue;
1959 		return 0;
1960 	}
1961 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1962 		return(error);
1963 	if (res->type != RES_INT)
1964 		return(EFTYPE);
1965 	*result = res->u.intval;
1966 	return(0);
1967 }
1968 
1969 int
1970 resource_long_value(const char *name, int unit, const char *resname,
1971 		    long *result)
1972 {
1973 	struct config_resource *res;
1974 	long kvalue;
1975 	int error;
1976 
1977 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
1978 		*result = kvalue;
1979 		return 0;
1980 	}
1981 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1982 		return(error);
1983 	if (res->type != RES_LONG)
1984 		return(EFTYPE);
1985 	*result = res->u.longval;
1986 	return(0);
1987 }
1988 
1989 int
1990 resource_string_value(const char *name, int unit, const char *resname,
1991 		      char **result)
1992 {
1993 	int error;
1994 	struct config_resource *res;
1995 
1996 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1997 		return(error);
1998 	if (res->type != RES_STRING)
1999 		return(EFTYPE);
2000 	*result = res->u.stringval;
2001 	return(0);
2002 }
2003 
2004 int
2005 resource_query_string(int i, const char *resname, const char *value)
2006 {
2007 	if (i < 0)
2008 		i = 0;
2009 	else
2010 		i = i + 1;
2011 	for (; i < devtab_count; i++)
2012 		if (resource_match_string(i, resname, value) >= 0)
2013 			return(i);
2014 	return(-1);
2015 }
2016 
2017 int
2018 resource_locate(int i, const char *resname)
2019 {
2020 	if (i < 0)
2021 		i = 0;
2022 	else
2023 		i = i + 1;
2024 	for (; i < devtab_count; i++)
2025 		if (!strcmp(devtab[i].name, resname))
2026 			return(i);
2027 	return(-1);
2028 }
2029 
2030 int
2031 resource_count(void)
2032 {
2033 	return(devtab_count);
2034 }
2035 
2036 char *
2037 resource_query_name(int i)
2038 {
2039 	return(devtab[i].name);
2040 }
2041 
2042 int
2043 resource_query_unit(int i)
2044 {
2045 	return(devtab[i].unit);
2046 }
2047 
2048 static int
2049 resource_create(const char *name, int unit, const char *resname,
2050 		resource_type type, struct config_resource **result)
2051 {
2052 	int i, j;
2053 	struct config_resource *res = NULL;
2054 
2055 	for (i = 0; i < devtab_count; i++)
2056 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2057 			res = devtab[i].resources;
2058 			break;
2059 		}
2060 	if (res == NULL) {
2061 		i = resource_new_name(name, unit);
2062 		if (i < 0)
2063 			return(ENOMEM);
2064 		res = devtab[i].resources;
2065 	}
2066 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2067 		if (!strcmp(res->name, resname)) {
2068 			*result = res;
2069 			return(0);
2070 		}
2071 	j = resource_new_resname(i, resname, type);
2072 	if (j < 0)
2073 		return(ENOMEM);
2074 	res = &devtab[i].resources[j];
2075 	*result = res;
2076 	return(0);
2077 }
2078 
2079 int
2080 resource_set_int(const char *name, int unit, const char *resname, int value)
2081 {
2082 	int error;
2083 	struct config_resource *res;
2084 
2085 	error = resource_create(name, unit, resname, RES_INT, &res);
2086 	if (error)
2087 		return(error);
2088 	if (res->type != RES_INT)
2089 		return(EFTYPE);
2090 	res->u.intval = value;
2091 	return(0);
2092 }
2093 
2094 int
2095 resource_set_long(const char *name, int unit, const char *resname, long value)
2096 {
2097 	int error;
2098 	struct config_resource *res;
2099 
2100 	error = resource_create(name, unit, resname, RES_LONG, &res);
2101 	if (error)
2102 		return(error);
2103 	if (res->type != RES_LONG)
2104 		return(EFTYPE);
2105 	res->u.longval = value;
2106 	return(0);
2107 }
2108 
2109 int
2110 resource_set_string(const char *name, int unit, const char *resname,
2111 		    const char *value)
2112 {
2113 	int error;
2114 	struct config_resource *res;
2115 
2116 	error = resource_create(name, unit, resname, RES_STRING, &res);
2117 	if (error)
2118 		return(error);
2119 	if (res->type != RES_STRING)
2120 		return(EFTYPE);
2121 	if (res->u.stringval)
2122 		kfree(res->u.stringval, M_TEMP);
2123 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2124 	if (res->u.stringval == NULL)
2125 		return(ENOMEM);
2126 	strcpy(res->u.stringval, value);
2127 	return(0);
2128 }
2129 
2130 static void
2131 resource_cfgload(void *dummy __unused)
2132 {
2133 	struct config_resource *res, *cfgres;
2134 	int i, j;
2135 	int error;
2136 	char *name, *resname;
2137 	int unit;
2138 	resource_type type;
2139 	char *stringval;
2140 	int config_devtab_count;
2141 
2142 	config_devtab_count = devtab_count;
2143 	devtab = NULL;
2144 	devtab_count = 0;
2145 
2146 	for (i = 0; i < config_devtab_count; i++) {
2147 		name = config_devtab[i].name;
2148 		unit = config_devtab[i].unit;
2149 
2150 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2151 			cfgres = config_devtab[i].resources;
2152 			resname = cfgres[j].name;
2153 			type = cfgres[j].type;
2154 			error = resource_create(name, unit, resname, type,
2155 						&res);
2156 			if (error) {
2157 				kprintf("create resource %s%d: error %d\n",
2158 					name, unit, error);
2159 				continue;
2160 			}
2161 			if (res->type != type) {
2162 				kprintf("type mismatch %s%d: %d != %d\n",
2163 					name, unit, res->type, type);
2164 				continue;
2165 			}
2166 			switch (type) {
2167 			case RES_INT:
2168 				res->u.intval = cfgres[j].u.intval;
2169 				break;
2170 			case RES_LONG:
2171 				res->u.longval = cfgres[j].u.longval;
2172 				break;
2173 			case RES_STRING:
2174 				if (res->u.stringval)
2175 					kfree(res->u.stringval, M_TEMP);
2176 				stringval = cfgres[j].u.stringval;
2177 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2178 							  M_TEMP, M_INTWAIT);
2179 				if (res->u.stringval == NULL)
2180 					break;
2181 				strcpy(res->u.stringval, stringval);
2182 				break;
2183 			default:
2184 				panic("unknown resource type %d", type);
2185 			}
2186 		}
2187 	}
2188 }
2189 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0)
2190 
2191 
2192 /*======================================*/
2193 /*
2194  * Some useful method implementations to make life easier for bus drivers.
2195  */
2196 
2197 void
2198 resource_list_init(struct resource_list *rl)
2199 {
2200 	SLIST_INIT(rl);
2201 }
2202 
2203 void
2204 resource_list_free(struct resource_list *rl)
2205 {
2206 	struct resource_list_entry *rle;
2207 
2208 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2209 		if (rle->res)
2210 			panic("resource_list_free: resource entry is busy");
2211 		SLIST_REMOVE_HEAD(rl, link);
2212 		kfree(rle, M_BUS);
2213 	}
2214 }
2215 
2216 void
2217 resource_list_add(struct resource_list *rl, int type, int rid,
2218     u_long start, u_long end, u_long count, int cpuid)
2219 {
2220 	struct resource_list_entry *rle;
2221 
2222 	rle = resource_list_find(rl, type, rid);
2223 	if (rle == NULL) {
2224 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2225 			     M_INTWAIT);
2226 		if (!rle)
2227 			panic("resource_list_add: can't record entry");
2228 		SLIST_INSERT_HEAD(rl, rle, link);
2229 		rle->type = type;
2230 		rle->rid = rid;
2231 		rle->res = NULL;
2232 		rle->cpuid = -1;
2233 	}
2234 
2235 	if (rle->res)
2236 		panic("resource_list_add: resource entry is busy");
2237 
2238 	rle->start = start;
2239 	rle->end = end;
2240 	rle->count = count;
2241 
2242 	if (cpuid != -1) {
2243 		if (rle->cpuid != -1 && rle->cpuid != cpuid) {
2244 			panic("resource_list_add: moving from cpu%d -> cpu%d",
2245 			    rle->cpuid, cpuid);
2246 		}
2247 		rle->cpuid = cpuid;
2248 	}
2249 }
2250 
2251 struct resource_list_entry*
2252 resource_list_find(struct resource_list *rl,
2253 		   int type, int rid)
2254 {
2255 	struct resource_list_entry *rle;
2256 
2257 	SLIST_FOREACH(rle, rl, link)
2258 		if (rle->type == type && rle->rid == rid)
2259 			return(rle);
2260 	return(NULL);
2261 }
2262 
2263 void
2264 resource_list_delete(struct resource_list *rl,
2265 		     int type, int rid)
2266 {
2267 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2268 
2269 	if (rle) {
2270 		if (rle->res != NULL)
2271 			panic("resource_list_delete: resource has not been released");
2272 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2273 		kfree(rle, M_BUS);
2274 	}
2275 }
2276 
2277 struct resource *
2278 resource_list_alloc(struct resource_list *rl,
2279 		    device_t bus, device_t child,
2280 		    int type, int *rid,
2281 		    u_long start, u_long end,
2282 		    u_long count, u_int flags, int cpuid)
2283 {
2284 	struct resource_list_entry *rle = NULL;
2285 	int passthrough = (device_get_parent(child) != bus);
2286 	int isdefault = (start == 0UL && end == ~0UL);
2287 
2288 	if (passthrough) {
2289 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2290 					  type, rid,
2291 					  start, end, count, flags, cpuid));
2292 	}
2293 
2294 	rle = resource_list_find(rl, type, *rid);
2295 
2296 	if (!rle)
2297 		return(0);		/* no resource of that type/rid */
2298 
2299 	if (rle->res)
2300 		panic("resource_list_alloc: resource entry is busy");
2301 
2302 	if (isdefault) {
2303 		start = rle->start;
2304 		count = max(count, rle->count);
2305 		end = max(rle->end, start + count - 1);
2306 	}
2307 	cpuid = rle->cpuid;
2308 
2309 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2310 				      type, rid, start, end, count,
2311 				      flags, cpuid);
2312 
2313 	/*
2314 	 * Record the new range.
2315 	 */
2316 	if (rle->res) {
2317 		rle->start = rman_get_start(rle->res);
2318 		rle->end = rman_get_end(rle->res);
2319 		rle->count = count;
2320 	}
2321 
2322 	return(rle->res);
2323 }
2324 
2325 int
2326 resource_list_release(struct resource_list *rl,
2327 		      device_t bus, device_t child,
2328 		      int type, int rid, struct resource *res)
2329 {
2330 	struct resource_list_entry *rle = NULL;
2331 	int passthrough = (device_get_parent(child) != bus);
2332 	int error;
2333 
2334 	if (passthrough) {
2335 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2336 					    type, rid, res));
2337 	}
2338 
2339 	rle = resource_list_find(rl, type, rid);
2340 
2341 	if (!rle)
2342 		panic("resource_list_release: can't find resource");
2343 	if (!rle->res)
2344 		panic("resource_list_release: resource entry is not busy");
2345 
2346 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2347 				     type, rid, res);
2348 	if (error)
2349 		return(error);
2350 
2351 	rle->res = NULL;
2352 	return(0);
2353 }
2354 
2355 int
2356 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2357 			 const char *format)
2358 {
2359 	struct resource_list_entry *rle;
2360 	int printed, retval;
2361 
2362 	printed = 0;
2363 	retval = 0;
2364 	/* Yes, this is kinda cheating */
2365 	SLIST_FOREACH(rle, rl, link) {
2366 		if (rle->type == type) {
2367 			if (printed == 0)
2368 				retval += kprintf(" %s ", name);
2369 			else
2370 				retval += kprintf(",");
2371 			printed++;
2372 			retval += kprintf(format, rle->start);
2373 			if (rle->count > 1) {
2374 				retval += kprintf("-");
2375 				retval += kprintf(format, rle->start +
2376 						 rle->count - 1);
2377 			}
2378 		}
2379 	}
2380 	return(retval);
2381 }
2382 
2383 /*
2384  * Generic driver/device identify functions.  These will install a device
2385  * rendezvous point under the parent using the same name as the driver
2386  * name, which will at a later time be probed and attached.
2387  *
2388  * These functions are used when the parent does not 'scan' its bus for
2389  * matching devices, or for the particular devices using these functions,
2390  * or when the device is a pseudo or synthesized device (such as can be
2391  * found under firewire and ppbus).
2392  */
2393 int
2394 bus_generic_identify(driver_t *driver, device_t parent)
2395 {
2396 	if (parent->state == DS_ATTACHED)
2397 		return (0);
2398 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2399 	return (0);
2400 }
2401 
2402 int
2403 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2404 {
2405 	if (parent->state == DS_ATTACHED)
2406 		return (0);
2407 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2408 	return (0);
2409 }
2410 
2411 /*
2412  * Call DEVICE_IDENTIFY for each driver.
2413  */
2414 int
2415 bus_generic_probe(device_t dev)
2416 {
2417 	devclass_t dc = dev->devclass;
2418 	driverlink_t dl;
2419 
2420 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2421 		DEVICE_IDENTIFY(dl->driver, dev);
2422 	}
2423 
2424 	return(0);
2425 }
2426 
2427 /*
2428  * This is an aweful hack due to the isa bus and autoconf code not
2429  * probing the ISA devices until after everything else has configured.
2430  * The ISA bus did a dummy attach long ago so we have to set it back
2431  * to an earlier state so the probe thinks its the initial probe and
2432  * not a bus rescan.
2433  *
2434  * XXX remove by properly defering the ISA bus scan.
2435  */
2436 int
2437 bus_generic_probe_hack(device_t dev)
2438 {
2439 	if (dev->state == DS_ATTACHED) {
2440 		dev->state = DS_ALIVE;
2441 		bus_generic_probe(dev);
2442 		dev->state = DS_ATTACHED;
2443 	}
2444 	return (0);
2445 }
2446 
2447 int
2448 bus_generic_attach(device_t dev)
2449 {
2450 	device_t child;
2451 
2452 	TAILQ_FOREACH(child, &dev->children, link) {
2453 		device_probe_and_attach(child);
2454 	}
2455 
2456 	return(0);
2457 }
2458 
2459 int
2460 bus_generic_detach(device_t dev)
2461 {
2462 	device_t child;
2463 	int error;
2464 
2465 	if (dev->state != DS_ATTACHED)
2466 		return(EBUSY);
2467 
2468 	TAILQ_FOREACH(child, &dev->children, link)
2469 		if ((error = device_detach(child)) != 0)
2470 			return(error);
2471 
2472 	return 0;
2473 }
2474 
2475 int
2476 bus_generic_shutdown(device_t dev)
2477 {
2478 	device_t child;
2479 
2480 	TAILQ_FOREACH(child, &dev->children, link)
2481 		device_shutdown(child);
2482 
2483 	return(0);
2484 }
2485 
2486 int
2487 bus_generic_suspend(device_t dev)
2488 {
2489 	int error;
2490 	device_t child, child2;
2491 
2492 	TAILQ_FOREACH(child, &dev->children, link) {
2493 		error = DEVICE_SUSPEND(child);
2494 		if (error) {
2495 			for (child2 = TAILQ_FIRST(&dev->children);
2496 			     child2 && child2 != child;
2497 			     child2 = TAILQ_NEXT(child2, link))
2498 				DEVICE_RESUME(child2);
2499 			return(error);
2500 		}
2501 	}
2502 	return(0);
2503 }
2504 
2505 int
2506 bus_generic_resume(device_t dev)
2507 {
2508 	device_t child;
2509 
2510 	TAILQ_FOREACH(child, &dev->children, link)
2511 		DEVICE_RESUME(child);
2512 		/* if resume fails, there's nothing we can usefully do... */
2513 
2514 	return(0);
2515 }
2516 
2517 int
2518 bus_print_child_header(device_t dev, device_t child)
2519 {
2520 	int retval = 0;
2521 
2522 	if (device_get_desc(child))
2523 		retval += device_printf(child, "<%s>", device_get_desc(child));
2524 	else
2525 		retval += kprintf("%s", device_get_nameunit(child));
2526 	if (bootverbose) {
2527 		if (child->state != DS_ATTACHED)
2528 			kprintf(" [tentative]");
2529 		else
2530 			kprintf(" [attached!]");
2531 	}
2532 	return(retval);
2533 }
2534 
2535 int
2536 bus_print_child_footer(device_t dev, device_t child)
2537 {
2538 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2539 }
2540 
2541 device_t
2542 bus_generic_add_child(device_t dev, device_t child, int order,
2543 		      const char *name, int unit)
2544 {
2545 	if (dev->parent)
2546 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2547 	else
2548 		dev = device_add_child_ordered(child, order, name, unit);
2549 	return(dev);
2550 
2551 }
2552 
2553 int
2554 bus_generic_print_child(device_t dev, device_t child)
2555 {
2556 	int retval = 0;
2557 
2558 	retval += bus_print_child_header(dev, child);
2559 	retval += bus_print_child_footer(dev, child);
2560 
2561 	return(retval);
2562 }
2563 
2564 int
2565 bus_generic_read_ivar(device_t dev, device_t child, int index,
2566 		      uintptr_t * result)
2567 {
2568 	int error;
2569 
2570 	if (dev->parent)
2571 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2572 	else
2573 		error = ENOENT;
2574 	return (error);
2575 }
2576 
2577 int
2578 bus_generic_write_ivar(device_t dev, device_t child, int index,
2579 		       uintptr_t value)
2580 {
2581 	int error;
2582 
2583 	if (dev->parent)
2584 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2585 	else
2586 		error = ENOENT;
2587 	return (error);
2588 }
2589 
2590 /*
2591  * Resource list are used for iterations, do not recurse.
2592  */
2593 struct resource_list *
2594 bus_generic_get_resource_list(device_t dev, device_t child)
2595 {
2596 	return (NULL);
2597 }
2598 
2599 void
2600 bus_generic_driver_added(device_t dev, driver_t *driver)
2601 {
2602 	device_t child;
2603 
2604 	DEVICE_IDENTIFY(driver, dev);
2605 	TAILQ_FOREACH(child, &dev->children, link) {
2606 		if (child->state == DS_NOTPRESENT)
2607 			device_probe_and_attach(child);
2608 	}
2609 }
2610 
2611 int
2612 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2613     int flags, driver_intr_t *intr, void *arg, void **cookiep,
2614     lwkt_serialize_t serializer, const char *desc)
2615 {
2616 	/* Propagate up the bus hierarchy until someone handles it. */
2617 	if (dev->parent) {
2618 		return BUS_SETUP_INTR(dev->parent, child, irq, flags,
2619 		    intr, arg, cookiep, serializer, desc);
2620 	} else {
2621 		return EINVAL;
2622 	}
2623 }
2624 
2625 int
2626 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2627 			  void *cookie)
2628 {
2629 	/* Propagate up the bus hierarchy until someone handles it. */
2630 	if (dev->parent)
2631 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2632 	else
2633 		return(EINVAL);
2634 }
2635 
2636 int
2637 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2638 {
2639 	if (dev->parent)
2640 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2641 	else
2642 		return(0);
2643 }
2644 
2645 void
2646 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2647 {
2648 	if (dev->parent)
2649 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2650 }
2651 
2652 int
2653 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
2654     enum intr_polarity pol)
2655 {
2656 	/* Propagate up the bus hierarchy until someone handles it. */
2657 	if (dev->parent)
2658 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
2659 	else
2660 		return(EINVAL);
2661 }
2662 
2663 struct resource *
2664 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2665     u_long start, u_long end, u_long count, u_int flags, int cpuid)
2666 {
2667 	/* Propagate up the bus hierarchy until someone handles it. */
2668 	if (dev->parent)
2669 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2670 					   start, end, count, flags, cpuid));
2671 	else
2672 		return(NULL);
2673 }
2674 
2675 int
2676 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2677 			     struct resource *r)
2678 {
2679 	/* Propagate up the bus hierarchy until someone handles it. */
2680 	if (dev->parent)
2681 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2682 	else
2683 		return(EINVAL);
2684 }
2685 
2686 int
2687 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2688 			      struct resource *r)
2689 {
2690 	/* Propagate up the bus hierarchy until someone handles it. */
2691 	if (dev->parent)
2692 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2693 	else
2694 		return(EINVAL);
2695 }
2696 
2697 int
2698 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2699 				int rid, struct resource *r)
2700 {
2701 	/* Propagate up the bus hierarchy until someone handles it. */
2702 	if (dev->parent)
2703 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2704 					       r));
2705 	else
2706 		return(EINVAL);
2707 }
2708 
2709 int
2710 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2711 			 u_long *startp, u_long *countp)
2712 {
2713 	int error;
2714 
2715 	error = ENOENT;
2716 	if (dev->parent) {
2717 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2718 					 startp, countp);
2719 	}
2720 	return (error);
2721 }
2722 
2723 int
2724 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2725 			u_long start, u_long count, int cpuid)
2726 {
2727 	int error;
2728 
2729 	error = EINVAL;
2730 	if (dev->parent) {
2731 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2732 					 start, count, cpuid);
2733 	}
2734 	return (error);
2735 }
2736 
2737 void
2738 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2739 {
2740 	if (dev->parent)
2741 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2742 }
2743 
2744 int
2745 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2746     u_long *startp, u_long *countp)
2747 {
2748 	struct resource_list *rl = NULL;
2749 	struct resource_list_entry *rle = NULL;
2750 
2751 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2752 	if (!rl)
2753 		return(EINVAL);
2754 
2755 	rle = resource_list_find(rl, type, rid);
2756 	if (!rle)
2757 		return(ENOENT);
2758 
2759 	if (startp)
2760 		*startp = rle->start;
2761 	if (countp)
2762 		*countp = rle->count;
2763 
2764 	return(0);
2765 }
2766 
2767 int
2768 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2769     u_long start, u_long count, int cpuid)
2770 {
2771 	struct resource_list *rl = NULL;
2772 
2773 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2774 	if (!rl)
2775 		return(EINVAL);
2776 
2777 	resource_list_add(rl, type, rid, start, (start + count - 1), count,
2778 	    cpuid);
2779 
2780 	return(0);
2781 }
2782 
2783 void
2784 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2785 {
2786 	struct resource_list *rl = NULL;
2787 
2788 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2789 	if (!rl)
2790 		return;
2791 
2792 	resource_list_delete(rl, type, rid);
2793 }
2794 
2795 int
2796 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2797     int rid, struct resource *r)
2798 {
2799 	struct resource_list *rl = NULL;
2800 
2801 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2802 	if (!rl)
2803 		return(EINVAL);
2804 
2805 	return(resource_list_release(rl, dev, child, type, rid, r));
2806 }
2807 
2808 struct resource *
2809 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2810     int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid)
2811 {
2812 	struct resource_list *rl = NULL;
2813 
2814 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2815 	if (!rl)
2816 		return(NULL);
2817 
2818 	return(resource_list_alloc(rl, dev, child, type, rid,
2819 	    start, end, count, flags, cpuid));
2820 }
2821 
2822 int
2823 bus_generic_child_present(device_t bus, device_t child)
2824 {
2825 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2826 }
2827 
2828 
2829 /*
2830  * Some convenience functions to make it easier for drivers to use the
2831  * resource-management functions.  All these really do is hide the
2832  * indirection through the parent's method table, making for slightly
2833  * less-wordy code.  In the future, it might make sense for this code
2834  * to maintain some sort of a list of resources allocated by each device.
2835  */
2836 int
2837 bus_alloc_resources(device_t dev, struct resource_spec *rs,
2838     struct resource **res)
2839 {
2840 	int i;
2841 
2842 	for (i = 0; rs[i].type != -1; i++)
2843 	        res[i] = NULL;
2844 	for (i = 0; rs[i].type != -1; i++) {
2845 		res[i] = bus_alloc_resource_any(dev,
2846 		    rs[i].type, &rs[i].rid, rs[i].flags);
2847 		if (res[i] == NULL) {
2848 			bus_release_resources(dev, rs, res);
2849 			return (ENXIO);
2850 		}
2851 	}
2852 	return (0);
2853 }
2854 
2855 void
2856 bus_release_resources(device_t dev, const struct resource_spec *rs,
2857     struct resource **res)
2858 {
2859 	int i;
2860 
2861 	for (i = 0; rs[i].type != -1; i++)
2862 		if (res[i] != NULL) {
2863 			bus_release_resource(
2864 			    dev, rs[i].type, rs[i].rid, res[i]);
2865 			res[i] = NULL;
2866 		}
2867 }
2868 
2869 struct resource *
2870 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
2871 		   u_long count, u_int flags)
2872 {
2873 	if (dev->parent == NULL)
2874 		return(0);
2875 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2876 				  count, flags, -1));
2877 }
2878 
2879 struct resource *
2880 bus_alloc_legacy_irq_resource(device_t dev, int *rid, u_long irq, u_int flags)
2881 {
2882 	if (dev->parent == NULL)
2883 		return(0);
2884 	return BUS_ALLOC_RESOURCE(dev->parent, dev, SYS_RES_IRQ, rid,
2885 	    irq, irq, 1, flags, machintr_legacy_intr_cpuid(irq));
2886 }
2887 
2888 int
2889 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
2890 {
2891 	if (dev->parent == NULL)
2892 		return(EINVAL);
2893 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2894 }
2895 
2896 int
2897 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
2898 {
2899 	if (dev->parent == NULL)
2900 		return(EINVAL);
2901 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2902 }
2903 
2904 int
2905 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
2906 {
2907 	if (dev->parent == NULL)
2908 		return(EINVAL);
2909 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
2910 }
2911 
2912 int
2913 bus_setup_intr_descr(device_t dev, struct resource *r, int flags,
2914     driver_intr_t handler, void *arg, void **cookiep,
2915     lwkt_serialize_t serializer, const char *desc)
2916 {
2917 	if (dev->parent == NULL)
2918 		return EINVAL;
2919 	return BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
2920 	    cookiep, serializer, desc);
2921 }
2922 
2923 int
2924 bus_setup_intr(device_t dev, struct resource *r, int flags,
2925     driver_intr_t handler, void *arg, void **cookiep,
2926     lwkt_serialize_t serializer)
2927 {
2928 	return bus_setup_intr_descr(dev, r, flags, handler, arg, cookiep,
2929 	    serializer, NULL);
2930 }
2931 
2932 int
2933 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
2934 {
2935 	if (dev->parent == NULL)
2936 		return(EINVAL);
2937 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
2938 }
2939 
2940 void
2941 bus_enable_intr(device_t dev, void *cookie)
2942 {
2943 	if (dev->parent)
2944 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
2945 }
2946 
2947 int
2948 bus_disable_intr(device_t dev, void *cookie)
2949 {
2950 	if (dev->parent)
2951 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
2952 	else
2953 		return(0);
2954 }
2955 
2956 int
2957 bus_set_resource(device_t dev, int type, int rid,
2958 		 u_long start, u_long count, int cpuid)
2959 {
2960 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
2961 				start, count, cpuid));
2962 }
2963 
2964 int
2965 bus_get_resource(device_t dev, int type, int rid,
2966 		 u_long *startp, u_long *countp)
2967 {
2968 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2969 				startp, countp));
2970 }
2971 
2972 u_long
2973 bus_get_resource_start(device_t dev, int type, int rid)
2974 {
2975 	u_long start, count;
2976 	int error;
2977 
2978 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2979 				 &start, &count);
2980 	if (error)
2981 		return(0);
2982 	return(start);
2983 }
2984 
2985 u_long
2986 bus_get_resource_count(device_t dev, int type, int rid)
2987 {
2988 	u_long start, count;
2989 	int error;
2990 
2991 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2992 				 &start, &count);
2993 	if (error)
2994 		return(0);
2995 	return(count);
2996 }
2997 
2998 void
2999 bus_delete_resource(device_t dev, int type, int rid)
3000 {
3001 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3002 }
3003 
3004 int
3005 bus_child_present(device_t child)
3006 {
3007 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3008 }
3009 
3010 int
3011 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3012 {
3013 	device_t parent;
3014 
3015 	parent = device_get_parent(child);
3016 	if (parent == NULL) {
3017 		*buf = '\0';
3018 		return (0);
3019 	}
3020 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3021 }
3022 
3023 int
3024 bus_child_location_str(device_t child, char *buf, size_t buflen)
3025 {
3026 	device_t parent;
3027 
3028 	parent = device_get_parent(child);
3029 	if (parent == NULL) {
3030 		*buf = '\0';
3031 		return (0);
3032 	}
3033 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3034 }
3035 
3036 static int
3037 root_print_child(device_t dev, device_t child)
3038 {
3039 	return(0);
3040 }
3041 
3042 static int
3043 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3044 		void **cookiep, lwkt_serialize_t serializer, const char *desc)
3045 {
3046 	/*
3047 	 * If an interrupt mapping gets to here something bad has happened.
3048 	 */
3049 	panic("root_setup_intr");
3050 }
3051 
3052 /*
3053  * If we get here, assume that the device is permanant and really is
3054  * present in the system.  Removable bus drivers are expected to intercept
3055  * this call long before it gets here.  We return -1 so that drivers that
3056  * really care can check vs -1 or some ERRNO returned higher in the food
3057  * chain.
3058  */
3059 static int
3060 root_child_present(device_t dev, device_t child)
3061 {
3062 	return(-1);
3063 }
3064 
3065 /*
3066  * XXX NOTE! other defaults may be set in bus_if.m
3067  */
3068 static kobj_method_t root_methods[] = {
3069 	/* Device interface */
3070 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3071 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3072 	KOBJMETHOD(device_resume,	bus_generic_resume),
3073 
3074 	/* Bus interface */
3075 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
3076 	KOBJMETHOD(bus_print_child,	root_print_child),
3077 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3078 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3079 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3080 	KOBJMETHOD(bus_child_present,   root_child_present),
3081 
3082 	KOBJMETHOD_END
3083 };
3084 
3085 static driver_t root_driver = {
3086 	"root",
3087 	root_methods,
3088 	1,			/* no softc */
3089 };
3090 
3091 device_t	root_bus;
3092 devclass_t	root_devclass;
3093 
3094 static int
3095 root_bus_module_handler(module_t mod, int what, void* arg)
3096 {
3097 	switch (what) {
3098 	case MOD_LOAD:
3099 		TAILQ_INIT(&bus_data_devices);
3100 		root_bus = make_device(NULL, "root", 0);
3101 		root_bus->desc = "System root bus";
3102 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3103 		root_bus->driver = &root_driver;
3104 		root_bus->state = DS_ALIVE;
3105 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3106 		devinit();
3107 		return(0);
3108 
3109 	case MOD_SHUTDOWN:
3110 		device_shutdown(root_bus);
3111 		return(0);
3112 	default:
3113 		return(0);
3114 	}
3115 }
3116 
3117 static moduledata_t root_bus_mod = {
3118 	"rootbus",
3119 	root_bus_module_handler,
3120 	0
3121 };
3122 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3123 
3124 void
3125 root_bus_configure(void)
3126 {
3127 	int warncount;
3128 	device_t dev;
3129 
3130 	PDEBUG(("."));
3131 
3132 	/*
3133 	 * handle device_identify based device attachments to the root_bus
3134 	 * (typically nexus).
3135 	 */
3136 	bus_generic_probe(root_bus);
3137 
3138 	/*
3139 	 * Probe and attach the devices under root_bus.
3140 	 */
3141 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3142 		device_probe_and_attach(dev);
3143 	}
3144 
3145 	/*
3146 	 * Wait for all asynchronous attaches to complete.  If we don't
3147 	 * our legacy ISA bus scan could steal device unit numbers or
3148 	 * even I/O ports.
3149 	 */
3150 	warncount = 10;
3151 	if (numasyncthreads)
3152 		kprintf("Waiting for async drivers to attach\n");
3153 	while (numasyncthreads > 0) {
3154 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3155 			--warncount;
3156 		if (warncount == 0) {
3157 			kprintf("Warning: Still waiting for %d "
3158 				"drivers to attach\n", numasyncthreads);
3159 		} else if (warncount == -30) {
3160 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3161 			break;
3162 		}
3163 	}
3164 	root_bus->state = DS_ATTACHED;
3165 }
3166 
3167 int
3168 driver_module_handler(module_t mod, int what, void *arg)
3169 {
3170 	int error;
3171 	struct driver_module_data *dmd;
3172 	devclass_t bus_devclass;
3173 	kobj_class_t driver;
3174         const char *parentname;
3175 
3176 	dmd = (struct driver_module_data *)arg;
3177 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3178 	error = 0;
3179 
3180 	switch (what) {
3181 	case MOD_LOAD:
3182 		if (dmd->dmd_chainevh)
3183 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3184 
3185 		driver = dmd->dmd_driver;
3186 		PDEBUG(("Loading module: driver %s on bus %s",
3187 		        DRIVERNAME(driver), dmd->dmd_busname));
3188 
3189 		/*
3190 		 * If the driver has any base classes, make the
3191 		 * devclass inherit from the devclass of the driver's
3192 		 * first base class. This will allow the system to
3193 		 * search for drivers in both devclasses for children
3194 		 * of a device using this driver.
3195 		 */
3196 		if (driver->baseclasses)
3197 			parentname = driver->baseclasses[0]->name;
3198 		else
3199 			parentname = NULL;
3200 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3201 							    parentname, TRUE);
3202 
3203 		error = devclass_add_driver(bus_devclass, driver);
3204 		if (error)
3205 			break;
3206 		break;
3207 
3208 	case MOD_UNLOAD:
3209 		PDEBUG(("Unloading module: driver %s from bus %s",
3210 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3211 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3212 
3213 		if (!error && dmd->dmd_chainevh)
3214 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3215 		break;
3216 	}
3217 
3218 	return (error);
3219 }
3220 
3221 #ifdef BUS_DEBUG
3222 
3223 /*
3224  * The _short versions avoid iteration by not calling anything that prints
3225  * more than oneliners. I love oneliners.
3226  */
3227 
3228 static void
3229 print_device_short(device_t dev, int indent)
3230 {
3231 	if (!dev)
3232 		return;
3233 
3234 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3235 		      dev->unit, dev->desc,
3236 		      (dev->parent? "":"no "),
3237 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3238 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3239 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3240 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3241 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3242 		      (dev->ivars? "":"no "),
3243 		      (dev->softc? "":"no "),
3244 		      dev->busy));
3245 }
3246 
3247 static void
3248 print_device(device_t dev, int indent)
3249 {
3250 	if (!dev)
3251 		return;
3252 
3253 	print_device_short(dev, indent);
3254 
3255 	indentprintf(("Parent:\n"));
3256 	print_device_short(dev->parent, indent+1);
3257 	indentprintf(("Driver:\n"));
3258 	print_driver_short(dev->driver, indent+1);
3259 	indentprintf(("Devclass:\n"));
3260 	print_devclass_short(dev->devclass, indent+1);
3261 }
3262 
3263 /*
3264  * Print the device and all its children (indented).
3265  */
3266 void
3267 print_device_tree_short(device_t dev, int indent)
3268 {
3269 	device_t child;
3270 
3271 	if (!dev)
3272 		return;
3273 
3274 	print_device_short(dev, indent);
3275 
3276 	TAILQ_FOREACH(child, &dev->children, link)
3277 		print_device_tree_short(child, indent+1);
3278 }
3279 
3280 /*
3281  * Print the device and all its children (indented).
3282  */
3283 void
3284 print_device_tree(device_t dev, int indent)
3285 {
3286 	device_t child;
3287 
3288 	if (!dev)
3289 		return;
3290 
3291 	print_device(dev, indent);
3292 
3293 	TAILQ_FOREACH(child, &dev->children, link)
3294 		print_device_tree(child, indent+1);
3295 }
3296 
3297 static void
3298 print_driver_short(driver_t *driver, int indent)
3299 {
3300 	if (!driver)
3301 		return;
3302 
3303 	indentprintf(("driver %s: softc size = %zu\n",
3304 		      driver->name, driver->size));
3305 }
3306 
3307 static void
3308 print_driver(driver_t *driver, int indent)
3309 {
3310 	if (!driver)
3311 		return;
3312 
3313 	print_driver_short(driver, indent);
3314 }
3315 
3316 
3317 static void
3318 print_driver_list(driver_list_t drivers, int indent)
3319 {
3320 	driverlink_t driver;
3321 
3322 	TAILQ_FOREACH(driver, &drivers, link)
3323 		print_driver(driver->driver, indent);
3324 }
3325 
3326 static void
3327 print_devclass_short(devclass_t dc, int indent)
3328 {
3329 	if (!dc)
3330 		return;
3331 
3332 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3333 }
3334 
3335 static void
3336 print_devclass(devclass_t dc, int indent)
3337 {
3338 	int i;
3339 
3340 	if (!dc)
3341 		return;
3342 
3343 	print_devclass_short(dc, indent);
3344 	indentprintf(("Drivers:\n"));
3345 	print_driver_list(dc->drivers, indent+1);
3346 
3347 	indentprintf(("Devices:\n"));
3348 	for (i = 0; i < dc->maxunit; i++)
3349 		if (dc->devices[i])
3350 			print_device(dc->devices[i], indent+1);
3351 }
3352 
3353 void
3354 print_devclass_list_short(void)
3355 {
3356 	devclass_t dc;
3357 
3358 	kprintf("Short listing of devclasses, drivers & devices:\n");
3359 	TAILQ_FOREACH(dc, &devclasses, link) {
3360 		print_devclass_short(dc, 0);
3361 	}
3362 }
3363 
3364 void
3365 print_devclass_list(void)
3366 {
3367 	devclass_t dc;
3368 
3369 	kprintf("Full listing of devclasses, drivers & devices:\n");
3370 	TAILQ_FOREACH(dc, &devclasses, link) {
3371 		print_devclass(dc, 0);
3372 	}
3373 }
3374 
3375 #endif
3376 
3377 /*
3378  * Check to see if a device is disabled via a disabled hint.
3379  */
3380 int
3381 resource_disabled(const char *name, int unit)
3382 {
3383 	int error, value;
3384 
3385 	error = resource_int_value(name, unit, "disabled", &value);
3386 	if (error)
3387 	       return(0);
3388 	return(value);
3389 }
3390 
3391 /*
3392  * User-space access to the device tree.
3393  *
3394  * We implement a small set of nodes:
3395  *
3396  * hw.bus			Single integer read method to obtain the
3397  *				current generation count.
3398  * hw.bus.devices		Reads the entire device tree in flat space.
3399  * hw.bus.rman			Resource manager interface
3400  *
3401  * We might like to add the ability to scan devclasses and/or drivers to
3402  * determine what else is currently loaded/available.
3403  */
3404 
3405 static int
3406 sysctl_bus(SYSCTL_HANDLER_ARGS)
3407 {
3408 	struct u_businfo	ubus;
3409 
3410 	ubus.ub_version = BUS_USER_VERSION;
3411 	ubus.ub_generation = bus_data_generation;
3412 
3413 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3414 }
3415 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3416     "bus-related data");
3417 
3418 static int
3419 sysctl_devices(SYSCTL_HANDLER_ARGS)
3420 {
3421 	int			*name = (int *)arg1;
3422 	u_int			namelen = arg2;
3423 	int			index;
3424 	struct device		*dev;
3425 	struct u_device		udev;	/* XXX this is a bit big */
3426 	int			error;
3427 
3428 	if (namelen != 2)
3429 		return (EINVAL);
3430 
3431 	if (bus_data_generation_check(name[0]))
3432 		return (EINVAL);
3433 
3434 	index = name[1];
3435 
3436 	/*
3437 	 * Scan the list of devices, looking for the requested index.
3438 	 */
3439 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3440 		if (index-- == 0)
3441 			break;
3442 	}
3443 	if (dev == NULL)
3444 		return (ENOENT);
3445 
3446 	/*
3447 	 * Populate the return array.
3448 	 */
3449 	bzero(&udev, sizeof(udev));
3450 	udev.dv_handle = (uintptr_t)dev;
3451 	udev.dv_parent = (uintptr_t)dev->parent;
3452 	if (dev->nameunit != NULL)
3453 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3454 	if (dev->desc != NULL)
3455 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3456 	if (dev->driver != NULL && dev->driver->name != NULL)
3457 		strlcpy(udev.dv_drivername, dev->driver->name,
3458 		    sizeof(udev.dv_drivername));
3459 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3460 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3461 	udev.dv_devflags = dev->devflags;
3462 	udev.dv_flags = dev->flags;
3463 	udev.dv_state = dev->state;
3464 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3465 	return (error);
3466 }
3467 
3468 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3469     "system device tree");
3470 
3471 int
3472 bus_data_generation_check(int generation)
3473 {
3474 	if (generation != bus_data_generation)
3475 		return (1);
3476 
3477 	/* XXX generate optimised lists here? */
3478 	return (0);
3479 }
3480 
3481 void
3482 bus_data_generation_update(void)
3483 {
3484 	bus_data_generation++;
3485 }
3486 
3487 const char *
3488 intr_str_polarity(enum intr_polarity pola)
3489 {
3490 	switch (pola) {
3491 	case INTR_POLARITY_LOW:
3492 		return "low";
3493 
3494 	case INTR_POLARITY_HIGH:
3495 		return "high";
3496 
3497 	case INTR_POLARITY_CONFORM:
3498 		return "conform";
3499 	}
3500 	return "unknown";
3501 }
3502 
3503 const char *
3504 intr_str_trigger(enum intr_trigger trig)
3505 {
3506 	switch (trig) {
3507 	case INTR_TRIGGER_EDGE:
3508 		return "edge";
3509 
3510 	case INTR_TRIGGER_LEVEL:
3511 		return "level";
3512 
3513 	case INTR_TRIGGER_CONFORM:
3514 		return "conform";
3515 	}
3516 	return "unknown";
3517 }
3518 
3519 int
3520 device_getenv_int(device_t dev, const char *knob, int def)
3521 {
3522 	char env[128];
3523 
3524 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3525 	kgetenv_int(env, &def);
3526 	return def;
3527 }
3528