xref: /dragonfly/sys/kern/subr_bus.c (revision cecb9aae)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  */
28 
29 #include "opt_bus.h"
30 
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/kobj.h>
37 #include <sys/bus_private.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/device.h>
43 #include <sys/lock.h>
44 #include <sys/conf.h>
45 #include <sys/uio.h>
46 #include <sys/filio.h>
47 #include <sys/event.h>
48 #include <sys/signalvar.h>
49 #include <sys/machintr.h>
50 
51 #include <machine/stdarg.h>	/* for device_printf() */
52 
53 #include <sys/thread2.h>
54 #include <sys/mplock2.h>
55 
56 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
57 
58 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
59 
60 #ifdef BUS_DEBUG
61 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
62 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
63 #define DRIVERNAME(d)	((d)? d->name : "no driver")
64 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
65 
66 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
67  * prevent syslog from deleting initial spaces
68  */
69 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
70 
71 static void	print_device_short(device_t dev, int indent);
72 static void	print_device(device_t dev, int indent);
73 void		print_device_tree_short(device_t dev, int indent);
74 void		print_device_tree(device_t dev, int indent);
75 static void	print_driver_short(driver_t *driver, int indent);
76 static void	print_driver(driver_t *driver, int indent);
77 static void	print_driver_list(driver_list_t drivers, int indent);
78 static void	print_devclass_short(devclass_t dc, int indent);
79 static void	print_devclass(devclass_t dc, int indent);
80 void		print_devclass_list_short(void);
81 void		print_devclass_list(void);
82 
83 #else
84 /* Make the compiler ignore the function calls */
85 #define PDEBUG(a)			/* nop */
86 #define DEVICENAME(d)			/* nop */
87 #define DRIVERNAME(d)			/* nop */
88 #define DEVCLANAME(d)			/* nop */
89 
90 #define print_device_short(d,i)		/* nop */
91 #define print_device(d,i)		/* nop */
92 #define print_device_tree_short(d,i)	/* nop */
93 #define print_device_tree(d,i)		/* nop */
94 #define print_driver_short(d,i)		/* nop */
95 #define print_driver(d,i)		/* nop */
96 #define print_driver_list(d,i)		/* nop */
97 #define print_devclass_short(d,i)	/* nop */
98 #define print_devclass(d,i)		/* nop */
99 #define print_devclass_list_short()	/* nop */
100 #define print_devclass_list()		/* nop */
101 #endif
102 
103 static void	device_attach_async(device_t dev);
104 static void	device_attach_thread(void *arg);
105 static int	device_doattach(device_t dev);
106 
107 static int do_async_attach = 0;
108 static int numasyncthreads;
109 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
110 
111 /*
112  * /dev/devctl implementation
113  */
114 
115 /*
116  * This design allows only one reader for /dev/devctl.  This is not desirable
117  * in the long run, but will get a lot of hair out of this implementation.
118  * Maybe we should make this device a clonable device.
119  *
120  * Also note: we specifically do not attach a device to the device_t tree
121  * to avoid potential chicken and egg problems.  One could argue that all
122  * of this belongs to the root node.  One could also further argue that the
123  * sysctl interface that we have not might more properly be an ioctl
124  * interface, but at this stage of the game, I'm not inclined to rock that
125  * boat.
126  *
127  * I'm also not sure that the SIGIO support is done correctly or not, as
128  * I copied it from a driver that had SIGIO support that likely hasn't been
129  * tested since 3.4 or 2.2.8!
130  */
131 
132 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
133 static int devctl_disable = 0;
134 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
135 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
136     sysctl_devctl_disable, "I", "devctl disable");
137 
138 static d_open_t		devopen;
139 static d_close_t	devclose;
140 static d_read_t		devread;
141 static d_ioctl_t	devioctl;
142 static d_kqfilter_t	devkqfilter;
143 
144 static struct dev_ops devctl_ops = {
145 	{ "devctl", 0, 0 },
146 	.d_open =	devopen,
147 	.d_close =	devclose,
148 	.d_read =	devread,
149 	.d_ioctl =	devioctl,
150 	.d_kqfilter =	devkqfilter
151 };
152 
153 struct dev_event_info
154 {
155 	char *dei_data;
156 	TAILQ_ENTRY(dev_event_info) dei_link;
157 };
158 
159 TAILQ_HEAD(devq, dev_event_info);
160 
161 static struct dev_softc
162 {
163 	int	inuse;
164 	int	nonblock;
165 	struct lock lock;
166 	struct kqinfo kq;
167 	struct devq devq;
168 	struct proc *async_proc;
169 } devsoftc;
170 
171 static void
172 devinit(void)
173 {
174 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
175 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
176 	TAILQ_INIT(&devsoftc.devq);
177 }
178 
179 static int
180 devopen(struct dev_open_args *ap)
181 {
182 	if (devsoftc.inuse)
183 		return (EBUSY);
184 	/* move to init */
185 	devsoftc.inuse = 1;
186 	devsoftc.nonblock = 0;
187 	devsoftc.async_proc = NULL;
188 	return (0);
189 }
190 
191 static int
192 devclose(struct dev_close_args *ap)
193 {
194 	devsoftc.inuse = 0;
195 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
196 	wakeup(&devsoftc);
197 	lockmgr(&devsoftc.lock, LK_RELEASE);
198 
199 	return (0);
200 }
201 
202 /*
203  * The read channel for this device is used to report changes to
204  * userland in realtime.  We are required to free the data as well as
205  * the n1 object because we allocate them separately.  Also note that
206  * we return one record at a time.  If you try to read this device a
207  * character at a time, you will lose the rest of the data.  Listening
208  * programs are expected to cope.
209  */
210 static int
211 devread(struct dev_read_args *ap)
212 {
213 	struct uio *uio = ap->a_uio;
214 	struct dev_event_info *n1;
215 	int rv;
216 
217 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
218 	while (TAILQ_EMPTY(&devsoftc.devq)) {
219 		if (devsoftc.nonblock) {
220 			lockmgr(&devsoftc.lock, LK_RELEASE);
221 			return (EAGAIN);
222 		}
223 		tsleep_interlock(&devsoftc, PCATCH);
224 		lockmgr(&devsoftc.lock, LK_RELEASE);
225 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
226 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
227 		if (rv) {
228 			/*
229 			 * Need to translate ERESTART to EINTR here? -- jake
230 			 */
231 			lockmgr(&devsoftc.lock, LK_RELEASE);
232 			return (rv);
233 		}
234 	}
235 	n1 = TAILQ_FIRST(&devsoftc.devq);
236 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
237 	lockmgr(&devsoftc.lock, LK_RELEASE);
238 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
239 	kfree(n1->dei_data, M_BUS);
240 	kfree(n1, M_BUS);
241 	return (rv);
242 }
243 
244 static	int
245 devioctl(struct dev_ioctl_args *ap)
246 {
247 	switch (ap->a_cmd) {
248 
249 	case FIONBIO:
250 		if (*(int*)ap->a_data)
251 			devsoftc.nonblock = 1;
252 		else
253 			devsoftc.nonblock = 0;
254 		return (0);
255 	case FIOASYNC:
256 		if (*(int*)ap->a_data)
257 			devsoftc.async_proc = curproc;
258 		else
259 			devsoftc.async_proc = NULL;
260 		return (0);
261 
262 		/* (un)Support for other fcntl() calls. */
263 	case FIOCLEX:
264 	case FIONCLEX:
265 	case FIONREAD:
266 	case FIOSETOWN:
267 	case FIOGETOWN:
268 	default:
269 		break;
270 	}
271 	return (ENOTTY);
272 }
273 
274 static void dev_filter_detach(struct knote *);
275 static int dev_filter_read(struct knote *, long);
276 
277 static struct filterops dev_filtops =
278 	{ FILTEROP_ISFD, NULL, dev_filter_detach, dev_filter_read };
279 
280 static int
281 devkqfilter(struct dev_kqfilter_args *ap)
282 {
283 	struct knote *kn = ap->a_kn;
284 	struct klist *klist;
285 
286 	ap->a_result = 0;
287 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
288 
289 	switch (kn->kn_filter) {
290 	case EVFILT_READ:
291 		kn->kn_fop = &dev_filtops;
292 		break;
293 	default:
294 		ap->a_result = EOPNOTSUPP;
295 		lockmgr(&devsoftc.lock, LK_RELEASE);
296 		return (0);
297 	}
298 
299 	klist = &devsoftc.kq.ki_note;
300 	knote_insert(klist, kn);
301 
302 	lockmgr(&devsoftc.lock, LK_RELEASE);
303 
304 	return (0);
305 }
306 
307 static void
308 dev_filter_detach(struct knote *kn)
309 {
310 	struct klist *klist;
311 
312 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
313 	klist = &devsoftc.kq.ki_note;
314 	knote_remove(klist, kn);
315 	lockmgr(&devsoftc.lock, LK_RELEASE);
316 }
317 
318 static int
319 dev_filter_read(struct knote *kn, long hint)
320 {
321 	int ready = 0;
322 
323 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
324 	if (!TAILQ_EMPTY(&devsoftc.devq))
325 		ready = 1;
326 	lockmgr(&devsoftc.lock, LK_RELEASE);
327 
328 	return (ready);
329 }
330 
331 
332 /**
333  * @brief Return whether the userland process is running
334  */
335 boolean_t
336 devctl_process_running(void)
337 {
338 	return (devsoftc.inuse == 1);
339 }
340 
341 /**
342  * @brief Queue data to be read from the devctl device
343  *
344  * Generic interface to queue data to the devctl device.  It is
345  * assumed that @p data is properly formatted.  It is further assumed
346  * that @p data is allocated using the M_BUS malloc type.
347  */
348 void
349 devctl_queue_data(char *data)
350 {
351 	struct dev_event_info *n1 = NULL;
352 	struct proc *p;
353 
354 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
355 	if (n1 == NULL)
356 		return;
357 	n1->dei_data = data;
358 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
359 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
360 	wakeup(&devsoftc);
361 	lockmgr(&devsoftc.lock, LK_RELEASE);
362 	get_mplock();	/* XXX */
363 	KNOTE(&devsoftc.kq.ki_note, 0);
364 	rel_mplock();	/* XXX */
365 	p = devsoftc.async_proc;
366 	if (p != NULL)
367 		ksignal(p, SIGIO);
368 }
369 
370 /**
371  * @brief Send a 'notification' to userland, using standard ways
372  */
373 void
374 devctl_notify(const char *system, const char *subsystem, const char *type,
375     const char *data)
376 {
377 	int len = 0;
378 	char *msg;
379 
380 	if (system == NULL)
381 		return;		/* BOGUS!  Must specify system. */
382 	if (subsystem == NULL)
383 		return;		/* BOGUS!  Must specify subsystem. */
384 	if (type == NULL)
385 		return;		/* BOGUS!  Must specify type. */
386 	len += strlen(" system=") + strlen(system);
387 	len += strlen(" subsystem=") + strlen(subsystem);
388 	len += strlen(" type=") + strlen(type);
389 	/* add in the data message plus newline. */
390 	if (data != NULL)
391 		len += strlen(data);
392 	len += 3;	/* '!', '\n', and NUL */
393 	msg = kmalloc(len, M_BUS, M_NOWAIT);
394 	if (msg == NULL)
395 		return;		/* Drop it on the floor */
396 	if (data != NULL)
397 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
398 		    system, subsystem, type, data);
399 	else
400 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
401 		    system, subsystem, type);
402 	devctl_queue_data(msg);
403 }
404 
405 /*
406  * Common routine that tries to make sending messages as easy as possible.
407  * We allocate memory for the data, copy strings into that, but do not
408  * free it unless there's an error.  The dequeue part of the driver should
409  * free the data.  We don't send data when the device is disabled.  We do
410  * send data, even when we have no listeners, because we wish to avoid
411  * races relating to startup and restart of listening applications.
412  *
413  * devaddq is designed to string together the type of event, with the
414  * object of that event, plus the plug and play info and location info
415  * for that event.  This is likely most useful for devices, but less
416  * useful for other consumers of this interface.  Those should use
417  * the devctl_queue_data() interface instead.
418  */
419 static void
420 devaddq(const char *type, const char *what, device_t dev)
421 {
422 	char *data = NULL;
423 	char *loc = NULL;
424 	char *pnp = NULL;
425 	const char *parstr;
426 
427 	if (devctl_disable)
428 		return;
429 	data = kmalloc(1024, M_BUS, M_NOWAIT);
430 	if (data == NULL)
431 		goto bad;
432 
433 	/* get the bus specific location of this device */
434 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
435 	if (loc == NULL)
436 		goto bad;
437 	*loc = '\0';
438 	bus_child_location_str(dev, loc, 1024);
439 
440 	/* Get the bus specific pnp info of this device */
441 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
442 	if (pnp == NULL)
443 		goto bad;
444 	*pnp = '\0';
445 	bus_child_pnpinfo_str(dev, pnp, 1024);
446 
447 	/* Get the parent of this device, or / if high enough in the tree. */
448 	if (device_get_parent(dev) == NULL)
449 		parstr = ".";	/* Or '/' ? */
450 	else
451 		parstr = device_get_nameunit(device_get_parent(dev));
452 	/* String it all together. */
453 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
454 	  parstr);
455 	kfree(loc, M_BUS);
456 	kfree(pnp, M_BUS);
457 	devctl_queue_data(data);
458 	return;
459 bad:
460 	kfree(pnp, M_BUS);
461 	kfree(loc, M_BUS);
462 	kfree(data, M_BUS);
463 	return;
464 }
465 
466 /*
467  * A device was added to the tree.  We are called just after it successfully
468  * attaches (that is, probe and attach success for this device).  No call
469  * is made if a device is merely parented into the tree.  See devnomatch
470  * if probe fails.  If attach fails, no notification is sent (but maybe
471  * we should have a different message for this).
472  */
473 static void
474 devadded(device_t dev)
475 {
476 	char *pnp = NULL;
477 	char *tmp = NULL;
478 
479 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
480 	if (pnp == NULL)
481 		goto fail;
482 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
483 	if (tmp == NULL)
484 		goto fail;
485 	*pnp = '\0';
486 	bus_child_pnpinfo_str(dev, pnp, 1024);
487 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
488 	devaddq("+", tmp, dev);
489 fail:
490 	if (pnp != NULL)
491 		kfree(pnp, M_BUS);
492 	if (tmp != NULL)
493 		kfree(tmp, M_BUS);
494 	return;
495 }
496 
497 /*
498  * A device was removed from the tree.  We are called just before this
499  * happens.
500  */
501 static void
502 devremoved(device_t dev)
503 {
504 	char *pnp = NULL;
505 	char *tmp = NULL;
506 
507 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
508 	if (pnp == NULL)
509 		goto fail;
510 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
511 	if (tmp == NULL)
512 		goto fail;
513 	*pnp = '\0';
514 	bus_child_pnpinfo_str(dev, pnp, 1024);
515 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
516 	devaddq("-", tmp, dev);
517 fail:
518 	if (pnp != NULL)
519 		kfree(pnp, M_BUS);
520 	if (tmp != NULL)
521 		kfree(tmp, M_BUS);
522 	return;
523 }
524 
525 /*
526  * Called when there's no match for this device.  This is only called
527  * the first time that no match happens, so we don't keep getitng this
528  * message.  Should that prove to be undesirable, we can change it.
529  * This is called when all drivers that can attach to a given bus
530  * decline to accept this device.  Other errrors may not be detected.
531  */
532 static void
533 devnomatch(device_t dev)
534 {
535 	devaddq("?", "", dev);
536 }
537 
538 static int
539 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
540 {
541 	struct dev_event_info *n1;
542 	int dis, error;
543 
544 	dis = devctl_disable;
545 	error = sysctl_handle_int(oidp, &dis, 0, req);
546 	if (error || !req->newptr)
547 		return (error);
548 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
549 	devctl_disable = dis;
550 	if (dis) {
551 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
552 			n1 = TAILQ_FIRST(&devsoftc.devq);
553 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
554 			kfree(n1->dei_data, M_BUS);
555 			kfree(n1, M_BUS);
556 		}
557 	}
558 	lockmgr(&devsoftc.lock, LK_RELEASE);
559 	return (0);
560 }
561 
562 /* End of /dev/devctl code */
563 
564 TAILQ_HEAD(,device)	bus_data_devices;
565 static int bus_data_generation = 1;
566 
567 kobj_method_t null_methods[] = {
568 	{ 0, 0 }
569 };
570 
571 DEFINE_CLASS(null, null_methods, 0);
572 
573 /*
574  * Devclass implementation
575  */
576 
577 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
578 
579 static devclass_t
580 devclass_find_internal(const char *classname, const char *parentname,
581 		       int create)
582 {
583 	devclass_t dc;
584 
585 	PDEBUG(("looking for %s", classname));
586 	if (classname == NULL)
587 		return(NULL);
588 
589 	TAILQ_FOREACH(dc, &devclasses, link)
590 		if (!strcmp(dc->name, classname))
591 			break;
592 
593 	if (create && !dc) {
594 		PDEBUG(("creating %s", classname));
595 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
596 			    M_BUS, M_INTWAIT | M_ZERO);
597 		dc->parent = NULL;
598 		dc->name = (char*) (dc + 1);
599 		strcpy(dc->name, classname);
600 		dc->devices = NULL;
601 		dc->maxunit = 0;
602 		TAILQ_INIT(&dc->drivers);
603 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
604 
605 		bus_data_generation_update();
606 
607 	}
608 
609 	/*
610 	 * If a parent class is specified, then set that as our parent so
611 	 * that this devclass will support drivers for the parent class as
612 	 * well.  If the parent class has the same name don't do this though
613 	 * as it creates a cycle that can trigger an infinite loop in
614 	 * device_probe_child() if a device exists for which there is no
615 	 * suitable driver.
616 	 */
617 	if (parentname && dc && !dc->parent &&
618 	    strcmp(classname, parentname) != 0)
619 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
620 
621 	return(dc);
622 }
623 
624 devclass_t
625 devclass_create(const char *classname)
626 {
627 	return(devclass_find_internal(classname, NULL, TRUE));
628 }
629 
630 devclass_t
631 devclass_find(const char *classname)
632 {
633 	return(devclass_find_internal(classname, NULL, FALSE));
634 }
635 
636 device_t
637 devclass_find_unit(const char *classname, int unit)
638 {
639 	devclass_t dc;
640 
641 	if ((dc = devclass_find(classname)) != NULL)
642 	    return(devclass_get_device(dc, unit));
643 	return (NULL);
644 }
645 
646 int
647 devclass_add_driver(devclass_t dc, driver_t *driver)
648 {
649 	driverlink_t dl;
650 	device_t dev;
651 	int i;
652 
653 	PDEBUG(("%s", DRIVERNAME(driver)));
654 
655 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
656 
657 	/*
658 	 * Compile the driver's methods. Also increase the reference count
659 	 * so that the class doesn't get freed when the last instance
660 	 * goes. This means we can safely use static methods and avoids a
661 	 * double-free in devclass_delete_driver.
662 	 */
663 	kobj_class_instantiate(driver);
664 
665 	/*
666 	 * Make sure the devclass which the driver is implementing exists.
667 	 */
668 	devclass_find_internal(driver->name, NULL, TRUE);
669 
670 	dl->driver = driver;
671 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
672 
673 	/*
674 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
675 	 * but only if the bus has already been attached (otherwise we
676 	 * might probe too early).
677 	 *
678 	 * This is what will cause a newly loaded module to be associated
679 	 * with hardware.  bus_generic_driver_added() is typically what ends
680 	 * up being called.
681 	 */
682 	for (i = 0; i < dc->maxunit; i++) {
683 		if ((dev = dc->devices[i]) != NULL) {
684 			if (dev->state >= DS_ATTACHED)
685 				BUS_DRIVER_ADDED(dev, driver);
686 		}
687 	}
688 
689 	bus_data_generation_update();
690 	return(0);
691 }
692 
693 int
694 devclass_delete_driver(devclass_t busclass, driver_t *driver)
695 {
696 	devclass_t dc = devclass_find(driver->name);
697 	driverlink_t dl;
698 	device_t dev;
699 	int i;
700 	int error;
701 
702 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
703 
704 	if (!dc)
705 		return(0);
706 
707 	/*
708 	 * Find the link structure in the bus' list of drivers.
709 	 */
710 	TAILQ_FOREACH(dl, &busclass->drivers, link)
711 		if (dl->driver == driver)
712 			break;
713 
714 	if (!dl) {
715 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
716 		return(ENOENT);
717 	}
718 
719 	/*
720 	 * Disassociate from any devices.  We iterate through all the
721 	 * devices in the devclass of the driver and detach any which are
722 	 * using the driver and which have a parent in the devclass which
723 	 * we are deleting from.
724 	 *
725 	 * Note that since a driver can be in multiple devclasses, we
726 	 * should not detach devices which are not children of devices in
727 	 * the affected devclass.
728 	 */
729 	for (i = 0; i < dc->maxunit; i++)
730 		if (dc->devices[i]) {
731 			dev = dc->devices[i];
732 			if (dev->driver == driver && dev->parent &&
733 			    dev->parent->devclass == busclass) {
734 				if ((error = device_detach(dev)) != 0)
735 					return(error);
736 				device_set_driver(dev, NULL);
737 		    	}
738 		}
739 
740 	TAILQ_REMOVE(&busclass->drivers, dl, link);
741 	kfree(dl, M_BUS);
742 
743 	kobj_class_uninstantiate(driver);
744 
745 	bus_data_generation_update();
746 	return(0);
747 }
748 
749 static driverlink_t
750 devclass_find_driver_internal(devclass_t dc, const char *classname)
751 {
752 	driverlink_t dl;
753 
754 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
755 
756 	TAILQ_FOREACH(dl, &dc->drivers, link)
757 		if (!strcmp(dl->driver->name, classname))
758 			return(dl);
759 
760 	PDEBUG(("not found"));
761 	return(NULL);
762 }
763 
764 kobj_class_t
765 devclass_find_driver(devclass_t dc, const char *classname)
766 {
767 	driverlink_t dl;
768 
769 	dl = devclass_find_driver_internal(dc, classname);
770 	if (dl)
771 		return(dl->driver);
772 	else
773 		return(NULL);
774 }
775 
776 const char *
777 devclass_get_name(devclass_t dc)
778 {
779 	return(dc->name);
780 }
781 
782 device_t
783 devclass_get_device(devclass_t dc, int unit)
784 {
785 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
786 		return(NULL);
787 	return(dc->devices[unit]);
788 }
789 
790 void *
791 devclass_get_softc(devclass_t dc, int unit)
792 {
793 	device_t dev;
794 
795 	dev = devclass_get_device(dc, unit);
796 	if (!dev)
797 		return(NULL);
798 
799 	return(device_get_softc(dev));
800 }
801 
802 int
803 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
804 {
805 	int i;
806 	int count;
807 	device_t *list;
808 
809 	count = 0;
810 	for (i = 0; i < dc->maxunit; i++)
811 		if (dc->devices[i])
812 			count++;
813 
814 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
815 
816 	count = 0;
817 	for (i = 0; i < dc->maxunit; i++)
818 		if (dc->devices[i]) {
819 			list[count] = dc->devices[i];
820 			count++;
821 		}
822 
823 	*devlistp = list;
824 	*devcountp = count;
825 
826 	return(0);
827 }
828 
829 /**
830  * @brief Get a list of drivers in the devclass
831  *
832  * An array containing a list of pointers to all the drivers in the
833  * given devclass is allocated and returned in @p *listp.  The number
834  * of drivers in the array is returned in @p *countp. The caller should
835  * free the array using @c free(p, M_TEMP).
836  *
837  * @param dc            the devclass to examine
838  * @param listp         gives location for array pointer return value
839  * @param countp        gives location for number of array elements
840  *                      return value
841  *
842  * @retval 0            success
843  * @retval ENOMEM       the array allocation failed
844  */
845 int
846 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
847 {
848         driverlink_t dl;
849         driver_t **list;
850         int count;
851 
852         count = 0;
853         TAILQ_FOREACH(dl, &dc->drivers, link)
854                 count++;
855         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
856         if (list == NULL)
857                 return (ENOMEM);
858 
859         count = 0;
860         TAILQ_FOREACH(dl, &dc->drivers, link) {
861                 list[count] = dl->driver;
862                 count++;
863         }
864         *listp = list;
865         *countp = count;
866 
867         return (0);
868 }
869 
870 /**
871  * @brief Get the number of devices in a devclass
872  *
873  * @param dc		the devclass to examine
874  */
875 int
876 devclass_get_count(devclass_t dc)
877 {
878 	int count, i;
879 
880 	count = 0;
881 	for (i = 0; i < dc->maxunit; i++)
882 		if (dc->devices[i])
883 			count++;
884 	return (count);
885 }
886 
887 int
888 devclass_get_maxunit(devclass_t dc)
889 {
890 	return(dc->maxunit);
891 }
892 
893 void
894 devclass_set_parent(devclass_t dc, devclass_t pdc)
895 {
896         dc->parent = pdc;
897 }
898 
899 devclass_t
900 devclass_get_parent(devclass_t dc)
901 {
902 	return(dc->parent);
903 }
904 
905 static int
906 devclass_alloc_unit(devclass_t dc, int *unitp)
907 {
908 	int unit = *unitp;
909 
910 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
911 
912 	/* If we have been given a wired unit number, check for existing device */
913 	if (unit != -1) {
914 		if (unit >= 0 && unit < dc->maxunit &&
915 		    dc->devices[unit] != NULL) {
916 			if (bootverbose)
917 				kprintf("%s-: %s%d exists, using next available unit number\n",
918 				       dc->name, dc->name, unit);
919 			/* find the next available slot */
920 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
921 				;
922 		}
923 	} else {
924 		/* Unwired device, find the next available slot for it */
925 		unit = 0;
926 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
927 			unit++;
928 	}
929 
930 	/*
931 	 * We've selected a unit beyond the length of the table, so let's
932 	 * extend the table to make room for all units up to and including
933 	 * this one.
934 	 */
935 	if (unit >= dc->maxunit) {
936 		device_t *newlist;
937 		int newsize;
938 
939 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
940 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
941 				 M_INTWAIT | M_ZERO);
942 		if (newlist == NULL)
943 			return(ENOMEM);
944 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
945 		if (dc->devices)
946 			kfree(dc->devices, M_BUS);
947 		dc->devices = newlist;
948 		dc->maxunit = newsize;
949 	}
950 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
951 
952 	*unitp = unit;
953 	return(0);
954 }
955 
956 static int
957 devclass_add_device(devclass_t dc, device_t dev)
958 {
959 	int buflen, error;
960 
961 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
962 
963 	buflen = strlen(dc->name) + 5;
964 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
965 	if (!dev->nameunit)
966 		return(ENOMEM);
967 
968 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
969 		kfree(dev->nameunit, M_BUS);
970 		dev->nameunit = NULL;
971 		return(error);
972 	}
973 	dc->devices[dev->unit] = dev;
974 	dev->devclass = dc;
975 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
976 
977 	return(0);
978 }
979 
980 static int
981 devclass_delete_device(devclass_t dc, device_t dev)
982 {
983 	if (!dc || !dev)
984 		return(0);
985 
986 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
987 
988 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
989 		panic("devclass_delete_device: inconsistent device class");
990 	dc->devices[dev->unit] = NULL;
991 	if (dev->flags & DF_WILDCARD)
992 		dev->unit = -1;
993 	dev->devclass = NULL;
994 	kfree(dev->nameunit, M_BUS);
995 	dev->nameunit = NULL;
996 
997 	return(0);
998 }
999 
1000 static device_t
1001 make_device(device_t parent, const char *name, int unit)
1002 {
1003 	device_t dev;
1004 	devclass_t dc;
1005 
1006 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1007 
1008 	if (name != NULL) {
1009 		dc = devclass_find_internal(name, NULL, TRUE);
1010 		if (!dc) {
1011 			kprintf("make_device: can't find device class %s\n", name);
1012 			return(NULL);
1013 		}
1014 	} else
1015 		dc = NULL;
1016 
1017 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
1018 	if (!dev)
1019 		return(0);
1020 
1021 	dev->parent = parent;
1022 	TAILQ_INIT(&dev->children);
1023 	kobj_init((kobj_t) dev, &null_class);
1024 	dev->driver = NULL;
1025 	dev->devclass = NULL;
1026 	dev->unit = unit;
1027 	dev->nameunit = NULL;
1028 	dev->desc = NULL;
1029 	dev->busy = 0;
1030 	dev->devflags = 0;
1031 	dev->flags = DF_ENABLED;
1032 	dev->order = 0;
1033 	if (unit == -1)
1034 		dev->flags |= DF_WILDCARD;
1035 	if (name) {
1036 		dev->flags |= DF_FIXEDCLASS;
1037 		if (devclass_add_device(dc, dev) != 0) {
1038 			kobj_delete((kobj_t)dev, M_BUS);
1039 			return(NULL);
1040 		}
1041     	}
1042 	dev->ivars = NULL;
1043 	dev->softc = NULL;
1044 
1045 	dev->state = DS_NOTPRESENT;
1046 
1047 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1048 	bus_data_generation_update();
1049 
1050 	return(dev);
1051 }
1052 
1053 static int
1054 device_print_child(device_t dev, device_t child)
1055 {
1056 	int retval = 0;
1057 
1058 	if (device_is_alive(child))
1059 		retval += BUS_PRINT_CHILD(dev, child);
1060 	else
1061 		retval += device_printf(child, " not found\n");
1062 
1063 	return(retval);
1064 }
1065 
1066 device_t
1067 device_add_child(device_t dev, const char *name, int unit)
1068 {
1069 	return device_add_child_ordered(dev, 0, name, unit);
1070 }
1071 
1072 device_t
1073 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1074 {
1075 	device_t child;
1076 	device_t place;
1077 
1078 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1079 		order, unit));
1080 
1081 	child = make_device(dev, name, unit);
1082 	if (child == NULL)
1083 		return child;
1084 	child->order = order;
1085 
1086 	TAILQ_FOREACH(place, &dev->children, link)
1087 		if (place->order > order)
1088 			break;
1089 
1090 	if (place) {
1091 		/*
1092 		 * The device 'place' is the first device whose order is
1093 		 * greater than the new child.
1094 		 */
1095 		TAILQ_INSERT_BEFORE(place, child, link);
1096 	} else {
1097 		/*
1098 		 * The new child's order is greater or equal to the order of
1099 		 * any existing device. Add the child to the tail of the list.
1100 		 */
1101 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1102     	}
1103 
1104 	bus_data_generation_update();
1105 	return(child);
1106 }
1107 
1108 int
1109 device_delete_child(device_t dev, device_t child)
1110 {
1111 	int error;
1112 	device_t grandchild;
1113 
1114 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1115 
1116 	/* remove children first */
1117 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1118         	error = device_delete_child(child, grandchild);
1119 		if (error)
1120 			return(error);
1121 	}
1122 
1123 	if ((error = device_detach(child)) != 0)
1124 		return(error);
1125 	if (child->devclass)
1126 		devclass_delete_device(child->devclass, child);
1127 	TAILQ_REMOVE(&dev->children, child, link);
1128 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1129 	device_set_desc(child, NULL);
1130 	kobj_delete((kobj_t)child, M_BUS);
1131 
1132 	bus_data_generation_update();
1133 	return(0);
1134 }
1135 
1136 /**
1137  * @brief Delete all children devices of the given device, if any.
1138  *
1139  * This function deletes all children devices of the given device, if
1140  * any, using the device_delete_child() function for each device it
1141  * finds. If a child device cannot be deleted, this function will
1142  * return an error code.
1143  *
1144  * @param dev		the parent device
1145  *
1146  * @retval 0		success
1147  * @retval non-zero	a device would not detach
1148  */
1149 int
1150 device_delete_children(device_t dev)
1151 {
1152 	device_t child;
1153 	int error;
1154 
1155 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1156 
1157 	error = 0;
1158 
1159 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1160 		error = device_delete_child(dev, child);
1161 		if (error) {
1162 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1163 			break;
1164 		}
1165 	}
1166 	return (error);
1167 }
1168 
1169 /**
1170  * @brief Find a device given a unit number
1171  *
1172  * This is similar to devclass_get_devices() but only searches for
1173  * devices which have @p dev as a parent.
1174  *
1175  * @param dev		the parent device to search
1176  * @param unit		the unit number to search for.  If the unit is -1,
1177  *			return the first child of @p dev which has name
1178  *			@p classname (that is, the one with the lowest unit.)
1179  *
1180  * @returns		the device with the given unit number or @c
1181  *			NULL if there is no such device
1182  */
1183 device_t
1184 device_find_child(device_t dev, const char *classname, int unit)
1185 {
1186 	devclass_t dc;
1187 	device_t child;
1188 
1189 	dc = devclass_find(classname);
1190 	if (!dc)
1191 		return(NULL);
1192 
1193 	if (unit != -1) {
1194 		child = devclass_get_device(dc, unit);
1195 		if (child && child->parent == dev)
1196 			return (child);
1197 	} else {
1198 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1199 			child = devclass_get_device(dc, unit);
1200 			if (child && child->parent == dev)
1201 				return (child);
1202 		}
1203 	}
1204 	return(NULL);
1205 }
1206 
1207 static driverlink_t
1208 first_matching_driver(devclass_t dc, device_t dev)
1209 {
1210 	if (dev->devclass)
1211 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1212 	else
1213 		return(TAILQ_FIRST(&dc->drivers));
1214 }
1215 
1216 static driverlink_t
1217 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1218 {
1219 	if (dev->devclass) {
1220 		driverlink_t dl;
1221 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1222 			if (!strcmp(dev->devclass->name, dl->driver->name))
1223 				return(dl);
1224 		return(NULL);
1225 	} else
1226 		return(TAILQ_NEXT(last, link));
1227 }
1228 
1229 int
1230 device_probe_child(device_t dev, device_t child)
1231 {
1232 	devclass_t dc;
1233 	driverlink_t best = NULL;
1234 	driverlink_t dl;
1235 	int result, pri = 0;
1236 	int hasclass = (child->devclass != NULL);
1237 
1238 	dc = dev->devclass;
1239 	if (!dc)
1240 		panic("device_probe_child: parent device has no devclass");
1241 
1242 	if (child->state == DS_ALIVE)
1243 		return(0);
1244 
1245 	for (; dc; dc = dc->parent) {
1246     		for (dl = first_matching_driver(dc, child); dl;
1247 		     dl = next_matching_driver(dc, child, dl)) {
1248 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1249 			device_set_driver(child, dl->driver);
1250 			if (!hasclass)
1251 				device_set_devclass(child, dl->driver->name);
1252 			result = DEVICE_PROBE(child);
1253 			if (!hasclass)
1254 				device_set_devclass(child, 0);
1255 
1256 			/*
1257 			 * If the driver returns SUCCESS, there can be
1258 			 * no higher match for this device.
1259 			 */
1260 			if (result == 0) {
1261 				best = dl;
1262 				pri = 0;
1263 				break;
1264 			}
1265 
1266 			/*
1267 			 * The driver returned an error so it
1268 			 * certainly doesn't match.
1269 			 */
1270 			if (result > 0) {
1271 				device_set_driver(child, 0);
1272 				continue;
1273 			}
1274 
1275 			/*
1276 			 * A priority lower than SUCCESS, remember the
1277 			 * best matching driver. Initialise the value
1278 			 * of pri for the first match.
1279 			 */
1280 			if (best == NULL || result > pri) {
1281 				best = dl;
1282 				pri = result;
1283 				continue;
1284 			}
1285 	        }
1286 		/*
1287 	         * If we have unambiguous match in this devclass,
1288 	         * don't look in the parent.
1289 	         */
1290 	        if (best && pri == 0)
1291 	    	        break;
1292 	}
1293 
1294 	/*
1295 	 * If we found a driver, change state and initialise the devclass.
1296 	 */
1297 	if (best) {
1298 		if (!child->devclass)
1299 			device_set_devclass(child, best->driver->name);
1300 		device_set_driver(child, best->driver);
1301 		if (pri < 0) {
1302 			/*
1303 			 * A bit bogus. Call the probe method again to make
1304 			 * sure that we have the right description.
1305 			 */
1306 			DEVICE_PROBE(child);
1307 		}
1308 
1309 		bus_data_generation_update();
1310 		child->state = DS_ALIVE;
1311 		return(0);
1312 	}
1313 
1314 	return(ENXIO);
1315 }
1316 
1317 device_t
1318 device_get_parent(device_t dev)
1319 {
1320 	return dev->parent;
1321 }
1322 
1323 int
1324 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1325 {
1326 	int count;
1327 	device_t child;
1328 	device_t *list;
1329 
1330 	count = 0;
1331 	TAILQ_FOREACH(child, &dev->children, link)
1332 		count++;
1333 
1334 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1335 
1336 	count = 0;
1337 	TAILQ_FOREACH(child, &dev->children, link) {
1338 		list[count] = child;
1339 		count++;
1340 	}
1341 
1342 	*devlistp = list;
1343 	*devcountp = count;
1344 
1345 	return(0);
1346 }
1347 
1348 driver_t *
1349 device_get_driver(device_t dev)
1350 {
1351 	return(dev->driver);
1352 }
1353 
1354 devclass_t
1355 device_get_devclass(device_t dev)
1356 {
1357 	return(dev->devclass);
1358 }
1359 
1360 const char *
1361 device_get_name(device_t dev)
1362 {
1363 	if (dev->devclass)
1364 		return devclass_get_name(dev->devclass);
1365 	return(NULL);
1366 }
1367 
1368 const char *
1369 device_get_nameunit(device_t dev)
1370 {
1371 	return(dev->nameunit);
1372 }
1373 
1374 int
1375 device_get_unit(device_t dev)
1376 {
1377 	return(dev->unit);
1378 }
1379 
1380 const char *
1381 device_get_desc(device_t dev)
1382 {
1383 	return(dev->desc);
1384 }
1385 
1386 uint32_t
1387 device_get_flags(device_t dev)
1388 {
1389 	return(dev->devflags);
1390 }
1391 
1392 int
1393 device_print_prettyname(device_t dev)
1394 {
1395 	const char *name = device_get_name(dev);
1396 
1397 	if (name == NULL)
1398 		return kprintf("unknown: ");
1399 	else
1400 		return kprintf("%s%d: ", name, device_get_unit(dev));
1401 }
1402 
1403 int
1404 device_printf(device_t dev, const char * fmt, ...)
1405 {
1406 	__va_list ap;
1407 	int retval;
1408 
1409 	retval = device_print_prettyname(dev);
1410 	__va_start(ap, fmt);
1411 	retval += kvprintf(fmt, ap);
1412 	__va_end(ap);
1413 	return retval;
1414 }
1415 
1416 static void
1417 device_set_desc_internal(device_t dev, const char* desc, int copy)
1418 {
1419 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1420 		kfree(dev->desc, M_BUS);
1421 		dev->flags &= ~DF_DESCMALLOCED;
1422 		dev->desc = NULL;
1423 	}
1424 
1425 	if (copy && desc) {
1426 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1427 		if (dev->desc) {
1428 			strcpy(dev->desc, desc);
1429 			dev->flags |= DF_DESCMALLOCED;
1430 		}
1431 	} else {
1432 		/* Avoid a -Wcast-qual warning */
1433 		dev->desc = (char *)(uintptr_t) desc;
1434 	}
1435 
1436 	bus_data_generation_update();
1437 }
1438 
1439 void
1440 device_set_desc(device_t dev, const char* desc)
1441 {
1442 	device_set_desc_internal(dev, desc, FALSE);
1443 }
1444 
1445 void
1446 device_set_desc_copy(device_t dev, const char* desc)
1447 {
1448 	device_set_desc_internal(dev, desc, TRUE);
1449 }
1450 
1451 void
1452 device_set_flags(device_t dev, uint32_t flags)
1453 {
1454 	dev->devflags = flags;
1455 }
1456 
1457 void *
1458 device_get_softc(device_t dev)
1459 {
1460 	return dev->softc;
1461 }
1462 
1463 void
1464 device_set_softc(device_t dev, void *softc)
1465 {
1466 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1467 		kfree(dev->softc, M_BUS);
1468 	dev->softc = softc;
1469 	if (dev->softc)
1470 		dev->flags |= DF_EXTERNALSOFTC;
1471 	else
1472 		dev->flags &= ~DF_EXTERNALSOFTC;
1473 }
1474 
1475 void
1476 device_set_async_attach(device_t dev, int enable)
1477 {
1478 	if (enable)
1479 		dev->flags |= DF_ASYNCPROBE;
1480 	else
1481 		dev->flags &= ~DF_ASYNCPROBE;
1482 }
1483 
1484 void *
1485 device_get_ivars(device_t dev)
1486 {
1487 	return dev->ivars;
1488 }
1489 
1490 void
1491 device_set_ivars(device_t dev, void * ivars)
1492 {
1493 	if (!dev)
1494 		return;
1495 
1496 	dev->ivars = ivars;
1497 }
1498 
1499 device_state_t
1500 device_get_state(device_t dev)
1501 {
1502 	return(dev->state);
1503 }
1504 
1505 void
1506 device_enable(device_t dev)
1507 {
1508 	dev->flags |= DF_ENABLED;
1509 }
1510 
1511 void
1512 device_disable(device_t dev)
1513 {
1514 	dev->flags &= ~DF_ENABLED;
1515 }
1516 
1517 /*
1518  * YYY cannot block
1519  */
1520 void
1521 device_busy(device_t dev)
1522 {
1523 	if (dev->state < DS_ATTACHED)
1524 		panic("device_busy: called for unattached device");
1525 	if (dev->busy == 0 && dev->parent)
1526 		device_busy(dev->parent);
1527 	dev->busy++;
1528 	dev->state = DS_BUSY;
1529 }
1530 
1531 /*
1532  * YYY cannot block
1533  */
1534 void
1535 device_unbusy(device_t dev)
1536 {
1537 	if (dev->state != DS_BUSY)
1538 		panic("device_unbusy: called for non-busy device");
1539 	dev->busy--;
1540 	if (dev->busy == 0) {
1541 		if (dev->parent)
1542 			device_unbusy(dev->parent);
1543 		dev->state = DS_ATTACHED;
1544 	}
1545 }
1546 
1547 void
1548 device_quiet(device_t dev)
1549 {
1550 	dev->flags |= DF_QUIET;
1551 }
1552 
1553 void
1554 device_verbose(device_t dev)
1555 {
1556 	dev->flags &= ~DF_QUIET;
1557 }
1558 
1559 int
1560 device_is_quiet(device_t dev)
1561 {
1562 	return((dev->flags & DF_QUIET) != 0);
1563 }
1564 
1565 int
1566 device_is_enabled(device_t dev)
1567 {
1568 	return((dev->flags & DF_ENABLED) != 0);
1569 }
1570 
1571 int
1572 device_is_alive(device_t dev)
1573 {
1574 	return(dev->state >= DS_ALIVE);
1575 }
1576 
1577 int
1578 device_is_attached(device_t dev)
1579 {
1580 	return(dev->state >= DS_ATTACHED);
1581 }
1582 
1583 int
1584 device_set_devclass(device_t dev, const char *classname)
1585 {
1586 	devclass_t dc;
1587 	int error;
1588 
1589 	if (!classname) {
1590 		if (dev->devclass)
1591 			devclass_delete_device(dev->devclass, dev);
1592 		return(0);
1593 	}
1594 
1595 	if (dev->devclass) {
1596 		kprintf("device_set_devclass: device class already set\n");
1597 		return(EINVAL);
1598 	}
1599 
1600 	dc = devclass_find_internal(classname, NULL, TRUE);
1601 	if (!dc)
1602 		return(ENOMEM);
1603 
1604 	error = devclass_add_device(dc, dev);
1605 
1606 	bus_data_generation_update();
1607 	return(error);
1608 }
1609 
1610 int
1611 device_set_driver(device_t dev, driver_t *driver)
1612 {
1613 	if (dev->state >= DS_ATTACHED)
1614 		return(EBUSY);
1615 
1616 	if (dev->driver == driver)
1617 		return(0);
1618 
1619 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1620 		kfree(dev->softc, M_BUS);
1621 		dev->softc = NULL;
1622 	}
1623 	kobj_delete((kobj_t) dev, 0);
1624 	dev->driver = driver;
1625 	if (driver) {
1626 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1627 		if (!(dev->flags & DF_EXTERNALSOFTC)) {
1628 			dev->softc = kmalloc(driver->size, M_BUS,
1629 					    M_INTWAIT | M_ZERO);
1630 			if (!dev->softc) {
1631 				kobj_delete((kobj_t)dev, 0);
1632 				kobj_init((kobj_t) dev, &null_class);
1633 				dev->driver = NULL;
1634 				return(ENOMEM);
1635 	    		}
1636 		}
1637 	} else {
1638 		kobj_init((kobj_t) dev, &null_class);
1639 	}
1640 
1641 	bus_data_generation_update();
1642 	return(0);
1643 }
1644 
1645 int
1646 device_probe_and_attach(device_t dev)
1647 {
1648 	device_t bus = dev->parent;
1649 	int error = 0;
1650 
1651 	if (dev->state >= DS_ALIVE)
1652 		return(0);
1653 
1654 	if ((dev->flags & DF_ENABLED) == 0) {
1655 		if (bootverbose) {
1656 			device_print_prettyname(dev);
1657 			kprintf("not probed (disabled)\n");
1658 		}
1659 		return(0);
1660 	}
1661 
1662 	error = device_probe_child(bus, dev);
1663 	if (error) {
1664 		if (!(dev->flags & DF_DONENOMATCH)) {
1665 			BUS_PROBE_NOMATCH(bus, dev);
1666 			devnomatch(dev);
1667 			dev->flags |= DF_DONENOMATCH;
1668 		}
1669 		return(error);
1670 	}
1671 
1672 	/*
1673 	 * Output the exact device chain prior to the attach in case the
1674 	 * system locks up during attach, and generate the full info after
1675 	 * the attach so correct irq and other information is displayed.
1676 	 */
1677 	if (bootverbose && !device_is_quiet(dev)) {
1678 		device_t tmp;
1679 
1680 		kprintf("%s", device_get_nameunit(dev));
1681 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1682 			kprintf(".%s", device_get_nameunit(tmp));
1683 		kprintf("\n");
1684 	}
1685 	if (!device_is_quiet(dev))
1686 		device_print_child(bus, dev);
1687 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1688 		kprintf("%s: probing asynchronously\n",
1689 			device_get_nameunit(dev));
1690 		dev->state = DS_INPROGRESS;
1691 		device_attach_async(dev);
1692 		error = 0;
1693 	} else {
1694 		error = device_doattach(dev);
1695 	}
1696 	return(error);
1697 }
1698 
1699 /*
1700  * Device is known to be alive, do the attach asynchronously.
1701  * However, serialize the attaches with the mp lock.
1702  */
1703 static void
1704 device_attach_async(device_t dev)
1705 {
1706 	thread_t td;
1707 
1708 	atomic_add_int(&numasyncthreads, 1);
1709 	lwkt_create(device_attach_thread, dev, &td, NULL,
1710 		    0, 0, "%s", (dev->desc ? dev->desc : "devattach"));
1711 }
1712 
1713 static void
1714 device_attach_thread(void *arg)
1715 {
1716 	device_t dev = arg;
1717 
1718 	get_mplock();	/* XXX replace with devattach_token later */
1719 	(void)device_doattach(dev);
1720 	atomic_subtract_int(&numasyncthreads, 1);
1721 	wakeup(&numasyncthreads);
1722 	rel_mplock();	/* XXX replace with devattach_token later */
1723 }
1724 
1725 /*
1726  * Device is known to be alive, do the attach (synchronous or asynchronous)
1727  */
1728 static int
1729 device_doattach(device_t dev)
1730 {
1731 	device_t bus = dev->parent;
1732 	int hasclass = (dev->devclass != NULL);
1733 	int error;
1734 
1735 	error = DEVICE_ATTACH(dev);
1736 	if (error == 0) {
1737 		dev->state = DS_ATTACHED;
1738 		if (bootverbose && !device_is_quiet(dev))
1739 			device_print_child(bus, dev);
1740 		devadded(dev);
1741 	} else {
1742 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1743 		       dev->driver->name, dev->unit, error);
1744 		/* Unset the class that was set in device_probe_child */
1745 		if (!hasclass)
1746 			device_set_devclass(dev, 0);
1747 		device_set_driver(dev, NULL);
1748 		dev->state = DS_NOTPRESENT;
1749 	}
1750 	return(error);
1751 }
1752 
1753 int
1754 device_detach(device_t dev)
1755 {
1756 	int error;
1757 
1758 	PDEBUG(("%s", DEVICENAME(dev)));
1759 	if (dev->state == DS_BUSY)
1760 		return(EBUSY);
1761 	if (dev->state != DS_ATTACHED)
1762 		return(0);
1763 
1764 	if ((error = DEVICE_DETACH(dev)) != 0)
1765 		return(error);
1766 	devremoved(dev);
1767 	device_printf(dev, "detached\n");
1768 	if (dev->parent)
1769 		BUS_CHILD_DETACHED(dev->parent, dev);
1770 
1771 	if (!(dev->flags & DF_FIXEDCLASS))
1772 		devclass_delete_device(dev->devclass, dev);
1773 
1774 	dev->state = DS_NOTPRESENT;
1775 	device_set_driver(dev, NULL);
1776 
1777 	return(0);
1778 }
1779 
1780 int
1781 device_shutdown(device_t dev)
1782 {
1783 	if (dev->state < DS_ATTACHED)
1784 		return 0;
1785 	PDEBUG(("%s", DEVICENAME(dev)));
1786 	return DEVICE_SHUTDOWN(dev);
1787 }
1788 
1789 int
1790 device_set_unit(device_t dev, int unit)
1791 {
1792 	devclass_t dc;
1793 	int err;
1794 
1795 	dc = device_get_devclass(dev);
1796 	if (unit < dc->maxunit && dc->devices[unit])
1797 		return(EBUSY);
1798 	err = devclass_delete_device(dc, dev);
1799 	if (err)
1800 		return(err);
1801 	dev->unit = unit;
1802 	err = devclass_add_device(dc, dev);
1803 	if (err)
1804 		return(err);
1805 
1806 	bus_data_generation_update();
1807 	return(0);
1808 }
1809 
1810 /*======================================*/
1811 /*
1812  * Access functions for device resources.
1813  */
1814 
1815 /* Supplied by config(8) in ioconf.c */
1816 extern struct config_device config_devtab[];
1817 extern int devtab_count;
1818 
1819 /* Runtime version */
1820 struct config_device *devtab = config_devtab;
1821 
1822 static int
1823 resource_new_name(const char *name, int unit)
1824 {
1825 	struct config_device *new;
1826 
1827 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1828 		     M_INTWAIT | M_ZERO);
1829 	if (devtab && devtab_count > 0)
1830 		bcopy(devtab, new, devtab_count * sizeof(*new));
1831 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1832 	if (new[devtab_count].name == NULL) {
1833 		kfree(new, M_TEMP);
1834 		return(-1);
1835 	}
1836 	strcpy(new[devtab_count].name, name);
1837 	new[devtab_count].unit = unit;
1838 	new[devtab_count].resource_count = 0;
1839 	new[devtab_count].resources = NULL;
1840 	if (devtab && devtab != config_devtab)
1841 		kfree(devtab, M_TEMP);
1842 	devtab = new;
1843 	return devtab_count++;
1844 }
1845 
1846 static int
1847 resource_new_resname(int j, const char *resname, resource_type type)
1848 {
1849 	struct config_resource *new;
1850 	int i;
1851 
1852 	i = devtab[j].resource_count;
1853 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1854 	if (devtab[j].resources && i > 0)
1855 		bcopy(devtab[j].resources, new, i * sizeof(*new));
1856 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
1857 	if (new[i].name == NULL) {
1858 		kfree(new, M_TEMP);
1859 		return(-1);
1860 	}
1861 	strcpy(new[i].name, resname);
1862 	new[i].type = type;
1863 	if (devtab[j].resources)
1864 		kfree(devtab[j].resources, M_TEMP);
1865 	devtab[j].resources = new;
1866 	devtab[j].resource_count = i + 1;
1867 	return(i);
1868 }
1869 
1870 static int
1871 resource_match_string(int i, const char *resname, const char *value)
1872 {
1873 	int j;
1874 	struct config_resource *res;
1875 
1876 	for (j = 0, res = devtab[i].resources;
1877 	     j < devtab[i].resource_count; j++, res++)
1878 		if (!strcmp(res->name, resname)
1879 		    && res->type == RES_STRING
1880 		    && !strcmp(res->u.stringval, value))
1881 			return(j);
1882 	return(-1);
1883 }
1884 
1885 static int
1886 resource_find(const char *name, int unit, const char *resname,
1887 	      struct config_resource **result)
1888 {
1889 	int i, j;
1890 	struct config_resource *res;
1891 
1892 	/*
1893 	 * First check specific instances, then generic.
1894 	 */
1895 	for (i = 0; i < devtab_count; i++) {
1896 		if (devtab[i].unit < 0)
1897 			continue;
1898 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1899 			res = devtab[i].resources;
1900 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1901 				if (!strcmp(res->name, resname)) {
1902 					*result = res;
1903 					return(0);
1904 				}
1905 		}
1906 	}
1907 	for (i = 0; i < devtab_count; i++) {
1908 		if (devtab[i].unit >= 0)
1909 			continue;
1910 		/* XXX should this `&& devtab[i].unit == unit' be here? */
1911 		/* XXX if so, then the generic match does nothing */
1912 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
1913 			res = devtab[i].resources;
1914 			for (j = 0; j < devtab[i].resource_count; j++, res++)
1915 				if (!strcmp(res->name, resname)) {
1916 					*result = res;
1917 					return(0);
1918 				}
1919 		}
1920 	}
1921 	return(ENOENT);
1922 }
1923 
1924 static int
1925 resource_kenv(const char *name, int unit, const char *resname, long *result)
1926 {
1927 	const char *env;
1928 	char buf[64];
1929 
1930 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
1931 	if ((env = kgetenv(buf)) != NULL) {
1932 		*result = strtol(env, NULL, 0);
1933 		return(0);
1934 	}
1935 	return (ENOENT);
1936 }
1937 
1938 int
1939 resource_int_value(const char *name, int unit, const char *resname, int *result)
1940 {
1941 	struct config_resource *res;
1942 	long kvalue = 0;
1943 	int error;
1944 
1945 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
1946 		*result = (int)kvalue;
1947 		return 0;
1948 	}
1949 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1950 		return(error);
1951 	if (res->type != RES_INT)
1952 		return(EFTYPE);
1953 	*result = res->u.intval;
1954 	return(0);
1955 }
1956 
1957 int
1958 resource_long_value(const char *name, int unit, const char *resname,
1959 		    long *result)
1960 {
1961 	struct config_resource *res;
1962 	long kvalue;
1963 	int error;
1964 
1965 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
1966 		*result = kvalue;
1967 		return 0;
1968 	}
1969 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1970 		return(error);
1971 	if (res->type != RES_LONG)
1972 		return(EFTYPE);
1973 	*result = res->u.longval;
1974 	return(0);
1975 }
1976 
1977 int
1978 resource_string_value(const char *name, int unit, const char *resname,
1979 		      char **result)
1980 {
1981 	int error;
1982 	struct config_resource *res;
1983 
1984 	if ((error = resource_find(name, unit, resname, &res)) != 0)
1985 		return(error);
1986 	if (res->type != RES_STRING)
1987 		return(EFTYPE);
1988 	*result = res->u.stringval;
1989 	return(0);
1990 }
1991 
1992 int
1993 resource_query_string(int i, const char *resname, const char *value)
1994 {
1995 	if (i < 0)
1996 		i = 0;
1997 	else
1998 		i = i + 1;
1999 	for (; i < devtab_count; i++)
2000 		if (resource_match_string(i, resname, value) >= 0)
2001 			return(i);
2002 	return(-1);
2003 }
2004 
2005 int
2006 resource_locate(int i, const char *resname)
2007 {
2008 	if (i < 0)
2009 		i = 0;
2010 	else
2011 		i = i + 1;
2012 	for (; i < devtab_count; i++)
2013 		if (!strcmp(devtab[i].name, resname))
2014 			return(i);
2015 	return(-1);
2016 }
2017 
2018 int
2019 resource_count(void)
2020 {
2021 	return(devtab_count);
2022 }
2023 
2024 char *
2025 resource_query_name(int i)
2026 {
2027 	return(devtab[i].name);
2028 }
2029 
2030 int
2031 resource_query_unit(int i)
2032 {
2033 	return(devtab[i].unit);
2034 }
2035 
2036 static int
2037 resource_create(const char *name, int unit, const char *resname,
2038 		resource_type type, struct config_resource **result)
2039 {
2040 	int i, j;
2041 	struct config_resource *res = NULL;
2042 
2043 	for (i = 0; i < devtab_count; i++)
2044 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2045 			res = devtab[i].resources;
2046 			break;
2047 		}
2048 	if (res == NULL) {
2049 		i = resource_new_name(name, unit);
2050 		if (i < 0)
2051 			return(ENOMEM);
2052 		res = devtab[i].resources;
2053 	}
2054 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2055 		if (!strcmp(res->name, resname)) {
2056 			*result = res;
2057 			return(0);
2058 		}
2059 	j = resource_new_resname(i, resname, type);
2060 	if (j < 0)
2061 		return(ENOMEM);
2062 	res = &devtab[i].resources[j];
2063 	*result = res;
2064 	return(0);
2065 }
2066 
2067 int
2068 resource_set_int(const char *name, int unit, const char *resname, int value)
2069 {
2070 	int error;
2071 	struct config_resource *res;
2072 
2073 	error = resource_create(name, unit, resname, RES_INT, &res);
2074 	if (error)
2075 		return(error);
2076 	if (res->type != RES_INT)
2077 		return(EFTYPE);
2078 	res->u.intval = value;
2079 	return(0);
2080 }
2081 
2082 int
2083 resource_set_long(const char *name, int unit, const char *resname, long value)
2084 {
2085 	int error;
2086 	struct config_resource *res;
2087 
2088 	error = resource_create(name, unit, resname, RES_LONG, &res);
2089 	if (error)
2090 		return(error);
2091 	if (res->type != RES_LONG)
2092 		return(EFTYPE);
2093 	res->u.longval = value;
2094 	return(0);
2095 }
2096 
2097 int
2098 resource_set_string(const char *name, int unit, const char *resname,
2099 		    const char *value)
2100 {
2101 	int error;
2102 	struct config_resource *res;
2103 
2104 	error = resource_create(name, unit, resname, RES_STRING, &res);
2105 	if (error)
2106 		return(error);
2107 	if (res->type != RES_STRING)
2108 		return(EFTYPE);
2109 	if (res->u.stringval)
2110 		kfree(res->u.stringval, M_TEMP);
2111 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2112 	if (res->u.stringval == NULL)
2113 		return(ENOMEM);
2114 	strcpy(res->u.stringval, value);
2115 	return(0);
2116 }
2117 
2118 static void
2119 resource_cfgload(void *dummy __unused)
2120 {
2121 	struct config_resource *res, *cfgres;
2122 	int i, j;
2123 	int error;
2124 	char *name, *resname;
2125 	int unit;
2126 	resource_type type;
2127 	char *stringval;
2128 	int config_devtab_count;
2129 
2130 	config_devtab_count = devtab_count;
2131 	devtab = NULL;
2132 	devtab_count = 0;
2133 
2134 	for (i = 0; i < config_devtab_count; i++) {
2135 		name = config_devtab[i].name;
2136 		unit = config_devtab[i].unit;
2137 
2138 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2139 			cfgres = config_devtab[i].resources;
2140 			resname = cfgres[j].name;
2141 			type = cfgres[j].type;
2142 			error = resource_create(name, unit, resname, type,
2143 						&res);
2144 			if (error) {
2145 				kprintf("create resource %s%d: error %d\n",
2146 					name, unit, error);
2147 				continue;
2148 			}
2149 			if (res->type != type) {
2150 				kprintf("type mismatch %s%d: %d != %d\n",
2151 					name, unit, res->type, type);
2152 				continue;
2153 			}
2154 			switch (type) {
2155 			case RES_INT:
2156 				res->u.intval = cfgres[j].u.intval;
2157 				break;
2158 			case RES_LONG:
2159 				res->u.longval = cfgres[j].u.longval;
2160 				break;
2161 			case RES_STRING:
2162 				if (res->u.stringval)
2163 					kfree(res->u.stringval, M_TEMP);
2164 				stringval = cfgres[j].u.stringval;
2165 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2166 							  M_TEMP, M_INTWAIT);
2167 				if (res->u.stringval == NULL)
2168 					break;
2169 				strcpy(res->u.stringval, stringval);
2170 				break;
2171 			default:
2172 				panic("unknown resource type %d", type);
2173 			}
2174 		}
2175 	}
2176 }
2177 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0)
2178 
2179 
2180 /*======================================*/
2181 /*
2182  * Some useful method implementations to make life easier for bus drivers.
2183  */
2184 
2185 void
2186 resource_list_init(struct resource_list *rl)
2187 {
2188 	SLIST_INIT(rl);
2189 }
2190 
2191 void
2192 resource_list_free(struct resource_list *rl)
2193 {
2194 	struct resource_list_entry *rle;
2195 
2196 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2197 		if (rle->res)
2198 			panic("resource_list_free: resource entry is busy");
2199 		SLIST_REMOVE_HEAD(rl, link);
2200 		kfree(rle, M_BUS);
2201 	}
2202 }
2203 
2204 void
2205 resource_list_add(struct resource_list *rl, int type, int rid,
2206     u_long start, u_long end, u_long count, int cpuid)
2207 {
2208 	struct resource_list_entry *rle;
2209 
2210 	rle = resource_list_find(rl, type, rid);
2211 	if (rle == NULL) {
2212 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2213 			     M_INTWAIT);
2214 		SLIST_INSERT_HEAD(rl, rle, link);
2215 		rle->type = type;
2216 		rle->rid = rid;
2217 		rle->res = NULL;
2218 		rle->cpuid = -1;
2219 	}
2220 
2221 	if (rle->res)
2222 		panic("resource_list_add: resource entry is busy");
2223 
2224 	rle->start = start;
2225 	rle->end = end;
2226 	rle->count = count;
2227 
2228 	if (cpuid != -1) {
2229 		if (rle->cpuid != -1 && rle->cpuid != cpuid) {
2230 			panic("resource_list_add: moving from cpu%d -> cpu%d",
2231 			    rle->cpuid, cpuid);
2232 		}
2233 		rle->cpuid = cpuid;
2234 	}
2235 }
2236 
2237 struct resource_list_entry*
2238 resource_list_find(struct resource_list *rl,
2239 		   int type, int rid)
2240 {
2241 	struct resource_list_entry *rle;
2242 
2243 	SLIST_FOREACH(rle, rl, link)
2244 		if (rle->type == type && rle->rid == rid)
2245 			return(rle);
2246 	return(NULL);
2247 }
2248 
2249 void
2250 resource_list_delete(struct resource_list *rl,
2251 		     int type, int rid)
2252 {
2253 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2254 
2255 	if (rle) {
2256 		if (rle->res != NULL)
2257 			panic("resource_list_delete: resource has not been released");
2258 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2259 		kfree(rle, M_BUS);
2260 	}
2261 }
2262 
2263 struct resource *
2264 resource_list_alloc(struct resource_list *rl,
2265 		    device_t bus, device_t child,
2266 		    int type, int *rid,
2267 		    u_long start, u_long end,
2268 		    u_long count, u_int flags, int cpuid)
2269 {
2270 	struct resource_list_entry *rle = NULL;
2271 	int passthrough = (device_get_parent(child) != bus);
2272 	int isdefault = (start == 0UL && end == ~0UL);
2273 
2274 	if (passthrough) {
2275 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2276 					  type, rid,
2277 					  start, end, count, flags, cpuid));
2278 	}
2279 
2280 	rle = resource_list_find(rl, type, *rid);
2281 
2282 	if (!rle)
2283 		return(0);		/* no resource of that type/rid */
2284 
2285 	if (rle->res)
2286 		panic("resource_list_alloc: resource entry is busy");
2287 
2288 	if (isdefault) {
2289 		start = rle->start;
2290 		count = max(count, rle->count);
2291 		end = max(rle->end, start + count - 1);
2292 	}
2293 	cpuid = rle->cpuid;
2294 
2295 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2296 				      type, rid, start, end, count,
2297 				      flags, cpuid);
2298 
2299 	/*
2300 	 * Record the new range.
2301 	 */
2302 	if (rle->res) {
2303 		rle->start = rman_get_start(rle->res);
2304 		rle->end = rman_get_end(rle->res);
2305 		rle->count = count;
2306 	}
2307 
2308 	return(rle->res);
2309 }
2310 
2311 int
2312 resource_list_release(struct resource_list *rl,
2313 		      device_t bus, device_t child,
2314 		      int type, int rid, struct resource *res)
2315 {
2316 	struct resource_list_entry *rle = NULL;
2317 	int passthrough = (device_get_parent(child) != bus);
2318 	int error;
2319 
2320 	if (passthrough) {
2321 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2322 					    type, rid, res));
2323 	}
2324 
2325 	rle = resource_list_find(rl, type, rid);
2326 
2327 	if (!rle)
2328 		panic("resource_list_release: can't find resource");
2329 	if (!rle->res)
2330 		panic("resource_list_release: resource entry is not busy");
2331 
2332 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2333 				     type, rid, res);
2334 	if (error)
2335 		return(error);
2336 
2337 	rle->res = NULL;
2338 	return(0);
2339 }
2340 
2341 int
2342 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2343 			 const char *format)
2344 {
2345 	struct resource_list_entry *rle;
2346 	int printed, retval;
2347 
2348 	printed = 0;
2349 	retval = 0;
2350 	/* Yes, this is kinda cheating */
2351 	SLIST_FOREACH(rle, rl, link) {
2352 		if (rle->type == type) {
2353 			if (printed == 0)
2354 				retval += kprintf(" %s ", name);
2355 			else
2356 				retval += kprintf(",");
2357 			printed++;
2358 			retval += kprintf(format, rle->start);
2359 			if (rle->count > 1) {
2360 				retval += kprintf("-");
2361 				retval += kprintf(format, rle->start +
2362 						 rle->count - 1);
2363 			}
2364 		}
2365 	}
2366 	return(retval);
2367 }
2368 
2369 /*
2370  * Generic driver/device identify functions.  These will install a device
2371  * rendezvous point under the parent using the same name as the driver
2372  * name, which will at a later time be probed and attached.
2373  *
2374  * These functions are used when the parent does not 'scan' its bus for
2375  * matching devices, or for the particular devices using these functions,
2376  * or when the device is a pseudo or synthesized device (such as can be
2377  * found under firewire and ppbus).
2378  */
2379 int
2380 bus_generic_identify(driver_t *driver, device_t parent)
2381 {
2382 	if (parent->state == DS_ATTACHED)
2383 		return (0);
2384 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2385 	return (0);
2386 }
2387 
2388 int
2389 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2390 {
2391 	if (parent->state == DS_ATTACHED)
2392 		return (0);
2393 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2394 	return (0);
2395 }
2396 
2397 /*
2398  * Call DEVICE_IDENTIFY for each driver.
2399  */
2400 int
2401 bus_generic_probe(device_t dev)
2402 {
2403 	devclass_t dc = dev->devclass;
2404 	driverlink_t dl;
2405 
2406 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2407 		DEVICE_IDENTIFY(dl->driver, dev);
2408 	}
2409 
2410 	return(0);
2411 }
2412 
2413 /*
2414  * This is an aweful hack due to the isa bus and autoconf code not
2415  * probing the ISA devices until after everything else has configured.
2416  * The ISA bus did a dummy attach long ago so we have to set it back
2417  * to an earlier state so the probe thinks its the initial probe and
2418  * not a bus rescan.
2419  *
2420  * XXX remove by properly defering the ISA bus scan.
2421  */
2422 int
2423 bus_generic_probe_hack(device_t dev)
2424 {
2425 	if (dev->state == DS_ATTACHED) {
2426 		dev->state = DS_ALIVE;
2427 		bus_generic_probe(dev);
2428 		dev->state = DS_ATTACHED;
2429 	}
2430 	return (0);
2431 }
2432 
2433 int
2434 bus_generic_attach(device_t dev)
2435 {
2436 	device_t child;
2437 
2438 	TAILQ_FOREACH(child, &dev->children, link) {
2439 		device_probe_and_attach(child);
2440 	}
2441 
2442 	return(0);
2443 }
2444 
2445 int
2446 bus_generic_detach(device_t dev)
2447 {
2448 	device_t child;
2449 	int error;
2450 
2451 	if (dev->state != DS_ATTACHED)
2452 		return(EBUSY);
2453 
2454 	TAILQ_FOREACH(child, &dev->children, link)
2455 		if ((error = device_detach(child)) != 0)
2456 			return(error);
2457 
2458 	return 0;
2459 }
2460 
2461 int
2462 bus_generic_shutdown(device_t dev)
2463 {
2464 	device_t child;
2465 
2466 	TAILQ_FOREACH(child, &dev->children, link)
2467 		device_shutdown(child);
2468 
2469 	return(0);
2470 }
2471 
2472 int
2473 bus_generic_suspend(device_t dev)
2474 {
2475 	int error;
2476 	device_t child, child2;
2477 
2478 	TAILQ_FOREACH(child, &dev->children, link) {
2479 		error = DEVICE_SUSPEND(child);
2480 		if (error) {
2481 			for (child2 = TAILQ_FIRST(&dev->children);
2482 			     child2 && child2 != child;
2483 			     child2 = TAILQ_NEXT(child2, link))
2484 				DEVICE_RESUME(child2);
2485 			return(error);
2486 		}
2487 	}
2488 	return(0);
2489 }
2490 
2491 int
2492 bus_generic_resume(device_t dev)
2493 {
2494 	device_t child;
2495 
2496 	TAILQ_FOREACH(child, &dev->children, link)
2497 		DEVICE_RESUME(child);
2498 		/* if resume fails, there's nothing we can usefully do... */
2499 
2500 	return(0);
2501 }
2502 
2503 int
2504 bus_print_child_header(device_t dev, device_t child)
2505 {
2506 	int retval = 0;
2507 
2508 	if (device_get_desc(child))
2509 		retval += device_printf(child, "<%s>", device_get_desc(child));
2510 	else
2511 		retval += kprintf("%s", device_get_nameunit(child));
2512 	if (bootverbose) {
2513 		if (child->state != DS_ATTACHED)
2514 			kprintf(" [tentative]");
2515 		else
2516 			kprintf(" [attached!]");
2517 	}
2518 	return(retval);
2519 }
2520 
2521 int
2522 bus_print_child_footer(device_t dev, device_t child)
2523 {
2524 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2525 }
2526 
2527 device_t
2528 bus_generic_add_child(device_t dev, device_t child, int order,
2529 		      const char *name, int unit)
2530 {
2531 	if (dev->parent)
2532 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2533 	else
2534 		dev = device_add_child_ordered(child, order, name, unit);
2535 	return(dev);
2536 
2537 }
2538 
2539 int
2540 bus_generic_print_child(device_t dev, device_t child)
2541 {
2542 	int retval = 0;
2543 
2544 	retval += bus_print_child_header(dev, child);
2545 	retval += bus_print_child_footer(dev, child);
2546 
2547 	return(retval);
2548 }
2549 
2550 int
2551 bus_generic_read_ivar(device_t dev, device_t child, int index,
2552 		      uintptr_t * result)
2553 {
2554 	int error;
2555 
2556 	if (dev->parent)
2557 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2558 	else
2559 		error = ENOENT;
2560 	return (error);
2561 }
2562 
2563 int
2564 bus_generic_write_ivar(device_t dev, device_t child, int index,
2565 		       uintptr_t value)
2566 {
2567 	int error;
2568 
2569 	if (dev->parent)
2570 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2571 	else
2572 		error = ENOENT;
2573 	return (error);
2574 }
2575 
2576 /*
2577  * Resource list are used for iterations, do not recurse.
2578  */
2579 struct resource_list *
2580 bus_generic_get_resource_list(device_t dev, device_t child)
2581 {
2582 	return (NULL);
2583 }
2584 
2585 void
2586 bus_generic_driver_added(device_t dev, driver_t *driver)
2587 {
2588 	device_t child;
2589 
2590 	DEVICE_IDENTIFY(driver, dev);
2591 	TAILQ_FOREACH(child, &dev->children, link) {
2592 		if (child->state == DS_NOTPRESENT)
2593 			device_probe_and_attach(child);
2594 	}
2595 }
2596 
2597 int
2598 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2599     int flags, driver_intr_t *intr, void *arg, void **cookiep,
2600     lwkt_serialize_t serializer, const char *desc)
2601 {
2602 	/* Propagate up the bus hierarchy until someone handles it. */
2603 	if (dev->parent) {
2604 		return BUS_SETUP_INTR(dev->parent, child, irq, flags,
2605 		    intr, arg, cookiep, serializer, desc);
2606 	} else {
2607 		return EINVAL;
2608 	}
2609 }
2610 
2611 int
2612 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2613 			  void *cookie)
2614 {
2615 	/* Propagate up the bus hierarchy until someone handles it. */
2616 	if (dev->parent)
2617 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2618 	else
2619 		return(EINVAL);
2620 }
2621 
2622 int
2623 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2624 {
2625 	if (dev->parent)
2626 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2627 	else
2628 		return(0);
2629 }
2630 
2631 void
2632 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2633 {
2634 	if (dev->parent)
2635 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2636 }
2637 
2638 int
2639 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
2640     enum intr_polarity pol)
2641 {
2642 	/* Propagate up the bus hierarchy until someone handles it. */
2643 	if (dev->parent)
2644 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
2645 	else
2646 		return(EINVAL);
2647 }
2648 
2649 struct resource *
2650 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2651     u_long start, u_long end, u_long count, u_int flags, int cpuid)
2652 {
2653 	/* Propagate up the bus hierarchy until someone handles it. */
2654 	if (dev->parent)
2655 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2656 					   start, end, count, flags, cpuid));
2657 	else
2658 		return(NULL);
2659 }
2660 
2661 int
2662 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2663 			     struct resource *r)
2664 {
2665 	/* Propagate up the bus hierarchy until someone handles it. */
2666 	if (dev->parent)
2667 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2668 	else
2669 		return(EINVAL);
2670 }
2671 
2672 int
2673 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2674 			      struct resource *r)
2675 {
2676 	/* Propagate up the bus hierarchy until someone handles it. */
2677 	if (dev->parent)
2678 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2679 	else
2680 		return(EINVAL);
2681 }
2682 
2683 int
2684 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2685 				int rid, struct resource *r)
2686 {
2687 	/* Propagate up the bus hierarchy until someone handles it. */
2688 	if (dev->parent)
2689 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2690 					       r));
2691 	else
2692 		return(EINVAL);
2693 }
2694 
2695 int
2696 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2697 			 u_long *startp, u_long *countp)
2698 {
2699 	int error;
2700 
2701 	error = ENOENT;
2702 	if (dev->parent) {
2703 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2704 					 startp, countp);
2705 	}
2706 	return (error);
2707 }
2708 
2709 int
2710 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2711 			u_long start, u_long count, int cpuid)
2712 {
2713 	int error;
2714 
2715 	error = EINVAL;
2716 	if (dev->parent) {
2717 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2718 					 start, count, cpuid);
2719 	}
2720 	return (error);
2721 }
2722 
2723 void
2724 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2725 {
2726 	if (dev->parent)
2727 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2728 }
2729 
2730 int
2731 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2732     u_long *startp, u_long *countp)
2733 {
2734 	struct resource_list *rl = NULL;
2735 	struct resource_list_entry *rle = NULL;
2736 
2737 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2738 	if (!rl)
2739 		return(EINVAL);
2740 
2741 	rle = resource_list_find(rl, type, rid);
2742 	if (!rle)
2743 		return(ENOENT);
2744 
2745 	if (startp)
2746 		*startp = rle->start;
2747 	if (countp)
2748 		*countp = rle->count;
2749 
2750 	return(0);
2751 }
2752 
2753 int
2754 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2755     u_long start, u_long count, int cpuid)
2756 {
2757 	struct resource_list *rl = NULL;
2758 
2759 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2760 	if (!rl)
2761 		return(EINVAL);
2762 
2763 	resource_list_add(rl, type, rid, start, (start + count - 1), count,
2764 	    cpuid);
2765 
2766 	return(0);
2767 }
2768 
2769 void
2770 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2771 {
2772 	struct resource_list *rl = NULL;
2773 
2774 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2775 	if (!rl)
2776 		return;
2777 
2778 	resource_list_delete(rl, type, rid);
2779 }
2780 
2781 int
2782 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2783     int rid, struct resource *r)
2784 {
2785 	struct resource_list *rl = NULL;
2786 
2787 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2788 	if (!rl)
2789 		return(EINVAL);
2790 
2791 	return(resource_list_release(rl, dev, child, type, rid, r));
2792 }
2793 
2794 struct resource *
2795 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2796     int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid)
2797 {
2798 	struct resource_list *rl = NULL;
2799 
2800 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2801 	if (!rl)
2802 		return(NULL);
2803 
2804 	return(resource_list_alloc(rl, dev, child, type, rid,
2805 	    start, end, count, flags, cpuid));
2806 }
2807 
2808 int
2809 bus_generic_child_present(device_t bus, device_t child)
2810 {
2811 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2812 }
2813 
2814 
2815 /*
2816  * Some convenience functions to make it easier for drivers to use the
2817  * resource-management functions.  All these really do is hide the
2818  * indirection through the parent's method table, making for slightly
2819  * less-wordy code.  In the future, it might make sense for this code
2820  * to maintain some sort of a list of resources allocated by each device.
2821  */
2822 int
2823 bus_alloc_resources(device_t dev, struct resource_spec *rs,
2824     struct resource **res)
2825 {
2826 	int i;
2827 
2828 	for (i = 0; rs[i].type != -1; i++)
2829 	        res[i] = NULL;
2830 	for (i = 0; rs[i].type != -1; i++) {
2831 		res[i] = bus_alloc_resource_any(dev,
2832 		    rs[i].type, &rs[i].rid, rs[i].flags);
2833 		if (res[i] == NULL) {
2834 			bus_release_resources(dev, rs, res);
2835 			return (ENXIO);
2836 		}
2837 	}
2838 	return (0);
2839 }
2840 
2841 void
2842 bus_release_resources(device_t dev, const struct resource_spec *rs,
2843     struct resource **res)
2844 {
2845 	int i;
2846 
2847 	for (i = 0; rs[i].type != -1; i++)
2848 		if (res[i] != NULL) {
2849 			bus_release_resource(
2850 			    dev, rs[i].type, rs[i].rid, res[i]);
2851 			res[i] = NULL;
2852 		}
2853 }
2854 
2855 struct resource *
2856 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
2857 		   u_long count, u_int flags)
2858 {
2859 	if (dev->parent == NULL)
2860 		return(0);
2861 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2862 				  count, flags, -1));
2863 }
2864 
2865 struct resource *
2866 bus_alloc_legacy_irq_resource(device_t dev, int *rid, u_long irq, u_int flags)
2867 {
2868 	if (dev->parent == NULL)
2869 		return(0);
2870 	return BUS_ALLOC_RESOURCE(dev->parent, dev, SYS_RES_IRQ, rid,
2871 	    irq, irq, 1, flags, machintr_legacy_intr_cpuid(irq));
2872 }
2873 
2874 int
2875 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
2876 {
2877 	if (dev->parent == NULL)
2878 		return(EINVAL);
2879 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2880 }
2881 
2882 int
2883 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
2884 {
2885 	if (dev->parent == NULL)
2886 		return(EINVAL);
2887 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
2888 }
2889 
2890 int
2891 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
2892 {
2893 	if (dev->parent == NULL)
2894 		return(EINVAL);
2895 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
2896 }
2897 
2898 int
2899 bus_setup_intr_descr(device_t dev, struct resource *r, int flags,
2900     driver_intr_t handler, void *arg, void **cookiep,
2901     lwkt_serialize_t serializer, const char *desc)
2902 {
2903 	if (dev->parent == NULL)
2904 		return EINVAL;
2905 	return BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
2906 	    cookiep, serializer, desc);
2907 }
2908 
2909 int
2910 bus_setup_intr(device_t dev, struct resource *r, int flags,
2911     driver_intr_t handler, void *arg, void **cookiep,
2912     lwkt_serialize_t serializer)
2913 {
2914 	return bus_setup_intr_descr(dev, r, flags, handler, arg, cookiep,
2915 	    serializer, NULL);
2916 }
2917 
2918 int
2919 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
2920 {
2921 	if (dev->parent == NULL)
2922 		return(EINVAL);
2923 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
2924 }
2925 
2926 void
2927 bus_enable_intr(device_t dev, void *cookie)
2928 {
2929 	if (dev->parent)
2930 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
2931 }
2932 
2933 int
2934 bus_disable_intr(device_t dev, void *cookie)
2935 {
2936 	if (dev->parent)
2937 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
2938 	else
2939 		return(0);
2940 }
2941 
2942 int
2943 bus_set_resource(device_t dev, int type, int rid,
2944 		 u_long start, u_long count, int cpuid)
2945 {
2946 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
2947 				start, count, cpuid));
2948 }
2949 
2950 int
2951 bus_get_resource(device_t dev, int type, int rid,
2952 		 u_long *startp, u_long *countp)
2953 {
2954 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2955 				startp, countp));
2956 }
2957 
2958 u_long
2959 bus_get_resource_start(device_t dev, int type, int rid)
2960 {
2961 	u_long start, count;
2962 	int error;
2963 
2964 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2965 				 &start, &count);
2966 	if (error)
2967 		return(0);
2968 	return(start);
2969 }
2970 
2971 u_long
2972 bus_get_resource_count(device_t dev, int type, int rid)
2973 {
2974 	u_long start, count;
2975 	int error;
2976 
2977 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
2978 				 &start, &count);
2979 	if (error)
2980 		return(0);
2981 	return(count);
2982 }
2983 
2984 void
2985 bus_delete_resource(device_t dev, int type, int rid)
2986 {
2987 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
2988 }
2989 
2990 int
2991 bus_child_present(device_t child)
2992 {
2993 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
2994 }
2995 
2996 int
2997 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
2998 {
2999 	device_t parent;
3000 
3001 	parent = device_get_parent(child);
3002 	if (parent == NULL) {
3003 		*buf = '\0';
3004 		return (0);
3005 	}
3006 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3007 }
3008 
3009 int
3010 bus_child_location_str(device_t child, char *buf, size_t buflen)
3011 {
3012 	device_t parent;
3013 
3014 	parent = device_get_parent(child);
3015 	if (parent == NULL) {
3016 		*buf = '\0';
3017 		return (0);
3018 	}
3019 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3020 }
3021 
3022 static int
3023 root_print_child(device_t dev, device_t child)
3024 {
3025 	return(0);
3026 }
3027 
3028 static int
3029 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3030 		void **cookiep, lwkt_serialize_t serializer, const char *desc)
3031 {
3032 	/*
3033 	 * If an interrupt mapping gets to here something bad has happened.
3034 	 */
3035 	panic("root_setup_intr");
3036 }
3037 
3038 /*
3039  * If we get here, assume that the device is permanant and really is
3040  * present in the system.  Removable bus drivers are expected to intercept
3041  * this call long before it gets here.  We return -1 so that drivers that
3042  * really care can check vs -1 or some ERRNO returned higher in the food
3043  * chain.
3044  */
3045 static int
3046 root_child_present(device_t dev, device_t child)
3047 {
3048 	return(-1);
3049 }
3050 
3051 /*
3052  * XXX NOTE! other defaults may be set in bus_if.m
3053  */
3054 static kobj_method_t root_methods[] = {
3055 	/* Device interface */
3056 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3057 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3058 	KOBJMETHOD(device_resume,	bus_generic_resume),
3059 
3060 	/* Bus interface */
3061 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
3062 	KOBJMETHOD(bus_print_child,	root_print_child),
3063 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3064 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3065 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3066 	KOBJMETHOD(bus_child_present,   root_child_present),
3067 
3068 	KOBJMETHOD_END
3069 };
3070 
3071 static driver_t root_driver = {
3072 	"root",
3073 	root_methods,
3074 	1,			/* no softc */
3075 };
3076 
3077 device_t	root_bus;
3078 devclass_t	root_devclass;
3079 
3080 static int
3081 root_bus_module_handler(module_t mod, int what, void* arg)
3082 {
3083 	switch (what) {
3084 	case MOD_LOAD:
3085 		TAILQ_INIT(&bus_data_devices);
3086 		root_bus = make_device(NULL, "root", 0);
3087 		root_bus->desc = "System root bus";
3088 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3089 		root_bus->driver = &root_driver;
3090 		root_bus->state = DS_ALIVE;
3091 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3092 		devinit();
3093 		return(0);
3094 
3095 	case MOD_SHUTDOWN:
3096 		device_shutdown(root_bus);
3097 		return(0);
3098 	default:
3099 		return(0);
3100 	}
3101 }
3102 
3103 static moduledata_t root_bus_mod = {
3104 	"rootbus",
3105 	root_bus_module_handler,
3106 	0
3107 };
3108 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3109 
3110 void
3111 root_bus_configure(void)
3112 {
3113 	int warncount;
3114 	device_t dev;
3115 
3116 	PDEBUG(("."));
3117 
3118 	/*
3119 	 * handle device_identify based device attachments to the root_bus
3120 	 * (typically nexus).
3121 	 */
3122 	bus_generic_probe(root_bus);
3123 
3124 	/*
3125 	 * Probe and attach the devices under root_bus.
3126 	 */
3127 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3128 		device_probe_and_attach(dev);
3129 	}
3130 
3131 	/*
3132 	 * Wait for all asynchronous attaches to complete.  If we don't
3133 	 * our legacy ISA bus scan could steal device unit numbers or
3134 	 * even I/O ports.
3135 	 */
3136 	warncount = 10;
3137 	if (numasyncthreads)
3138 		kprintf("Waiting for async drivers to attach\n");
3139 	while (numasyncthreads > 0) {
3140 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3141 			--warncount;
3142 		if (warncount == 0) {
3143 			kprintf("Warning: Still waiting for %d "
3144 				"drivers to attach\n", numasyncthreads);
3145 		} else if (warncount == -30) {
3146 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3147 			break;
3148 		}
3149 	}
3150 	root_bus->state = DS_ATTACHED;
3151 }
3152 
3153 int
3154 driver_module_handler(module_t mod, int what, void *arg)
3155 {
3156 	int error;
3157 	struct driver_module_data *dmd;
3158 	devclass_t bus_devclass;
3159 	kobj_class_t driver;
3160         const char *parentname;
3161 
3162 	dmd = (struct driver_module_data *)arg;
3163 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3164 	error = 0;
3165 
3166 	switch (what) {
3167 	case MOD_LOAD:
3168 		if (dmd->dmd_chainevh)
3169 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3170 
3171 		driver = dmd->dmd_driver;
3172 		PDEBUG(("Loading module: driver %s on bus %s",
3173 		        DRIVERNAME(driver), dmd->dmd_busname));
3174 
3175 		/*
3176 		 * If the driver has any base classes, make the
3177 		 * devclass inherit from the devclass of the driver's
3178 		 * first base class. This will allow the system to
3179 		 * search for drivers in both devclasses for children
3180 		 * of a device using this driver.
3181 		 */
3182 		if (driver->baseclasses)
3183 			parentname = driver->baseclasses[0]->name;
3184 		else
3185 			parentname = NULL;
3186 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3187 							    parentname, TRUE);
3188 
3189 		error = devclass_add_driver(bus_devclass, driver);
3190 		if (error)
3191 			break;
3192 		break;
3193 
3194 	case MOD_UNLOAD:
3195 		PDEBUG(("Unloading module: driver %s from bus %s",
3196 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3197 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3198 
3199 		if (!error && dmd->dmd_chainevh)
3200 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3201 		break;
3202 	}
3203 
3204 	return (error);
3205 }
3206 
3207 #ifdef BUS_DEBUG
3208 
3209 /*
3210  * The _short versions avoid iteration by not calling anything that prints
3211  * more than oneliners. I love oneliners.
3212  */
3213 
3214 static void
3215 print_device_short(device_t dev, int indent)
3216 {
3217 	if (!dev)
3218 		return;
3219 
3220 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3221 		      dev->unit, dev->desc,
3222 		      (dev->parent? "":"no "),
3223 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3224 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3225 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3226 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3227 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3228 		      (dev->ivars? "":"no "),
3229 		      (dev->softc? "":"no "),
3230 		      dev->busy));
3231 }
3232 
3233 static void
3234 print_device(device_t dev, int indent)
3235 {
3236 	if (!dev)
3237 		return;
3238 
3239 	print_device_short(dev, indent);
3240 
3241 	indentprintf(("Parent:\n"));
3242 	print_device_short(dev->parent, indent+1);
3243 	indentprintf(("Driver:\n"));
3244 	print_driver_short(dev->driver, indent+1);
3245 	indentprintf(("Devclass:\n"));
3246 	print_devclass_short(dev->devclass, indent+1);
3247 }
3248 
3249 /*
3250  * Print the device and all its children (indented).
3251  */
3252 void
3253 print_device_tree_short(device_t dev, int indent)
3254 {
3255 	device_t child;
3256 
3257 	if (!dev)
3258 		return;
3259 
3260 	print_device_short(dev, indent);
3261 
3262 	TAILQ_FOREACH(child, &dev->children, link)
3263 		print_device_tree_short(child, indent+1);
3264 }
3265 
3266 /*
3267  * Print the device and all its children (indented).
3268  */
3269 void
3270 print_device_tree(device_t dev, int indent)
3271 {
3272 	device_t child;
3273 
3274 	if (!dev)
3275 		return;
3276 
3277 	print_device(dev, indent);
3278 
3279 	TAILQ_FOREACH(child, &dev->children, link)
3280 		print_device_tree(child, indent+1);
3281 }
3282 
3283 static void
3284 print_driver_short(driver_t *driver, int indent)
3285 {
3286 	if (!driver)
3287 		return;
3288 
3289 	indentprintf(("driver %s: softc size = %zu\n",
3290 		      driver->name, driver->size));
3291 }
3292 
3293 static void
3294 print_driver(driver_t *driver, int indent)
3295 {
3296 	if (!driver)
3297 		return;
3298 
3299 	print_driver_short(driver, indent);
3300 }
3301 
3302 
3303 static void
3304 print_driver_list(driver_list_t drivers, int indent)
3305 {
3306 	driverlink_t driver;
3307 
3308 	TAILQ_FOREACH(driver, &drivers, link)
3309 		print_driver(driver->driver, indent);
3310 }
3311 
3312 static void
3313 print_devclass_short(devclass_t dc, int indent)
3314 {
3315 	if (!dc)
3316 		return;
3317 
3318 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3319 }
3320 
3321 static void
3322 print_devclass(devclass_t dc, int indent)
3323 {
3324 	int i;
3325 
3326 	if (!dc)
3327 		return;
3328 
3329 	print_devclass_short(dc, indent);
3330 	indentprintf(("Drivers:\n"));
3331 	print_driver_list(dc->drivers, indent+1);
3332 
3333 	indentprintf(("Devices:\n"));
3334 	for (i = 0; i < dc->maxunit; i++)
3335 		if (dc->devices[i])
3336 			print_device(dc->devices[i], indent+1);
3337 }
3338 
3339 void
3340 print_devclass_list_short(void)
3341 {
3342 	devclass_t dc;
3343 
3344 	kprintf("Short listing of devclasses, drivers & devices:\n");
3345 	TAILQ_FOREACH(dc, &devclasses, link) {
3346 		print_devclass_short(dc, 0);
3347 	}
3348 }
3349 
3350 void
3351 print_devclass_list(void)
3352 {
3353 	devclass_t dc;
3354 
3355 	kprintf("Full listing of devclasses, drivers & devices:\n");
3356 	TAILQ_FOREACH(dc, &devclasses, link) {
3357 		print_devclass(dc, 0);
3358 	}
3359 }
3360 
3361 #endif
3362 
3363 /*
3364  * Check to see if a device is disabled via a disabled hint.
3365  */
3366 int
3367 resource_disabled(const char *name, int unit)
3368 {
3369 	int error, value;
3370 
3371 	error = resource_int_value(name, unit, "disabled", &value);
3372 	if (error)
3373 	       return(0);
3374 	return(value);
3375 }
3376 
3377 /*
3378  * User-space access to the device tree.
3379  *
3380  * We implement a small set of nodes:
3381  *
3382  * hw.bus			Single integer read method to obtain the
3383  *				current generation count.
3384  * hw.bus.devices		Reads the entire device tree in flat space.
3385  * hw.bus.rman			Resource manager interface
3386  *
3387  * We might like to add the ability to scan devclasses and/or drivers to
3388  * determine what else is currently loaded/available.
3389  */
3390 
3391 static int
3392 sysctl_bus(SYSCTL_HANDLER_ARGS)
3393 {
3394 	struct u_businfo	ubus;
3395 
3396 	ubus.ub_version = BUS_USER_VERSION;
3397 	ubus.ub_generation = bus_data_generation;
3398 
3399 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3400 }
3401 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3402     "bus-related data");
3403 
3404 static int
3405 sysctl_devices(SYSCTL_HANDLER_ARGS)
3406 {
3407 	int			*name = (int *)arg1;
3408 	u_int			namelen = arg2;
3409 	int			index;
3410 	struct device		*dev;
3411 	struct u_device		udev;	/* XXX this is a bit big */
3412 	int			error;
3413 
3414 	if (namelen != 2)
3415 		return (EINVAL);
3416 
3417 	if (bus_data_generation_check(name[0]))
3418 		return (EINVAL);
3419 
3420 	index = name[1];
3421 
3422 	/*
3423 	 * Scan the list of devices, looking for the requested index.
3424 	 */
3425 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3426 		if (index-- == 0)
3427 			break;
3428 	}
3429 	if (dev == NULL)
3430 		return (ENOENT);
3431 
3432 	/*
3433 	 * Populate the return array.
3434 	 */
3435 	bzero(&udev, sizeof(udev));
3436 	udev.dv_handle = (uintptr_t)dev;
3437 	udev.dv_parent = (uintptr_t)dev->parent;
3438 	if (dev->nameunit != NULL)
3439 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3440 	if (dev->desc != NULL)
3441 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3442 	if (dev->driver != NULL && dev->driver->name != NULL)
3443 		strlcpy(udev.dv_drivername, dev->driver->name,
3444 		    sizeof(udev.dv_drivername));
3445 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3446 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3447 	udev.dv_devflags = dev->devflags;
3448 	udev.dv_flags = dev->flags;
3449 	udev.dv_state = dev->state;
3450 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3451 	return (error);
3452 }
3453 
3454 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3455     "system device tree");
3456 
3457 int
3458 bus_data_generation_check(int generation)
3459 {
3460 	if (generation != bus_data_generation)
3461 		return (1);
3462 
3463 	/* XXX generate optimised lists here? */
3464 	return (0);
3465 }
3466 
3467 void
3468 bus_data_generation_update(void)
3469 {
3470 	bus_data_generation++;
3471 }
3472 
3473 const char *
3474 intr_str_polarity(enum intr_polarity pola)
3475 {
3476 	switch (pola) {
3477 	case INTR_POLARITY_LOW:
3478 		return "low";
3479 
3480 	case INTR_POLARITY_HIGH:
3481 		return "high";
3482 
3483 	case INTR_POLARITY_CONFORM:
3484 		return "conform";
3485 	}
3486 	return "unknown";
3487 }
3488 
3489 const char *
3490 intr_str_trigger(enum intr_trigger trig)
3491 {
3492 	switch (trig) {
3493 	case INTR_TRIGGER_EDGE:
3494 		return "edge";
3495 
3496 	case INTR_TRIGGER_LEVEL:
3497 		return "level";
3498 
3499 	case INTR_TRIGGER_CONFORM:
3500 		return "conform";
3501 	}
3502 	return "unknown";
3503 }
3504 
3505 int
3506 device_getenv_int(device_t dev, const char *knob, int def)
3507 {
3508 	char env[128];
3509 
3510 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3511 	kgetenv_int(env, &def);
3512 	return def;
3513 }
3514