xref: /dragonfly/sys/kern/subr_bus.c (revision c9c5aa9e)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  */
28 
29 #include "opt_bus.h"
30 
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/kobj.h>
37 #include <sys/bus_private.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/device.h>
43 #include <sys/lock.h>
44 #include <sys/conf.h>
45 #include <sys/uio.h>
46 #include <sys/filio.h>
47 #include <sys/event.h>
48 #include <sys/signalvar.h>
49 #include <sys/machintr.h>
50 #include <sys/vnode.h>
51 
52 #include <machine/stdarg.h>	/* for device_printf() */
53 
54 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
55 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
56 
57 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
58 
59 #ifdef BUS_DEBUG
60 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
61 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
62 #define DRIVERNAME(d)	((d)? d->name : "no driver")
63 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
64 
65 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
66  * prevent syslog from deleting initial spaces
67  */
68 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
69 
70 static void	print_device_short(device_t dev, int indent);
71 static void	print_device(device_t dev, int indent);
72 void		print_device_tree_short(device_t dev, int indent);
73 void		print_device_tree(device_t dev, int indent);
74 static void	print_driver_short(driver_t *driver, int indent);
75 static void	print_driver(driver_t *driver, int indent);
76 static void	print_driver_list(driver_list_t drivers, int indent);
77 static void	print_devclass_short(devclass_t dc, int indent);
78 static void	print_devclass(devclass_t dc, int indent);
79 void		print_devclass_list_short(void);
80 void		print_devclass_list(void);
81 
82 #else
83 /* Make the compiler ignore the function calls */
84 #define PDEBUG(a)			/* nop */
85 #define DEVICENAME(d)			/* nop */
86 #define DRIVERNAME(d)			/* nop */
87 #define DEVCLANAME(d)			/* nop */
88 
89 #define print_device_short(d,i)		/* nop */
90 #define print_device(d,i)		/* nop */
91 #define print_device_tree_short(d,i)	/* nop */
92 #define print_device_tree(d,i)		/* nop */
93 #define print_driver_short(d,i)		/* nop */
94 #define print_driver(d,i)		/* nop */
95 #define print_driver_list(d,i)		/* nop */
96 #define print_devclass_short(d,i)	/* nop */
97 #define print_devclass(d,i)		/* nop */
98 #define print_devclass_list_short()	/* nop */
99 #define print_devclass_list()		/* nop */
100 #endif
101 
102 /*
103  * dev sysctl tree
104  */
105 
106 enum {
107 	DEVCLASS_SYSCTL_PARENT,
108 };
109 
110 static int
111 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
112 {
113 	devclass_t dc = (devclass_t)arg1;
114 	const char *value;
115 
116 	switch (arg2) {
117 	case DEVCLASS_SYSCTL_PARENT:
118 		value = dc->parent ? dc->parent->name : "";
119 		break;
120 	default:
121 		return (EINVAL);
122 	}
123 	return (SYSCTL_OUT(req, value, strlen(value)));
124 }
125 
126 static void
127 devclass_sysctl_init(devclass_t dc)
128 {
129 
130 	if (dc->sysctl_tree != NULL)
131 		return;
132 	sysctl_ctx_init(&dc->sysctl_ctx);
133 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
134 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
135 	    CTLFLAG_RD, NULL, "");
136 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
137 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
138 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
139 	    "parent class");
140 }
141 
142 enum {
143 	DEVICE_SYSCTL_DESC,
144 	DEVICE_SYSCTL_DRIVER,
145 	DEVICE_SYSCTL_LOCATION,
146 	DEVICE_SYSCTL_PNPINFO,
147 	DEVICE_SYSCTL_PARENT,
148 };
149 
150 static int
151 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
152 {
153 	device_t dev = (device_t)arg1;
154 	const char *value;
155 	char *buf;
156 	int error;
157 
158 	buf = NULL;
159 	switch (arg2) {
160 	case DEVICE_SYSCTL_DESC:
161 		value = dev->desc ? dev->desc : "";
162 		break;
163 	case DEVICE_SYSCTL_DRIVER:
164 		value = dev->driver ? dev->driver->name : "";
165 		break;
166 	case DEVICE_SYSCTL_LOCATION:
167 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
168 		bus_child_location_str(dev, buf, 1024);
169 		break;
170 	case DEVICE_SYSCTL_PNPINFO:
171 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
172 		bus_child_pnpinfo_str(dev, buf, 1024);
173 		break;
174 	case DEVICE_SYSCTL_PARENT:
175 		value = dev->parent ? dev->parent->nameunit : "";
176 		break;
177 	default:
178 		return (EINVAL);
179 	}
180 	error = SYSCTL_OUT(req, value, strlen(value));
181 	if (buf != NULL)
182 		kfree(buf, M_BUS);
183 	return (error);
184 }
185 
186 static void
187 device_sysctl_init(device_t dev)
188 {
189 	devclass_t dc = dev->devclass;
190 
191 	if (dev->sysctl_tree != NULL)
192 		return;
193 	devclass_sysctl_init(dc);
194 	sysctl_ctx_init(&dev->sysctl_ctx);
195 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
196 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
197 	    dev->nameunit + strlen(dc->name),
198 	    CTLFLAG_RD, NULL, "");
199 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
200 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
201 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
202 	    "device description");
203 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
204 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
205 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
206 	    "device driver name");
207 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
208 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
209 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
210 	    "device location relative to parent");
211 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
212 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
213 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
214 	    "device identification");
215 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
216 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
217 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
218 	    "parent device");
219 }
220 
221 static void
222 device_sysctl_update(device_t dev)
223 {
224 	devclass_t dc = dev->devclass;
225 
226 	if (dev->sysctl_tree == NULL)
227 		return;
228 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
229 }
230 
231 static void
232 device_sysctl_fini(device_t dev)
233 {
234 	if (dev->sysctl_tree == NULL)
235 		return;
236 	sysctl_ctx_free(&dev->sysctl_ctx);
237 	dev->sysctl_tree = NULL;
238 }
239 
240 static void	device_attach_async(device_t dev);
241 static void	device_attach_thread(void *arg);
242 static int	device_doattach(device_t dev);
243 
244 static int do_async_attach = 0;
245 static int numasyncthreads;
246 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
247 
248 /*
249  * /dev/devctl implementation
250  */
251 
252 /*
253  * This design allows only one reader for /dev/devctl.  This is not desirable
254  * in the long run, but will get a lot of hair out of this implementation.
255  * Maybe we should make this device a clonable device.
256  *
257  * Also note: we specifically do not attach a device to the device_t tree
258  * to avoid potential chicken and egg problems.  One could argue that all
259  * of this belongs to the root node.  One could also further argue that the
260  * sysctl interface that we have not might more properly be an ioctl
261  * interface, but at this stage of the game, I'm not inclined to rock that
262  * boat.
263  *
264  * I'm also not sure that the SIGIO support is done correctly or not, as
265  * I copied it from a driver that had SIGIO support that likely hasn't been
266  * tested since 3.4 or 2.2.8!
267  */
268 
269 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
270 static int devctl_disable = 0;
271 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
272 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
273     sysctl_devctl_disable, "I", "devctl disable");
274 
275 static d_open_t		devopen;
276 static d_close_t	devclose;
277 static d_read_t		devread;
278 static d_ioctl_t	devioctl;
279 static d_kqfilter_t	devkqfilter;
280 
281 static struct dev_ops devctl_ops = {
282 	{ "devctl", 0, D_MPSAFE },
283 	.d_open =	devopen,
284 	.d_close =	devclose,
285 	.d_read =	devread,
286 	.d_ioctl =	devioctl,
287 	.d_kqfilter =	devkqfilter
288 };
289 
290 struct dev_event_info
291 {
292 	char *dei_data;
293 	TAILQ_ENTRY(dev_event_info) dei_link;
294 };
295 
296 TAILQ_HEAD(devq, dev_event_info);
297 
298 static struct dev_softc
299 {
300 	int	inuse;
301 	struct lock lock;
302 	struct kqinfo kq;
303 	struct devq devq;
304 	struct proc *async_proc;
305 } devsoftc;
306 
307 /*
308  * Chicken-and-egg problem with devfs, get the queue operational early.
309  */
310 static void
311 predevinit(void)
312 {
313 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
314 	TAILQ_INIT(&devsoftc.devq);
315 }
316 SYSINIT(predevinit, SI_SUB_CREATE_INIT, SI_ORDER_ANY, predevinit, 0);
317 
318 static void
319 devinit(void)
320 {
321 	/*
322 	 * WARNING! make_dev() can call back into devctl_queue_data()
323 	 *	    immediately.
324 	 */
325 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
326 }
327 
328 static int
329 devopen(struct dev_open_args *ap)
330 {
331 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
332 	if (devsoftc.inuse) {
333 		lockmgr(&devsoftc.lock, LK_RELEASE);
334 		return (EBUSY);
335 	}
336 	/* move to init */
337 	devsoftc.inuse = 1;
338 	devsoftc.async_proc = NULL;
339 	lockmgr(&devsoftc.lock, LK_RELEASE);
340 
341 	return (0);
342 }
343 
344 static int
345 devclose(struct dev_close_args *ap)
346 {
347 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
348 	devsoftc.inuse = 0;
349 	wakeup(&devsoftc);
350 	lockmgr(&devsoftc.lock, LK_RELEASE);
351 
352 	return (0);
353 }
354 
355 /*
356  * The read channel for this device is used to report changes to
357  * userland in realtime.  We are required to free the data as well as
358  * the n1 object because we allocate them separately.  Also note that
359  * we return one record at a time.  If you try to read this device a
360  * character at a time, you will lose the rest of the data.  Listening
361  * programs are expected to cope.
362  */
363 static int
364 devread(struct dev_read_args *ap)
365 {
366 	struct uio *uio = ap->a_uio;
367 	struct dev_event_info *n1;
368 	int rv;
369 
370 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
371 	while (TAILQ_EMPTY(&devsoftc.devq)) {
372 		if (ap->a_ioflag & IO_NDELAY) {
373 			lockmgr(&devsoftc.lock, LK_RELEASE);
374 			return (EAGAIN);
375 		}
376 		tsleep_interlock(&devsoftc, PCATCH);
377 		lockmgr(&devsoftc.lock, LK_RELEASE);
378 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
379 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
380 		if (rv) {
381 			/*
382 			 * Need to translate ERESTART to EINTR here? -- jake
383 			 */
384 			lockmgr(&devsoftc.lock, LK_RELEASE);
385 			return (rv);
386 		}
387 	}
388 	n1 = TAILQ_FIRST(&devsoftc.devq);
389 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
390 	lockmgr(&devsoftc.lock, LK_RELEASE);
391 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
392 	kfree(n1->dei_data, M_BUS);
393 	kfree(n1, M_BUS);
394 	return (rv);
395 }
396 
397 static	int
398 devioctl(struct dev_ioctl_args *ap)
399 {
400 	switch (ap->a_cmd) {
401 
402 	case FIONBIO:
403 		return (0);
404 	case FIOASYNC:
405 		if (*(int*)ap->a_data)
406 			devsoftc.async_proc = curproc;
407 		else
408 			devsoftc.async_proc = NULL;
409 		return (0);
410 
411 		/* (un)Support for other fcntl() calls. */
412 	case FIOCLEX:
413 	case FIONCLEX:
414 	case FIONREAD:
415 	case FIOSETOWN:
416 	case FIOGETOWN:
417 	default:
418 		break;
419 	}
420 	return (ENOTTY);
421 }
422 
423 static void dev_filter_detach(struct knote *);
424 static int dev_filter_read(struct knote *, long);
425 
426 static struct filterops dev_filtops =
427 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, NULL,
428 	  dev_filter_detach, dev_filter_read };
429 
430 static int
431 devkqfilter(struct dev_kqfilter_args *ap)
432 {
433 	struct knote *kn = ap->a_kn;
434 	struct klist *klist;
435 
436 	ap->a_result = 0;
437 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
438 
439 	switch (kn->kn_filter) {
440 	case EVFILT_READ:
441 		kn->kn_fop = &dev_filtops;
442 		break;
443 	default:
444 		ap->a_result = EOPNOTSUPP;
445 		lockmgr(&devsoftc.lock, LK_RELEASE);
446 		return (0);
447 	}
448 
449 	klist = &devsoftc.kq.ki_note;
450 	knote_insert(klist, kn);
451 
452 	lockmgr(&devsoftc.lock, LK_RELEASE);
453 
454 	return (0);
455 }
456 
457 static void
458 dev_filter_detach(struct knote *kn)
459 {
460 	struct klist *klist;
461 
462 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
463 	klist = &devsoftc.kq.ki_note;
464 	knote_remove(klist, kn);
465 	lockmgr(&devsoftc.lock, LK_RELEASE);
466 }
467 
468 static int
469 dev_filter_read(struct knote *kn, long hint)
470 {
471 	int ready = 0;
472 
473 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
474 	if (!TAILQ_EMPTY(&devsoftc.devq))
475 		ready = 1;
476 	lockmgr(&devsoftc.lock, LK_RELEASE);
477 
478 	return (ready);
479 }
480 
481 
482 /**
483  * @brief Return whether the userland process is running
484  */
485 boolean_t
486 devctl_process_running(void)
487 {
488 	return (devsoftc.inuse == 1);
489 }
490 
491 /**
492  * @brief Queue data to be read from the devctl device
493  *
494  * Generic interface to queue data to the devctl device.  It is
495  * assumed that @p data is properly formatted.  It is further assumed
496  * that @p data is allocated using the M_BUS malloc type.
497  */
498 void
499 devctl_queue_data(char *data)
500 {
501 	struct dev_event_info *n1 = NULL;
502 	struct proc *p;
503 
504 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
505 	if (n1 == NULL)
506 		return;
507 	n1->dei_data = data;
508 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
509 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
510 	wakeup(&devsoftc);
511 	lockmgr(&devsoftc.lock, LK_RELEASE);
512 	KNOTE(&devsoftc.kq.ki_note, 0);
513 	p = devsoftc.async_proc;
514 	if (p != NULL)
515 		ksignal(p, SIGIO);
516 }
517 
518 /**
519  * @brief Send a 'notification' to userland, using standard ways
520  */
521 void
522 devctl_notify(const char *system, const char *subsystem, const char *type,
523     const char *data)
524 {
525 	int len = 0;
526 	char *msg;
527 
528 	if (system == NULL)
529 		return;		/* BOGUS!  Must specify system. */
530 	if (subsystem == NULL)
531 		return;		/* BOGUS!  Must specify subsystem. */
532 	if (type == NULL)
533 		return;		/* BOGUS!  Must specify type. */
534 	len += strlen(" system=") + strlen(system);
535 	len += strlen(" subsystem=") + strlen(subsystem);
536 	len += strlen(" type=") + strlen(type);
537 	/* add in the data message plus newline. */
538 	if (data != NULL)
539 		len += strlen(data);
540 	len += 3;	/* '!', '\n', and NUL */
541 	msg = kmalloc(len, M_BUS, M_NOWAIT);
542 	if (msg == NULL)
543 		return;		/* Drop it on the floor */
544 	if (data != NULL)
545 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
546 		    system, subsystem, type, data);
547 	else
548 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
549 		    system, subsystem, type);
550 	devctl_queue_data(msg);
551 }
552 
553 /*
554  * Common routine that tries to make sending messages as easy as possible.
555  * We allocate memory for the data, copy strings into that, but do not
556  * free it unless there's an error.  The dequeue part of the driver should
557  * free the data.  We don't send data when the device is disabled.  We do
558  * send data, even when we have no listeners, because we wish to avoid
559  * races relating to startup and restart of listening applications.
560  *
561  * devaddq is designed to string together the type of event, with the
562  * object of that event, plus the plug and play info and location info
563  * for that event.  This is likely most useful for devices, but less
564  * useful for other consumers of this interface.  Those should use
565  * the devctl_queue_data() interface instead.
566  */
567 static void
568 devaddq(const char *type, const char *what, device_t dev)
569 {
570 	char *data = NULL;
571 	char *loc = NULL;
572 	char *pnp = NULL;
573 	const char *parstr;
574 
575 	if (devctl_disable)
576 		return;
577 	data = kmalloc(1024, M_BUS, M_NOWAIT);
578 	if (data == NULL)
579 		goto bad;
580 
581 	/* get the bus specific location of this device */
582 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
583 	if (loc == NULL)
584 		goto bad;
585 	*loc = '\0';
586 	bus_child_location_str(dev, loc, 1024);
587 
588 	/* Get the bus specific pnp info of this device */
589 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
590 	if (pnp == NULL)
591 		goto bad;
592 	*pnp = '\0';
593 	bus_child_pnpinfo_str(dev, pnp, 1024);
594 
595 	/* Get the parent of this device, or / if high enough in the tree. */
596 	if (device_get_parent(dev) == NULL)
597 		parstr = ".";	/* Or '/' ? */
598 	else
599 		parstr = device_get_nameunit(device_get_parent(dev));
600 	/* String it all together. */
601 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
602 	  parstr);
603 	kfree(loc, M_BUS);
604 	kfree(pnp, M_BUS);
605 	devctl_queue_data(data);
606 	return;
607 bad:
608 	if (pnp != NULL)
609 		kfree(pnp, M_BUS);
610 	if (loc != NULL)
611 		kfree(loc, M_BUS);
612 	if (loc != NULL)
613 		kfree(data, M_BUS);
614 	return;
615 }
616 
617 /*
618  * A device was added to the tree.  We are called just after it successfully
619  * attaches (that is, probe and attach success for this device).  No call
620  * is made if a device is merely parented into the tree.  See devnomatch
621  * if probe fails.  If attach fails, no notification is sent (but maybe
622  * we should have a different message for this).
623  */
624 static void
625 devadded(device_t dev)
626 {
627 	char *pnp = NULL;
628 	char *tmp = NULL;
629 
630 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
631 	if (pnp == NULL)
632 		goto fail;
633 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
634 	if (tmp == NULL)
635 		goto fail;
636 	*pnp = '\0';
637 	bus_child_pnpinfo_str(dev, pnp, 1024);
638 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
639 	devaddq("+", tmp, dev);
640 fail:
641 	if (pnp != NULL)
642 		kfree(pnp, M_BUS);
643 	if (tmp != NULL)
644 		kfree(tmp, M_BUS);
645 	return;
646 }
647 
648 /*
649  * A device was removed from the tree.  We are called just before this
650  * happens.
651  */
652 static void
653 devremoved(device_t dev)
654 {
655 	char *pnp = NULL;
656 	char *tmp = NULL;
657 
658 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
659 	if (pnp == NULL)
660 		goto fail;
661 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
662 	if (tmp == NULL)
663 		goto fail;
664 	*pnp = '\0';
665 	bus_child_pnpinfo_str(dev, pnp, 1024);
666 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
667 	devaddq("-", tmp, dev);
668 fail:
669 	if (pnp != NULL)
670 		kfree(pnp, M_BUS);
671 	if (tmp != NULL)
672 		kfree(tmp, M_BUS);
673 	return;
674 }
675 
676 /*
677  * Called when there's no match for this device.  This is only called
678  * the first time that no match happens, so we don't keep getitng this
679  * message.  Should that prove to be undesirable, we can change it.
680  * This is called when all drivers that can attach to a given bus
681  * decline to accept this device.  Other errrors may not be detected.
682  */
683 static void
684 devnomatch(device_t dev)
685 {
686 	devaddq("?", "", dev);
687 }
688 
689 static int
690 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
691 {
692 	struct dev_event_info *n1;
693 	int dis, error;
694 
695 	dis = devctl_disable;
696 	error = sysctl_handle_int(oidp, &dis, 0, req);
697 	if (error || !req->newptr)
698 		return (error);
699 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
700 	devctl_disable = dis;
701 	if (dis) {
702 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
703 			n1 = TAILQ_FIRST(&devsoftc.devq);
704 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
705 			kfree(n1->dei_data, M_BUS);
706 			kfree(n1, M_BUS);
707 		}
708 	}
709 	lockmgr(&devsoftc.lock, LK_RELEASE);
710 	return (0);
711 }
712 
713 /* End of /dev/devctl code */
714 
715 TAILQ_HEAD(,bsd_device)	bus_data_devices;
716 static int bus_data_generation = 1;
717 
718 kobj_method_t null_methods[] = {
719 	{ 0, 0 }
720 };
721 
722 DEFINE_CLASS(null, null_methods, 0);
723 
724 /*
725  * Devclass implementation
726  */
727 
728 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
729 
730 static devclass_t
731 devclass_find_internal(const char *classname, const char *parentname,
732 		       int create)
733 {
734 	devclass_t dc;
735 
736 	PDEBUG(("looking for %s", classname));
737 	if (classname == NULL)
738 		return(NULL);
739 
740 	TAILQ_FOREACH(dc, &devclasses, link)
741 		if (!strcmp(dc->name, classname))
742 			break;
743 
744 	if (create && !dc) {
745 		PDEBUG(("creating %s", classname));
746 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
747 			    M_BUS, M_INTWAIT | M_ZERO);
748 		dc->parent = NULL;
749 		dc->name = (char*) (dc + 1);
750 		strcpy(dc->name, classname);
751 		dc->devices = NULL;
752 		dc->maxunit = 0;
753 		TAILQ_INIT(&dc->drivers);
754 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
755 
756 		bus_data_generation_update();
757 
758 	}
759 
760 	/*
761 	 * If a parent class is specified, then set that as our parent so
762 	 * that this devclass will support drivers for the parent class as
763 	 * well.  If the parent class has the same name don't do this though
764 	 * as it creates a cycle that can trigger an infinite loop in
765 	 * device_probe_child() if a device exists for which there is no
766 	 * suitable driver.
767 	 */
768 	if (parentname && dc && !dc->parent &&
769 	    strcmp(classname, parentname) != 0)
770 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
771 
772 	return(dc);
773 }
774 
775 devclass_t
776 devclass_create(const char *classname)
777 {
778 	return(devclass_find_internal(classname, NULL, TRUE));
779 }
780 
781 devclass_t
782 devclass_find(const char *classname)
783 {
784 	return(devclass_find_internal(classname, NULL, FALSE));
785 }
786 
787 device_t
788 devclass_find_unit(const char *classname, int unit)
789 {
790 	devclass_t dc;
791 
792 	if ((dc = devclass_find(classname)) != NULL)
793 	    return(devclass_get_device(dc, unit));
794 	return (NULL);
795 }
796 
797 int
798 devclass_add_driver(devclass_t dc, driver_t *driver)
799 {
800 	driverlink_t dl;
801 	device_t dev;
802 	int i;
803 
804 	PDEBUG(("%s", DRIVERNAME(driver)));
805 
806 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
807 
808 	/*
809 	 * Compile the driver's methods. Also increase the reference count
810 	 * so that the class doesn't get freed when the last instance
811 	 * goes. This means we can safely use static methods and avoids a
812 	 * double-free in devclass_delete_driver.
813 	 */
814 	kobj_class_instantiate(driver);
815 
816 	/*
817 	 * Make sure the devclass which the driver is implementing exists.
818 	 */
819 	devclass_find_internal(driver->name, NULL, TRUE);
820 
821 	dl->driver = driver;
822 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
823 
824 	/*
825 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
826 	 * but only if the bus has already been attached (otherwise we
827 	 * might probe too early).
828 	 *
829 	 * This is what will cause a newly loaded module to be associated
830 	 * with hardware.  bus_generic_driver_added() is typically what ends
831 	 * up being called.
832 	 */
833 	for (i = 0; i < dc->maxunit; i++) {
834 		if ((dev = dc->devices[i]) != NULL) {
835 			if (dev->state >= DS_ATTACHED)
836 				BUS_DRIVER_ADDED(dev, driver);
837 		}
838 	}
839 
840 	bus_data_generation_update();
841 	return(0);
842 }
843 
844 int
845 devclass_delete_driver(devclass_t busclass, driver_t *driver)
846 {
847 	devclass_t dc = devclass_find(driver->name);
848 	driverlink_t dl;
849 	device_t dev;
850 	int i;
851 	int error;
852 
853 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
854 
855 	if (!dc)
856 		return(0);
857 
858 	/*
859 	 * Find the link structure in the bus' list of drivers.
860 	 */
861 	TAILQ_FOREACH(dl, &busclass->drivers, link)
862 		if (dl->driver == driver)
863 			break;
864 
865 	if (!dl) {
866 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
867 		return(ENOENT);
868 	}
869 
870 	/*
871 	 * Disassociate from any devices.  We iterate through all the
872 	 * devices in the devclass of the driver and detach any which are
873 	 * using the driver and which have a parent in the devclass which
874 	 * we are deleting from.
875 	 *
876 	 * Note that since a driver can be in multiple devclasses, we
877 	 * should not detach devices which are not children of devices in
878 	 * the affected devclass.
879 	 */
880 	for (i = 0; i < dc->maxunit; i++)
881 		if (dc->devices[i]) {
882 			dev = dc->devices[i];
883 			if (dev->driver == driver && dev->parent &&
884 			    dev->parent->devclass == busclass) {
885 				if ((error = device_detach(dev)) != 0)
886 					return(error);
887 				device_set_driver(dev, NULL);
888 		    	}
889 		}
890 
891 	TAILQ_REMOVE(&busclass->drivers, dl, link);
892 	kfree(dl, M_BUS);
893 
894 	kobj_class_uninstantiate(driver);
895 
896 	bus_data_generation_update();
897 	return(0);
898 }
899 
900 static driverlink_t
901 devclass_find_driver_internal(devclass_t dc, const char *classname)
902 {
903 	driverlink_t dl;
904 
905 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
906 
907 	TAILQ_FOREACH(dl, &dc->drivers, link)
908 		if (!strcmp(dl->driver->name, classname))
909 			return(dl);
910 
911 	PDEBUG(("not found"));
912 	return(NULL);
913 }
914 
915 kobj_class_t
916 devclass_find_driver(devclass_t dc, const char *classname)
917 {
918 	driverlink_t dl;
919 
920 	dl = devclass_find_driver_internal(dc, classname);
921 	if (dl)
922 		return(dl->driver);
923 	else
924 		return(NULL);
925 }
926 
927 const char *
928 devclass_get_name(devclass_t dc)
929 {
930 	return(dc->name);
931 }
932 
933 device_t
934 devclass_get_device(devclass_t dc, int unit)
935 {
936 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
937 		return(NULL);
938 	return(dc->devices[unit]);
939 }
940 
941 void *
942 devclass_get_softc(devclass_t dc, int unit)
943 {
944 	device_t dev;
945 
946 	dev = devclass_get_device(dc, unit);
947 	if (!dev)
948 		return(NULL);
949 
950 	return(device_get_softc(dev));
951 }
952 
953 int
954 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
955 {
956 	int i;
957 	int count;
958 	device_t *list;
959 
960 	count = 0;
961 	for (i = 0; i < dc->maxunit; i++)
962 		if (dc->devices[i])
963 			count++;
964 
965 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
966 
967 	count = 0;
968 	for (i = 0; i < dc->maxunit; i++)
969 		if (dc->devices[i]) {
970 			list[count] = dc->devices[i];
971 			count++;
972 		}
973 
974 	*devlistp = list;
975 	*devcountp = count;
976 
977 	return(0);
978 }
979 
980 /**
981  * @brief Get a list of drivers in the devclass
982  *
983  * An array containing a list of pointers to all the drivers in the
984  * given devclass is allocated and returned in @p *listp.  The number
985  * of drivers in the array is returned in @p *countp. The caller should
986  * free the array using @c free(p, M_TEMP).
987  *
988  * @param dc            the devclass to examine
989  * @param listp         gives location for array pointer return value
990  * @param countp        gives location for number of array elements
991  *                      return value
992  *
993  * @retval 0            success
994  * @retval ENOMEM       the array allocation failed
995  */
996 int
997 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
998 {
999         driverlink_t dl;
1000         driver_t **list;
1001         int count;
1002 
1003         count = 0;
1004         TAILQ_FOREACH(dl, &dc->drivers, link)
1005                 count++;
1006         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1007         if (list == NULL)
1008                 return (ENOMEM);
1009 
1010         count = 0;
1011         TAILQ_FOREACH(dl, &dc->drivers, link) {
1012                 list[count] = dl->driver;
1013                 count++;
1014         }
1015         *listp = list;
1016         *countp = count;
1017 
1018         return (0);
1019 }
1020 
1021 /**
1022  * @brief Get the number of devices in a devclass
1023  *
1024  * @param dc		the devclass to examine
1025  */
1026 int
1027 devclass_get_count(devclass_t dc)
1028 {
1029 	int count, i;
1030 
1031 	count = 0;
1032 	for (i = 0; i < dc->maxunit; i++)
1033 		if (dc->devices[i])
1034 			count++;
1035 	return (count);
1036 }
1037 
1038 int
1039 devclass_get_maxunit(devclass_t dc)
1040 {
1041 	return(dc->maxunit);
1042 }
1043 
1044 void
1045 devclass_set_parent(devclass_t dc, devclass_t pdc)
1046 {
1047         dc->parent = pdc;
1048 }
1049 
1050 devclass_t
1051 devclass_get_parent(devclass_t dc)
1052 {
1053 	return(dc->parent);
1054 }
1055 
1056 static int
1057 devclass_alloc_unit(devclass_t dc, int *unitp)
1058 {
1059 	int unit = *unitp;
1060 
1061 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1062 
1063 	/* If we have been given a wired unit number, check for existing device */
1064 	if (unit != -1) {
1065 		if (unit >= 0 && unit < dc->maxunit &&
1066 		    dc->devices[unit] != NULL) {
1067 			if (bootverbose)
1068 				kprintf("%s-: %s%d exists, using next available unit number\n",
1069 				       dc->name, dc->name, unit);
1070 			/* find the next available slot */
1071 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
1072 				;
1073 		}
1074 	} else {
1075 		/* Unwired device, find the next available slot for it */
1076 		unit = 0;
1077 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1078 			unit++;
1079 	}
1080 
1081 	/*
1082 	 * We've selected a unit beyond the length of the table, so let's
1083 	 * extend the table to make room for all units up to and including
1084 	 * this one.
1085 	 */
1086 	if (unit >= dc->maxunit) {
1087 		device_t *newlist;
1088 		int newsize;
1089 
1090 		newsize = (unit + 1);
1091 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
1092 				 M_INTWAIT | M_ZERO);
1093 		if (newlist == NULL)
1094 			return(ENOMEM);
1095 		/*
1096 		 * WARNING: Due to gcc builtin optimization,
1097 		 *	    calling bcopy causes gcc to assume
1098 		 *	    that the source and destination args
1099 		 *	    cannot be NULL and optimize-away later
1100 		 *	    conditional tests to determine if dc->devices
1101 		 *	    is NULL.  In this situation, in fact,
1102 		 *	    dc->devices CAN be NULL w/ maxunit == 0.
1103 		 */
1104 		if (dc->devices) {
1105 			bcopy(dc->devices,
1106 			      newlist,
1107 			      sizeof(device_t) * dc->maxunit);
1108 			kfree(dc->devices, M_BUS);
1109 		}
1110 		dc->devices = newlist;
1111 		dc->maxunit = newsize;
1112 	}
1113 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1114 
1115 	*unitp = unit;
1116 	return(0);
1117 }
1118 
1119 static int
1120 devclass_add_device(devclass_t dc, device_t dev)
1121 {
1122 	int buflen, error;
1123 
1124 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1125 
1126 	buflen = strlen(dc->name) + 5;
1127 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
1128 	if (dev->nameunit == NULL)
1129 		return(ENOMEM);
1130 
1131 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1132 		kfree(dev->nameunit, M_BUS);
1133 		dev->nameunit = NULL;
1134 		return(error);
1135 	}
1136 	dc->devices[dev->unit] = dev;
1137 	dev->devclass = dc;
1138 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1139 
1140 	return(0);
1141 }
1142 
1143 static int
1144 devclass_delete_device(devclass_t dc, device_t dev)
1145 {
1146 	if (!dc || !dev)
1147 		return(0);
1148 
1149 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1150 
1151 	if (dev->devclass != dc || dc->devices[dev->unit] != dev) {
1152 		panic("devclass_delete_device: inconsistent device class: "
1153 		      "%p/%p %d %p/%p\n", dev->devclass, dc, dev->unit,
1154 		      dc->devices[dev->unit], dev);
1155 	}
1156 	dc->devices[dev->unit] = NULL;
1157 	if (dev->flags & DF_WILDCARD)
1158 		dev->unit = -1;
1159 	dev->devclass = NULL;
1160 	kfree(dev->nameunit, M_BUS);
1161 	dev->nameunit = NULL;
1162 
1163 	return(0);
1164 }
1165 
1166 static device_t
1167 make_device(device_t parent, const char *name, int unit)
1168 {
1169 	device_t dev;
1170 	devclass_t dc;
1171 
1172 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1173 
1174 	if (name != NULL) {
1175 		dc = devclass_find_internal(name, NULL, TRUE);
1176 		if (!dc) {
1177 			kprintf("make_device: can't find device class %s\n", name);
1178 			return(NULL);
1179 		}
1180 	} else
1181 		dc = NULL;
1182 
1183 	dev = kmalloc(sizeof(struct bsd_device), M_BUS, M_INTWAIT | M_ZERO);
1184 	if (!dev)
1185 		return(0);
1186 
1187 	dev->parent = parent;
1188 	TAILQ_INIT(&dev->children);
1189 	kobj_init((kobj_t) dev, &null_class);
1190 	dev->driver = NULL;
1191 	dev->devclass = NULL;
1192 	dev->unit = unit;
1193 	dev->nameunit = NULL;
1194 	dev->desc = NULL;
1195 	dev->busy = 0;
1196 	dev->devflags = 0;
1197 	dev->flags = DF_ENABLED;
1198 	dev->order = 0;
1199 	if (unit == -1)
1200 		dev->flags |= DF_WILDCARD;
1201 	if (name) {
1202 		dev->flags |= DF_FIXEDCLASS;
1203 		if (devclass_add_device(dc, dev) != 0) {
1204 			kobj_delete((kobj_t)dev, M_BUS);
1205 			return(NULL);
1206 		}
1207     	}
1208 	dev->ivars = NULL;
1209 	dev->softc = NULL;
1210 
1211 	dev->state = DS_NOTPRESENT;
1212 
1213 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1214 	bus_data_generation_update();
1215 
1216 	return(dev);
1217 }
1218 
1219 static int
1220 device_print_child(device_t dev, device_t child)
1221 {
1222 	int retval = 0;
1223 
1224 	if (device_is_alive(child))
1225 		retval += BUS_PRINT_CHILD(dev, child);
1226 	else
1227 		retval += device_printf(child, " not found\n");
1228 
1229 	return(retval);
1230 }
1231 
1232 device_t
1233 device_add_child(device_t dev, const char *name, int unit)
1234 {
1235 	return device_add_child_ordered(dev, 0, name, unit);
1236 }
1237 
1238 device_t
1239 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1240 {
1241 	device_t child;
1242 	device_t place;
1243 
1244 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1245 		order, unit));
1246 
1247 	child = make_device(dev, name, unit);
1248 	if (child == NULL)
1249 		return child;
1250 	child->order = order;
1251 
1252 	TAILQ_FOREACH(place, &dev->children, link) {
1253 		if (place->order > order)
1254 			break;
1255 	}
1256 
1257 	if (place) {
1258 		/*
1259 		 * The device 'place' is the first device whose order is
1260 		 * greater than the new child.
1261 		 */
1262 		TAILQ_INSERT_BEFORE(place, child, link);
1263 	} else {
1264 		/*
1265 		 * The new child's order is greater or equal to the order of
1266 		 * any existing device. Add the child to the tail of the list.
1267 		 */
1268 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1269     	}
1270 
1271 	bus_data_generation_update();
1272 	return(child);
1273 }
1274 
1275 int
1276 device_delete_child(device_t dev, device_t child)
1277 {
1278 	int error;
1279 	device_t grandchild;
1280 
1281 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1282 
1283 	/* remove children first */
1284 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1285         	error = device_delete_child(child, grandchild);
1286 		if (error)
1287 			return(error);
1288 	}
1289 
1290 	if ((error = device_detach(child)) != 0)
1291 		return(error);
1292 	if (child->devclass)
1293 		devclass_delete_device(child->devclass, child);
1294 	TAILQ_REMOVE(&dev->children, child, link);
1295 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1296 	kobj_delete((kobj_t)child, M_BUS);
1297 
1298 	bus_data_generation_update();
1299 	return(0);
1300 }
1301 
1302 /**
1303  * @brief Delete all children devices of the given device, if any.
1304  *
1305  * This function deletes all children devices of the given device, if
1306  * any, using the device_delete_child() function for each device it
1307  * finds. If a child device cannot be deleted, this function will
1308  * return an error code.
1309  *
1310  * @param dev		the parent device
1311  *
1312  * @retval 0		success
1313  * @retval non-zero	a device would not detach
1314  */
1315 int
1316 device_delete_children(device_t dev)
1317 {
1318 	device_t child;
1319 	int error;
1320 
1321 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1322 
1323 	error = 0;
1324 
1325 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1326 		error = device_delete_child(dev, child);
1327 		if (error) {
1328 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1329 			break;
1330 		}
1331 	}
1332 	return (error);
1333 }
1334 
1335 /**
1336  * @brief Find a device given a unit number
1337  *
1338  * This is similar to devclass_get_devices() but only searches for
1339  * devices which have @p dev as a parent.
1340  *
1341  * @param dev		the parent device to search
1342  * @param unit		the unit number to search for.  If the unit is -1,
1343  *			return the first child of @p dev which has name
1344  *			@p classname (that is, the one with the lowest unit.)
1345  *
1346  * @returns		the device with the given unit number or @c
1347  *			NULL if there is no such device
1348  */
1349 device_t
1350 device_find_child(device_t dev, const char *classname, int unit)
1351 {
1352 	devclass_t dc;
1353 	device_t child;
1354 
1355 	dc = devclass_find(classname);
1356 	if (!dc)
1357 		return(NULL);
1358 
1359 	if (unit != -1) {
1360 		child = devclass_get_device(dc, unit);
1361 		if (child && child->parent == dev)
1362 			return (child);
1363 	} else {
1364 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1365 			child = devclass_get_device(dc, unit);
1366 			if (child && child->parent == dev)
1367 				return (child);
1368 		}
1369 	}
1370 	return(NULL);
1371 }
1372 
1373 static driverlink_t
1374 first_matching_driver(devclass_t dc, device_t dev)
1375 {
1376 	if (dev->devclass)
1377 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1378 	else
1379 		return(TAILQ_FIRST(&dc->drivers));
1380 }
1381 
1382 static driverlink_t
1383 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1384 {
1385 	if (dev->devclass) {
1386 		driverlink_t dl;
1387 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1388 			if (!strcmp(dev->devclass->name, dl->driver->name))
1389 				return(dl);
1390 		return(NULL);
1391 	} else
1392 		return(TAILQ_NEXT(last, link));
1393 }
1394 
1395 int
1396 device_probe_child(device_t dev, device_t child)
1397 {
1398 	devclass_t dc;
1399 	driverlink_t best = NULL;
1400 	driverlink_t dl;
1401 	int result, pri = 0;
1402 	int hasclass = (child->devclass != NULL);
1403 
1404 	dc = dev->devclass;
1405 	if (!dc)
1406 		panic("device_probe_child: parent device has no devclass");
1407 
1408 	if (child->state == DS_ALIVE)
1409 		return(0);
1410 
1411 	for (; dc; dc = dc->parent) {
1412 		for (dl = first_matching_driver(dc, child); dl;
1413 		     dl = next_matching_driver(dc, child, dl)) {
1414 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1415 			device_set_driver(child, dl->driver);
1416 			if (!hasclass)
1417 				device_set_devclass(child, dl->driver->name);
1418 			result = DEVICE_PROBE(child);
1419 			if (!hasclass)
1420 				device_set_devclass(child, 0);
1421 
1422 			/*
1423 			 * If the driver returns SUCCESS, there can be
1424 			 * no higher match for this device.
1425 			 */
1426 			if (result == 0) {
1427 				best = dl;
1428 				pri = 0;
1429 				break;
1430 			}
1431 
1432 			/*
1433 			 * The driver returned an error so it
1434 			 * certainly doesn't match.
1435 			 */
1436 			if (result > 0) {
1437 				device_set_driver(child, NULL);
1438 				continue;
1439 			}
1440 
1441 			/*
1442 			 * A priority lower than SUCCESS, remember the
1443 			 * best matching driver. Initialise the value
1444 			 * of pri for the first match.
1445 			 */
1446 			if (best == NULL || result > pri) {
1447 				best = dl;
1448 				pri = result;
1449 				continue;
1450 			}
1451 		}
1452 		/*
1453 	         * If we have unambiguous match in this devclass,
1454 	         * don't look in the parent.
1455 	         */
1456 	        if (best && pri == 0)
1457 			break;
1458 	}
1459 
1460 	/*
1461 	 * If we found a driver, change state and initialise the devclass.
1462 	 */
1463 	if (best) {
1464 		if (!child->devclass)
1465 			device_set_devclass(child, best->driver->name);
1466 		device_set_driver(child, best->driver);
1467 		if (pri < 0) {
1468 			/*
1469 			 * A bit bogus. Call the probe method again to make
1470 			 * sure that we have the right description.
1471 			 */
1472 			DEVICE_PROBE(child);
1473 		}
1474 
1475 		bus_data_generation_update();
1476 		child->state = DS_ALIVE;
1477 		return(0);
1478 	}
1479 
1480 	return(ENXIO);
1481 }
1482 
1483 int
1484 device_probe_child_gpri(device_t dev, device_t child, u_int gpri)
1485 {
1486 	devclass_t dc;
1487 	driverlink_t best = NULL;
1488 	driverlink_t dl;
1489 	int result, pri = 0;
1490 	int hasclass = (child->devclass != NULL);
1491 
1492 	dc = dev->devclass;
1493 	if (!dc)
1494 		panic("device_probe_child: parent device has no devclass");
1495 
1496 	if (child->state == DS_ALIVE)
1497 		return(0);
1498 
1499 	for (; dc; dc = dc->parent) {
1500 		for (dl = first_matching_driver(dc, child); dl;
1501 			dl = next_matching_driver(dc, child, dl)) {
1502 			/*
1503 			 * GPRI handling, only probe drivers with the
1504 			 * specific GPRI.
1505 			 */
1506 			if (dl->driver->gpri != gpri)
1507 				continue;
1508 
1509 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1510 			device_set_driver(child, dl->driver);
1511 			if (!hasclass)
1512 				device_set_devclass(child, dl->driver->name);
1513 			result = DEVICE_PROBE(child);
1514 			if (!hasclass)
1515 				device_set_devclass(child, 0);
1516 
1517 			/*
1518 			 * If the driver returns SUCCESS, there can be
1519 			 * no higher match for this device.
1520 			 */
1521 			if (result == 0) {
1522 				best = dl;
1523 				pri = 0;
1524 				break;
1525 			}
1526 
1527 			/*
1528 			 * The driver returned an error so it
1529 			 * certainly doesn't match.
1530 			 */
1531 			if (result > 0) {
1532 				device_set_driver(child, NULL);
1533 				continue;
1534 			}
1535 
1536 			/*
1537 			 * A priority lower than SUCCESS, remember the
1538 			 * best matching driver. Initialise the value
1539 			 * of pri for the first match.
1540 			 */
1541 			if (best == NULL || result > pri) {
1542 				best = dl;
1543 				pri = result;
1544 				continue;
1545 			}
1546 	        }
1547 		/*
1548 	         * If we have unambiguous match in this devclass,
1549 	         * don't look in the parent.
1550 	         */
1551 	        if (best && pri == 0)
1552 			break;
1553 	}
1554 
1555 	/*
1556 	 * If we found a driver, change state and initialise the devclass.
1557 	 */
1558 	if (best) {
1559 		if (!child->devclass)
1560 			device_set_devclass(child, best->driver->name);
1561 		device_set_driver(child, best->driver);
1562 		if (pri < 0) {
1563 			/*
1564 			 * A bit bogus. Call the probe method again to make
1565 			 * sure that we have the right description.
1566 			 */
1567 			DEVICE_PROBE(child);
1568 		}
1569 
1570 		bus_data_generation_update();
1571 		child->state = DS_ALIVE;
1572 		return(0);
1573 	}
1574 
1575 	return(ENXIO);
1576 }
1577 
1578 device_t
1579 device_get_parent(device_t dev)
1580 {
1581 	return dev->parent;
1582 }
1583 
1584 int
1585 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1586 {
1587 	int count;
1588 	device_t child;
1589 	device_t *list;
1590 
1591 	count = 0;
1592 	TAILQ_FOREACH(child, &dev->children, link)
1593 		count++;
1594 
1595 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1596 
1597 	count = 0;
1598 	TAILQ_FOREACH(child, &dev->children, link) {
1599 		list[count] = child;
1600 		count++;
1601 	}
1602 
1603 	*devlistp = list;
1604 	*devcountp = count;
1605 
1606 	return(0);
1607 }
1608 
1609 driver_t *
1610 device_get_driver(device_t dev)
1611 {
1612 	return(dev->driver);
1613 }
1614 
1615 devclass_t
1616 device_get_devclass(device_t dev)
1617 {
1618 	return(dev->devclass);
1619 }
1620 
1621 const char *
1622 device_get_name(device_t dev)
1623 {
1624 	if (dev->devclass)
1625 		return devclass_get_name(dev->devclass);
1626 	return(NULL);
1627 }
1628 
1629 const char *
1630 device_get_nameunit(device_t dev)
1631 {
1632 	return(dev->nameunit);
1633 }
1634 
1635 int
1636 device_get_unit(device_t dev)
1637 {
1638 	return(dev->unit);
1639 }
1640 
1641 const char *
1642 device_get_desc(device_t dev)
1643 {
1644 	return(dev->desc);
1645 }
1646 
1647 uint32_t
1648 device_get_flags(device_t dev)
1649 {
1650 	return(dev->devflags);
1651 }
1652 
1653 struct sysctl_ctx_list *
1654 device_get_sysctl_ctx(device_t dev)
1655 {
1656 	return (&dev->sysctl_ctx);
1657 }
1658 
1659 struct sysctl_oid *
1660 device_get_sysctl_tree(device_t dev)
1661 {
1662 	return (dev->sysctl_tree);
1663 }
1664 
1665 int
1666 device_print_prettyname(device_t dev)
1667 {
1668 	const char *name = device_get_name(dev);
1669 
1670 	if (name == NULL)
1671 		return kprintf("unknown: ");
1672 	else
1673 		return kprintf("%s%d: ", name, device_get_unit(dev));
1674 }
1675 
1676 int
1677 device_printf(device_t dev, const char * fmt, ...)
1678 {
1679 	__va_list ap;
1680 	int retval;
1681 
1682 	retval = device_print_prettyname(dev);
1683 	__va_start(ap, fmt);
1684 	retval += kvprintf(fmt, ap);
1685 	__va_end(ap);
1686 	return retval;
1687 }
1688 
1689 static void
1690 device_set_desc_internal(device_t dev, const char* desc, int copy)
1691 {
1692 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1693 		kfree(dev->desc, M_BUS);
1694 		dev->flags &= ~DF_DESCMALLOCED;
1695 		dev->desc = NULL;
1696 	}
1697 
1698 	if (copy && desc) {
1699 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1700 		if (dev->desc) {
1701 			strcpy(dev->desc, desc);
1702 			dev->flags |= DF_DESCMALLOCED;
1703 		}
1704 	} else {
1705 		/* Avoid a -Wcast-qual warning */
1706 		dev->desc = (char *)(uintptr_t) desc;
1707 	}
1708 
1709 	bus_data_generation_update();
1710 }
1711 
1712 void
1713 device_set_desc(device_t dev, const char* desc)
1714 {
1715 	device_set_desc_internal(dev, desc, FALSE);
1716 }
1717 
1718 void
1719 device_set_desc_copy(device_t dev, const char* desc)
1720 {
1721 	device_set_desc_internal(dev, desc, TRUE);
1722 }
1723 
1724 void
1725 device_set_flags(device_t dev, uint32_t flags)
1726 {
1727 	dev->devflags = flags;
1728 }
1729 
1730 void *
1731 device_get_softc(device_t dev)
1732 {
1733 	return dev->softc;
1734 }
1735 
1736 void
1737 device_set_softc(device_t dev, void *softc)
1738 {
1739 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1740 		kfree(dev->softc, M_BUS);
1741 	dev->softc = softc;
1742 	if (dev->softc)
1743 		dev->flags |= DF_EXTERNALSOFTC;
1744 	else
1745 		dev->flags &= ~DF_EXTERNALSOFTC;
1746 }
1747 
1748 void
1749 device_set_async_attach(device_t dev, int enable)
1750 {
1751 	if (enable)
1752 		dev->flags |= DF_ASYNCPROBE;
1753 	else
1754 		dev->flags &= ~DF_ASYNCPROBE;
1755 }
1756 
1757 void *
1758 device_get_ivars(device_t dev)
1759 {
1760 	return dev->ivars;
1761 }
1762 
1763 void
1764 device_set_ivars(device_t dev, void * ivars)
1765 {
1766 	if (!dev)
1767 		return;
1768 
1769 	dev->ivars = ivars;
1770 }
1771 
1772 device_state_t
1773 device_get_state(device_t dev)
1774 {
1775 	return(dev->state);
1776 }
1777 
1778 void
1779 device_enable(device_t dev)
1780 {
1781 	dev->flags |= DF_ENABLED;
1782 }
1783 
1784 void
1785 device_disable(device_t dev)
1786 {
1787 	dev->flags &= ~DF_ENABLED;
1788 }
1789 
1790 /*
1791  * YYY cannot block
1792  */
1793 void
1794 device_busy(device_t dev)
1795 {
1796 	if (dev->state < DS_ATTACHED)
1797 		panic("device_busy: called for unattached device");
1798 	if (dev->busy == 0 && dev->parent)
1799 		device_busy(dev->parent);
1800 	dev->busy++;
1801 	dev->state = DS_BUSY;
1802 }
1803 
1804 /*
1805  * YYY cannot block
1806  */
1807 void
1808 device_unbusy(device_t dev)
1809 {
1810 	if (dev->state != DS_BUSY)
1811 		panic("device_unbusy: called for non-busy device");
1812 	dev->busy--;
1813 	if (dev->busy == 0) {
1814 		if (dev->parent)
1815 			device_unbusy(dev->parent);
1816 		dev->state = DS_ATTACHED;
1817 	}
1818 }
1819 
1820 void
1821 device_quiet(device_t dev)
1822 {
1823 	dev->flags |= DF_QUIET;
1824 }
1825 
1826 void
1827 device_verbose(device_t dev)
1828 {
1829 	dev->flags &= ~DF_QUIET;
1830 }
1831 
1832 int
1833 device_is_quiet(device_t dev)
1834 {
1835 	return((dev->flags & DF_QUIET) != 0);
1836 }
1837 
1838 int
1839 device_is_enabled(device_t dev)
1840 {
1841 	return((dev->flags & DF_ENABLED) != 0);
1842 }
1843 
1844 int
1845 device_is_alive(device_t dev)
1846 {
1847 	return(dev->state >= DS_ALIVE);
1848 }
1849 
1850 int
1851 device_is_attached(device_t dev)
1852 {
1853 	return(dev->state >= DS_ATTACHED);
1854 }
1855 
1856 int
1857 device_set_devclass(device_t dev, const char *classname)
1858 {
1859 	devclass_t dc;
1860 	int error;
1861 
1862 	if (!classname) {
1863 		if (dev->devclass)
1864 			devclass_delete_device(dev->devclass, dev);
1865 		return(0);
1866 	}
1867 
1868 	if (dev->devclass) {
1869 		kprintf("device_set_devclass: device class already set\n");
1870 		return(EINVAL);
1871 	}
1872 
1873 	dc = devclass_find_internal(classname, NULL, TRUE);
1874 	if (!dc)
1875 		return(ENOMEM);
1876 
1877 	error = devclass_add_device(dc, dev);
1878 
1879 	bus_data_generation_update();
1880 	return(error);
1881 }
1882 
1883 int
1884 device_set_driver(device_t dev, driver_t *driver)
1885 {
1886 	if (dev->state >= DS_ATTACHED)
1887 		return(EBUSY);
1888 
1889 	if (dev->driver == driver)
1890 		return(0);
1891 
1892 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1893 		kfree(dev->softc, M_BUS);
1894 		dev->softc = NULL;
1895 	}
1896 	device_set_desc(dev, NULL);
1897 	kobj_delete((kobj_t) dev, 0);
1898 	dev->driver = driver;
1899 	if (driver) {
1900 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1901 		if (!(dev->flags & DF_EXTERNALSOFTC))
1902 			dev->softc = kmalloc(driver->size, M_BUS,
1903 					    M_INTWAIT | M_ZERO);
1904 	} else {
1905 		kobj_init((kobj_t) dev, &null_class);
1906 	}
1907 
1908 	bus_data_generation_update();
1909 	return(0);
1910 }
1911 
1912 int
1913 device_probe_and_attach(device_t dev)
1914 {
1915 	device_t bus = dev->parent;
1916 	int error = 0;
1917 
1918 	if (dev->state >= DS_ALIVE)
1919 		return(0);
1920 
1921 	if ((dev->flags & DF_ENABLED) == 0) {
1922 		if (bootverbose) {
1923 			device_print_prettyname(dev);
1924 			kprintf("not probed (disabled)\n");
1925 		}
1926 		return(0);
1927 	}
1928 
1929 	error = device_probe_child(bus, dev);
1930 	if (error) {
1931 		if (!(dev->flags & DF_DONENOMATCH)) {
1932 			BUS_PROBE_NOMATCH(bus, dev);
1933 			devnomatch(dev);
1934 			dev->flags |= DF_DONENOMATCH;
1935 		}
1936 		return(error);
1937 	}
1938 
1939 	/*
1940 	 * Output the exact device chain prior to the attach in case the
1941 	 * system locks up during attach, and generate the full info after
1942 	 * the attach so correct irq and other information is displayed.
1943 	 */
1944 	if (bootverbose && !device_is_quiet(dev)) {
1945 		device_t tmp;
1946 
1947 		kprintf("%s", device_get_nameunit(dev));
1948 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1949 			kprintf(".%s", device_get_nameunit(tmp));
1950 		kprintf("\n");
1951 	}
1952 	if (!device_is_quiet(dev))
1953 		device_print_child(bus, dev);
1954 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1955 		kprintf("%s: probing asynchronously\n",
1956 			device_get_nameunit(dev));
1957 		dev->state = DS_INPROGRESS;
1958 		device_attach_async(dev);
1959 		error = 0;
1960 	} else {
1961 		error = device_doattach(dev);
1962 	}
1963 	return(error);
1964 }
1965 
1966 int
1967 device_probe_and_attach_gpri(device_t dev, u_int gpri)
1968 {
1969 	device_t bus = dev->parent;
1970 	int error = 0;
1971 
1972 	if (dev->state >= DS_ALIVE)
1973 		return(0);
1974 
1975 	if ((dev->flags & DF_ENABLED) == 0) {
1976 		if (bootverbose) {
1977 			device_print_prettyname(dev);
1978 			kprintf("not probed (disabled)\n");
1979 		}
1980 		return(0);
1981 	}
1982 
1983 	error = device_probe_child_gpri(bus, dev, gpri);
1984 	if (error) {
1985 #if 0
1986 		if (!(dev->flags & DF_DONENOMATCH)) {
1987 			BUS_PROBE_NOMATCH(bus, dev);
1988 			devnomatch(dev);
1989 			dev->flags |= DF_DONENOMATCH;
1990 		}
1991 #endif
1992 		return(error);
1993 	}
1994 
1995 	/*
1996 	 * Output the exact device chain prior to the attach in case the
1997 	 * system locks up during attach, and generate the full info after
1998 	 * the attach so correct irq and other information is displayed.
1999 	 */
2000 	if (bootverbose && !device_is_quiet(dev)) {
2001 		device_t tmp;
2002 
2003 		kprintf("%s", device_get_nameunit(dev));
2004 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
2005 			kprintf(".%s", device_get_nameunit(tmp));
2006 		kprintf("\n");
2007 	}
2008 	if (!device_is_quiet(dev))
2009 		device_print_child(bus, dev);
2010 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
2011 		kprintf("%s: probing asynchronously\n",
2012 			device_get_nameunit(dev));
2013 		dev->state = DS_INPROGRESS;
2014 		device_attach_async(dev);
2015 		error = 0;
2016 	} else {
2017 		error = device_doattach(dev);
2018 	}
2019 	return(error);
2020 }
2021 
2022 /*
2023  * Device is known to be alive, do the attach asynchronously.
2024  * However, serialize the attaches with the mp lock.
2025  */
2026 static void
2027 device_attach_async(device_t dev)
2028 {
2029 	thread_t td;
2030 
2031 	atomic_add_int(&numasyncthreads, 1);
2032 	lwkt_create(device_attach_thread, dev, &td, NULL,
2033 		    0, 0, "%s", (dev->desc ? dev->desc : "devattach"));
2034 }
2035 
2036 static void
2037 device_attach_thread(void *arg)
2038 {
2039 	device_t dev = arg;
2040 
2041 	(void)device_doattach(dev);
2042 	atomic_subtract_int(&numasyncthreads, 1);
2043 	wakeup(&numasyncthreads);
2044 }
2045 
2046 /*
2047  * Device is known to be alive, do the attach (synchronous or asynchronous)
2048  */
2049 static int
2050 device_doattach(device_t dev)
2051 {
2052 	device_t bus = dev->parent;
2053 	int hasclass = (dev->devclass != NULL);
2054 	int error;
2055 
2056 	device_sysctl_init(dev);
2057 	error = DEVICE_ATTACH(dev);
2058 	if (error == 0) {
2059 		dev->state = DS_ATTACHED;
2060 		if (bootverbose && !device_is_quiet(dev))
2061 			device_print_child(bus, dev);
2062 		device_sysctl_update(dev);
2063 		devadded(dev);
2064 	} else {
2065 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
2066 		       dev->driver->name, dev->unit, error);
2067 		/* Unset the class that was set in device_probe_child */
2068 		if (!hasclass)
2069 			device_set_devclass(dev, 0);
2070 		device_set_driver(dev, NULL);
2071 		dev->state = DS_NOTPRESENT;
2072 		device_sysctl_fini(dev);
2073 	}
2074 	return(error);
2075 }
2076 
2077 int
2078 device_detach(device_t dev)
2079 {
2080 	int error;
2081 
2082 	PDEBUG(("%s", DEVICENAME(dev)));
2083 	if (dev->state == DS_BUSY)
2084 		return(EBUSY);
2085 	if (dev->state != DS_ATTACHED)
2086 		return(0);
2087 
2088 	if ((error = DEVICE_DETACH(dev)) != 0)
2089 		return(error);
2090 	devremoved(dev);
2091 	device_printf(dev, "detached\n");
2092 	if (dev->parent)
2093 		BUS_CHILD_DETACHED(dev->parent, dev);
2094 
2095 	if (!(dev->flags & DF_FIXEDCLASS))
2096 		devclass_delete_device(dev->devclass, dev);
2097 
2098 	dev->state = DS_NOTPRESENT;
2099 	device_set_driver(dev, NULL);
2100 	device_sysctl_fini(dev);
2101 
2102 	return(0);
2103 }
2104 
2105 int
2106 device_shutdown(device_t dev)
2107 {
2108 	if (dev->state < DS_ATTACHED)
2109 		return 0;
2110 	PDEBUG(("%s", DEVICENAME(dev)));
2111 	return DEVICE_SHUTDOWN(dev);
2112 }
2113 
2114 int
2115 device_set_unit(device_t dev, int unit)
2116 {
2117 	devclass_t dc;
2118 	int err;
2119 
2120 	dc = device_get_devclass(dev);
2121 	if (unit < dc->maxunit && dc->devices[unit])
2122 		return(EBUSY);
2123 	err = devclass_delete_device(dc, dev);
2124 	if (err)
2125 		return(err);
2126 	dev->unit = unit;
2127 	err = devclass_add_device(dc, dev);
2128 	if (err)
2129 		return(err);
2130 
2131 	bus_data_generation_update();
2132 	return(0);
2133 }
2134 
2135 /*======================================*/
2136 /*
2137  * Access functions for device resources.
2138  */
2139 
2140 /* Supplied by config(8) in ioconf.c */
2141 extern struct config_device config_devtab[];
2142 extern int devtab_count;
2143 
2144 /* Runtime version */
2145 struct config_device *devtab = config_devtab;
2146 
2147 static int
2148 resource_new_name(const char *name, int unit)
2149 {
2150 	struct config_device *new;
2151 
2152 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
2153 		     M_INTWAIT | M_ZERO);
2154 	if (devtab && devtab_count > 0)
2155 		bcopy(devtab, new, devtab_count * sizeof(*new));
2156 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
2157 	if (new[devtab_count].name == NULL) {
2158 		kfree(new, M_TEMP);
2159 		return(-1);
2160 	}
2161 	strcpy(new[devtab_count].name, name);
2162 	new[devtab_count].unit = unit;
2163 	new[devtab_count].resource_count = 0;
2164 	new[devtab_count].resources = NULL;
2165 	if (devtab && devtab != config_devtab)
2166 		kfree(devtab, M_TEMP);
2167 	devtab = new;
2168 	return devtab_count++;
2169 }
2170 
2171 static int
2172 resource_new_resname(int j, const char *resname, resource_type type)
2173 {
2174 	struct config_resource *new;
2175 	int i;
2176 
2177 	i = devtab[j].resource_count;
2178 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
2179 	if (devtab[j].resources && i > 0)
2180 		bcopy(devtab[j].resources, new, i * sizeof(*new));
2181 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
2182 	if (new[i].name == NULL) {
2183 		kfree(new, M_TEMP);
2184 		return(-1);
2185 	}
2186 	strcpy(new[i].name, resname);
2187 	new[i].type = type;
2188 	if (devtab[j].resources)
2189 		kfree(devtab[j].resources, M_TEMP);
2190 	devtab[j].resources = new;
2191 	devtab[j].resource_count = i + 1;
2192 	return(i);
2193 }
2194 
2195 static int
2196 resource_match_string(int i, const char *resname, const char *value)
2197 {
2198 	int j;
2199 	struct config_resource *res;
2200 
2201 	for (j = 0, res = devtab[i].resources;
2202 	     j < devtab[i].resource_count; j++, res++)
2203 		if (!strcmp(res->name, resname)
2204 		    && res->type == RES_STRING
2205 		    && !strcmp(res->u.stringval, value))
2206 			return(j);
2207 	return(-1);
2208 }
2209 
2210 static int
2211 resource_find(const char *name, int unit, const char *resname,
2212 	      struct config_resource **result)
2213 {
2214 	int i, j;
2215 	struct config_resource *res;
2216 
2217 	/*
2218 	 * First check specific instances, then generic.
2219 	 */
2220 	for (i = 0; i < devtab_count; i++) {
2221 		if (devtab[i].unit < 0)
2222 			continue;
2223 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2224 			res = devtab[i].resources;
2225 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2226 				if (!strcmp(res->name, resname)) {
2227 					*result = res;
2228 					return(0);
2229 				}
2230 		}
2231 	}
2232 	for (i = 0; i < devtab_count; i++) {
2233 		if (devtab[i].unit >= 0)
2234 			continue;
2235 		/* XXX should this `&& devtab[i].unit == unit' be here? */
2236 		/* XXX if so, then the generic match does nothing */
2237 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2238 			res = devtab[i].resources;
2239 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2240 				if (!strcmp(res->name, resname)) {
2241 					*result = res;
2242 					return(0);
2243 				}
2244 		}
2245 	}
2246 	return(ENOENT);
2247 }
2248 
2249 static int
2250 resource_kenv(const char *name, int unit, const char *resname, long *result)
2251 {
2252 	const char *env;
2253 	char buf[64];
2254 
2255 	/*
2256 	 * DragonFly style loader.conf hinting
2257 	 */
2258 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2259 	if ((env = kgetenv(buf)) != NULL) {
2260 		*result = strtol(env, NULL, 0);
2261 		return(0);
2262 	}
2263 
2264 	/*
2265 	 * Also support FreeBSD style loader.conf hinting
2266 	 */
2267 	ksnprintf(buf, sizeof(buf), "hint.%s.%d.%s", name, unit, resname);
2268 	if ((env = kgetenv(buf)) != NULL) {
2269 		*result = strtol(env, NULL, 0);
2270 		return(0);
2271 	}
2272 
2273 	return (ENOENT);
2274 }
2275 
2276 int
2277 resource_int_value(const char *name, int unit, const char *resname, int *result)
2278 {
2279 	struct config_resource *res;
2280 	long kvalue = 0;
2281 	int error;
2282 
2283 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2284 		*result = (int)kvalue;
2285 		return 0;
2286 	}
2287 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2288 		return(error);
2289 	if (res->type != RES_INT)
2290 		return(EFTYPE);
2291 	*result = res->u.intval;
2292 	return(0);
2293 }
2294 
2295 int
2296 resource_long_value(const char *name, int unit, const char *resname,
2297 		    long *result)
2298 {
2299 	struct config_resource *res;
2300 	long kvalue;
2301 	int error;
2302 
2303 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2304 		*result = kvalue;
2305 		return 0;
2306 	}
2307 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2308 		return(error);
2309 	if (res->type != RES_LONG)
2310 		return(EFTYPE);
2311 	*result = res->u.longval;
2312 	return(0);
2313 }
2314 
2315 int
2316 resource_string_value(const char *name, int unit, const char *resname,
2317     const char **result)
2318 {
2319 	int error;
2320 	struct config_resource *res;
2321 	char buf[64];
2322 	const char *env;
2323 
2324 	/*
2325 	 * DragonFly style loader.conf hinting
2326 	 */
2327 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2328 	if ((env = kgetenv(buf)) != NULL) {
2329 		*result = env;
2330 		return 0;
2331 	}
2332 
2333 	/*
2334 	 * Also support FreeBSD style loader.conf hinting
2335 	 */
2336 	ksnprintf(buf, sizeof(buf), "hint.%s.%d.%s", name, unit, resname);
2337 	if ((env = kgetenv(buf)) != NULL) {
2338 		*result = env;
2339 		return 0;
2340 	}
2341 
2342 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2343 		return(error);
2344 	if (res->type != RES_STRING)
2345 		return(EFTYPE);
2346 	*result = res->u.stringval;
2347 	return(0);
2348 }
2349 
2350 int
2351 resource_query_string(int i, const char *resname, const char *value)
2352 {
2353 	if (i < 0)
2354 		i = 0;
2355 	else
2356 		i = i + 1;
2357 	for (; i < devtab_count; i++)
2358 		if (resource_match_string(i, resname, value) >= 0)
2359 			return(i);
2360 	return(-1);
2361 }
2362 
2363 int
2364 resource_locate(int i, const char *resname)
2365 {
2366 	if (i < 0)
2367 		i = 0;
2368 	else
2369 		i = i + 1;
2370 	for (; i < devtab_count; i++)
2371 		if (!strcmp(devtab[i].name, resname))
2372 			return(i);
2373 	return(-1);
2374 }
2375 
2376 int
2377 resource_count(void)
2378 {
2379 	return(devtab_count);
2380 }
2381 
2382 char *
2383 resource_query_name(int i)
2384 {
2385 	return(devtab[i].name);
2386 }
2387 
2388 int
2389 resource_query_unit(int i)
2390 {
2391 	return(devtab[i].unit);
2392 }
2393 
2394 static int
2395 resource_create(const char *name, int unit, const char *resname,
2396 		resource_type type, struct config_resource **result)
2397 {
2398 	int i, j;
2399 	struct config_resource *res = NULL;
2400 
2401 	for (i = 0; i < devtab_count; i++)
2402 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2403 			res = devtab[i].resources;
2404 			break;
2405 		}
2406 	if (res == NULL) {
2407 		i = resource_new_name(name, unit);
2408 		if (i < 0)
2409 			return(ENOMEM);
2410 		res = devtab[i].resources;
2411 	}
2412 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2413 		if (!strcmp(res->name, resname)) {
2414 			*result = res;
2415 			return(0);
2416 		}
2417 	j = resource_new_resname(i, resname, type);
2418 	if (j < 0)
2419 		return(ENOMEM);
2420 	res = &devtab[i].resources[j];
2421 	*result = res;
2422 	return(0);
2423 }
2424 
2425 int
2426 resource_set_int(const char *name, int unit, const char *resname, int value)
2427 {
2428 	int error;
2429 	struct config_resource *res;
2430 
2431 	error = resource_create(name, unit, resname, RES_INT, &res);
2432 	if (error)
2433 		return(error);
2434 	if (res->type != RES_INT)
2435 		return(EFTYPE);
2436 	res->u.intval = value;
2437 	return(0);
2438 }
2439 
2440 int
2441 resource_set_long(const char *name, int unit, const char *resname, long value)
2442 {
2443 	int error;
2444 	struct config_resource *res;
2445 
2446 	error = resource_create(name, unit, resname, RES_LONG, &res);
2447 	if (error)
2448 		return(error);
2449 	if (res->type != RES_LONG)
2450 		return(EFTYPE);
2451 	res->u.longval = value;
2452 	return(0);
2453 }
2454 
2455 int
2456 resource_set_string(const char *name, int unit, const char *resname,
2457 		    const char *value)
2458 {
2459 	int error;
2460 	struct config_resource *res;
2461 
2462 	error = resource_create(name, unit, resname, RES_STRING, &res);
2463 	if (error)
2464 		return(error);
2465 	if (res->type != RES_STRING)
2466 		return(EFTYPE);
2467 	if (res->u.stringval)
2468 		kfree(res->u.stringval, M_TEMP);
2469 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2470 	if (res->u.stringval == NULL)
2471 		return(ENOMEM);
2472 	strcpy(res->u.stringval, value);
2473 	return(0);
2474 }
2475 
2476 static void
2477 resource_cfgload(void *dummy __unused)
2478 {
2479 	struct config_resource *res, *cfgres;
2480 	int i, j;
2481 	int error;
2482 	char *name, *resname;
2483 	int unit;
2484 	resource_type type;
2485 	char *stringval;
2486 	int config_devtab_count;
2487 
2488 	config_devtab_count = devtab_count;
2489 	devtab = NULL;
2490 	devtab_count = 0;
2491 
2492 	for (i = 0; i < config_devtab_count; i++) {
2493 		name = config_devtab[i].name;
2494 		unit = config_devtab[i].unit;
2495 
2496 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2497 			cfgres = config_devtab[i].resources;
2498 			resname = cfgres[j].name;
2499 			type = cfgres[j].type;
2500 			error = resource_create(name, unit, resname, type,
2501 						&res);
2502 			if (error) {
2503 				kprintf("create resource %s%d: error %d\n",
2504 					name, unit, error);
2505 				continue;
2506 			}
2507 			if (res->type != type) {
2508 				kprintf("type mismatch %s%d: %d != %d\n",
2509 					name, unit, res->type, type);
2510 				continue;
2511 			}
2512 			switch (type) {
2513 			case RES_INT:
2514 				res->u.intval = cfgres[j].u.intval;
2515 				break;
2516 			case RES_LONG:
2517 				res->u.longval = cfgres[j].u.longval;
2518 				break;
2519 			case RES_STRING:
2520 				if (res->u.stringval)
2521 					kfree(res->u.stringval, M_TEMP);
2522 				stringval = cfgres[j].u.stringval;
2523 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2524 							  M_TEMP, M_INTWAIT);
2525 				if (res->u.stringval == NULL)
2526 					break;
2527 				strcpy(res->u.stringval, stringval);
2528 				break;
2529 			default:
2530 				panic("unknown resource type %d", type);
2531 			}
2532 		}
2533 	}
2534 }
2535 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0);
2536 
2537 
2538 /*======================================*/
2539 /*
2540  * Some useful method implementations to make life easier for bus drivers.
2541  */
2542 
2543 void
2544 resource_list_init(struct resource_list *rl)
2545 {
2546 	SLIST_INIT(rl);
2547 }
2548 
2549 void
2550 resource_list_free(struct resource_list *rl)
2551 {
2552 	struct resource_list_entry *rle;
2553 
2554 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2555 		if (rle->res)
2556 			panic("resource_list_free: resource entry is busy");
2557 		SLIST_REMOVE_HEAD(rl, link);
2558 		kfree(rle, M_BUS);
2559 	}
2560 }
2561 
2562 void
2563 resource_list_add(struct resource_list *rl, int type, int rid,
2564     u_long start, u_long end, u_long count, int cpuid)
2565 {
2566 	struct resource_list_entry *rle;
2567 
2568 	rle = resource_list_find(rl, type, rid);
2569 	if (rle == NULL) {
2570 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2571 			     M_INTWAIT);
2572 		SLIST_INSERT_HEAD(rl, rle, link);
2573 		rle->type = type;
2574 		rle->rid = rid;
2575 		rle->res = NULL;
2576 		rle->cpuid = -1;
2577 	}
2578 
2579 	if (rle->res)
2580 		panic("resource_list_add: resource entry is busy");
2581 
2582 	rle->start = start;
2583 	rle->end = end;
2584 	rle->count = count;
2585 
2586 	if (cpuid != -1) {
2587 		if (rle->cpuid != -1 && rle->cpuid != cpuid) {
2588 			panic("resource_list_add: moving from cpu%d -> cpu%d",
2589 			    rle->cpuid, cpuid);
2590 		}
2591 		rle->cpuid = cpuid;
2592 	}
2593 }
2594 
2595 struct resource_list_entry*
2596 resource_list_find(struct resource_list *rl,
2597 		   int type, int rid)
2598 {
2599 	struct resource_list_entry *rle;
2600 
2601 	SLIST_FOREACH(rle, rl, link)
2602 		if (rle->type == type && rle->rid == rid)
2603 			return(rle);
2604 	return(NULL);
2605 }
2606 
2607 void
2608 resource_list_delete(struct resource_list *rl,
2609 		     int type, int rid)
2610 {
2611 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2612 
2613 	if (rle) {
2614 		if (rle->res != NULL)
2615 			panic("resource_list_delete: resource has not been released");
2616 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2617 		kfree(rle, M_BUS);
2618 	}
2619 }
2620 
2621 struct resource *
2622 resource_list_alloc(struct resource_list *rl,
2623 		    device_t bus, device_t child,
2624 		    int type, int *rid,
2625 		    u_long start, u_long end,
2626 		    u_long count, u_int flags, int cpuid)
2627 {
2628 	struct resource_list_entry *rle = NULL;
2629 	int passthrough = (device_get_parent(child) != bus);
2630 	int isdefault = (start == 0UL && end == ~0UL);
2631 
2632 	if (passthrough) {
2633 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2634 					  type, rid,
2635 					  start, end, count, flags, cpuid));
2636 	}
2637 
2638 	rle = resource_list_find(rl, type, *rid);
2639 
2640 	if (!rle)
2641 		return(0);		/* no resource of that type/rid */
2642 
2643 	if (rle->res)
2644 		panic("resource_list_alloc: resource entry is busy");
2645 
2646 	if (isdefault) {
2647 		start = rle->start;
2648 		count = ulmax(count, rle->count);
2649 		end = ulmax(rle->end, start + count - 1);
2650 	}
2651 	cpuid = rle->cpuid;
2652 
2653 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2654 				      type, rid, start, end, count,
2655 				      flags, cpuid);
2656 
2657 	/*
2658 	 * Record the new range.
2659 	 */
2660 	if (rle->res) {
2661 		rle->start = rman_get_start(rle->res);
2662 		rle->end = rman_get_end(rle->res);
2663 		rle->count = count;
2664 	}
2665 
2666 	return(rle->res);
2667 }
2668 
2669 int
2670 resource_list_release(struct resource_list *rl,
2671 		      device_t bus, device_t child,
2672 		      int type, int rid, struct resource *res)
2673 {
2674 	struct resource_list_entry *rle = NULL;
2675 	int passthrough = (device_get_parent(child) != bus);
2676 	int error;
2677 
2678 	if (passthrough) {
2679 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2680 					    type, rid, res));
2681 	}
2682 
2683 	rle = resource_list_find(rl, type, rid);
2684 
2685 	if (!rle)
2686 		panic("resource_list_release: can't find resource");
2687 	if (!rle->res)
2688 		panic("resource_list_release: resource entry is not busy");
2689 
2690 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2691 				     type, rid, res);
2692 	if (error)
2693 		return(error);
2694 
2695 	rle->res = NULL;
2696 	return(0);
2697 }
2698 
2699 int
2700 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2701 			 const char *format)
2702 {
2703 	struct resource_list_entry *rle;
2704 	int printed, retval;
2705 
2706 	printed = 0;
2707 	retval = 0;
2708 	/* Yes, this is kinda cheating */
2709 	SLIST_FOREACH(rle, rl, link) {
2710 		if (rle->type == type) {
2711 			if (printed == 0)
2712 				retval += kprintf(" %s ", name);
2713 			else
2714 				retval += kprintf(",");
2715 			printed++;
2716 			retval += kprintf(format, rle->start);
2717 			if (rle->count > 1) {
2718 				retval += kprintf("-");
2719 				retval += kprintf(format, rle->start +
2720 						 rle->count - 1);
2721 			}
2722 		}
2723 	}
2724 	return(retval);
2725 }
2726 
2727 /*
2728  * Generic driver/device identify functions.  These will install a device
2729  * rendezvous point under the parent using the same name as the driver
2730  * name, which will at a later time be probed and attached.
2731  *
2732  * These functions are used when the parent does not 'scan' its bus for
2733  * matching devices, or for the particular devices using these functions,
2734  * or when the device is a pseudo or synthesized device (such as can be
2735  * found under firewire and ppbus).
2736  */
2737 int
2738 bus_generic_identify(driver_t *driver, device_t parent)
2739 {
2740 	if (parent->state == DS_ATTACHED)
2741 		return (0);
2742 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2743 	return (0);
2744 }
2745 
2746 int
2747 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2748 {
2749 	if (parent->state == DS_ATTACHED)
2750 		return (0);
2751 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2752 	return (0);
2753 }
2754 
2755 /*
2756  * Call DEVICE_IDENTIFY for each driver.
2757  */
2758 int
2759 bus_generic_probe(device_t dev)
2760 {
2761 	devclass_t dc = dev->devclass;
2762 	driverlink_t dl;
2763 
2764 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2765 		DEVICE_IDENTIFY(dl->driver, dev);
2766 	}
2767 
2768 	return(0);
2769 }
2770 
2771 /*
2772  * This is an aweful hack due to the isa bus and autoconf code not
2773  * probing the ISA devices until after everything else has configured.
2774  * The ISA bus did a dummy attach long ago so we have to set it back
2775  * to an earlier state so the probe thinks its the initial probe and
2776  * not a bus rescan.
2777  *
2778  * XXX remove by properly defering the ISA bus scan.
2779  */
2780 int
2781 bus_generic_probe_hack(device_t dev)
2782 {
2783 	if (dev->state == DS_ATTACHED) {
2784 		dev->state = DS_ALIVE;
2785 		bus_generic_probe(dev);
2786 		dev->state = DS_ATTACHED;
2787 	}
2788 	return (0);
2789 }
2790 
2791 int
2792 bus_generic_attach(device_t dev)
2793 {
2794 	device_t child;
2795 
2796 	TAILQ_FOREACH(child, &dev->children, link) {
2797 		device_probe_and_attach(child);
2798 	}
2799 
2800 	return(0);
2801 }
2802 
2803 int
2804 bus_generic_attach_gpri(device_t dev, u_int gpri)
2805 {
2806 	device_t child;
2807 
2808 	TAILQ_FOREACH(child, &dev->children, link) {
2809 		device_probe_and_attach_gpri(child, gpri);
2810 	}
2811 
2812 	return(0);
2813 }
2814 
2815 int
2816 bus_generic_detach(device_t dev)
2817 {
2818 	device_t child;
2819 	int error;
2820 
2821 	if (dev->state != DS_ATTACHED)
2822 		return(EBUSY);
2823 
2824 	TAILQ_FOREACH(child, &dev->children, link)
2825 		if ((error = device_detach(child)) != 0)
2826 			return(error);
2827 
2828 	return 0;
2829 }
2830 
2831 int
2832 bus_generic_shutdown(device_t dev)
2833 {
2834 	device_t child;
2835 
2836 	TAILQ_FOREACH(child, &dev->children, link)
2837 		device_shutdown(child);
2838 
2839 	return(0);
2840 }
2841 
2842 int
2843 bus_generic_suspend(device_t dev)
2844 {
2845 	int error;
2846 	device_t child, child2;
2847 
2848 	TAILQ_FOREACH(child, &dev->children, link) {
2849 		error = DEVICE_SUSPEND(child);
2850 		if (error) {
2851 			for (child2 = TAILQ_FIRST(&dev->children);
2852 			     child2 && child2 != child;
2853 			     child2 = TAILQ_NEXT(child2, link))
2854 				DEVICE_RESUME(child2);
2855 			return(error);
2856 		}
2857 	}
2858 	return(0);
2859 }
2860 
2861 int
2862 bus_generic_resume(device_t dev)
2863 {
2864 	device_t child;
2865 
2866 	TAILQ_FOREACH(child, &dev->children, link)
2867 		DEVICE_RESUME(child);
2868 		/* if resume fails, there's nothing we can usefully do... */
2869 
2870 	return(0);
2871 }
2872 
2873 int
2874 bus_print_child_header(device_t dev, device_t child)
2875 {
2876 	int retval = 0;
2877 
2878 	if (device_get_desc(child))
2879 		retval += device_printf(child, "<%s>", device_get_desc(child));
2880 	else
2881 		retval += kprintf("%s", device_get_nameunit(child));
2882 	if (bootverbose) {
2883 		if (child->state != DS_ATTACHED)
2884 			kprintf(" [tentative]");
2885 		else
2886 			kprintf(" [attached!]");
2887 	}
2888 	return(retval);
2889 }
2890 
2891 int
2892 bus_print_child_footer(device_t dev, device_t child)
2893 {
2894 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2895 }
2896 
2897 device_t
2898 bus_generic_add_child(device_t dev, device_t child, int order,
2899 		      const char *name, int unit)
2900 {
2901 	if (dev->parent)
2902 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2903 	else
2904 		dev = device_add_child_ordered(child, order, name, unit);
2905 	return(dev);
2906 
2907 }
2908 
2909 int
2910 bus_generic_print_child(device_t dev, device_t child)
2911 {
2912 	int retval = 0;
2913 
2914 	retval += bus_print_child_header(dev, child);
2915 	retval += bus_print_child_footer(dev, child);
2916 
2917 	return(retval);
2918 }
2919 
2920 int
2921 bus_generic_read_ivar(device_t dev, device_t child, int index,
2922 		      uintptr_t * result)
2923 {
2924 	int error;
2925 
2926 	if (dev->parent)
2927 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2928 	else
2929 		error = ENOENT;
2930 	return (error);
2931 }
2932 
2933 int
2934 bus_generic_write_ivar(device_t dev, device_t child, int index,
2935 		       uintptr_t value)
2936 {
2937 	int error;
2938 
2939 	if (dev->parent)
2940 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2941 	else
2942 		error = ENOENT;
2943 	return (error);
2944 }
2945 
2946 /*
2947  * Resource list are used for iterations, do not recurse.
2948  */
2949 struct resource_list *
2950 bus_generic_get_resource_list(device_t dev, device_t child)
2951 {
2952 	return (NULL);
2953 }
2954 
2955 void
2956 bus_generic_driver_added(device_t dev, driver_t *driver)
2957 {
2958 	device_t child;
2959 
2960 	DEVICE_IDENTIFY(driver, dev);
2961 	TAILQ_FOREACH(child, &dev->children, link) {
2962 		if (child->state == DS_NOTPRESENT)
2963 			device_probe_and_attach(child);
2964 	}
2965 }
2966 
2967 int
2968 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2969     int flags, driver_intr_t *intr, void *arg, void **cookiep,
2970     lwkt_serialize_t serializer, const char *desc)
2971 {
2972 	/* Propagate up the bus hierarchy until someone handles it. */
2973 	if (dev->parent) {
2974 		return BUS_SETUP_INTR(dev->parent, child, irq, flags,
2975 		    intr, arg, cookiep, serializer, desc);
2976 	} else {
2977 		return EINVAL;
2978 	}
2979 }
2980 
2981 int
2982 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2983 			  void *cookie)
2984 {
2985 	/* Propagate up the bus hierarchy until someone handles it. */
2986 	if (dev->parent)
2987 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2988 	else
2989 		return(EINVAL);
2990 }
2991 
2992 int
2993 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2994 {
2995 	if (dev->parent)
2996 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2997 	else
2998 		return(0);
2999 }
3000 
3001 void
3002 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
3003 {
3004 	if (dev->parent)
3005 		BUS_ENABLE_INTR(dev->parent, child, cookie);
3006 }
3007 
3008 int
3009 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
3010     enum intr_polarity pol)
3011 {
3012 	/* Propagate up the bus hierarchy until someone handles it. */
3013 	if (dev->parent)
3014 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
3015 	else
3016 		return(EINVAL);
3017 }
3018 
3019 struct resource *
3020 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3021     u_long start, u_long end, u_long count, u_int flags, int cpuid)
3022 {
3023 	/* Propagate up the bus hierarchy until someone handles it. */
3024 	if (dev->parent)
3025 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3026 					   start, end, count, flags, cpuid));
3027 	else
3028 		return(NULL);
3029 }
3030 
3031 int
3032 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3033 			     struct resource *r)
3034 {
3035 	/* Propagate up the bus hierarchy until someone handles it. */
3036 	if (dev->parent)
3037 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
3038 	else
3039 		return(EINVAL);
3040 }
3041 
3042 int
3043 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3044 			      struct resource *r)
3045 {
3046 	/* Propagate up the bus hierarchy until someone handles it. */
3047 	if (dev->parent)
3048 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
3049 	else
3050 		return(EINVAL);
3051 }
3052 
3053 int
3054 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3055 				int rid, struct resource *r)
3056 {
3057 	/* Propagate up the bus hierarchy until someone handles it. */
3058 	if (dev->parent)
3059 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3060 					       r));
3061 	else
3062 		return(EINVAL);
3063 }
3064 
3065 int
3066 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
3067 			 u_long *startp, u_long *countp)
3068 {
3069 	int error;
3070 
3071 	error = ENOENT;
3072 	if (dev->parent) {
3073 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
3074 					 startp, countp);
3075 	}
3076 	return (error);
3077 }
3078 
3079 int
3080 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
3081 			u_long start, u_long count, int cpuid)
3082 {
3083 	int error;
3084 
3085 	error = EINVAL;
3086 	if (dev->parent) {
3087 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
3088 					 start, count, cpuid);
3089 	}
3090 	return (error);
3091 }
3092 
3093 void
3094 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
3095 {
3096 	if (dev->parent)
3097 		BUS_DELETE_RESOURCE(dev, child, type, rid);
3098 }
3099 
3100 /**
3101  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3102  *
3103  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3104  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3105  */
3106 bus_dma_tag_t
3107 bus_generic_get_dma_tag(device_t dev, device_t child)
3108 {
3109 
3110 	/* Propagate up the bus hierarchy until someone handles it. */
3111 	if (dev->parent != NULL)
3112 		return (BUS_GET_DMA_TAG(dev->parent, child));
3113 	return (NULL);
3114 }
3115 
3116 int
3117 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3118     u_long *startp, u_long *countp)
3119 {
3120 	struct resource_list *rl = NULL;
3121 	struct resource_list_entry *rle = NULL;
3122 
3123 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3124 	if (!rl)
3125 		return(EINVAL);
3126 
3127 	rle = resource_list_find(rl, type, rid);
3128 	if (!rle)
3129 		return(ENOENT);
3130 
3131 	if (startp)
3132 		*startp = rle->start;
3133 	if (countp)
3134 		*countp = rle->count;
3135 
3136 	return(0);
3137 }
3138 
3139 int
3140 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3141     u_long start, u_long count, int cpuid)
3142 {
3143 	struct resource_list *rl = NULL;
3144 
3145 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3146 	if (!rl)
3147 		return(EINVAL);
3148 
3149 	resource_list_add(rl, type, rid, start, (start + count - 1), count,
3150 	    cpuid);
3151 
3152 	return(0);
3153 }
3154 
3155 void
3156 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3157 {
3158 	struct resource_list *rl = NULL;
3159 
3160 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3161 	if (!rl)
3162 		return;
3163 
3164 	resource_list_delete(rl, type, rid);
3165 }
3166 
3167 int
3168 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3169     int rid, struct resource *r)
3170 {
3171 	struct resource_list *rl = NULL;
3172 
3173 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3174 	if (!rl)
3175 		return(EINVAL);
3176 
3177 	return(resource_list_release(rl, dev, child, type, rid, r));
3178 }
3179 
3180 struct resource *
3181 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3182     int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid)
3183 {
3184 	struct resource_list *rl = NULL;
3185 
3186 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3187 	if (!rl)
3188 		return(NULL);
3189 
3190 	return(resource_list_alloc(rl, dev, child, type, rid,
3191 	    start, end, count, flags, cpuid));
3192 }
3193 
3194 int
3195 bus_generic_child_present(device_t bus, device_t child)
3196 {
3197 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
3198 }
3199 
3200 
3201 /*
3202  * Some convenience functions to make it easier for drivers to use the
3203  * resource-management functions.  All these really do is hide the
3204  * indirection through the parent's method table, making for slightly
3205  * less-wordy code.  In the future, it might make sense for this code
3206  * to maintain some sort of a list of resources allocated by each device.
3207  */
3208 int
3209 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3210     struct resource **res)
3211 {
3212 	int i;
3213 
3214 	for (i = 0; rs[i].type != -1; i++)
3215 	        res[i] = NULL;
3216 	for (i = 0; rs[i].type != -1; i++) {
3217 		res[i] = bus_alloc_resource_any(dev,
3218 		    rs[i].type, &rs[i].rid, rs[i].flags);
3219 		if (res[i] == NULL) {
3220 			bus_release_resources(dev, rs, res);
3221 			return (ENXIO);
3222 		}
3223 	}
3224 	return (0);
3225 }
3226 
3227 void
3228 bus_release_resources(device_t dev, const struct resource_spec *rs,
3229     struct resource **res)
3230 {
3231 	int i;
3232 
3233 	for (i = 0; rs[i].type != -1; i++)
3234 		if (res[i] != NULL) {
3235 			bus_release_resource(
3236 			    dev, rs[i].type, rs[i].rid, res[i]);
3237 			res[i] = NULL;
3238 		}
3239 }
3240 
3241 struct resource *
3242 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3243 		   u_long count, u_int flags)
3244 {
3245 	if (dev->parent == NULL)
3246 		return(0);
3247 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3248 				  count, flags, -1));
3249 }
3250 
3251 struct resource *
3252 bus_alloc_legacy_irq_resource(device_t dev, int *rid, u_long irq, u_int flags)
3253 {
3254 	if (dev->parent == NULL)
3255 		return(0);
3256 	return BUS_ALLOC_RESOURCE(dev->parent, dev, SYS_RES_IRQ, rid,
3257 	    irq, irq, 1, flags, machintr_legacy_intr_cpuid(irq));
3258 }
3259 
3260 int
3261 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3262 {
3263 	if (dev->parent == NULL)
3264 		return(EINVAL);
3265 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3266 }
3267 
3268 int
3269 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3270 {
3271 	if (dev->parent == NULL)
3272 		return(EINVAL);
3273 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3274 }
3275 
3276 int
3277 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3278 {
3279 	if (dev->parent == NULL)
3280 		return(EINVAL);
3281 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3282 }
3283 
3284 int
3285 bus_setup_intr_descr(device_t dev, struct resource *r, int flags,
3286     driver_intr_t handler, void *arg, void **cookiep,
3287     lwkt_serialize_t serializer, const char *desc)
3288 {
3289 	if (dev->parent == NULL)
3290 		return EINVAL;
3291 	return BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
3292 	    cookiep, serializer, desc);
3293 }
3294 
3295 int
3296 bus_setup_intr(device_t dev, struct resource *r, int flags,
3297     driver_intr_t handler, void *arg, void **cookiep,
3298     lwkt_serialize_t serializer)
3299 {
3300 	return bus_setup_intr_descr(dev, r, flags, handler, arg, cookiep,
3301 	    serializer, NULL);
3302 }
3303 
3304 int
3305 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3306 {
3307 	if (dev->parent == NULL)
3308 		return(EINVAL);
3309 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3310 }
3311 
3312 void
3313 bus_enable_intr(device_t dev, void *cookie)
3314 {
3315 	if (dev->parent)
3316 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
3317 }
3318 
3319 int
3320 bus_disable_intr(device_t dev, void *cookie)
3321 {
3322 	if (dev->parent)
3323 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
3324 	else
3325 		return(0);
3326 }
3327 
3328 int
3329 bus_set_resource(device_t dev, int type, int rid,
3330 		 u_long start, u_long count, int cpuid)
3331 {
3332 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3333 				start, count, cpuid));
3334 }
3335 
3336 int
3337 bus_get_resource(device_t dev, int type, int rid,
3338 		 u_long *startp, u_long *countp)
3339 {
3340 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3341 				startp, countp));
3342 }
3343 
3344 u_long
3345 bus_get_resource_start(device_t dev, int type, int rid)
3346 {
3347 	u_long start, count;
3348 	int error;
3349 
3350 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3351 				 &start, &count);
3352 	if (error)
3353 		return(0);
3354 	return(start);
3355 }
3356 
3357 u_long
3358 bus_get_resource_count(device_t dev, int type, int rid)
3359 {
3360 	u_long start, count;
3361 	int error;
3362 
3363 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3364 				 &start, &count);
3365 	if (error)
3366 		return(0);
3367 	return(count);
3368 }
3369 
3370 void
3371 bus_delete_resource(device_t dev, int type, int rid)
3372 {
3373 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3374 }
3375 
3376 int
3377 bus_child_present(device_t child)
3378 {
3379 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3380 }
3381 
3382 int
3383 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3384 {
3385 	device_t parent;
3386 
3387 	parent = device_get_parent(child);
3388 	if (parent == NULL) {
3389 		*buf = '\0';
3390 		return (0);
3391 	}
3392 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3393 }
3394 
3395 int
3396 bus_child_location_str(device_t child, char *buf, size_t buflen)
3397 {
3398 	device_t parent;
3399 
3400 	parent = device_get_parent(child);
3401 	if (parent == NULL) {
3402 		*buf = '\0';
3403 		return (0);
3404 	}
3405 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3406 }
3407 
3408 /**
3409  * @brief Wrapper function for BUS_GET_DMA_TAG().
3410  *
3411  * This function simply calls the BUS_GET_DMA_TAG() method of the
3412  * parent of @p dev.
3413  */
3414 bus_dma_tag_t
3415 bus_get_dma_tag(device_t dev)
3416 {
3417 	device_t parent;
3418 
3419 	parent = device_get_parent(dev);
3420 	if (parent == NULL)
3421 		return (NULL);
3422 	return (BUS_GET_DMA_TAG(parent, dev));
3423 }
3424 
3425 static int
3426 root_print_child(device_t dev, device_t child)
3427 {
3428 	return(0);
3429 }
3430 
3431 static int
3432 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3433 		void **cookiep, lwkt_serialize_t serializer, const char *desc)
3434 {
3435 	/*
3436 	 * If an interrupt mapping gets to here something bad has happened.
3437 	 */
3438 	panic("root_setup_intr");
3439 }
3440 
3441 /*
3442  * If we get here, assume that the device is permanant and really is
3443  * present in the system.  Removable bus drivers are expected to intercept
3444  * this call long before it gets here.  We return -1 so that drivers that
3445  * really care can check vs -1 or some ERRNO returned higher in the food
3446  * chain.
3447  */
3448 static int
3449 root_child_present(device_t dev, device_t child)
3450 {
3451 	return(-1);
3452 }
3453 
3454 /*
3455  * XXX NOTE! other defaults may be set in bus_if.m
3456  */
3457 static kobj_method_t root_methods[] = {
3458 	/* Device interface */
3459 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3460 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3461 	KOBJMETHOD(device_resume,	bus_generic_resume),
3462 
3463 	/* Bus interface */
3464 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
3465 	KOBJMETHOD(bus_print_child,	root_print_child),
3466 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3467 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3468 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3469 	KOBJMETHOD(bus_child_present,   root_child_present),
3470 
3471 	KOBJMETHOD_END
3472 };
3473 
3474 static driver_t root_driver = {
3475 	"root",
3476 	root_methods,
3477 	1,			/* no softc */
3478 };
3479 
3480 device_t	root_bus;
3481 devclass_t	root_devclass;
3482 
3483 static int
3484 root_bus_module_handler(module_t mod, int what, void* arg)
3485 {
3486 	switch (what) {
3487 	case MOD_LOAD:
3488 		TAILQ_INIT(&bus_data_devices);
3489 		root_bus = make_device(NULL, "root", 0);
3490 		root_bus->desc = "System root bus";
3491 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3492 		root_bus->driver = &root_driver;
3493 		root_bus->state = DS_ALIVE;
3494 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3495 		devinit();
3496 		return(0);
3497 
3498 	case MOD_SHUTDOWN:
3499 		device_shutdown(root_bus);
3500 		return(0);
3501 	default:
3502 		return(0);
3503 	}
3504 }
3505 
3506 static moduledata_t root_bus_mod = {
3507 	"rootbus",
3508 	root_bus_module_handler,
3509 	0
3510 };
3511 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3512 
3513 void
3514 root_bus_configure(void)
3515 {
3516 	int warncount;
3517 	device_t dev;
3518 
3519 	PDEBUG(("."));
3520 
3521 	/*
3522 	 * handle device_identify based device attachments to the root_bus
3523 	 * (typically nexus).
3524 	 */
3525 	bus_generic_probe(root_bus);
3526 
3527 	/*
3528 	 * Probe and attach the devices under root_bus.
3529 	 */
3530 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3531 		device_probe_and_attach(dev);
3532 	}
3533 
3534 	/*
3535 	 * Wait for all asynchronous attaches to complete.  If we don't
3536 	 * our legacy ISA bus scan could steal device unit numbers or
3537 	 * even I/O ports.
3538 	 */
3539 	warncount = 10;
3540 	if (numasyncthreads)
3541 		kprintf("Waiting for async drivers to attach\n");
3542 	while (numasyncthreads > 0) {
3543 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3544 			--warncount;
3545 		if (warncount == 0) {
3546 			kprintf("Warning: Still waiting for %d "
3547 				"drivers to attach\n", numasyncthreads);
3548 		} else if (warncount == -30) {
3549 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3550 			break;
3551 		}
3552 	}
3553 	root_bus->state = DS_ATTACHED;
3554 }
3555 
3556 int
3557 driver_module_handler(module_t mod, int what, void *arg)
3558 {
3559 	int error;
3560 	struct driver_module_data *dmd;
3561 	devclass_t bus_devclass;
3562 	kobj_class_t driver;
3563         const char *parentname;
3564 
3565 	dmd = (struct driver_module_data *)arg;
3566 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3567 	error = 0;
3568 
3569 	switch (what) {
3570 	case MOD_LOAD:
3571 		if (dmd->dmd_chainevh)
3572 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3573 
3574 		driver = dmd->dmd_driver;
3575 		PDEBUG(("Loading module: driver %s on bus %s",
3576 		        DRIVERNAME(driver), dmd->dmd_busname));
3577 
3578 		/*
3579 		 * If the driver has any base classes, make the
3580 		 * devclass inherit from the devclass of the driver's
3581 		 * first base class. This will allow the system to
3582 		 * search for drivers in both devclasses for children
3583 		 * of a device using this driver.
3584 		 */
3585 		if (driver->baseclasses)
3586 			parentname = driver->baseclasses[0]->name;
3587 		else
3588 			parentname = NULL;
3589 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3590 							    parentname, TRUE);
3591 
3592 		error = devclass_add_driver(bus_devclass, driver);
3593 		if (error)
3594 			break;
3595 		break;
3596 
3597 	case MOD_UNLOAD:
3598 		PDEBUG(("Unloading module: driver %s from bus %s",
3599 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3600 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3601 
3602 		if (!error && dmd->dmd_chainevh)
3603 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3604 		break;
3605 	}
3606 
3607 	return (error);
3608 }
3609 
3610 #ifdef BUS_DEBUG
3611 
3612 /*
3613  * The _short versions avoid iteration by not calling anything that prints
3614  * more than oneliners. I love oneliners.
3615  */
3616 
3617 static void
3618 print_device_short(device_t dev, int indent)
3619 {
3620 	if (!dev)
3621 		return;
3622 
3623 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3624 		      dev->unit, dev->desc,
3625 		      (dev->parent? "":"no "),
3626 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3627 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3628 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3629 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3630 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3631 		      (dev->ivars? "":"no "),
3632 		      (dev->softc? "":"no "),
3633 		      dev->busy));
3634 }
3635 
3636 static void
3637 print_device(device_t dev, int indent)
3638 {
3639 	if (!dev)
3640 		return;
3641 
3642 	print_device_short(dev, indent);
3643 
3644 	indentprintf(("Parent:\n"));
3645 	print_device_short(dev->parent, indent+1);
3646 	indentprintf(("Driver:\n"));
3647 	print_driver_short(dev->driver, indent+1);
3648 	indentprintf(("Devclass:\n"));
3649 	print_devclass_short(dev->devclass, indent+1);
3650 }
3651 
3652 /*
3653  * Print the device and all its children (indented).
3654  */
3655 void
3656 print_device_tree_short(device_t dev, int indent)
3657 {
3658 	device_t child;
3659 
3660 	if (!dev)
3661 		return;
3662 
3663 	print_device_short(dev, indent);
3664 
3665 	TAILQ_FOREACH(child, &dev->children, link)
3666 		print_device_tree_short(child, indent+1);
3667 }
3668 
3669 /*
3670  * Print the device and all its children (indented).
3671  */
3672 void
3673 print_device_tree(device_t dev, int indent)
3674 {
3675 	device_t child;
3676 
3677 	if (!dev)
3678 		return;
3679 
3680 	print_device(dev, indent);
3681 
3682 	TAILQ_FOREACH(child, &dev->children, link)
3683 		print_device_tree(child, indent+1);
3684 }
3685 
3686 static void
3687 print_driver_short(driver_t *driver, int indent)
3688 {
3689 	if (!driver)
3690 		return;
3691 
3692 	indentprintf(("driver %s: softc size = %zu\n",
3693 		      driver->name, driver->size));
3694 }
3695 
3696 static void
3697 print_driver(driver_t *driver, int indent)
3698 {
3699 	if (!driver)
3700 		return;
3701 
3702 	print_driver_short(driver, indent);
3703 }
3704 
3705 
3706 static void
3707 print_driver_list(driver_list_t drivers, int indent)
3708 {
3709 	driverlink_t driver;
3710 
3711 	TAILQ_FOREACH(driver, &drivers, link)
3712 		print_driver(driver->driver, indent);
3713 }
3714 
3715 static void
3716 print_devclass_short(devclass_t dc, int indent)
3717 {
3718 	if (!dc)
3719 		return;
3720 
3721 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3722 }
3723 
3724 static void
3725 print_devclass(devclass_t dc, int indent)
3726 {
3727 	int i;
3728 
3729 	if (!dc)
3730 		return;
3731 
3732 	print_devclass_short(dc, indent);
3733 	indentprintf(("Drivers:\n"));
3734 	print_driver_list(dc->drivers, indent+1);
3735 
3736 	indentprintf(("Devices:\n"));
3737 	for (i = 0; i < dc->maxunit; i++)
3738 		if (dc->devices[i])
3739 			print_device(dc->devices[i], indent+1);
3740 }
3741 
3742 void
3743 print_devclass_list_short(void)
3744 {
3745 	devclass_t dc;
3746 
3747 	kprintf("Short listing of devclasses, drivers & devices:\n");
3748 	TAILQ_FOREACH(dc, &devclasses, link) {
3749 		print_devclass_short(dc, 0);
3750 	}
3751 }
3752 
3753 void
3754 print_devclass_list(void)
3755 {
3756 	devclass_t dc;
3757 
3758 	kprintf("Full listing of devclasses, drivers & devices:\n");
3759 	TAILQ_FOREACH(dc, &devclasses, link) {
3760 		print_devclass(dc, 0);
3761 	}
3762 }
3763 
3764 #endif
3765 
3766 /*
3767  * Check to see if a device is disabled via a disabled hint.
3768  */
3769 int
3770 resource_disabled(const char *name, int unit)
3771 {
3772 	int error, value;
3773 
3774 	error = resource_int_value(name, unit, "disabled", &value);
3775 	if (error)
3776 	       return(0);
3777 	return(value);
3778 }
3779 
3780 /*
3781  * User-space access to the device tree.
3782  *
3783  * We implement a small set of nodes:
3784  *
3785  * hw.bus			Single integer read method to obtain the
3786  *				current generation count.
3787  * hw.bus.devices		Reads the entire device tree in flat space.
3788  * hw.bus.rman			Resource manager interface
3789  *
3790  * We might like to add the ability to scan devclasses and/or drivers to
3791  * determine what else is currently loaded/available.
3792  */
3793 
3794 static int
3795 sysctl_bus(SYSCTL_HANDLER_ARGS)
3796 {
3797 	struct u_businfo	ubus;
3798 
3799 	ubus.ub_version = BUS_USER_VERSION;
3800 	ubus.ub_generation = bus_data_generation;
3801 
3802 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3803 }
3804 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3805     "bus-related data");
3806 
3807 static int
3808 sysctl_devices(SYSCTL_HANDLER_ARGS)
3809 {
3810 	int			*name = (int *)arg1;
3811 	u_int			namelen = arg2;
3812 	int			index;
3813 	device_t		dev;
3814 	struct u_device		udev;	/* XXX this is a bit big */
3815 	int			error;
3816 
3817 	if (namelen != 2)
3818 		return (EINVAL);
3819 
3820 	if (bus_data_generation_check(name[0]))
3821 		return (EINVAL);
3822 
3823 	index = name[1];
3824 
3825 	/*
3826 	 * Scan the list of devices, looking for the requested index.
3827 	 */
3828 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3829 		if (index-- == 0)
3830 			break;
3831 	}
3832 	if (dev == NULL)
3833 		return (ENOENT);
3834 
3835 	/*
3836 	 * Populate the return array.
3837 	 */
3838 	bzero(&udev, sizeof(udev));
3839 	udev.dv_handle = (uintptr_t)dev;
3840 	udev.dv_parent = (uintptr_t)dev->parent;
3841 	if (dev->nameunit != NULL)
3842 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3843 	if (dev->desc != NULL)
3844 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3845 	if (dev->driver != NULL && dev->driver->name != NULL)
3846 		strlcpy(udev.dv_drivername, dev->driver->name,
3847 		    sizeof(udev.dv_drivername));
3848 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3849 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3850 	udev.dv_devflags = dev->devflags;
3851 	udev.dv_flags = dev->flags;
3852 	udev.dv_state = dev->state;
3853 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3854 	return (error);
3855 }
3856 
3857 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3858     "system device tree");
3859 
3860 int
3861 bus_data_generation_check(int generation)
3862 {
3863 	if (generation != bus_data_generation)
3864 		return (1);
3865 
3866 	/* XXX generate optimised lists here? */
3867 	return (0);
3868 }
3869 
3870 void
3871 bus_data_generation_update(void)
3872 {
3873 	bus_data_generation++;
3874 }
3875 
3876 const char *
3877 intr_str_polarity(enum intr_polarity pola)
3878 {
3879 	switch (pola) {
3880 	case INTR_POLARITY_LOW:
3881 		return "low";
3882 
3883 	case INTR_POLARITY_HIGH:
3884 		return "high";
3885 
3886 	case INTR_POLARITY_CONFORM:
3887 		return "conform";
3888 	}
3889 	return "unknown";
3890 }
3891 
3892 const char *
3893 intr_str_trigger(enum intr_trigger trig)
3894 {
3895 	switch (trig) {
3896 	case INTR_TRIGGER_EDGE:
3897 		return "edge";
3898 
3899 	case INTR_TRIGGER_LEVEL:
3900 		return "level";
3901 
3902 	case INTR_TRIGGER_CONFORM:
3903 		return "conform";
3904 	}
3905 	return "unknown";
3906 }
3907 
3908 int
3909 device_getenv_int(device_t dev, const char *knob, int def)
3910 {
3911 	char env[128];
3912 
3913 	/* Deprecated; for compat */
3914 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3915 	kgetenv_int(env, &def);
3916 
3917 	/* Prefer dev.driver.unit.knob */
3918 	ksnprintf(env, sizeof(env), "dev.%s.%d.%s",
3919 	    device_get_name(dev), device_get_unit(dev), knob);
3920 	kgetenv_int(env, &def);
3921 
3922 	return def;
3923 }
3924 
3925 void
3926 device_getenv_string(device_t dev, const char *knob, char * __restrict data,
3927     int dlen, const char * __restrict def)
3928 {
3929 	char env[128];
3930 
3931 	strlcpy(data, def, dlen);
3932 
3933 	/* Deprecated; for compat */
3934 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3935 	kgetenv_string(env, data, dlen);
3936 
3937 	/* Prefer dev.driver.unit.knob */
3938 	ksnprintf(env, sizeof(env), "dev.%s.%d.%s",
3939 	    device_get_name(dev), device_get_unit(dev), knob);
3940 	kgetenv_string(env, data, dlen);
3941 }
3942