xref: /dragonfly/sys/kern/subr_bus.c (revision 926deccb)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  */
28 
29 #include "opt_bus.h"
30 
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/kobj.h>
37 #include <sys/bus_private.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/device.h>
43 #include <sys/lock.h>
44 #include <sys/conf.h>
45 #include <sys/uio.h>
46 #include <sys/filio.h>
47 #include <sys/event.h>
48 #include <sys/signalvar.h>
49 #include <sys/machintr.h>
50 
51 #include <machine/stdarg.h>	/* for device_printf() */
52 
53 #include <sys/thread2.h>
54 #include <sys/mplock2.h>
55 
56 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
57 
58 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
59 
60 #ifdef BUS_DEBUG
61 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
62 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
63 #define DRIVERNAME(d)	((d)? d->name : "no driver")
64 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
65 
66 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
67  * prevent syslog from deleting initial spaces
68  */
69 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
70 
71 static void	print_device_short(device_t dev, int indent);
72 static void	print_device(device_t dev, int indent);
73 void		print_device_tree_short(device_t dev, int indent);
74 void		print_device_tree(device_t dev, int indent);
75 static void	print_driver_short(driver_t *driver, int indent);
76 static void	print_driver(driver_t *driver, int indent);
77 static void	print_driver_list(driver_list_t drivers, int indent);
78 static void	print_devclass_short(devclass_t dc, int indent);
79 static void	print_devclass(devclass_t dc, int indent);
80 void		print_devclass_list_short(void);
81 void		print_devclass_list(void);
82 
83 #else
84 /* Make the compiler ignore the function calls */
85 #define PDEBUG(a)			/* nop */
86 #define DEVICENAME(d)			/* nop */
87 #define DRIVERNAME(d)			/* nop */
88 #define DEVCLANAME(d)			/* nop */
89 
90 #define print_device_short(d,i)		/* nop */
91 #define print_device(d,i)		/* nop */
92 #define print_device_tree_short(d,i)	/* nop */
93 #define print_device_tree(d,i)		/* nop */
94 #define print_driver_short(d,i)		/* nop */
95 #define print_driver(d,i)		/* nop */
96 #define print_driver_list(d,i)		/* nop */
97 #define print_devclass_short(d,i)	/* nop */
98 #define print_devclass(d,i)		/* nop */
99 #define print_devclass_list_short()	/* nop */
100 #define print_devclass_list()		/* nop */
101 #endif
102 
103 static void	device_attach_async(device_t dev);
104 static void	device_attach_thread(void *arg);
105 static int	device_doattach(device_t dev);
106 
107 static int do_async_attach = 0;
108 static int numasyncthreads;
109 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
110 
111 /*
112  * /dev/devctl implementation
113  */
114 
115 /*
116  * This design allows only one reader for /dev/devctl.  This is not desirable
117  * in the long run, but will get a lot of hair out of this implementation.
118  * Maybe we should make this device a clonable device.
119  *
120  * Also note: we specifically do not attach a device to the device_t tree
121  * to avoid potential chicken and egg problems.  One could argue that all
122  * of this belongs to the root node.  One could also further argue that the
123  * sysctl interface that we have not might more properly be an ioctl
124  * interface, but at this stage of the game, I'm not inclined to rock that
125  * boat.
126  *
127  * I'm also not sure that the SIGIO support is done correctly or not, as
128  * I copied it from a driver that had SIGIO support that likely hasn't been
129  * tested since 3.4 or 2.2.8!
130  */
131 
132 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
133 static int devctl_disable = 0;
134 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
135 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
136     sysctl_devctl_disable, "I", "devctl disable");
137 
138 static d_open_t		devopen;
139 static d_close_t	devclose;
140 static d_read_t		devread;
141 static d_ioctl_t	devioctl;
142 static d_kqfilter_t	devkqfilter;
143 
144 static struct dev_ops devctl_ops = {
145 	{ "devctl", 0, 0 },
146 	.d_open =	devopen,
147 	.d_close =	devclose,
148 	.d_read =	devread,
149 	.d_ioctl =	devioctl,
150 	.d_kqfilter =	devkqfilter
151 };
152 
153 struct dev_event_info
154 {
155 	char *dei_data;
156 	TAILQ_ENTRY(dev_event_info) dei_link;
157 };
158 
159 TAILQ_HEAD(devq, dev_event_info);
160 
161 static struct dev_softc
162 {
163 	int	inuse;
164 	int	nonblock;
165 	struct lock lock;
166 	struct kqinfo kq;
167 	struct devq devq;
168 	struct proc *async_proc;
169 } devsoftc;
170 
171 static void
172 devinit(void)
173 {
174 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
175 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
176 	TAILQ_INIT(&devsoftc.devq);
177 }
178 
179 static int
180 devopen(struct dev_open_args *ap)
181 {
182 	if (devsoftc.inuse)
183 		return (EBUSY);
184 	/* move to init */
185 	devsoftc.inuse = 1;
186 	devsoftc.nonblock = 0;
187 	devsoftc.async_proc = NULL;
188 	return (0);
189 }
190 
191 static int
192 devclose(struct dev_close_args *ap)
193 {
194 	devsoftc.inuse = 0;
195 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
196 	wakeup(&devsoftc);
197 	lockmgr(&devsoftc.lock, LK_RELEASE);
198 
199 	return (0);
200 }
201 
202 /*
203  * The read channel for this device is used to report changes to
204  * userland in realtime.  We are required to free the data as well as
205  * the n1 object because we allocate them separately.  Also note that
206  * we return one record at a time.  If you try to read this device a
207  * character at a time, you will lose the rest of the data.  Listening
208  * programs are expected to cope.
209  */
210 static int
211 devread(struct dev_read_args *ap)
212 {
213 	struct uio *uio = ap->a_uio;
214 	struct dev_event_info *n1;
215 	int rv;
216 
217 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
218 	while (TAILQ_EMPTY(&devsoftc.devq)) {
219 		if (devsoftc.nonblock) {
220 			lockmgr(&devsoftc.lock, LK_RELEASE);
221 			return (EAGAIN);
222 		}
223 		tsleep_interlock(&devsoftc, PCATCH);
224 		lockmgr(&devsoftc.lock, LK_RELEASE);
225 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
226 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
227 		if (rv) {
228 			/*
229 			 * Need to translate ERESTART to EINTR here? -- jake
230 			 */
231 			lockmgr(&devsoftc.lock, LK_RELEASE);
232 			return (rv);
233 		}
234 	}
235 	n1 = TAILQ_FIRST(&devsoftc.devq);
236 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
237 	lockmgr(&devsoftc.lock, LK_RELEASE);
238 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
239 	kfree(n1->dei_data, M_BUS);
240 	kfree(n1, M_BUS);
241 	return (rv);
242 }
243 
244 static	int
245 devioctl(struct dev_ioctl_args *ap)
246 {
247 	switch (ap->a_cmd) {
248 
249 	case FIONBIO:
250 		if (*(int*)ap->a_data)
251 			devsoftc.nonblock = 1;
252 		else
253 			devsoftc.nonblock = 0;
254 		return (0);
255 	case FIOASYNC:
256 		if (*(int*)ap->a_data)
257 			devsoftc.async_proc = curproc;
258 		else
259 			devsoftc.async_proc = NULL;
260 		return (0);
261 
262 		/* (un)Support for other fcntl() calls. */
263 	case FIOCLEX:
264 	case FIONCLEX:
265 	case FIONREAD:
266 	case FIOSETOWN:
267 	case FIOGETOWN:
268 	default:
269 		break;
270 	}
271 	return (ENOTTY);
272 }
273 
274 static void dev_filter_detach(struct knote *);
275 static int dev_filter_read(struct knote *, long);
276 
277 static struct filterops dev_filtops =
278 	{ FILTEROP_ISFD, NULL, dev_filter_detach, dev_filter_read };
279 
280 static int
281 devkqfilter(struct dev_kqfilter_args *ap)
282 {
283 	struct knote *kn = ap->a_kn;
284 	struct klist *klist;
285 
286 	ap->a_result = 0;
287 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
288 
289 	switch (kn->kn_filter) {
290 	case EVFILT_READ:
291 		kn->kn_fop = &dev_filtops;
292 		break;
293 	default:
294 		ap->a_result = EOPNOTSUPP;
295 		lockmgr(&devsoftc.lock, LK_RELEASE);
296 		return (0);
297 	}
298 
299 	klist = &devsoftc.kq.ki_note;
300 	knote_insert(klist, kn);
301 
302 	lockmgr(&devsoftc.lock, LK_RELEASE);
303 
304 	return (0);
305 }
306 
307 static void
308 dev_filter_detach(struct knote *kn)
309 {
310 	struct klist *klist;
311 
312 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
313 	klist = &devsoftc.kq.ki_note;
314 	knote_remove(klist, kn);
315 	lockmgr(&devsoftc.lock, LK_RELEASE);
316 }
317 
318 static int
319 dev_filter_read(struct knote *kn, long hint)
320 {
321 	int ready = 0;
322 
323 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
324 	if (!TAILQ_EMPTY(&devsoftc.devq))
325 		ready = 1;
326 	lockmgr(&devsoftc.lock, LK_RELEASE);
327 
328 	return (ready);
329 }
330 
331 
332 /**
333  * @brief Return whether the userland process is running
334  */
335 boolean_t
336 devctl_process_running(void)
337 {
338 	return (devsoftc.inuse == 1);
339 }
340 
341 /**
342  * @brief Queue data to be read from the devctl device
343  *
344  * Generic interface to queue data to the devctl device.  It is
345  * assumed that @p data is properly formatted.  It is further assumed
346  * that @p data is allocated using the M_BUS malloc type.
347  */
348 void
349 devctl_queue_data(char *data)
350 {
351 	struct dev_event_info *n1 = NULL;
352 	struct proc *p;
353 
354 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
355 	if (n1 == NULL)
356 		return;
357 	n1->dei_data = data;
358 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
359 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
360 	wakeup(&devsoftc);
361 	lockmgr(&devsoftc.lock, LK_RELEASE);
362 	get_mplock();	/* XXX */
363 	KNOTE(&devsoftc.kq.ki_note, 0);
364 	rel_mplock();	/* XXX */
365 	p = devsoftc.async_proc;
366 	if (p != NULL)
367 		ksignal(p, SIGIO);
368 }
369 
370 /**
371  * @brief Send a 'notification' to userland, using standard ways
372  */
373 void
374 devctl_notify(const char *system, const char *subsystem, const char *type,
375     const char *data)
376 {
377 	int len = 0;
378 	char *msg;
379 
380 	if (system == NULL)
381 		return;		/* BOGUS!  Must specify system. */
382 	if (subsystem == NULL)
383 		return;		/* BOGUS!  Must specify subsystem. */
384 	if (type == NULL)
385 		return;		/* BOGUS!  Must specify type. */
386 	len += strlen(" system=") + strlen(system);
387 	len += strlen(" subsystem=") + strlen(subsystem);
388 	len += strlen(" type=") + strlen(type);
389 	/* add in the data message plus newline. */
390 	if (data != NULL)
391 		len += strlen(data);
392 	len += 3;	/* '!', '\n', and NUL */
393 	msg = kmalloc(len, M_BUS, M_NOWAIT);
394 	if (msg == NULL)
395 		return;		/* Drop it on the floor */
396 	if (data != NULL)
397 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
398 		    system, subsystem, type, data);
399 	else
400 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
401 		    system, subsystem, type);
402 	devctl_queue_data(msg);
403 }
404 
405 /*
406  * Common routine that tries to make sending messages as easy as possible.
407  * We allocate memory for the data, copy strings into that, but do not
408  * free it unless there's an error.  The dequeue part of the driver should
409  * free the data.  We don't send data when the device is disabled.  We do
410  * send data, even when we have no listeners, because we wish to avoid
411  * races relating to startup and restart of listening applications.
412  *
413  * devaddq is designed to string together the type of event, with the
414  * object of that event, plus the plug and play info and location info
415  * for that event.  This is likely most useful for devices, but less
416  * useful for other consumers of this interface.  Those should use
417  * the devctl_queue_data() interface instead.
418  */
419 static void
420 devaddq(const char *type, const char *what, device_t dev)
421 {
422 	char *data = NULL;
423 	char *loc = NULL;
424 	char *pnp = NULL;
425 	const char *parstr;
426 
427 	if (devctl_disable)
428 		return;
429 	data = kmalloc(1024, M_BUS, M_NOWAIT);
430 	if (data == NULL)
431 		goto bad;
432 
433 	/* get the bus specific location of this device */
434 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
435 	if (loc == NULL)
436 		goto bad;
437 	*loc = '\0';
438 	bus_child_location_str(dev, loc, 1024);
439 
440 	/* Get the bus specific pnp info of this device */
441 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
442 	if (pnp == NULL)
443 		goto bad;
444 	*pnp = '\0';
445 	bus_child_pnpinfo_str(dev, pnp, 1024);
446 
447 	/* Get the parent of this device, or / if high enough in the tree. */
448 	if (device_get_parent(dev) == NULL)
449 		parstr = ".";	/* Or '/' ? */
450 	else
451 		parstr = device_get_nameunit(device_get_parent(dev));
452 	/* String it all together. */
453 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
454 	  parstr);
455 	kfree(loc, M_BUS);
456 	kfree(pnp, M_BUS);
457 	devctl_queue_data(data);
458 	return;
459 bad:
460 	kfree(pnp, M_BUS);
461 	kfree(loc, M_BUS);
462 	kfree(data, M_BUS);
463 	return;
464 }
465 
466 /*
467  * A device was added to the tree.  We are called just after it successfully
468  * attaches (that is, probe and attach success for this device).  No call
469  * is made if a device is merely parented into the tree.  See devnomatch
470  * if probe fails.  If attach fails, no notification is sent (but maybe
471  * we should have a different message for this).
472  */
473 static void
474 devadded(device_t dev)
475 {
476 	char *pnp = NULL;
477 	char *tmp = NULL;
478 
479 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
480 	if (pnp == NULL)
481 		goto fail;
482 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
483 	if (tmp == NULL)
484 		goto fail;
485 	*pnp = '\0';
486 	bus_child_pnpinfo_str(dev, pnp, 1024);
487 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
488 	devaddq("+", tmp, dev);
489 fail:
490 	if (pnp != NULL)
491 		kfree(pnp, M_BUS);
492 	if (tmp != NULL)
493 		kfree(tmp, M_BUS);
494 	return;
495 }
496 
497 /*
498  * A device was removed from the tree.  We are called just before this
499  * happens.
500  */
501 static void
502 devremoved(device_t dev)
503 {
504 	char *pnp = NULL;
505 	char *tmp = NULL;
506 
507 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
508 	if (pnp == NULL)
509 		goto fail;
510 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
511 	if (tmp == NULL)
512 		goto fail;
513 	*pnp = '\0';
514 	bus_child_pnpinfo_str(dev, pnp, 1024);
515 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
516 	devaddq("-", tmp, dev);
517 fail:
518 	if (pnp != NULL)
519 		kfree(pnp, M_BUS);
520 	if (tmp != NULL)
521 		kfree(tmp, M_BUS);
522 	return;
523 }
524 
525 /*
526  * Called when there's no match for this device.  This is only called
527  * the first time that no match happens, so we don't keep getitng this
528  * message.  Should that prove to be undesirable, we can change it.
529  * This is called when all drivers that can attach to a given bus
530  * decline to accept this device.  Other errrors may not be detected.
531  */
532 static void
533 devnomatch(device_t dev)
534 {
535 	devaddq("?", "", dev);
536 }
537 
538 static int
539 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
540 {
541 	struct dev_event_info *n1;
542 	int dis, error;
543 
544 	dis = devctl_disable;
545 	error = sysctl_handle_int(oidp, &dis, 0, req);
546 	if (error || !req->newptr)
547 		return (error);
548 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
549 	devctl_disable = dis;
550 	if (dis) {
551 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
552 			n1 = TAILQ_FIRST(&devsoftc.devq);
553 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
554 			kfree(n1->dei_data, M_BUS);
555 			kfree(n1, M_BUS);
556 		}
557 	}
558 	lockmgr(&devsoftc.lock, LK_RELEASE);
559 	return (0);
560 }
561 
562 /* End of /dev/devctl code */
563 
564 TAILQ_HEAD(,device)	bus_data_devices;
565 static int bus_data_generation = 1;
566 
567 kobj_method_t null_methods[] = {
568 	{ 0, 0 }
569 };
570 
571 DEFINE_CLASS(null, null_methods, 0);
572 
573 /*
574  * Devclass implementation
575  */
576 
577 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
578 
579 static devclass_t
580 devclass_find_internal(const char *classname, const char *parentname,
581 		       int create)
582 {
583 	devclass_t dc;
584 
585 	PDEBUG(("looking for %s", classname));
586 	if (classname == NULL)
587 		return(NULL);
588 
589 	TAILQ_FOREACH(dc, &devclasses, link)
590 		if (!strcmp(dc->name, classname))
591 			break;
592 
593 	if (create && !dc) {
594 		PDEBUG(("creating %s", classname));
595 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
596 			    M_BUS, M_INTWAIT | M_ZERO);
597 		dc->parent = NULL;
598 		dc->name = (char*) (dc + 1);
599 		strcpy(dc->name, classname);
600 		dc->devices = NULL;
601 		dc->maxunit = 0;
602 		TAILQ_INIT(&dc->drivers);
603 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
604 
605 		bus_data_generation_update();
606 
607 	}
608 
609 	/*
610 	 * If a parent class is specified, then set that as our parent so
611 	 * that this devclass will support drivers for the parent class as
612 	 * well.  If the parent class has the same name don't do this though
613 	 * as it creates a cycle that can trigger an infinite loop in
614 	 * device_probe_child() if a device exists for which there is no
615 	 * suitable driver.
616 	 */
617 	if (parentname && dc && !dc->parent &&
618 	    strcmp(classname, parentname) != 0)
619 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
620 
621 	return(dc);
622 }
623 
624 devclass_t
625 devclass_create(const char *classname)
626 {
627 	return(devclass_find_internal(classname, NULL, TRUE));
628 }
629 
630 devclass_t
631 devclass_find(const char *classname)
632 {
633 	return(devclass_find_internal(classname, NULL, FALSE));
634 }
635 
636 device_t
637 devclass_find_unit(const char *classname, int unit)
638 {
639 	devclass_t dc;
640 
641 	if ((dc = devclass_find(classname)) != NULL)
642 	    return(devclass_get_device(dc, unit));
643 	return (NULL);
644 }
645 
646 int
647 devclass_add_driver(devclass_t dc, driver_t *driver)
648 {
649 	driverlink_t dl;
650 	device_t dev;
651 	int i;
652 
653 	PDEBUG(("%s", DRIVERNAME(driver)));
654 
655 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
656 
657 	/*
658 	 * Compile the driver's methods. Also increase the reference count
659 	 * so that the class doesn't get freed when the last instance
660 	 * goes. This means we can safely use static methods and avoids a
661 	 * double-free in devclass_delete_driver.
662 	 */
663 	kobj_class_instantiate(driver);
664 
665 	/*
666 	 * Make sure the devclass which the driver is implementing exists.
667 	 */
668 	devclass_find_internal(driver->name, NULL, TRUE);
669 
670 	dl->driver = driver;
671 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
672 
673 	/*
674 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
675 	 * but only if the bus has already been attached (otherwise we
676 	 * might probe too early).
677 	 *
678 	 * This is what will cause a newly loaded module to be associated
679 	 * with hardware.  bus_generic_driver_added() is typically what ends
680 	 * up being called.
681 	 */
682 	for (i = 0; i < dc->maxunit; i++) {
683 		if ((dev = dc->devices[i]) != NULL) {
684 			if (dev->state >= DS_ATTACHED)
685 				BUS_DRIVER_ADDED(dev, driver);
686 		}
687 	}
688 
689 	bus_data_generation_update();
690 	return(0);
691 }
692 
693 int
694 devclass_delete_driver(devclass_t busclass, driver_t *driver)
695 {
696 	devclass_t dc = devclass_find(driver->name);
697 	driverlink_t dl;
698 	device_t dev;
699 	int i;
700 	int error;
701 
702 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
703 
704 	if (!dc)
705 		return(0);
706 
707 	/*
708 	 * Find the link structure in the bus' list of drivers.
709 	 */
710 	TAILQ_FOREACH(dl, &busclass->drivers, link)
711 		if (dl->driver == driver)
712 			break;
713 
714 	if (!dl) {
715 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
716 		return(ENOENT);
717 	}
718 
719 	/*
720 	 * Disassociate from any devices.  We iterate through all the
721 	 * devices in the devclass of the driver and detach any which are
722 	 * using the driver and which have a parent in the devclass which
723 	 * we are deleting from.
724 	 *
725 	 * Note that since a driver can be in multiple devclasses, we
726 	 * should not detach devices which are not children of devices in
727 	 * the affected devclass.
728 	 */
729 	for (i = 0; i < dc->maxunit; i++)
730 		if (dc->devices[i]) {
731 			dev = dc->devices[i];
732 			if (dev->driver == driver && dev->parent &&
733 			    dev->parent->devclass == busclass) {
734 				if ((error = device_detach(dev)) != 0)
735 					return(error);
736 				device_set_driver(dev, NULL);
737 		    	}
738 		}
739 
740 	TAILQ_REMOVE(&busclass->drivers, dl, link);
741 	kfree(dl, M_BUS);
742 
743 	kobj_class_uninstantiate(driver);
744 
745 	bus_data_generation_update();
746 	return(0);
747 }
748 
749 static driverlink_t
750 devclass_find_driver_internal(devclass_t dc, const char *classname)
751 {
752 	driverlink_t dl;
753 
754 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
755 
756 	TAILQ_FOREACH(dl, &dc->drivers, link)
757 		if (!strcmp(dl->driver->name, classname))
758 			return(dl);
759 
760 	PDEBUG(("not found"));
761 	return(NULL);
762 }
763 
764 kobj_class_t
765 devclass_find_driver(devclass_t dc, const char *classname)
766 {
767 	driverlink_t dl;
768 
769 	dl = devclass_find_driver_internal(dc, classname);
770 	if (dl)
771 		return(dl->driver);
772 	else
773 		return(NULL);
774 }
775 
776 const char *
777 devclass_get_name(devclass_t dc)
778 {
779 	return(dc->name);
780 }
781 
782 device_t
783 devclass_get_device(devclass_t dc, int unit)
784 {
785 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
786 		return(NULL);
787 	return(dc->devices[unit]);
788 }
789 
790 void *
791 devclass_get_softc(devclass_t dc, int unit)
792 {
793 	device_t dev;
794 
795 	dev = devclass_get_device(dc, unit);
796 	if (!dev)
797 		return(NULL);
798 
799 	return(device_get_softc(dev));
800 }
801 
802 int
803 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
804 {
805 	int i;
806 	int count;
807 	device_t *list;
808 
809 	count = 0;
810 	for (i = 0; i < dc->maxunit; i++)
811 		if (dc->devices[i])
812 			count++;
813 
814 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
815 
816 	count = 0;
817 	for (i = 0; i < dc->maxunit; i++)
818 		if (dc->devices[i]) {
819 			list[count] = dc->devices[i];
820 			count++;
821 		}
822 
823 	*devlistp = list;
824 	*devcountp = count;
825 
826 	return(0);
827 }
828 
829 /**
830  * @brief Get a list of drivers in the devclass
831  *
832  * An array containing a list of pointers to all the drivers in the
833  * given devclass is allocated and returned in @p *listp.  The number
834  * of drivers in the array is returned in @p *countp. The caller should
835  * free the array using @c free(p, M_TEMP).
836  *
837  * @param dc            the devclass to examine
838  * @param listp         gives location for array pointer return value
839  * @param countp        gives location for number of array elements
840  *                      return value
841  *
842  * @retval 0            success
843  * @retval ENOMEM       the array allocation failed
844  */
845 int
846 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
847 {
848         driverlink_t dl;
849         driver_t **list;
850         int count;
851 
852         count = 0;
853         TAILQ_FOREACH(dl, &dc->drivers, link)
854                 count++;
855         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
856         if (list == NULL)
857                 return (ENOMEM);
858 
859         count = 0;
860         TAILQ_FOREACH(dl, &dc->drivers, link) {
861                 list[count] = dl->driver;
862                 count++;
863         }
864         *listp = list;
865         *countp = count;
866 
867         return (0);
868 }
869 
870 /**
871  * @brief Get the number of devices in a devclass
872  *
873  * @param dc		the devclass to examine
874  */
875 int
876 devclass_get_count(devclass_t dc)
877 {
878 	int count, i;
879 
880 	count = 0;
881 	for (i = 0; i < dc->maxunit; i++)
882 		if (dc->devices[i])
883 			count++;
884 	return (count);
885 }
886 
887 int
888 devclass_get_maxunit(devclass_t dc)
889 {
890 	return(dc->maxunit);
891 }
892 
893 void
894 devclass_set_parent(devclass_t dc, devclass_t pdc)
895 {
896         dc->parent = pdc;
897 }
898 
899 devclass_t
900 devclass_get_parent(devclass_t dc)
901 {
902 	return(dc->parent);
903 }
904 
905 static int
906 devclass_alloc_unit(devclass_t dc, int *unitp)
907 {
908 	int unit = *unitp;
909 
910 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
911 
912 	/* If we have been given a wired unit number, check for existing device */
913 	if (unit != -1) {
914 		if (unit >= 0 && unit < dc->maxunit &&
915 		    dc->devices[unit] != NULL) {
916 			if (bootverbose)
917 				kprintf("%s-: %s%d exists, using next available unit number\n",
918 				       dc->name, dc->name, unit);
919 			/* find the next available slot */
920 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
921 				;
922 		}
923 	} else {
924 		/* Unwired device, find the next available slot for it */
925 		unit = 0;
926 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
927 			unit++;
928 	}
929 
930 	/*
931 	 * We've selected a unit beyond the length of the table, so let's
932 	 * extend the table to make room for all units up to and including
933 	 * this one.
934 	 */
935 	if (unit >= dc->maxunit) {
936 		device_t *newlist;
937 		int newsize;
938 
939 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
940 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
941 				 M_INTWAIT | M_ZERO);
942 		if (newlist == NULL)
943 			return(ENOMEM);
944 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
945 		if (dc->devices)
946 			kfree(dc->devices, M_BUS);
947 		dc->devices = newlist;
948 		dc->maxunit = newsize;
949 	}
950 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
951 
952 	*unitp = unit;
953 	return(0);
954 }
955 
956 static int
957 devclass_add_device(devclass_t dc, device_t dev)
958 {
959 	int buflen, error;
960 
961 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
962 
963 	buflen = strlen(dc->name) + 5;
964 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
965 	if (!dev->nameunit)
966 		return(ENOMEM);
967 
968 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
969 		kfree(dev->nameunit, M_BUS);
970 		dev->nameunit = NULL;
971 		return(error);
972 	}
973 	dc->devices[dev->unit] = dev;
974 	dev->devclass = dc;
975 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
976 
977 	return(0);
978 }
979 
980 static int
981 devclass_delete_device(devclass_t dc, device_t dev)
982 {
983 	if (!dc || !dev)
984 		return(0);
985 
986 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
987 
988 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
989 		panic("devclass_delete_device: inconsistent device class");
990 	dc->devices[dev->unit] = NULL;
991 	if (dev->flags & DF_WILDCARD)
992 		dev->unit = -1;
993 	dev->devclass = NULL;
994 	kfree(dev->nameunit, M_BUS);
995 	dev->nameunit = NULL;
996 
997 	return(0);
998 }
999 
1000 static device_t
1001 make_device(device_t parent, const char *name, int unit)
1002 {
1003 	device_t dev;
1004 	devclass_t dc;
1005 
1006 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1007 
1008 	if (name != NULL) {
1009 		dc = devclass_find_internal(name, NULL, TRUE);
1010 		if (!dc) {
1011 			kprintf("make_device: can't find device class %s\n", name);
1012 			return(NULL);
1013 		}
1014 	} else
1015 		dc = NULL;
1016 
1017 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
1018 	if (!dev)
1019 		return(0);
1020 
1021 	dev->parent = parent;
1022 	TAILQ_INIT(&dev->children);
1023 	kobj_init((kobj_t) dev, &null_class);
1024 	dev->driver = NULL;
1025 	dev->devclass = NULL;
1026 	dev->unit = unit;
1027 	dev->nameunit = NULL;
1028 	dev->desc = NULL;
1029 	dev->busy = 0;
1030 	dev->devflags = 0;
1031 	dev->flags = DF_ENABLED;
1032 	dev->order = 0;
1033 	if (unit == -1)
1034 		dev->flags |= DF_WILDCARD;
1035 	if (name) {
1036 		dev->flags |= DF_FIXEDCLASS;
1037 		if (devclass_add_device(dc, dev) != 0) {
1038 			kobj_delete((kobj_t)dev, M_BUS);
1039 			return(NULL);
1040 		}
1041     	}
1042 	dev->ivars = NULL;
1043 	dev->softc = NULL;
1044 
1045 	dev->state = DS_NOTPRESENT;
1046 
1047 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1048 	bus_data_generation_update();
1049 
1050 	return(dev);
1051 }
1052 
1053 static int
1054 device_print_child(device_t dev, device_t child)
1055 {
1056 	int retval = 0;
1057 
1058 	if (device_is_alive(child))
1059 		retval += BUS_PRINT_CHILD(dev, child);
1060 	else
1061 		retval += device_printf(child, " not found\n");
1062 
1063 	return(retval);
1064 }
1065 
1066 device_t
1067 device_add_child(device_t dev, const char *name, int unit)
1068 {
1069 	return device_add_child_ordered(dev, 0, name, unit);
1070 }
1071 
1072 device_t
1073 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1074 {
1075 	device_t child;
1076 	device_t place;
1077 
1078 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1079 		order, unit));
1080 
1081 	child = make_device(dev, name, unit);
1082 	if (child == NULL)
1083 		return child;
1084 	child->order = order;
1085 
1086 	TAILQ_FOREACH(place, &dev->children, link)
1087 		if (place->order > order)
1088 			break;
1089 
1090 	if (place) {
1091 		/*
1092 		 * The device 'place' is the first device whose order is
1093 		 * greater than the new child.
1094 		 */
1095 		TAILQ_INSERT_BEFORE(place, child, link);
1096 	} else {
1097 		/*
1098 		 * The new child's order is greater or equal to the order of
1099 		 * any existing device. Add the child to the tail of the list.
1100 		 */
1101 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1102     	}
1103 
1104 	bus_data_generation_update();
1105 	return(child);
1106 }
1107 
1108 int
1109 device_delete_child(device_t dev, device_t child)
1110 {
1111 	int error;
1112 	device_t grandchild;
1113 
1114 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1115 
1116 	/* remove children first */
1117 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1118         	error = device_delete_child(child, grandchild);
1119 		if (error)
1120 			return(error);
1121 	}
1122 
1123 	if ((error = device_detach(child)) != 0)
1124 		return(error);
1125 	if (child->devclass)
1126 		devclass_delete_device(child->devclass, child);
1127 	TAILQ_REMOVE(&dev->children, child, link);
1128 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1129 	device_set_desc(child, NULL);
1130 	kobj_delete((kobj_t)child, M_BUS);
1131 
1132 	bus_data_generation_update();
1133 	return(0);
1134 }
1135 
1136 /**
1137  * @brief Delete all children devices of the given device, if any.
1138  *
1139  * This function deletes all children devices of the given device, if
1140  * any, using the device_delete_child() function for each device it
1141  * finds. If a child device cannot be deleted, this function will
1142  * return an error code.
1143  *
1144  * @param dev		the parent device
1145  *
1146  * @retval 0		success
1147  * @retval non-zero	a device would not detach
1148  */
1149 int
1150 device_delete_children(device_t dev)
1151 {
1152 	device_t child;
1153 	int error;
1154 
1155 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1156 
1157 	error = 0;
1158 
1159 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1160 		error = device_delete_child(dev, child);
1161 		if (error) {
1162 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1163 			break;
1164 		}
1165 	}
1166 	return (error);
1167 }
1168 
1169 /**
1170  * @brief Find a device given a unit number
1171  *
1172  * This is similar to devclass_get_devices() but only searches for
1173  * devices which have @p dev as a parent.
1174  *
1175  * @param dev		the parent device to search
1176  * @param unit		the unit number to search for.  If the unit is -1,
1177  *			return the first child of @p dev which has name
1178  *			@p classname (that is, the one with the lowest unit.)
1179  *
1180  * @returns		the device with the given unit number or @c
1181  *			NULL if there is no such device
1182  */
1183 device_t
1184 device_find_child(device_t dev, const char *classname, int unit)
1185 {
1186 	devclass_t dc;
1187 	device_t child;
1188 
1189 	dc = devclass_find(classname);
1190 	if (!dc)
1191 		return(NULL);
1192 
1193 	if (unit != -1) {
1194 		child = devclass_get_device(dc, unit);
1195 		if (child && child->parent == dev)
1196 			return (child);
1197 	} else {
1198 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1199 			child = devclass_get_device(dc, unit);
1200 			if (child && child->parent == dev)
1201 				return (child);
1202 		}
1203 	}
1204 	return(NULL);
1205 }
1206 
1207 static driverlink_t
1208 first_matching_driver(devclass_t dc, device_t dev)
1209 {
1210 	if (dev->devclass)
1211 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1212 	else
1213 		return(TAILQ_FIRST(&dc->drivers));
1214 }
1215 
1216 static driverlink_t
1217 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1218 {
1219 	if (dev->devclass) {
1220 		driverlink_t dl;
1221 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1222 			if (!strcmp(dev->devclass->name, dl->driver->name))
1223 				return(dl);
1224 		return(NULL);
1225 	} else
1226 		return(TAILQ_NEXT(last, link));
1227 }
1228 
1229 int
1230 device_probe_child(device_t dev, device_t child)
1231 {
1232 	devclass_t dc;
1233 	driverlink_t best = NULL;
1234 	driverlink_t dl;
1235 	int result, pri = 0;
1236 	int hasclass = (child->devclass != NULL);
1237 
1238 	dc = dev->devclass;
1239 	if (!dc)
1240 		panic("device_probe_child: parent device has no devclass");
1241 
1242 	if (child->state == DS_ALIVE)
1243 		return(0);
1244 
1245 	for (; dc; dc = dc->parent) {
1246     		for (dl = first_matching_driver(dc, child); dl;
1247 		     dl = next_matching_driver(dc, child, dl)) {
1248 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1249 			device_set_driver(child, dl->driver);
1250 			if (!hasclass)
1251 				device_set_devclass(child, dl->driver->name);
1252 			result = DEVICE_PROBE(child);
1253 			if (!hasclass)
1254 				device_set_devclass(child, 0);
1255 
1256 			/*
1257 			 * If the driver returns SUCCESS, there can be
1258 			 * no higher match for this device.
1259 			 */
1260 			if (result == 0) {
1261 				best = dl;
1262 				pri = 0;
1263 				break;
1264 			}
1265 
1266 			/*
1267 			 * The driver returned an error so it
1268 			 * certainly doesn't match.
1269 			 */
1270 			if (result > 0) {
1271 				device_set_driver(child, 0);
1272 				continue;
1273 			}
1274 
1275 			/*
1276 			 * A priority lower than SUCCESS, remember the
1277 			 * best matching driver. Initialise the value
1278 			 * of pri for the first match.
1279 			 */
1280 			if (best == NULL || result > pri) {
1281 				best = dl;
1282 				pri = result;
1283 				continue;
1284 			}
1285 	        }
1286 		/*
1287 	         * If we have unambiguous match in this devclass,
1288 	         * don't look in the parent.
1289 	         */
1290 	        if (best && pri == 0)
1291 	    	        break;
1292 	}
1293 
1294 	/*
1295 	 * If we found a driver, change state and initialise the devclass.
1296 	 */
1297 	if (best) {
1298 		if (!child->devclass)
1299 			device_set_devclass(child, best->driver->name);
1300 		device_set_driver(child, best->driver);
1301 		if (pri < 0) {
1302 			/*
1303 			 * A bit bogus. Call the probe method again to make
1304 			 * sure that we have the right description.
1305 			 */
1306 			DEVICE_PROBE(child);
1307 		}
1308 
1309 		bus_data_generation_update();
1310 		child->state = DS_ALIVE;
1311 		return(0);
1312 	}
1313 
1314 	return(ENXIO);
1315 }
1316 
1317 device_t
1318 device_get_parent(device_t dev)
1319 {
1320 	return dev->parent;
1321 }
1322 
1323 int
1324 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1325 {
1326 	int count;
1327 	device_t child;
1328 	device_t *list;
1329 
1330 	count = 0;
1331 	TAILQ_FOREACH(child, &dev->children, link)
1332 		count++;
1333 
1334 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1335 
1336 	count = 0;
1337 	TAILQ_FOREACH(child, &dev->children, link) {
1338 		list[count] = child;
1339 		count++;
1340 	}
1341 
1342 	*devlistp = list;
1343 	*devcountp = count;
1344 
1345 	return(0);
1346 }
1347 
1348 driver_t *
1349 device_get_driver(device_t dev)
1350 {
1351 	return(dev->driver);
1352 }
1353 
1354 devclass_t
1355 device_get_devclass(device_t dev)
1356 {
1357 	return(dev->devclass);
1358 }
1359 
1360 const char *
1361 device_get_name(device_t dev)
1362 {
1363 	if (dev->devclass)
1364 		return devclass_get_name(dev->devclass);
1365 	return(NULL);
1366 }
1367 
1368 const char *
1369 device_get_nameunit(device_t dev)
1370 {
1371 	return(dev->nameunit);
1372 }
1373 
1374 int
1375 device_get_unit(device_t dev)
1376 {
1377 	return(dev->unit);
1378 }
1379 
1380 const char *
1381 device_get_desc(device_t dev)
1382 {
1383 	return(dev->desc);
1384 }
1385 
1386 uint32_t
1387 device_get_flags(device_t dev)
1388 {
1389 	return(dev->devflags);
1390 }
1391 
1392 int
1393 device_print_prettyname(device_t dev)
1394 {
1395 	const char *name = device_get_name(dev);
1396 
1397 	if (name == NULL)
1398 		return kprintf("unknown: ");
1399 	else
1400 		return kprintf("%s%d: ", name, device_get_unit(dev));
1401 }
1402 
1403 int
1404 device_printf(device_t dev, const char * fmt, ...)
1405 {
1406 	__va_list ap;
1407 	int retval;
1408 
1409 	retval = device_print_prettyname(dev);
1410 	__va_start(ap, fmt);
1411 	retval += kvprintf(fmt, ap);
1412 	__va_end(ap);
1413 	return retval;
1414 }
1415 
1416 static void
1417 device_set_desc_internal(device_t dev, const char* desc, int copy)
1418 {
1419 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1420 		kfree(dev->desc, M_BUS);
1421 		dev->flags &= ~DF_DESCMALLOCED;
1422 		dev->desc = NULL;
1423 	}
1424 
1425 	if (copy && desc) {
1426 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1427 		if (dev->desc) {
1428 			strcpy(dev->desc, desc);
1429 			dev->flags |= DF_DESCMALLOCED;
1430 		}
1431 	} else {
1432 		/* Avoid a -Wcast-qual warning */
1433 		dev->desc = (char *)(uintptr_t) desc;
1434 	}
1435 
1436 	bus_data_generation_update();
1437 }
1438 
1439 void
1440 device_set_desc(device_t dev, const char* desc)
1441 {
1442 	device_set_desc_internal(dev, desc, FALSE);
1443 }
1444 
1445 void
1446 device_set_desc_copy(device_t dev, const char* desc)
1447 {
1448 	device_set_desc_internal(dev, desc, TRUE);
1449 }
1450 
1451 void
1452 device_set_flags(device_t dev, uint32_t flags)
1453 {
1454 	dev->devflags = flags;
1455 }
1456 
1457 void *
1458 device_get_softc(device_t dev)
1459 {
1460 	return dev->softc;
1461 }
1462 
1463 void
1464 device_set_softc(device_t dev, void *softc)
1465 {
1466 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1467 		kfree(dev->softc, M_BUS);
1468 	dev->softc = softc;
1469 	if (dev->softc)
1470 		dev->flags |= DF_EXTERNALSOFTC;
1471 	else
1472 		dev->flags &= ~DF_EXTERNALSOFTC;
1473 }
1474 
1475 void
1476 device_set_async_attach(device_t dev, int enable)
1477 {
1478 	if (enable)
1479 		dev->flags |= DF_ASYNCPROBE;
1480 	else
1481 		dev->flags &= ~DF_ASYNCPROBE;
1482 }
1483 
1484 void *
1485 device_get_ivars(device_t dev)
1486 {
1487 	return dev->ivars;
1488 }
1489 
1490 void
1491 device_set_ivars(device_t dev, void * ivars)
1492 {
1493 	if (!dev)
1494 		return;
1495 
1496 	dev->ivars = ivars;
1497 }
1498 
1499 device_state_t
1500 device_get_state(device_t dev)
1501 {
1502 	return(dev->state);
1503 }
1504 
1505 void
1506 device_enable(device_t dev)
1507 {
1508 	dev->flags |= DF_ENABLED;
1509 }
1510 
1511 void
1512 device_disable(device_t dev)
1513 {
1514 	dev->flags &= ~DF_ENABLED;
1515 }
1516 
1517 /*
1518  * YYY cannot block
1519  */
1520 void
1521 device_busy(device_t dev)
1522 {
1523 	if (dev->state < DS_ATTACHED)
1524 		panic("device_busy: called for unattached device");
1525 	if (dev->busy == 0 && dev->parent)
1526 		device_busy(dev->parent);
1527 	dev->busy++;
1528 	dev->state = DS_BUSY;
1529 }
1530 
1531 /*
1532  * YYY cannot block
1533  */
1534 void
1535 device_unbusy(device_t dev)
1536 {
1537 	if (dev->state != DS_BUSY)
1538 		panic("device_unbusy: called for non-busy device");
1539 	dev->busy--;
1540 	if (dev->busy == 0) {
1541 		if (dev->parent)
1542 			device_unbusy(dev->parent);
1543 		dev->state = DS_ATTACHED;
1544 	}
1545 }
1546 
1547 void
1548 device_quiet(device_t dev)
1549 {
1550 	dev->flags |= DF_QUIET;
1551 }
1552 
1553 void
1554 device_verbose(device_t dev)
1555 {
1556 	dev->flags &= ~DF_QUIET;
1557 }
1558 
1559 int
1560 device_is_quiet(device_t dev)
1561 {
1562 	return((dev->flags & DF_QUIET) != 0);
1563 }
1564 
1565 int
1566 device_is_enabled(device_t dev)
1567 {
1568 	return((dev->flags & DF_ENABLED) != 0);
1569 }
1570 
1571 int
1572 device_is_alive(device_t dev)
1573 {
1574 	return(dev->state >= DS_ALIVE);
1575 }
1576 
1577 int
1578 device_is_attached(device_t dev)
1579 {
1580 	return(dev->state >= DS_ATTACHED);
1581 }
1582 
1583 int
1584 device_set_devclass(device_t dev, const char *classname)
1585 {
1586 	devclass_t dc;
1587 	int error;
1588 
1589 	if (!classname) {
1590 		if (dev->devclass)
1591 			devclass_delete_device(dev->devclass, dev);
1592 		return(0);
1593 	}
1594 
1595 	if (dev->devclass) {
1596 		kprintf("device_set_devclass: device class already set\n");
1597 		return(EINVAL);
1598 	}
1599 
1600 	dc = devclass_find_internal(classname, NULL, TRUE);
1601 	if (!dc)
1602 		return(ENOMEM);
1603 
1604 	error = devclass_add_device(dc, dev);
1605 
1606 	bus_data_generation_update();
1607 	return(error);
1608 }
1609 
1610 int
1611 device_set_driver(device_t dev, driver_t *driver)
1612 {
1613 	if (dev->state >= DS_ATTACHED)
1614 		return(EBUSY);
1615 
1616 	if (dev->driver == driver)
1617 		return(0);
1618 
1619 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1620 		kfree(dev->softc, M_BUS);
1621 		dev->softc = NULL;
1622 	}
1623 	kobj_delete((kobj_t) dev, 0);
1624 	dev->driver = driver;
1625 	if (driver) {
1626 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1627 		if (!(dev->flags & DF_EXTERNALSOFTC))
1628 			dev->softc = kmalloc(driver->size, M_BUS,
1629 					    M_INTWAIT | M_ZERO);
1630 	} else {
1631 		kobj_init((kobj_t) dev, &null_class);
1632 	}
1633 
1634 	bus_data_generation_update();
1635 	return(0);
1636 }
1637 
1638 int
1639 device_probe_and_attach(device_t dev)
1640 {
1641 	device_t bus = dev->parent;
1642 	int error = 0;
1643 
1644 	if (dev->state >= DS_ALIVE)
1645 		return(0);
1646 
1647 	if ((dev->flags & DF_ENABLED) == 0) {
1648 		if (bootverbose) {
1649 			device_print_prettyname(dev);
1650 			kprintf("not probed (disabled)\n");
1651 		}
1652 		return(0);
1653 	}
1654 
1655 	error = device_probe_child(bus, dev);
1656 	if (error) {
1657 		if (!(dev->flags & DF_DONENOMATCH)) {
1658 			BUS_PROBE_NOMATCH(bus, dev);
1659 			devnomatch(dev);
1660 			dev->flags |= DF_DONENOMATCH;
1661 		}
1662 		return(error);
1663 	}
1664 
1665 	/*
1666 	 * Output the exact device chain prior to the attach in case the
1667 	 * system locks up during attach, and generate the full info after
1668 	 * the attach so correct irq and other information is displayed.
1669 	 */
1670 	if (bootverbose && !device_is_quiet(dev)) {
1671 		device_t tmp;
1672 
1673 		kprintf("%s", device_get_nameunit(dev));
1674 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1675 			kprintf(".%s", device_get_nameunit(tmp));
1676 		kprintf("\n");
1677 	}
1678 	if (!device_is_quiet(dev))
1679 		device_print_child(bus, dev);
1680 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1681 		kprintf("%s: probing asynchronously\n",
1682 			device_get_nameunit(dev));
1683 		dev->state = DS_INPROGRESS;
1684 		device_attach_async(dev);
1685 		error = 0;
1686 	} else {
1687 		error = device_doattach(dev);
1688 	}
1689 	return(error);
1690 }
1691 
1692 /*
1693  * Device is known to be alive, do the attach asynchronously.
1694  * However, serialize the attaches with the mp lock.
1695  */
1696 static void
1697 device_attach_async(device_t dev)
1698 {
1699 	thread_t td;
1700 
1701 	atomic_add_int(&numasyncthreads, 1);
1702 	lwkt_create(device_attach_thread, dev, &td, NULL,
1703 		    0, 0, "%s", (dev->desc ? dev->desc : "devattach"));
1704 }
1705 
1706 static void
1707 device_attach_thread(void *arg)
1708 {
1709 	device_t dev = arg;
1710 
1711 	get_mplock();	/* XXX replace with devattach_token later */
1712 	(void)device_doattach(dev);
1713 	atomic_subtract_int(&numasyncthreads, 1);
1714 	wakeup(&numasyncthreads);
1715 	rel_mplock();	/* XXX replace with devattach_token later */
1716 }
1717 
1718 /*
1719  * Device is known to be alive, do the attach (synchronous or asynchronous)
1720  */
1721 static int
1722 device_doattach(device_t dev)
1723 {
1724 	device_t bus = dev->parent;
1725 	int hasclass = (dev->devclass != NULL);
1726 	int error;
1727 
1728 	error = DEVICE_ATTACH(dev);
1729 	if (error == 0) {
1730 		dev->state = DS_ATTACHED;
1731 		if (bootverbose && !device_is_quiet(dev))
1732 			device_print_child(bus, dev);
1733 		devadded(dev);
1734 	} else {
1735 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1736 		       dev->driver->name, dev->unit, error);
1737 		/* Unset the class that was set in device_probe_child */
1738 		if (!hasclass)
1739 			device_set_devclass(dev, 0);
1740 		device_set_driver(dev, NULL);
1741 		dev->state = DS_NOTPRESENT;
1742 	}
1743 	return(error);
1744 }
1745 
1746 int
1747 device_detach(device_t dev)
1748 {
1749 	int error;
1750 
1751 	PDEBUG(("%s", DEVICENAME(dev)));
1752 	if (dev->state == DS_BUSY)
1753 		return(EBUSY);
1754 	if (dev->state != DS_ATTACHED)
1755 		return(0);
1756 
1757 	if ((error = DEVICE_DETACH(dev)) != 0)
1758 		return(error);
1759 	devremoved(dev);
1760 	device_printf(dev, "detached\n");
1761 	if (dev->parent)
1762 		BUS_CHILD_DETACHED(dev->parent, dev);
1763 
1764 	if (!(dev->flags & DF_FIXEDCLASS))
1765 		devclass_delete_device(dev->devclass, dev);
1766 
1767 	dev->state = DS_NOTPRESENT;
1768 	device_set_driver(dev, NULL);
1769 
1770 	return(0);
1771 }
1772 
1773 int
1774 device_shutdown(device_t dev)
1775 {
1776 	if (dev->state < DS_ATTACHED)
1777 		return 0;
1778 	PDEBUG(("%s", DEVICENAME(dev)));
1779 	return DEVICE_SHUTDOWN(dev);
1780 }
1781 
1782 int
1783 device_set_unit(device_t dev, int unit)
1784 {
1785 	devclass_t dc;
1786 	int err;
1787 
1788 	dc = device_get_devclass(dev);
1789 	if (unit < dc->maxunit && dc->devices[unit])
1790 		return(EBUSY);
1791 	err = devclass_delete_device(dc, dev);
1792 	if (err)
1793 		return(err);
1794 	dev->unit = unit;
1795 	err = devclass_add_device(dc, dev);
1796 	if (err)
1797 		return(err);
1798 
1799 	bus_data_generation_update();
1800 	return(0);
1801 }
1802 
1803 /*======================================*/
1804 /*
1805  * Access functions for device resources.
1806  */
1807 
1808 /* Supplied by config(8) in ioconf.c */
1809 extern struct config_device config_devtab[];
1810 extern int devtab_count;
1811 
1812 /* Runtime version */
1813 struct config_device *devtab = config_devtab;
1814 
1815 static int
1816 resource_new_name(const char *name, int unit)
1817 {
1818 	struct config_device *new;
1819 
1820 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1821 		     M_INTWAIT | M_ZERO);
1822 	if (devtab && devtab_count > 0)
1823 		bcopy(devtab, new, devtab_count * sizeof(*new));
1824 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1825 	if (new[devtab_count].name == NULL) {
1826 		kfree(new, M_TEMP);
1827 		return(-1);
1828 	}
1829 	strcpy(new[devtab_count].name, name);
1830 	new[devtab_count].unit = unit;
1831 	new[devtab_count].resource_count = 0;
1832 	new[devtab_count].resources = NULL;
1833 	if (devtab && devtab != config_devtab)
1834 		kfree(devtab, M_TEMP);
1835 	devtab = new;
1836 	return devtab_count++;
1837 }
1838 
1839 static int
1840 resource_new_resname(int j, const char *resname, resource_type type)
1841 {
1842 	struct config_resource *new;
1843 	int i;
1844 
1845 	i = devtab[j].resource_count;
1846 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1847 	if (devtab[j].resources && i > 0)
1848 		bcopy(devtab[j].resources, new, i * sizeof(*new));
1849 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
1850 	if (new[i].name == NULL) {
1851 		kfree(new, M_TEMP);
1852 		return(-1);
1853 	}
1854 	strcpy(new[i].name, resname);
1855 	new[i].type = type;
1856 	if (devtab[j].resources)
1857 		kfree(devtab[j].resources, M_TEMP);
1858 	devtab[j].resources = new;
1859 	devtab[j].resource_count = i + 1;
1860 	return(i);
1861 }
1862 
1863 static int
1864 resource_match_string(int i, const char *resname, const char *value)
1865 {
1866 	int j;
1867 	struct config_resource *res;
1868 
1869 	for (j = 0, res = devtab[i].resources;
1870 	     j < devtab[i].resource_count; j++, res++)
1871 		if (!strcmp(res->name, resname)
1872 		    && res->type == RES_STRING
1873 		    && !strcmp(res->u.stringval, value))
1874 			return(j);
1875 	return(-1);
1876 }
1877 
1878 static int
1879 resource_find(const char *name, int unit, const char *resname,
1880 	      struct config_resource **result)
1881 {
1882 	int i, j;
1883 	struct config_resource *res;
1884 
1885 	/*
1886 	 * First check specific instances, then generic.
1887 	 */
1888 	for (i = 0; i < devtab_count; i++) {
1889 		if (devtab[i].unit < 0)
1890 			continue;
1891 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1892 			res = devtab[i].resources;
1893 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1894 				if (!strcmp(res->name, resname)) {
1895 					*result = res;
1896 					return(0);
1897 				}
1898 		}
1899 	}
1900 	for (i = 0; i < devtab_count; i++) {
1901 		if (devtab[i].unit >= 0)
1902 			continue;
1903 		/* XXX should this `&& devtab[i].unit == unit' be here? */
1904 		/* XXX if so, then the generic match does nothing */
1905 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1906 			res = devtab[i].resources;
1907 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1908 				if (!strcmp(res->name, resname)) {
1909 					*result = res;
1910 					return(0);
1911 				}
1912 		}
1913 	}
1914 	return(ENOENT);
1915 }
1916 
1917 static int
1918 resource_kenv(const char *name, int unit, const char *resname, long *result)
1919 {
1920 	const char *env;
1921 	char buf[64];
1922 
1923 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
1924 	if ((env = kgetenv(buf)) != NULL) {
1925 		*result = strtol(env, NULL, 0);
1926 		return(0);
1927 	}
1928 	return (ENOENT);
1929 }
1930 
1931 int
1932 resource_int_value(const char *name, int unit, const char *resname, int *result)
1933 {
1934 	struct config_resource *res;
1935 	long kvalue = 0;
1936 	int error;
1937 
1938 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
1939 		*result = (int)kvalue;
1940 		return 0;
1941 	}
1942 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1943 		return(error);
1944 	if (res->type != RES_INT)
1945 		return(EFTYPE);
1946 	*result = res->u.intval;
1947 	return(0);
1948 }
1949 
1950 int
1951 resource_long_value(const char *name, int unit, const char *resname,
1952 		    long *result)
1953 {
1954 	struct config_resource *res;
1955 	long kvalue;
1956 	int error;
1957 
1958 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
1959 		*result = kvalue;
1960 		return 0;
1961 	}
1962 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1963 		return(error);
1964 	if (res->type != RES_LONG)
1965 		return(EFTYPE);
1966 	*result = res->u.longval;
1967 	return(0);
1968 }
1969 
1970 int
1971 resource_string_value(const char *name, int unit, const char *resname,
1972 		      char **result)
1973 {
1974 	int error;
1975 	struct config_resource *res;
1976 
1977 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1978 		return(error);
1979 	if (res->type != RES_STRING)
1980 		return(EFTYPE);
1981 	*result = res->u.stringval;
1982 	return(0);
1983 }
1984 
1985 int
1986 resource_query_string(int i, const char *resname, const char *value)
1987 {
1988 	if (i < 0)
1989 		i = 0;
1990 	else
1991 		i = i + 1;
1992 	for (; i < devtab_count; i++)
1993 		if (resource_match_string(i, resname, value) >= 0)
1994 			return(i);
1995 	return(-1);
1996 }
1997 
1998 int
1999 resource_locate(int i, const char *resname)
2000 {
2001 	if (i < 0)
2002 		i = 0;
2003 	else
2004 		i = i + 1;
2005 	for (; i < devtab_count; i++)
2006 		if (!strcmp(devtab[i].name, resname))
2007 			return(i);
2008 	return(-1);
2009 }
2010 
2011 int
2012 resource_count(void)
2013 {
2014 	return(devtab_count);
2015 }
2016 
2017 char *
2018 resource_query_name(int i)
2019 {
2020 	return(devtab[i].name);
2021 }
2022 
2023 int
2024 resource_query_unit(int i)
2025 {
2026 	return(devtab[i].unit);
2027 }
2028 
2029 static int
2030 resource_create(const char *name, int unit, const char *resname,
2031 		resource_type type, struct config_resource **result)
2032 {
2033 	int i, j;
2034 	struct config_resource *res = NULL;
2035 
2036 	for (i = 0; i < devtab_count; i++)
2037 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2038 			res = devtab[i].resources;
2039 			break;
2040 		}
2041 	if (res == NULL) {
2042 		i = resource_new_name(name, unit);
2043 		if (i < 0)
2044 			return(ENOMEM);
2045 		res = devtab[i].resources;
2046 	}
2047 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2048 		if (!strcmp(res->name, resname)) {
2049 			*result = res;
2050 			return(0);
2051 		}
2052 	j = resource_new_resname(i, resname, type);
2053 	if (j < 0)
2054 		return(ENOMEM);
2055 	res = &devtab[i].resources[j];
2056 	*result = res;
2057 	return(0);
2058 }
2059 
2060 int
2061 resource_set_int(const char *name, int unit, const char *resname, int value)
2062 {
2063 	int error;
2064 	struct config_resource *res;
2065 
2066 	error = resource_create(name, unit, resname, RES_INT, &res);
2067 	if (error)
2068 		return(error);
2069 	if (res->type != RES_INT)
2070 		return(EFTYPE);
2071 	res->u.intval = value;
2072 	return(0);
2073 }
2074 
2075 int
2076 resource_set_long(const char *name, int unit, const char *resname, long value)
2077 {
2078 	int error;
2079 	struct config_resource *res;
2080 
2081 	error = resource_create(name, unit, resname, RES_LONG, &res);
2082 	if (error)
2083 		return(error);
2084 	if (res->type != RES_LONG)
2085 		return(EFTYPE);
2086 	res->u.longval = value;
2087 	return(0);
2088 }
2089 
2090 int
2091 resource_set_string(const char *name, int unit, const char *resname,
2092 		    const char *value)
2093 {
2094 	int error;
2095 	struct config_resource *res;
2096 
2097 	error = resource_create(name, unit, resname, RES_STRING, &res);
2098 	if (error)
2099 		return(error);
2100 	if (res->type != RES_STRING)
2101 		return(EFTYPE);
2102 	if (res->u.stringval)
2103 		kfree(res->u.stringval, M_TEMP);
2104 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2105 	if (res->u.stringval == NULL)
2106 		return(ENOMEM);
2107 	strcpy(res->u.stringval, value);
2108 	return(0);
2109 }
2110 
2111 static void
2112 resource_cfgload(void *dummy __unused)
2113 {
2114 	struct config_resource *res, *cfgres;
2115 	int i, j;
2116 	int error;
2117 	char *name, *resname;
2118 	int unit;
2119 	resource_type type;
2120 	char *stringval;
2121 	int config_devtab_count;
2122 
2123 	config_devtab_count = devtab_count;
2124 	devtab = NULL;
2125 	devtab_count = 0;
2126 
2127 	for (i = 0; i < config_devtab_count; i++) {
2128 		name = config_devtab[i].name;
2129 		unit = config_devtab[i].unit;
2130 
2131 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2132 			cfgres = config_devtab[i].resources;
2133 			resname = cfgres[j].name;
2134 			type = cfgres[j].type;
2135 			error = resource_create(name, unit, resname, type,
2136 						&res);
2137 			if (error) {
2138 				kprintf("create resource %s%d: error %d\n",
2139 					name, unit, error);
2140 				continue;
2141 			}
2142 			if (res->type != type) {
2143 				kprintf("type mismatch %s%d: %d != %d\n",
2144 					name, unit, res->type, type);
2145 				continue;
2146 			}
2147 			switch (type) {
2148 			case RES_INT:
2149 				res->u.intval = cfgres[j].u.intval;
2150 				break;
2151 			case RES_LONG:
2152 				res->u.longval = cfgres[j].u.longval;
2153 				break;
2154 			case RES_STRING:
2155 				if (res->u.stringval)
2156 					kfree(res->u.stringval, M_TEMP);
2157 				stringval = cfgres[j].u.stringval;
2158 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2159 							  M_TEMP, M_INTWAIT);
2160 				if (res->u.stringval == NULL)
2161 					break;
2162 				strcpy(res->u.stringval, stringval);
2163 				break;
2164 			default:
2165 				panic("unknown resource type %d", type);
2166 			}
2167 		}
2168 	}
2169 }
2170 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0)
2171 
2172 
2173 /*======================================*/
2174 /*
2175  * Some useful method implementations to make life easier for bus drivers.
2176  */
2177 
2178 void
2179 resource_list_init(struct resource_list *rl)
2180 {
2181 	SLIST_INIT(rl);
2182 }
2183 
2184 void
2185 resource_list_free(struct resource_list *rl)
2186 {
2187 	struct resource_list_entry *rle;
2188 
2189 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2190 		if (rle->res)
2191 			panic("resource_list_free: resource entry is busy");
2192 		SLIST_REMOVE_HEAD(rl, link);
2193 		kfree(rle, M_BUS);
2194 	}
2195 }
2196 
2197 void
2198 resource_list_add(struct resource_list *rl, int type, int rid,
2199     u_long start, u_long end, u_long count, int cpuid)
2200 {
2201 	struct resource_list_entry *rle;
2202 
2203 	rle = resource_list_find(rl, type, rid);
2204 	if (rle == NULL) {
2205 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2206 			     M_INTWAIT);
2207 		SLIST_INSERT_HEAD(rl, rle, link);
2208 		rle->type = type;
2209 		rle->rid = rid;
2210 		rle->res = NULL;
2211 		rle->cpuid = -1;
2212 	}
2213 
2214 	if (rle->res)
2215 		panic("resource_list_add: resource entry is busy");
2216 
2217 	rle->start = start;
2218 	rle->end = end;
2219 	rle->count = count;
2220 
2221 	if (cpuid != -1) {
2222 		if (rle->cpuid != -1 && rle->cpuid != cpuid) {
2223 			panic("resource_list_add: moving from cpu%d -> cpu%d",
2224 			    rle->cpuid, cpuid);
2225 		}
2226 		rle->cpuid = cpuid;
2227 	}
2228 }
2229 
2230 struct resource_list_entry*
2231 resource_list_find(struct resource_list *rl,
2232 		   int type, int rid)
2233 {
2234 	struct resource_list_entry *rle;
2235 
2236 	SLIST_FOREACH(rle, rl, link)
2237 		if (rle->type == type && rle->rid == rid)
2238 			return(rle);
2239 	return(NULL);
2240 }
2241 
2242 void
2243 resource_list_delete(struct resource_list *rl,
2244 		     int type, int rid)
2245 {
2246 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2247 
2248 	if (rle) {
2249 		if (rle->res != NULL)
2250 			panic("resource_list_delete: resource has not been released");
2251 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2252 		kfree(rle, M_BUS);
2253 	}
2254 }
2255 
2256 struct resource *
2257 resource_list_alloc(struct resource_list *rl,
2258 		    device_t bus, device_t child,
2259 		    int type, int *rid,
2260 		    u_long start, u_long end,
2261 		    u_long count, u_int flags, int cpuid)
2262 {
2263 	struct resource_list_entry *rle = NULL;
2264 	int passthrough = (device_get_parent(child) != bus);
2265 	int isdefault = (start == 0UL && end == ~0UL);
2266 
2267 	if (passthrough) {
2268 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2269 					  type, rid,
2270 					  start, end, count, flags, cpuid));
2271 	}
2272 
2273 	rle = resource_list_find(rl, type, *rid);
2274 
2275 	if (!rle)
2276 		return(0);		/* no resource of that type/rid */
2277 
2278 	if (rle->res)
2279 		panic("resource_list_alloc: resource entry is busy");
2280 
2281 	if (isdefault) {
2282 		start = rle->start;
2283 		count = max(count, rle->count);
2284 		end = max(rle->end, start + count - 1);
2285 	}
2286 	cpuid = rle->cpuid;
2287 
2288 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2289 				      type, rid, start, end, count,
2290 				      flags, cpuid);
2291 
2292 	/*
2293 	 * Record the new range.
2294 	 */
2295 	if (rle->res) {
2296 		rle->start = rman_get_start(rle->res);
2297 		rle->end = rman_get_end(rle->res);
2298 		rle->count = count;
2299 	}
2300 
2301 	return(rle->res);
2302 }
2303 
2304 int
2305 resource_list_release(struct resource_list *rl,
2306 		      device_t bus, device_t child,
2307 		      int type, int rid, struct resource *res)
2308 {
2309 	struct resource_list_entry *rle = NULL;
2310 	int passthrough = (device_get_parent(child) != bus);
2311 	int error;
2312 
2313 	if (passthrough) {
2314 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2315 					    type, rid, res));
2316 	}
2317 
2318 	rle = resource_list_find(rl, type, rid);
2319 
2320 	if (!rle)
2321 		panic("resource_list_release: can't find resource");
2322 	if (!rle->res)
2323 		panic("resource_list_release: resource entry is not busy");
2324 
2325 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2326 				     type, rid, res);
2327 	if (error)
2328 		return(error);
2329 
2330 	rle->res = NULL;
2331 	return(0);
2332 }
2333 
2334 int
2335 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2336 			 const char *format)
2337 {
2338 	struct resource_list_entry *rle;
2339 	int printed, retval;
2340 
2341 	printed = 0;
2342 	retval = 0;
2343 	/* Yes, this is kinda cheating */
2344 	SLIST_FOREACH(rle, rl, link) {
2345 		if (rle->type == type) {
2346 			if (printed == 0)
2347 				retval += kprintf(" %s ", name);
2348 			else
2349 				retval += kprintf(",");
2350 			printed++;
2351 			retval += kprintf(format, rle->start);
2352 			if (rle->count > 1) {
2353 				retval += kprintf("-");
2354 				retval += kprintf(format, rle->start +
2355 						 rle->count - 1);
2356 			}
2357 		}
2358 	}
2359 	return(retval);
2360 }
2361 
2362 /*
2363  * Generic driver/device identify functions.  These will install a device
2364  * rendezvous point under the parent using the same name as the driver
2365  * name, which will at a later time be probed and attached.
2366  *
2367  * These functions are used when the parent does not 'scan' its bus for
2368  * matching devices, or for the particular devices using these functions,
2369  * or when the device is a pseudo or synthesized device (such as can be
2370  * found under firewire and ppbus).
2371  */
2372 int
2373 bus_generic_identify(driver_t *driver, device_t parent)
2374 {
2375 	if (parent->state == DS_ATTACHED)
2376 		return (0);
2377 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2378 	return (0);
2379 }
2380 
2381 int
2382 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2383 {
2384 	if (parent->state == DS_ATTACHED)
2385 		return (0);
2386 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2387 	return (0);
2388 }
2389 
2390 /*
2391  * Call DEVICE_IDENTIFY for each driver.
2392  */
2393 int
2394 bus_generic_probe(device_t dev)
2395 {
2396 	devclass_t dc = dev->devclass;
2397 	driverlink_t dl;
2398 
2399 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2400 		DEVICE_IDENTIFY(dl->driver, dev);
2401 	}
2402 
2403 	return(0);
2404 }
2405 
2406 /*
2407  * This is an aweful hack due to the isa bus and autoconf code not
2408  * probing the ISA devices until after everything else has configured.
2409  * The ISA bus did a dummy attach long ago so we have to set it back
2410  * to an earlier state so the probe thinks its the initial probe and
2411  * not a bus rescan.
2412  *
2413  * XXX remove by properly defering the ISA bus scan.
2414  */
2415 int
2416 bus_generic_probe_hack(device_t dev)
2417 {
2418 	if (dev->state == DS_ATTACHED) {
2419 		dev->state = DS_ALIVE;
2420 		bus_generic_probe(dev);
2421 		dev->state = DS_ATTACHED;
2422 	}
2423 	return (0);
2424 }
2425 
2426 int
2427 bus_generic_attach(device_t dev)
2428 {
2429 	device_t child;
2430 
2431 	TAILQ_FOREACH(child, &dev->children, link) {
2432 		device_probe_and_attach(child);
2433 	}
2434 
2435 	return(0);
2436 }
2437 
2438 int
2439 bus_generic_detach(device_t dev)
2440 {
2441 	device_t child;
2442 	int error;
2443 
2444 	if (dev->state != DS_ATTACHED)
2445 		return(EBUSY);
2446 
2447 	TAILQ_FOREACH(child, &dev->children, link)
2448 		if ((error = device_detach(child)) != 0)
2449 			return(error);
2450 
2451 	return 0;
2452 }
2453 
2454 int
2455 bus_generic_shutdown(device_t dev)
2456 {
2457 	device_t child;
2458 
2459 	TAILQ_FOREACH(child, &dev->children, link)
2460 		device_shutdown(child);
2461 
2462 	return(0);
2463 }
2464 
2465 int
2466 bus_generic_suspend(device_t dev)
2467 {
2468 	int error;
2469 	device_t child, child2;
2470 
2471 	TAILQ_FOREACH(child, &dev->children, link) {
2472 		error = DEVICE_SUSPEND(child);
2473 		if (error) {
2474 			for (child2 = TAILQ_FIRST(&dev->children);
2475 			     child2 && child2 != child;
2476 			     child2 = TAILQ_NEXT(child2, link))
2477 				DEVICE_RESUME(child2);
2478 			return(error);
2479 		}
2480 	}
2481 	return(0);
2482 }
2483 
2484 int
2485 bus_generic_resume(device_t dev)
2486 {
2487 	device_t child;
2488 
2489 	TAILQ_FOREACH(child, &dev->children, link)
2490 		DEVICE_RESUME(child);
2491 		/* if resume fails, there's nothing we can usefully do... */
2492 
2493 	return(0);
2494 }
2495 
2496 int
2497 bus_print_child_header(device_t dev, device_t child)
2498 {
2499 	int retval = 0;
2500 
2501 	if (device_get_desc(child))
2502 		retval += device_printf(child, "<%s>", device_get_desc(child));
2503 	else
2504 		retval += kprintf("%s", device_get_nameunit(child));
2505 	if (bootverbose) {
2506 		if (child->state != DS_ATTACHED)
2507 			kprintf(" [tentative]");
2508 		else
2509 			kprintf(" [attached!]");
2510 	}
2511 	return(retval);
2512 }
2513 
2514 int
2515 bus_print_child_footer(device_t dev, device_t child)
2516 {
2517 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2518 }
2519 
2520 device_t
2521 bus_generic_add_child(device_t dev, device_t child, int order,
2522 		      const char *name, int unit)
2523 {
2524 	if (dev->parent)
2525 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2526 	else
2527 		dev = device_add_child_ordered(child, order, name, unit);
2528 	return(dev);
2529 
2530 }
2531 
2532 int
2533 bus_generic_print_child(device_t dev, device_t child)
2534 {
2535 	int retval = 0;
2536 
2537 	retval += bus_print_child_header(dev, child);
2538 	retval += bus_print_child_footer(dev, child);
2539 
2540 	return(retval);
2541 }
2542 
2543 int
2544 bus_generic_read_ivar(device_t dev, device_t child, int index,
2545 		      uintptr_t * result)
2546 {
2547 	int error;
2548 
2549 	if (dev->parent)
2550 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2551 	else
2552 		error = ENOENT;
2553 	return (error);
2554 }
2555 
2556 int
2557 bus_generic_write_ivar(device_t dev, device_t child, int index,
2558 		       uintptr_t value)
2559 {
2560 	int error;
2561 
2562 	if (dev->parent)
2563 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2564 	else
2565 		error = ENOENT;
2566 	return (error);
2567 }
2568 
2569 /*
2570  * Resource list are used for iterations, do not recurse.
2571  */
2572 struct resource_list *
2573 bus_generic_get_resource_list(device_t dev, device_t child)
2574 {
2575 	return (NULL);
2576 }
2577 
2578 void
2579 bus_generic_driver_added(device_t dev, driver_t *driver)
2580 {
2581 	device_t child;
2582 
2583 	DEVICE_IDENTIFY(driver, dev);
2584 	TAILQ_FOREACH(child, &dev->children, link) {
2585 		if (child->state == DS_NOTPRESENT)
2586 			device_probe_and_attach(child);
2587 	}
2588 }
2589 
2590 int
2591 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2592     int flags, driver_intr_t *intr, void *arg, void **cookiep,
2593     lwkt_serialize_t serializer, const char *desc)
2594 {
2595 	/* Propagate up the bus hierarchy until someone handles it. */
2596 	if (dev->parent) {
2597 		return BUS_SETUP_INTR(dev->parent, child, irq, flags,
2598 		    intr, arg, cookiep, serializer, desc);
2599 	} else {
2600 		return EINVAL;
2601 	}
2602 }
2603 
2604 int
2605 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2606 			  void *cookie)
2607 {
2608 	/* Propagate up the bus hierarchy until someone handles it. */
2609 	if (dev->parent)
2610 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2611 	else
2612 		return(EINVAL);
2613 }
2614 
2615 int
2616 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2617 {
2618 	if (dev->parent)
2619 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2620 	else
2621 		return(0);
2622 }
2623 
2624 void
2625 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2626 {
2627 	if (dev->parent)
2628 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2629 }
2630 
2631 int
2632 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
2633     enum intr_polarity pol)
2634 {
2635 	/* Propagate up the bus hierarchy until someone handles it. */
2636 	if (dev->parent)
2637 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
2638 	else
2639 		return(EINVAL);
2640 }
2641 
2642 struct resource *
2643 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2644     u_long start, u_long end, u_long count, u_int flags, int cpuid)
2645 {
2646 	/* Propagate up the bus hierarchy until someone handles it. */
2647 	if (dev->parent)
2648 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2649 					   start, end, count, flags, cpuid));
2650 	else
2651 		return(NULL);
2652 }
2653 
2654 int
2655 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2656 			     struct resource *r)
2657 {
2658 	/* Propagate up the bus hierarchy until someone handles it. */
2659 	if (dev->parent)
2660 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2661 	else
2662 		return(EINVAL);
2663 }
2664 
2665 int
2666 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2667 			      struct resource *r)
2668 {
2669 	/* Propagate up the bus hierarchy until someone handles it. */
2670 	if (dev->parent)
2671 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2672 	else
2673 		return(EINVAL);
2674 }
2675 
2676 int
2677 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2678 				int rid, struct resource *r)
2679 {
2680 	/* Propagate up the bus hierarchy until someone handles it. */
2681 	if (dev->parent)
2682 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2683 					       r));
2684 	else
2685 		return(EINVAL);
2686 }
2687 
2688 int
2689 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2690 			 u_long *startp, u_long *countp)
2691 {
2692 	int error;
2693 
2694 	error = ENOENT;
2695 	if (dev->parent) {
2696 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2697 					 startp, countp);
2698 	}
2699 	return (error);
2700 }
2701 
2702 int
2703 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2704 			u_long start, u_long count, int cpuid)
2705 {
2706 	int error;
2707 
2708 	error = EINVAL;
2709 	if (dev->parent) {
2710 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2711 					 start, count, cpuid);
2712 	}
2713 	return (error);
2714 }
2715 
2716 void
2717 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2718 {
2719 	if (dev->parent)
2720 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2721 }
2722 
2723 int
2724 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2725     u_long *startp, u_long *countp)
2726 {
2727 	struct resource_list *rl = NULL;
2728 	struct resource_list_entry *rle = NULL;
2729 
2730 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2731 	if (!rl)
2732 		return(EINVAL);
2733 
2734 	rle = resource_list_find(rl, type, rid);
2735 	if (!rle)
2736 		return(ENOENT);
2737 
2738 	if (startp)
2739 		*startp = rle->start;
2740 	if (countp)
2741 		*countp = rle->count;
2742 
2743 	return(0);
2744 }
2745 
2746 int
2747 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2748     u_long start, u_long count, int cpuid)
2749 {
2750 	struct resource_list *rl = NULL;
2751 
2752 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2753 	if (!rl)
2754 		return(EINVAL);
2755 
2756 	resource_list_add(rl, type, rid, start, (start + count - 1), count,
2757 	    cpuid);
2758 
2759 	return(0);
2760 }
2761 
2762 void
2763 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2764 {
2765 	struct resource_list *rl = NULL;
2766 
2767 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2768 	if (!rl)
2769 		return;
2770 
2771 	resource_list_delete(rl, type, rid);
2772 }
2773 
2774 int
2775 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2776     int rid, struct resource *r)
2777 {
2778 	struct resource_list *rl = NULL;
2779 
2780 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2781 	if (!rl)
2782 		return(EINVAL);
2783 
2784 	return(resource_list_release(rl, dev, child, type, rid, r));
2785 }
2786 
2787 struct resource *
2788 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2789     int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid)
2790 {
2791 	struct resource_list *rl = NULL;
2792 
2793 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2794 	if (!rl)
2795 		return(NULL);
2796 
2797 	return(resource_list_alloc(rl, dev, child, type, rid,
2798 	    start, end, count, flags, cpuid));
2799 }
2800 
2801 int
2802 bus_generic_child_present(device_t bus, device_t child)
2803 {
2804 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2805 }
2806 
2807 
2808 /*
2809  * Some convenience functions to make it easier for drivers to use the
2810  * resource-management functions.  All these really do is hide the
2811  * indirection through the parent's method table, making for slightly
2812  * less-wordy code.  In the future, it might make sense for this code
2813  * to maintain some sort of a list of resources allocated by each device.
2814  */
2815 int
2816 bus_alloc_resources(device_t dev, struct resource_spec *rs,
2817     struct resource **res)
2818 {
2819 	int i;
2820 
2821 	for (i = 0; rs[i].type != -1; i++)
2822 	        res[i] = NULL;
2823 	for (i = 0; rs[i].type != -1; i++) {
2824 		res[i] = bus_alloc_resource_any(dev,
2825 		    rs[i].type, &rs[i].rid, rs[i].flags);
2826 		if (res[i] == NULL) {
2827 			bus_release_resources(dev, rs, res);
2828 			return (ENXIO);
2829 		}
2830 	}
2831 	return (0);
2832 }
2833 
2834 void
2835 bus_release_resources(device_t dev, const struct resource_spec *rs,
2836     struct resource **res)
2837 {
2838 	int i;
2839 
2840 	for (i = 0; rs[i].type != -1; i++)
2841 		if (res[i] != NULL) {
2842 			bus_release_resource(
2843 			    dev, rs[i].type, rs[i].rid, res[i]);
2844 			res[i] = NULL;
2845 		}
2846 }
2847 
2848 struct resource *
2849 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
2850 		   u_long count, u_int flags)
2851 {
2852 	if (dev->parent == NULL)
2853 		return(0);
2854 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2855 				  count, flags, -1));
2856 }
2857 
2858 struct resource *
2859 bus_alloc_legacy_irq_resource(device_t dev, int *rid, u_long irq, u_int flags)
2860 {
2861 	if (dev->parent == NULL)
2862 		return(0);
2863 	return BUS_ALLOC_RESOURCE(dev->parent, dev, SYS_RES_IRQ, rid,
2864 	    irq, irq, 1, flags, machintr_legacy_intr_cpuid(irq));
2865 }
2866 
2867 int
2868 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
2869 {
2870 	if (dev->parent == NULL)
2871 		return(EINVAL);
2872 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2873 }
2874 
2875 int
2876 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
2877 {
2878 	if (dev->parent == NULL)
2879 		return(EINVAL);
2880 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2881 }
2882 
2883 int
2884 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
2885 {
2886 	if (dev->parent == NULL)
2887 		return(EINVAL);
2888 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
2889 }
2890 
2891 int
2892 bus_setup_intr_descr(device_t dev, struct resource *r, int flags,
2893     driver_intr_t handler, void *arg, void **cookiep,
2894     lwkt_serialize_t serializer, const char *desc)
2895 {
2896 	if (dev->parent == NULL)
2897 		return EINVAL;
2898 	return BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
2899 	    cookiep, serializer, desc);
2900 }
2901 
2902 int
2903 bus_setup_intr(device_t dev, struct resource *r, int flags,
2904     driver_intr_t handler, void *arg, void **cookiep,
2905     lwkt_serialize_t serializer)
2906 {
2907 	return bus_setup_intr_descr(dev, r, flags, handler, arg, cookiep,
2908 	    serializer, NULL);
2909 }
2910 
2911 int
2912 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
2913 {
2914 	if (dev->parent == NULL)
2915 		return(EINVAL);
2916 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
2917 }
2918 
2919 void
2920 bus_enable_intr(device_t dev, void *cookie)
2921 {
2922 	if (dev->parent)
2923 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
2924 }
2925 
2926 int
2927 bus_disable_intr(device_t dev, void *cookie)
2928 {
2929 	if (dev->parent)
2930 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
2931 	else
2932 		return(0);
2933 }
2934 
2935 int
2936 bus_set_resource(device_t dev, int type, int rid,
2937 		 u_long start, u_long count, int cpuid)
2938 {
2939 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
2940 				start, count, cpuid));
2941 }
2942 
2943 int
2944 bus_get_resource(device_t dev, int type, int rid,
2945 		 u_long *startp, u_long *countp)
2946 {
2947 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2948 				startp, countp));
2949 }
2950 
2951 u_long
2952 bus_get_resource_start(device_t dev, int type, int rid)
2953 {
2954 	u_long start, count;
2955 	int error;
2956 
2957 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2958 				 &start, &count);
2959 	if (error)
2960 		return(0);
2961 	return(start);
2962 }
2963 
2964 u_long
2965 bus_get_resource_count(device_t dev, int type, int rid)
2966 {
2967 	u_long start, count;
2968 	int error;
2969 
2970 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2971 				 &start, &count);
2972 	if (error)
2973 		return(0);
2974 	return(count);
2975 }
2976 
2977 void
2978 bus_delete_resource(device_t dev, int type, int rid)
2979 {
2980 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
2981 }
2982 
2983 int
2984 bus_child_present(device_t child)
2985 {
2986 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
2987 }
2988 
2989 int
2990 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
2991 {
2992 	device_t parent;
2993 
2994 	parent = device_get_parent(child);
2995 	if (parent == NULL) {
2996 		*buf = '\0';
2997 		return (0);
2998 	}
2999 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3000 }
3001 
3002 int
3003 bus_child_location_str(device_t child, char *buf, size_t buflen)
3004 {
3005 	device_t parent;
3006 
3007 	parent = device_get_parent(child);
3008 	if (parent == NULL) {
3009 		*buf = '\0';
3010 		return (0);
3011 	}
3012 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3013 }
3014 
3015 static int
3016 root_print_child(device_t dev, device_t child)
3017 {
3018 	return(0);
3019 }
3020 
3021 static int
3022 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3023 		void **cookiep, lwkt_serialize_t serializer, const char *desc)
3024 {
3025 	/*
3026 	 * If an interrupt mapping gets to here something bad has happened.
3027 	 */
3028 	panic("root_setup_intr");
3029 }
3030 
3031 /*
3032  * If we get here, assume that the device is permanant and really is
3033  * present in the system.  Removable bus drivers are expected to intercept
3034  * this call long before it gets here.  We return -1 so that drivers that
3035  * really care can check vs -1 or some ERRNO returned higher in the food
3036  * chain.
3037  */
3038 static int
3039 root_child_present(device_t dev, device_t child)
3040 {
3041 	return(-1);
3042 }
3043 
3044 /*
3045  * XXX NOTE! other defaults may be set in bus_if.m
3046  */
3047 static kobj_method_t root_methods[] = {
3048 	/* Device interface */
3049 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3050 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3051 	KOBJMETHOD(device_resume,	bus_generic_resume),
3052 
3053 	/* Bus interface */
3054 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
3055 	KOBJMETHOD(bus_print_child,	root_print_child),
3056 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3057 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3058 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3059 	KOBJMETHOD(bus_child_present,   root_child_present),
3060 
3061 	KOBJMETHOD_END
3062 };
3063 
3064 static driver_t root_driver = {
3065 	"root",
3066 	root_methods,
3067 	1,			/* no softc */
3068 };
3069 
3070 device_t	root_bus;
3071 devclass_t	root_devclass;
3072 
3073 static int
3074 root_bus_module_handler(module_t mod, int what, void* arg)
3075 {
3076 	switch (what) {
3077 	case MOD_LOAD:
3078 		TAILQ_INIT(&bus_data_devices);
3079 		root_bus = make_device(NULL, "root", 0);
3080 		root_bus->desc = "System root bus";
3081 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3082 		root_bus->driver = &root_driver;
3083 		root_bus->state = DS_ALIVE;
3084 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3085 		devinit();
3086 		return(0);
3087 
3088 	case MOD_SHUTDOWN:
3089 		device_shutdown(root_bus);
3090 		return(0);
3091 	default:
3092 		return(0);
3093 	}
3094 }
3095 
3096 static moduledata_t root_bus_mod = {
3097 	"rootbus",
3098 	root_bus_module_handler,
3099 	0
3100 };
3101 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3102 
3103 void
3104 root_bus_configure(void)
3105 {
3106 	int warncount;
3107 	device_t dev;
3108 
3109 	PDEBUG(("."));
3110 
3111 	/*
3112 	 * handle device_identify based device attachments to the root_bus
3113 	 * (typically nexus).
3114 	 */
3115 	bus_generic_probe(root_bus);
3116 
3117 	/*
3118 	 * Probe and attach the devices under root_bus.
3119 	 */
3120 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3121 		device_probe_and_attach(dev);
3122 	}
3123 
3124 	/*
3125 	 * Wait for all asynchronous attaches to complete.  If we don't
3126 	 * our legacy ISA bus scan could steal device unit numbers or
3127 	 * even I/O ports.
3128 	 */
3129 	warncount = 10;
3130 	if (numasyncthreads)
3131 		kprintf("Waiting for async drivers to attach\n");
3132 	while (numasyncthreads > 0) {
3133 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3134 			--warncount;
3135 		if (warncount == 0) {
3136 			kprintf("Warning: Still waiting for %d "
3137 				"drivers to attach\n", numasyncthreads);
3138 		} else if (warncount == -30) {
3139 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3140 			break;
3141 		}
3142 	}
3143 	root_bus->state = DS_ATTACHED;
3144 }
3145 
3146 int
3147 driver_module_handler(module_t mod, int what, void *arg)
3148 {
3149 	int error;
3150 	struct driver_module_data *dmd;
3151 	devclass_t bus_devclass;
3152 	kobj_class_t driver;
3153         const char *parentname;
3154 
3155 	dmd = (struct driver_module_data *)arg;
3156 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3157 	error = 0;
3158 
3159 	switch (what) {
3160 	case MOD_LOAD:
3161 		if (dmd->dmd_chainevh)
3162 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3163 
3164 		driver = dmd->dmd_driver;
3165 		PDEBUG(("Loading module: driver %s on bus %s",
3166 		        DRIVERNAME(driver), dmd->dmd_busname));
3167 
3168 		/*
3169 		 * If the driver has any base classes, make the
3170 		 * devclass inherit from the devclass of the driver's
3171 		 * first base class. This will allow the system to
3172 		 * search for drivers in both devclasses for children
3173 		 * of a device using this driver.
3174 		 */
3175 		if (driver->baseclasses)
3176 			parentname = driver->baseclasses[0]->name;
3177 		else
3178 			parentname = NULL;
3179 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3180 							    parentname, TRUE);
3181 
3182 		error = devclass_add_driver(bus_devclass, driver);
3183 		if (error)
3184 			break;
3185 		break;
3186 
3187 	case MOD_UNLOAD:
3188 		PDEBUG(("Unloading module: driver %s from bus %s",
3189 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3190 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3191 
3192 		if (!error && dmd->dmd_chainevh)
3193 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3194 		break;
3195 	}
3196 
3197 	return (error);
3198 }
3199 
3200 #ifdef BUS_DEBUG
3201 
3202 /*
3203  * The _short versions avoid iteration by not calling anything that prints
3204  * more than oneliners. I love oneliners.
3205  */
3206 
3207 static void
3208 print_device_short(device_t dev, int indent)
3209 {
3210 	if (!dev)
3211 		return;
3212 
3213 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3214 		      dev->unit, dev->desc,
3215 		      (dev->parent? "":"no "),
3216 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3217 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3218 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3219 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3220 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3221 		      (dev->ivars? "":"no "),
3222 		      (dev->softc? "":"no "),
3223 		      dev->busy));
3224 }
3225 
3226 static void
3227 print_device(device_t dev, int indent)
3228 {
3229 	if (!dev)
3230 		return;
3231 
3232 	print_device_short(dev, indent);
3233 
3234 	indentprintf(("Parent:\n"));
3235 	print_device_short(dev->parent, indent+1);
3236 	indentprintf(("Driver:\n"));
3237 	print_driver_short(dev->driver, indent+1);
3238 	indentprintf(("Devclass:\n"));
3239 	print_devclass_short(dev->devclass, indent+1);
3240 }
3241 
3242 /*
3243  * Print the device and all its children (indented).
3244  */
3245 void
3246 print_device_tree_short(device_t dev, int indent)
3247 {
3248 	device_t child;
3249 
3250 	if (!dev)
3251 		return;
3252 
3253 	print_device_short(dev, indent);
3254 
3255 	TAILQ_FOREACH(child, &dev->children, link)
3256 		print_device_tree_short(child, indent+1);
3257 }
3258 
3259 /*
3260  * Print the device and all its children (indented).
3261  */
3262 void
3263 print_device_tree(device_t dev, int indent)
3264 {
3265 	device_t child;
3266 
3267 	if (!dev)
3268 		return;
3269 
3270 	print_device(dev, indent);
3271 
3272 	TAILQ_FOREACH(child, &dev->children, link)
3273 		print_device_tree(child, indent+1);
3274 }
3275 
3276 static void
3277 print_driver_short(driver_t *driver, int indent)
3278 {
3279 	if (!driver)
3280 		return;
3281 
3282 	indentprintf(("driver %s: softc size = %zu\n",
3283 		      driver->name, driver->size));
3284 }
3285 
3286 static void
3287 print_driver(driver_t *driver, int indent)
3288 {
3289 	if (!driver)
3290 		return;
3291 
3292 	print_driver_short(driver, indent);
3293 }
3294 
3295 
3296 static void
3297 print_driver_list(driver_list_t drivers, int indent)
3298 {
3299 	driverlink_t driver;
3300 
3301 	TAILQ_FOREACH(driver, &drivers, link)
3302 		print_driver(driver->driver, indent);
3303 }
3304 
3305 static void
3306 print_devclass_short(devclass_t dc, int indent)
3307 {
3308 	if (!dc)
3309 		return;
3310 
3311 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3312 }
3313 
3314 static void
3315 print_devclass(devclass_t dc, int indent)
3316 {
3317 	int i;
3318 
3319 	if (!dc)
3320 		return;
3321 
3322 	print_devclass_short(dc, indent);
3323 	indentprintf(("Drivers:\n"));
3324 	print_driver_list(dc->drivers, indent+1);
3325 
3326 	indentprintf(("Devices:\n"));
3327 	for (i = 0; i < dc->maxunit; i++)
3328 		if (dc->devices[i])
3329 			print_device(dc->devices[i], indent+1);
3330 }
3331 
3332 void
3333 print_devclass_list_short(void)
3334 {
3335 	devclass_t dc;
3336 
3337 	kprintf("Short listing of devclasses, drivers & devices:\n");
3338 	TAILQ_FOREACH(dc, &devclasses, link) {
3339 		print_devclass_short(dc, 0);
3340 	}
3341 }
3342 
3343 void
3344 print_devclass_list(void)
3345 {
3346 	devclass_t dc;
3347 
3348 	kprintf("Full listing of devclasses, drivers & devices:\n");
3349 	TAILQ_FOREACH(dc, &devclasses, link) {
3350 		print_devclass(dc, 0);
3351 	}
3352 }
3353 
3354 #endif
3355 
3356 /*
3357  * Check to see if a device is disabled via a disabled hint.
3358  */
3359 int
3360 resource_disabled(const char *name, int unit)
3361 {
3362 	int error, value;
3363 
3364 	error = resource_int_value(name, unit, "disabled", &value);
3365 	if (error)
3366 	       return(0);
3367 	return(value);
3368 }
3369 
3370 /*
3371  * User-space access to the device tree.
3372  *
3373  * We implement a small set of nodes:
3374  *
3375  * hw.bus			Single integer read method to obtain the
3376  *				current generation count.
3377  * hw.bus.devices		Reads the entire device tree in flat space.
3378  * hw.bus.rman			Resource manager interface
3379  *
3380  * We might like to add the ability to scan devclasses and/or drivers to
3381  * determine what else is currently loaded/available.
3382  */
3383 
3384 static int
3385 sysctl_bus(SYSCTL_HANDLER_ARGS)
3386 {
3387 	struct u_businfo	ubus;
3388 
3389 	ubus.ub_version = BUS_USER_VERSION;
3390 	ubus.ub_generation = bus_data_generation;
3391 
3392 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3393 }
3394 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3395     "bus-related data");
3396 
3397 static int
3398 sysctl_devices(SYSCTL_HANDLER_ARGS)
3399 {
3400 	int			*name = (int *)arg1;
3401 	u_int			namelen = arg2;
3402 	int			index;
3403 	struct device		*dev;
3404 	struct u_device		udev;	/* XXX this is a bit big */
3405 	int			error;
3406 
3407 	if (namelen != 2)
3408 		return (EINVAL);
3409 
3410 	if (bus_data_generation_check(name[0]))
3411 		return (EINVAL);
3412 
3413 	index = name[1];
3414 
3415 	/*
3416 	 * Scan the list of devices, looking for the requested index.
3417 	 */
3418 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3419 		if (index-- == 0)
3420 			break;
3421 	}
3422 	if (dev == NULL)
3423 		return (ENOENT);
3424 
3425 	/*
3426 	 * Populate the return array.
3427 	 */
3428 	bzero(&udev, sizeof(udev));
3429 	udev.dv_handle = (uintptr_t)dev;
3430 	udev.dv_parent = (uintptr_t)dev->parent;
3431 	if (dev->nameunit != NULL)
3432 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3433 	if (dev->desc != NULL)
3434 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3435 	if (dev->driver != NULL && dev->driver->name != NULL)
3436 		strlcpy(udev.dv_drivername, dev->driver->name,
3437 		    sizeof(udev.dv_drivername));
3438 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3439 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3440 	udev.dv_devflags = dev->devflags;
3441 	udev.dv_flags = dev->flags;
3442 	udev.dv_state = dev->state;
3443 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3444 	return (error);
3445 }
3446 
3447 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3448     "system device tree");
3449 
3450 int
3451 bus_data_generation_check(int generation)
3452 {
3453 	if (generation != bus_data_generation)
3454 		return (1);
3455 
3456 	/* XXX generate optimised lists here? */
3457 	return (0);
3458 }
3459 
3460 void
3461 bus_data_generation_update(void)
3462 {
3463 	bus_data_generation++;
3464 }
3465 
3466 const char *
3467 intr_str_polarity(enum intr_polarity pola)
3468 {
3469 	switch (pola) {
3470 	case INTR_POLARITY_LOW:
3471 		return "low";
3472 
3473 	case INTR_POLARITY_HIGH:
3474 		return "high";
3475 
3476 	case INTR_POLARITY_CONFORM:
3477 		return "conform";
3478 	}
3479 	return "unknown";
3480 }
3481 
3482 const char *
3483 intr_str_trigger(enum intr_trigger trig)
3484 {
3485 	switch (trig) {
3486 	case INTR_TRIGGER_EDGE:
3487 		return "edge";
3488 
3489 	case INTR_TRIGGER_LEVEL:
3490 		return "level";
3491 
3492 	case INTR_TRIGGER_CONFORM:
3493 		return "conform";
3494 	}
3495 	return "unknown";
3496 }
3497 
3498 int
3499 device_getenv_int(device_t dev, const char *knob, int def)
3500 {
3501 	char env[128];
3502 
3503 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3504 	kgetenv_int(env, &def);
3505 	return def;
3506 }
3507