xref: /dragonfly/sys/kern/subr_bus.c (revision ef3ac1d1)
1 /*
2  * Copyright (c) 1997,1998 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/subr_bus.c,v 1.54.2.9 2002/10/10 15:13:32 jhb Exp $
27  */
28 
29 #include "opt_bus.h"
30 
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/kobj.h>
37 #include <sys/bus_private.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/device.h>
43 #include <sys/lock.h>
44 #include <sys/conf.h>
45 #include <sys/uio.h>
46 #include <sys/filio.h>
47 #include <sys/event.h>
48 #include <sys/signalvar.h>
49 #include <sys/machintr.h>
50 
51 #include <machine/stdarg.h>	/* for device_printf() */
52 
53 #include <sys/thread2.h>
54 #include <sys/mplock2.h>
55 
56 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
57 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
58 
59 MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
60 
61 #ifdef BUS_DEBUG
62 #define PDEBUG(a)	(kprintf("%s:%d: ", __func__, __LINE__), kprintf a, kprintf("\n"))
63 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
64 #define DRIVERNAME(d)	((d)? d->name : "no driver")
65 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
66 
67 /* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
68  * prevent syslog from deleting initial spaces
69  */
70 #define indentprintf(p)	do { int iJ; kprintf("."); for (iJ=0; iJ<indent; iJ++) kprintf("  "); kprintf p ; } while(0)
71 
72 static void	print_device_short(device_t dev, int indent);
73 static void	print_device(device_t dev, int indent);
74 void		print_device_tree_short(device_t dev, int indent);
75 void		print_device_tree(device_t dev, int indent);
76 static void	print_driver_short(driver_t *driver, int indent);
77 static void	print_driver(driver_t *driver, int indent);
78 static void	print_driver_list(driver_list_t drivers, int indent);
79 static void	print_devclass_short(devclass_t dc, int indent);
80 static void	print_devclass(devclass_t dc, int indent);
81 void		print_devclass_list_short(void);
82 void		print_devclass_list(void);
83 
84 #else
85 /* Make the compiler ignore the function calls */
86 #define PDEBUG(a)			/* nop */
87 #define DEVICENAME(d)			/* nop */
88 #define DRIVERNAME(d)			/* nop */
89 #define DEVCLANAME(d)			/* nop */
90 
91 #define print_device_short(d,i)		/* nop */
92 #define print_device(d,i)		/* nop */
93 #define print_device_tree_short(d,i)	/* nop */
94 #define print_device_tree(d,i)		/* nop */
95 #define print_driver_short(d,i)		/* nop */
96 #define print_driver(d,i)		/* nop */
97 #define print_driver_list(d,i)		/* nop */
98 #define print_devclass_short(d,i)	/* nop */
99 #define print_devclass(d,i)		/* nop */
100 #define print_devclass_list_short()	/* nop */
101 #define print_devclass_list()		/* nop */
102 #endif
103 
104 /*
105  * dev sysctl tree
106  */
107 
108 enum {
109 	DEVCLASS_SYSCTL_PARENT,
110 };
111 
112 static int
113 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
114 {
115 	devclass_t dc = (devclass_t)arg1;
116 	const char *value;
117 
118 	switch (arg2) {
119 	case DEVCLASS_SYSCTL_PARENT:
120 		value = dc->parent ? dc->parent->name : "";
121 		break;
122 	default:
123 		return (EINVAL);
124 	}
125 	return (SYSCTL_OUT(req, value, strlen(value)));
126 }
127 
128 static void
129 devclass_sysctl_init(devclass_t dc)
130 {
131 
132 	if (dc->sysctl_tree != NULL)
133 		return;
134 	sysctl_ctx_init(&dc->sysctl_ctx);
135 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
136 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
137 	    CTLFLAG_RD, NULL, "");
138 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
139 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
140 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
141 	    "parent class");
142 }
143 
144 enum {
145 	DEVICE_SYSCTL_DESC,
146 	DEVICE_SYSCTL_DRIVER,
147 	DEVICE_SYSCTL_LOCATION,
148 	DEVICE_SYSCTL_PNPINFO,
149 	DEVICE_SYSCTL_PARENT,
150 };
151 
152 static int
153 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
154 {
155 	device_t dev = (device_t)arg1;
156 	const char *value;
157 	char *buf;
158 	int error;
159 
160 	buf = NULL;
161 	switch (arg2) {
162 	case DEVICE_SYSCTL_DESC:
163 		value = dev->desc ? dev->desc : "";
164 		break;
165 	case DEVICE_SYSCTL_DRIVER:
166 		value = dev->driver ? dev->driver->name : "";
167 		break;
168 	case DEVICE_SYSCTL_LOCATION:
169 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
170 		bus_child_location_str(dev, buf, 1024);
171 		break;
172 	case DEVICE_SYSCTL_PNPINFO:
173 		value = buf = kmalloc(1024, M_BUS, M_WAITOK | M_ZERO);
174 		bus_child_pnpinfo_str(dev, buf, 1024);
175 		break;
176 	case DEVICE_SYSCTL_PARENT:
177 		value = dev->parent ? dev->parent->nameunit : "";
178 		break;
179 	default:
180 		return (EINVAL);
181 	}
182 	error = SYSCTL_OUT(req, value, strlen(value));
183 	if (buf != NULL)
184 		kfree(buf, M_BUS);
185 	return (error);
186 }
187 
188 static void
189 device_sysctl_init(device_t dev)
190 {
191 	devclass_t dc = dev->devclass;
192 
193 	if (dev->sysctl_tree != NULL)
194 		return;
195 	devclass_sysctl_init(dc);
196 	sysctl_ctx_init(&dev->sysctl_ctx);
197 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
198 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
199 	    dev->nameunit + strlen(dc->name),
200 	    CTLFLAG_RD, NULL, "");
201 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
202 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
203 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
204 	    "device description");
205 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
206 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
207 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
208 	    "device driver name");
209 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
210 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
211 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
212 	    "device location relative to parent");
213 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
214 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
215 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
216 	    "device identification");
217 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
218 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
219 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
220 	    "parent device");
221 }
222 
223 static void
224 device_sysctl_update(device_t dev)
225 {
226 	devclass_t dc = dev->devclass;
227 
228 	if (dev->sysctl_tree == NULL)
229 		return;
230 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
231 }
232 
233 static void
234 device_sysctl_fini(device_t dev)
235 {
236 	if (dev->sysctl_tree == NULL)
237 		return;
238 	sysctl_ctx_free(&dev->sysctl_ctx);
239 	dev->sysctl_tree = NULL;
240 }
241 
242 static void	device_attach_async(device_t dev);
243 static void	device_attach_thread(void *arg);
244 static int	device_doattach(device_t dev);
245 
246 static int do_async_attach = 0;
247 static int numasyncthreads;
248 TUNABLE_INT("kern.do_async_attach", &do_async_attach);
249 
250 /*
251  * /dev/devctl implementation
252  */
253 
254 /*
255  * This design allows only one reader for /dev/devctl.  This is not desirable
256  * in the long run, but will get a lot of hair out of this implementation.
257  * Maybe we should make this device a clonable device.
258  *
259  * Also note: we specifically do not attach a device to the device_t tree
260  * to avoid potential chicken and egg problems.  One could argue that all
261  * of this belongs to the root node.  One could also further argue that the
262  * sysctl interface that we have not might more properly be an ioctl
263  * interface, but at this stage of the game, I'm not inclined to rock that
264  * boat.
265  *
266  * I'm also not sure that the SIGIO support is done correctly or not, as
267  * I copied it from a driver that had SIGIO support that likely hasn't been
268  * tested since 3.4 or 2.2.8!
269  */
270 
271 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
272 static int devctl_disable = 0;
273 TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
274 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
275     sysctl_devctl_disable, "I", "devctl disable");
276 
277 static d_open_t		devopen;
278 static d_close_t	devclose;
279 static d_read_t		devread;
280 static d_ioctl_t	devioctl;
281 static d_kqfilter_t	devkqfilter;
282 
283 static struct dev_ops devctl_ops = {
284 	{ "devctl", 0, 0 },
285 	.d_open =	devopen,
286 	.d_close =	devclose,
287 	.d_read =	devread,
288 	.d_ioctl =	devioctl,
289 	.d_kqfilter =	devkqfilter
290 };
291 
292 struct dev_event_info
293 {
294 	char *dei_data;
295 	TAILQ_ENTRY(dev_event_info) dei_link;
296 };
297 
298 TAILQ_HEAD(devq, dev_event_info);
299 
300 static struct dev_softc
301 {
302 	int	inuse;
303 	int	nonblock;
304 	struct lock lock;
305 	struct kqinfo kq;
306 	struct devq devq;
307 	struct proc *async_proc;
308 } devsoftc;
309 
310 static void
311 devinit(void)
312 {
313 	make_dev(&devctl_ops, 0, UID_ROOT, GID_WHEEL, 0600, "devctl");
314 	lockinit(&devsoftc.lock, "dev mtx", 0, 0);
315 	TAILQ_INIT(&devsoftc.devq);
316 }
317 
318 static int
319 devopen(struct dev_open_args *ap)
320 {
321 	if (devsoftc.inuse)
322 		return (EBUSY);
323 	/* move to init */
324 	devsoftc.inuse = 1;
325 	devsoftc.nonblock = 0;
326 	devsoftc.async_proc = NULL;
327 	return (0);
328 }
329 
330 static int
331 devclose(struct dev_close_args *ap)
332 {
333 	devsoftc.inuse = 0;
334 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
335 	wakeup(&devsoftc);
336 	lockmgr(&devsoftc.lock, LK_RELEASE);
337 
338 	return (0);
339 }
340 
341 /*
342  * The read channel for this device is used to report changes to
343  * userland in realtime.  We are required to free the data as well as
344  * the n1 object because we allocate them separately.  Also note that
345  * we return one record at a time.  If you try to read this device a
346  * character at a time, you will lose the rest of the data.  Listening
347  * programs are expected to cope.
348  */
349 static int
350 devread(struct dev_read_args *ap)
351 {
352 	struct uio *uio = ap->a_uio;
353 	struct dev_event_info *n1;
354 	int rv;
355 
356 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
357 	while (TAILQ_EMPTY(&devsoftc.devq)) {
358 		if (devsoftc.nonblock) {
359 			lockmgr(&devsoftc.lock, LK_RELEASE);
360 			return (EAGAIN);
361 		}
362 		tsleep_interlock(&devsoftc, PCATCH);
363 		lockmgr(&devsoftc.lock, LK_RELEASE);
364 		rv = tsleep(&devsoftc, PCATCH | PINTERLOCKED, "devctl", 0);
365 		lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
366 		if (rv) {
367 			/*
368 			 * Need to translate ERESTART to EINTR here? -- jake
369 			 */
370 			lockmgr(&devsoftc.lock, LK_RELEASE);
371 			return (rv);
372 		}
373 	}
374 	n1 = TAILQ_FIRST(&devsoftc.devq);
375 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
376 	lockmgr(&devsoftc.lock, LK_RELEASE);
377 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
378 	kfree(n1->dei_data, M_BUS);
379 	kfree(n1, M_BUS);
380 	return (rv);
381 }
382 
383 static	int
384 devioctl(struct dev_ioctl_args *ap)
385 {
386 	switch (ap->a_cmd) {
387 
388 	case FIONBIO:
389 		if (*(int*)ap->a_data)
390 			devsoftc.nonblock = 1;
391 		else
392 			devsoftc.nonblock = 0;
393 		return (0);
394 	case FIOASYNC:
395 		if (*(int*)ap->a_data)
396 			devsoftc.async_proc = curproc;
397 		else
398 			devsoftc.async_proc = NULL;
399 		return (0);
400 
401 		/* (un)Support for other fcntl() calls. */
402 	case FIOCLEX:
403 	case FIONCLEX:
404 	case FIONREAD:
405 	case FIOSETOWN:
406 	case FIOGETOWN:
407 	default:
408 		break;
409 	}
410 	return (ENOTTY);
411 }
412 
413 static void dev_filter_detach(struct knote *);
414 static int dev_filter_read(struct knote *, long);
415 
416 static struct filterops dev_filtops =
417 	{ FILTEROP_ISFD, NULL, dev_filter_detach, dev_filter_read };
418 
419 static int
420 devkqfilter(struct dev_kqfilter_args *ap)
421 {
422 	struct knote *kn = ap->a_kn;
423 	struct klist *klist;
424 
425 	ap->a_result = 0;
426 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
427 
428 	switch (kn->kn_filter) {
429 	case EVFILT_READ:
430 		kn->kn_fop = &dev_filtops;
431 		break;
432 	default:
433 		ap->a_result = EOPNOTSUPP;
434 		lockmgr(&devsoftc.lock, LK_RELEASE);
435 		return (0);
436 	}
437 
438 	klist = &devsoftc.kq.ki_note;
439 	knote_insert(klist, kn);
440 
441 	lockmgr(&devsoftc.lock, LK_RELEASE);
442 
443 	return (0);
444 }
445 
446 static void
447 dev_filter_detach(struct knote *kn)
448 {
449 	struct klist *klist;
450 
451 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
452 	klist = &devsoftc.kq.ki_note;
453 	knote_remove(klist, kn);
454 	lockmgr(&devsoftc.lock, LK_RELEASE);
455 }
456 
457 static int
458 dev_filter_read(struct knote *kn, long hint)
459 {
460 	int ready = 0;
461 
462 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
463 	if (!TAILQ_EMPTY(&devsoftc.devq))
464 		ready = 1;
465 	lockmgr(&devsoftc.lock, LK_RELEASE);
466 
467 	return (ready);
468 }
469 
470 
471 /**
472  * @brief Return whether the userland process is running
473  */
474 boolean_t
475 devctl_process_running(void)
476 {
477 	return (devsoftc.inuse == 1);
478 }
479 
480 /**
481  * @brief Queue data to be read from the devctl device
482  *
483  * Generic interface to queue data to the devctl device.  It is
484  * assumed that @p data is properly formatted.  It is further assumed
485  * that @p data is allocated using the M_BUS malloc type.
486  */
487 void
488 devctl_queue_data(char *data)
489 {
490 	struct dev_event_info *n1 = NULL;
491 	struct proc *p;
492 
493 	n1 = kmalloc(sizeof(*n1), M_BUS, M_NOWAIT);
494 	if (n1 == NULL)
495 		return;
496 	n1->dei_data = data;
497 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
498 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
499 	wakeup(&devsoftc);
500 	lockmgr(&devsoftc.lock, LK_RELEASE);
501 	KNOTE(&devsoftc.kq.ki_note, 0);
502 	p = devsoftc.async_proc;
503 	if (p != NULL)
504 		ksignal(p, SIGIO);
505 }
506 
507 /**
508  * @brief Send a 'notification' to userland, using standard ways
509  */
510 void
511 devctl_notify(const char *system, const char *subsystem, const char *type,
512     const char *data)
513 {
514 	int len = 0;
515 	char *msg;
516 
517 	if (system == NULL)
518 		return;		/* BOGUS!  Must specify system. */
519 	if (subsystem == NULL)
520 		return;		/* BOGUS!  Must specify subsystem. */
521 	if (type == NULL)
522 		return;		/* BOGUS!  Must specify type. */
523 	len += strlen(" system=") + strlen(system);
524 	len += strlen(" subsystem=") + strlen(subsystem);
525 	len += strlen(" type=") + strlen(type);
526 	/* add in the data message plus newline. */
527 	if (data != NULL)
528 		len += strlen(data);
529 	len += 3;	/* '!', '\n', and NUL */
530 	msg = kmalloc(len, M_BUS, M_NOWAIT);
531 	if (msg == NULL)
532 		return;		/* Drop it on the floor */
533 	if (data != NULL)
534 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
535 		    system, subsystem, type, data);
536 	else
537 		ksnprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
538 		    system, subsystem, type);
539 	devctl_queue_data(msg);
540 }
541 
542 /*
543  * Common routine that tries to make sending messages as easy as possible.
544  * We allocate memory for the data, copy strings into that, but do not
545  * free it unless there's an error.  The dequeue part of the driver should
546  * free the data.  We don't send data when the device is disabled.  We do
547  * send data, even when we have no listeners, because we wish to avoid
548  * races relating to startup and restart of listening applications.
549  *
550  * devaddq is designed to string together the type of event, with the
551  * object of that event, plus the plug and play info and location info
552  * for that event.  This is likely most useful for devices, but less
553  * useful for other consumers of this interface.  Those should use
554  * the devctl_queue_data() interface instead.
555  */
556 static void
557 devaddq(const char *type, const char *what, device_t dev)
558 {
559 	char *data = NULL;
560 	char *loc = NULL;
561 	char *pnp = NULL;
562 	const char *parstr;
563 
564 	if (devctl_disable)
565 		return;
566 	data = kmalloc(1024, M_BUS, M_NOWAIT);
567 	if (data == NULL)
568 		goto bad;
569 
570 	/* get the bus specific location of this device */
571 	loc = kmalloc(1024, M_BUS, M_NOWAIT);
572 	if (loc == NULL)
573 		goto bad;
574 	*loc = '\0';
575 	bus_child_location_str(dev, loc, 1024);
576 
577 	/* Get the bus specific pnp info of this device */
578 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
579 	if (pnp == NULL)
580 		goto bad;
581 	*pnp = '\0';
582 	bus_child_pnpinfo_str(dev, pnp, 1024);
583 
584 	/* Get the parent of this device, or / if high enough in the tree. */
585 	if (device_get_parent(dev) == NULL)
586 		parstr = ".";	/* Or '/' ? */
587 	else
588 		parstr = device_get_nameunit(device_get_parent(dev));
589 	/* String it all together. */
590 	ksnprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
591 	  parstr);
592 	kfree(loc, M_BUS);
593 	kfree(pnp, M_BUS);
594 	devctl_queue_data(data);
595 	return;
596 bad:
597 	kfree(pnp, M_BUS);
598 	kfree(loc, M_BUS);
599 	kfree(data, M_BUS);
600 	return;
601 }
602 
603 /*
604  * A device was added to the tree.  We are called just after it successfully
605  * attaches (that is, probe and attach success for this device).  No call
606  * is made if a device is merely parented into the tree.  See devnomatch
607  * if probe fails.  If attach fails, no notification is sent (but maybe
608  * we should have a different message for this).
609  */
610 static void
611 devadded(device_t dev)
612 {
613 	char *pnp = NULL;
614 	char *tmp = NULL;
615 
616 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
617 	if (pnp == NULL)
618 		goto fail;
619 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
620 	if (tmp == NULL)
621 		goto fail;
622 	*pnp = '\0';
623 	bus_child_pnpinfo_str(dev, pnp, 1024);
624 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
625 	devaddq("+", tmp, dev);
626 fail:
627 	if (pnp != NULL)
628 		kfree(pnp, M_BUS);
629 	if (tmp != NULL)
630 		kfree(tmp, M_BUS);
631 	return;
632 }
633 
634 /*
635  * A device was removed from the tree.  We are called just before this
636  * happens.
637  */
638 static void
639 devremoved(device_t dev)
640 {
641 	char *pnp = NULL;
642 	char *tmp = NULL;
643 
644 	pnp = kmalloc(1024, M_BUS, M_NOWAIT);
645 	if (pnp == NULL)
646 		goto fail;
647 	tmp = kmalloc(1024, M_BUS, M_NOWAIT);
648 	if (tmp == NULL)
649 		goto fail;
650 	*pnp = '\0';
651 	bus_child_pnpinfo_str(dev, pnp, 1024);
652 	ksnprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
653 	devaddq("-", tmp, dev);
654 fail:
655 	if (pnp != NULL)
656 		kfree(pnp, M_BUS);
657 	if (tmp != NULL)
658 		kfree(tmp, M_BUS);
659 	return;
660 }
661 
662 /*
663  * Called when there's no match for this device.  This is only called
664  * the first time that no match happens, so we don't keep getitng this
665  * message.  Should that prove to be undesirable, we can change it.
666  * This is called when all drivers that can attach to a given bus
667  * decline to accept this device.  Other errrors may not be detected.
668  */
669 static void
670 devnomatch(device_t dev)
671 {
672 	devaddq("?", "", dev);
673 }
674 
675 static int
676 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
677 {
678 	struct dev_event_info *n1;
679 	int dis, error;
680 
681 	dis = devctl_disable;
682 	error = sysctl_handle_int(oidp, &dis, 0, req);
683 	if (error || !req->newptr)
684 		return (error);
685 	lockmgr(&devsoftc.lock, LK_EXCLUSIVE);
686 	devctl_disable = dis;
687 	if (dis) {
688 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
689 			n1 = TAILQ_FIRST(&devsoftc.devq);
690 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
691 			kfree(n1->dei_data, M_BUS);
692 			kfree(n1, M_BUS);
693 		}
694 	}
695 	lockmgr(&devsoftc.lock, LK_RELEASE);
696 	return (0);
697 }
698 
699 /* End of /dev/devctl code */
700 
701 TAILQ_HEAD(,device)	bus_data_devices;
702 static int bus_data_generation = 1;
703 
704 kobj_method_t null_methods[] = {
705 	{ 0, 0 }
706 };
707 
708 DEFINE_CLASS(null, null_methods, 0);
709 
710 /*
711  * Devclass implementation
712  */
713 
714 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
715 
716 static devclass_t
717 devclass_find_internal(const char *classname, const char *parentname,
718 		       int create)
719 {
720 	devclass_t dc;
721 
722 	PDEBUG(("looking for %s", classname));
723 	if (classname == NULL)
724 		return(NULL);
725 
726 	TAILQ_FOREACH(dc, &devclasses, link)
727 		if (!strcmp(dc->name, classname))
728 			break;
729 
730 	if (create && !dc) {
731 		PDEBUG(("creating %s", classname));
732 		dc = kmalloc(sizeof(struct devclass) + strlen(classname) + 1,
733 			    M_BUS, M_INTWAIT | M_ZERO);
734 		dc->parent = NULL;
735 		dc->name = (char*) (dc + 1);
736 		strcpy(dc->name, classname);
737 		dc->devices = NULL;
738 		dc->maxunit = 0;
739 		TAILQ_INIT(&dc->drivers);
740 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
741 
742 		bus_data_generation_update();
743 
744 	}
745 
746 	/*
747 	 * If a parent class is specified, then set that as our parent so
748 	 * that this devclass will support drivers for the parent class as
749 	 * well.  If the parent class has the same name don't do this though
750 	 * as it creates a cycle that can trigger an infinite loop in
751 	 * device_probe_child() if a device exists for which there is no
752 	 * suitable driver.
753 	 */
754 	if (parentname && dc && !dc->parent &&
755 	    strcmp(classname, parentname) != 0)
756 		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
757 
758 	return(dc);
759 }
760 
761 devclass_t
762 devclass_create(const char *classname)
763 {
764 	return(devclass_find_internal(classname, NULL, TRUE));
765 }
766 
767 devclass_t
768 devclass_find(const char *classname)
769 {
770 	return(devclass_find_internal(classname, NULL, FALSE));
771 }
772 
773 device_t
774 devclass_find_unit(const char *classname, int unit)
775 {
776 	devclass_t dc;
777 
778 	if ((dc = devclass_find(classname)) != NULL)
779 	    return(devclass_get_device(dc, unit));
780 	return (NULL);
781 }
782 
783 int
784 devclass_add_driver(devclass_t dc, driver_t *driver)
785 {
786 	driverlink_t dl;
787 	device_t dev;
788 	int i;
789 
790 	PDEBUG(("%s", DRIVERNAME(driver)));
791 
792 	dl = kmalloc(sizeof *dl, M_BUS, M_INTWAIT | M_ZERO);
793 
794 	/*
795 	 * Compile the driver's methods. Also increase the reference count
796 	 * so that the class doesn't get freed when the last instance
797 	 * goes. This means we can safely use static methods and avoids a
798 	 * double-free in devclass_delete_driver.
799 	 */
800 	kobj_class_instantiate(driver);
801 
802 	/*
803 	 * Make sure the devclass which the driver is implementing exists.
804 	 */
805 	devclass_find_internal(driver->name, NULL, TRUE);
806 
807 	dl->driver = driver;
808 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
809 
810 	/*
811 	 * Call BUS_DRIVER_ADDED for any existing busses in this class,
812 	 * but only if the bus has already been attached (otherwise we
813 	 * might probe too early).
814 	 *
815 	 * This is what will cause a newly loaded module to be associated
816 	 * with hardware.  bus_generic_driver_added() is typically what ends
817 	 * up being called.
818 	 */
819 	for (i = 0; i < dc->maxunit; i++) {
820 		if ((dev = dc->devices[i]) != NULL) {
821 			if (dev->state >= DS_ATTACHED)
822 				BUS_DRIVER_ADDED(dev, driver);
823 		}
824 	}
825 
826 	bus_data_generation_update();
827 	return(0);
828 }
829 
830 int
831 devclass_delete_driver(devclass_t busclass, driver_t *driver)
832 {
833 	devclass_t dc = devclass_find(driver->name);
834 	driverlink_t dl;
835 	device_t dev;
836 	int i;
837 	int error;
838 
839 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
840 
841 	if (!dc)
842 		return(0);
843 
844 	/*
845 	 * Find the link structure in the bus' list of drivers.
846 	 */
847 	TAILQ_FOREACH(dl, &busclass->drivers, link)
848 		if (dl->driver == driver)
849 			break;
850 
851 	if (!dl) {
852 		PDEBUG(("%s not found in %s list", driver->name, busclass->name));
853 		return(ENOENT);
854 	}
855 
856 	/*
857 	 * Disassociate from any devices.  We iterate through all the
858 	 * devices in the devclass of the driver and detach any which are
859 	 * using the driver and which have a parent in the devclass which
860 	 * we are deleting from.
861 	 *
862 	 * Note that since a driver can be in multiple devclasses, we
863 	 * should not detach devices which are not children of devices in
864 	 * the affected devclass.
865 	 */
866 	for (i = 0; i < dc->maxunit; i++)
867 		if (dc->devices[i]) {
868 			dev = dc->devices[i];
869 			if (dev->driver == driver && dev->parent &&
870 			    dev->parent->devclass == busclass) {
871 				if ((error = device_detach(dev)) != 0)
872 					return(error);
873 				device_set_driver(dev, NULL);
874 		    	}
875 		}
876 
877 	TAILQ_REMOVE(&busclass->drivers, dl, link);
878 	kfree(dl, M_BUS);
879 
880 	kobj_class_uninstantiate(driver);
881 
882 	bus_data_generation_update();
883 	return(0);
884 }
885 
886 static driverlink_t
887 devclass_find_driver_internal(devclass_t dc, const char *classname)
888 {
889 	driverlink_t dl;
890 
891 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
892 
893 	TAILQ_FOREACH(dl, &dc->drivers, link)
894 		if (!strcmp(dl->driver->name, classname))
895 			return(dl);
896 
897 	PDEBUG(("not found"));
898 	return(NULL);
899 }
900 
901 kobj_class_t
902 devclass_find_driver(devclass_t dc, const char *classname)
903 {
904 	driverlink_t dl;
905 
906 	dl = devclass_find_driver_internal(dc, classname);
907 	if (dl)
908 		return(dl->driver);
909 	else
910 		return(NULL);
911 }
912 
913 const char *
914 devclass_get_name(devclass_t dc)
915 {
916 	return(dc->name);
917 }
918 
919 device_t
920 devclass_get_device(devclass_t dc, int unit)
921 {
922 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
923 		return(NULL);
924 	return(dc->devices[unit]);
925 }
926 
927 void *
928 devclass_get_softc(devclass_t dc, int unit)
929 {
930 	device_t dev;
931 
932 	dev = devclass_get_device(dc, unit);
933 	if (!dev)
934 		return(NULL);
935 
936 	return(device_get_softc(dev));
937 }
938 
939 int
940 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
941 {
942 	int i;
943 	int count;
944 	device_t *list;
945 
946 	count = 0;
947 	for (i = 0; i < dc->maxunit; i++)
948 		if (dc->devices[i])
949 			count++;
950 
951 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
952 
953 	count = 0;
954 	for (i = 0; i < dc->maxunit; i++)
955 		if (dc->devices[i]) {
956 			list[count] = dc->devices[i];
957 			count++;
958 		}
959 
960 	*devlistp = list;
961 	*devcountp = count;
962 
963 	return(0);
964 }
965 
966 /**
967  * @brief Get a list of drivers in the devclass
968  *
969  * An array containing a list of pointers to all the drivers in the
970  * given devclass is allocated and returned in @p *listp.  The number
971  * of drivers in the array is returned in @p *countp. The caller should
972  * free the array using @c free(p, M_TEMP).
973  *
974  * @param dc            the devclass to examine
975  * @param listp         gives location for array pointer return value
976  * @param countp        gives location for number of array elements
977  *                      return value
978  *
979  * @retval 0            success
980  * @retval ENOMEM       the array allocation failed
981  */
982 int
983 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
984 {
985         driverlink_t dl;
986         driver_t **list;
987         int count;
988 
989         count = 0;
990         TAILQ_FOREACH(dl, &dc->drivers, link)
991                 count++;
992         list = kmalloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
993         if (list == NULL)
994                 return (ENOMEM);
995 
996         count = 0;
997         TAILQ_FOREACH(dl, &dc->drivers, link) {
998                 list[count] = dl->driver;
999                 count++;
1000         }
1001         *listp = list;
1002         *countp = count;
1003 
1004         return (0);
1005 }
1006 
1007 /**
1008  * @brief Get the number of devices in a devclass
1009  *
1010  * @param dc		the devclass to examine
1011  */
1012 int
1013 devclass_get_count(devclass_t dc)
1014 {
1015 	int count, i;
1016 
1017 	count = 0;
1018 	for (i = 0; i < dc->maxunit; i++)
1019 		if (dc->devices[i])
1020 			count++;
1021 	return (count);
1022 }
1023 
1024 int
1025 devclass_get_maxunit(devclass_t dc)
1026 {
1027 	return(dc->maxunit);
1028 }
1029 
1030 void
1031 devclass_set_parent(devclass_t dc, devclass_t pdc)
1032 {
1033         dc->parent = pdc;
1034 }
1035 
1036 devclass_t
1037 devclass_get_parent(devclass_t dc)
1038 {
1039 	return(dc->parent);
1040 }
1041 
1042 static int
1043 devclass_alloc_unit(devclass_t dc, int *unitp)
1044 {
1045 	int unit = *unitp;
1046 
1047 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1048 
1049 	/* If we have been given a wired unit number, check for existing device */
1050 	if (unit != -1) {
1051 		if (unit >= 0 && unit < dc->maxunit &&
1052 		    dc->devices[unit] != NULL) {
1053 			if (bootverbose)
1054 				kprintf("%s-: %s%d exists, using next available unit number\n",
1055 				       dc->name, dc->name, unit);
1056 			/* find the next available slot */
1057 			while (++unit < dc->maxunit && dc->devices[unit] != NULL)
1058 				;
1059 		}
1060 	} else {
1061 		/* Unwired device, find the next available slot for it */
1062 		unit = 0;
1063 		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1064 			unit++;
1065 	}
1066 
1067 	/*
1068 	 * We've selected a unit beyond the length of the table, so let's
1069 	 * extend the table to make room for all units up to and including
1070 	 * this one.
1071 	 */
1072 	if (unit >= dc->maxunit) {
1073 		device_t *newlist;
1074 		int newsize;
1075 
1076 		newsize = (unit + 1);
1077 		newlist = kmalloc(sizeof(device_t) * newsize, M_BUS,
1078 				 M_INTWAIT | M_ZERO);
1079 		if (newlist == NULL)
1080 			return(ENOMEM);
1081 		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1082 		if (dc->devices)
1083 			kfree(dc->devices, M_BUS);
1084 		dc->devices = newlist;
1085 		dc->maxunit = newsize;
1086 	}
1087 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1088 
1089 	*unitp = unit;
1090 	return(0);
1091 }
1092 
1093 static int
1094 devclass_add_device(devclass_t dc, device_t dev)
1095 {
1096 	int buflen, error;
1097 
1098 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1099 
1100 	buflen = strlen(dc->name) + 5;
1101 	dev->nameunit = kmalloc(buflen, M_BUS, M_INTWAIT | M_ZERO);
1102 	if (dev->nameunit == NULL)
1103 		return(ENOMEM);
1104 
1105 	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1106 		kfree(dev->nameunit, M_BUS);
1107 		dev->nameunit = NULL;
1108 		return(error);
1109 	}
1110 	dc->devices[dev->unit] = dev;
1111 	dev->devclass = dc;
1112 	ksnprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1113 
1114 	return(0);
1115 }
1116 
1117 static int
1118 devclass_delete_device(devclass_t dc, device_t dev)
1119 {
1120 	if (!dc || !dev)
1121 		return(0);
1122 
1123 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1124 
1125 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1126 		panic("devclass_delete_device: inconsistent device class");
1127 	dc->devices[dev->unit] = NULL;
1128 	if (dev->flags & DF_WILDCARD)
1129 		dev->unit = -1;
1130 	dev->devclass = NULL;
1131 	kfree(dev->nameunit, M_BUS);
1132 	dev->nameunit = NULL;
1133 
1134 	return(0);
1135 }
1136 
1137 static device_t
1138 make_device(device_t parent, const char *name, int unit)
1139 {
1140 	device_t dev;
1141 	devclass_t dc;
1142 
1143 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1144 
1145 	if (name != NULL) {
1146 		dc = devclass_find_internal(name, NULL, TRUE);
1147 		if (!dc) {
1148 			kprintf("make_device: can't find device class %s\n", name);
1149 			return(NULL);
1150 		}
1151 	} else
1152 		dc = NULL;
1153 
1154 	dev = kmalloc(sizeof(struct device), M_BUS, M_INTWAIT | M_ZERO);
1155 	if (!dev)
1156 		return(0);
1157 
1158 	dev->parent = parent;
1159 	TAILQ_INIT(&dev->children);
1160 	kobj_init((kobj_t) dev, &null_class);
1161 	dev->driver = NULL;
1162 	dev->devclass = NULL;
1163 	dev->unit = unit;
1164 	dev->nameunit = NULL;
1165 	dev->desc = NULL;
1166 	dev->busy = 0;
1167 	dev->devflags = 0;
1168 	dev->flags = DF_ENABLED;
1169 	dev->order = 0;
1170 	if (unit == -1)
1171 		dev->flags |= DF_WILDCARD;
1172 	if (name) {
1173 		dev->flags |= DF_FIXEDCLASS;
1174 		if (devclass_add_device(dc, dev) != 0) {
1175 			kobj_delete((kobj_t)dev, M_BUS);
1176 			return(NULL);
1177 		}
1178     	}
1179 	dev->ivars = NULL;
1180 	dev->softc = NULL;
1181 
1182 	dev->state = DS_NOTPRESENT;
1183 
1184 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1185 	bus_data_generation_update();
1186 
1187 	return(dev);
1188 }
1189 
1190 static int
1191 device_print_child(device_t dev, device_t child)
1192 {
1193 	int retval = 0;
1194 
1195 	if (device_is_alive(child))
1196 		retval += BUS_PRINT_CHILD(dev, child);
1197 	else
1198 		retval += device_printf(child, " not found\n");
1199 
1200 	return(retval);
1201 }
1202 
1203 device_t
1204 device_add_child(device_t dev, const char *name, int unit)
1205 {
1206 	return device_add_child_ordered(dev, 0, name, unit);
1207 }
1208 
1209 device_t
1210 device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1211 {
1212 	device_t child;
1213 	device_t place;
1214 
1215 	PDEBUG(("%s at %s with order %d as unit %d", name, DEVICENAME(dev),
1216 		order, unit));
1217 
1218 	child = make_device(dev, name, unit);
1219 	if (child == NULL)
1220 		return child;
1221 	child->order = order;
1222 
1223 	TAILQ_FOREACH(place, &dev->children, link)
1224 		if (place->order > order)
1225 			break;
1226 
1227 	if (place) {
1228 		/*
1229 		 * The device 'place' is the first device whose order is
1230 		 * greater than the new child.
1231 		 */
1232 		TAILQ_INSERT_BEFORE(place, child, link);
1233 	} else {
1234 		/*
1235 		 * The new child's order is greater or equal to the order of
1236 		 * any existing device. Add the child to the tail of the list.
1237 		 */
1238 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1239     	}
1240 
1241 	bus_data_generation_update();
1242 	return(child);
1243 }
1244 
1245 int
1246 device_delete_child(device_t dev, device_t child)
1247 {
1248 	int error;
1249 	device_t grandchild;
1250 
1251 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1252 
1253 	/* remove children first */
1254 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1255         	error = device_delete_child(child, grandchild);
1256 		if (error)
1257 			return(error);
1258 	}
1259 
1260 	if ((error = device_detach(child)) != 0)
1261 		return(error);
1262 	if (child->devclass)
1263 		devclass_delete_device(child->devclass, child);
1264 	TAILQ_REMOVE(&dev->children, child, link);
1265 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1266 	device_set_desc(child, NULL);
1267 	kobj_delete((kobj_t)child, M_BUS);
1268 
1269 	bus_data_generation_update();
1270 	return(0);
1271 }
1272 
1273 /**
1274  * @brief Delete all children devices of the given device, if any.
1275  *
1276  * This function deletes all children devices of the given device, if
1277  * any, using the device_delete_child() function for each device it
1278  * finds. If a child device cannot be deleted, this function will
1279  * return an error code.
1280  *
1281  * @param dev		the parent device
1282  *
1283  * @retval 0		success
1284  * @retval non-zero	a device would not detach
1285  */
1286 int
1287 device_delete_children(device_t dev)
1288 {
1289 	device_t child;
1290 	int error;
1291 
1292 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1293 
1294 	error = 0;
1295 
1296 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1297 		error = device_delete_child(dev, child);
1298 		if (error) {
1299 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1300 			break;
1301 		}
1302 	}
1303 	return (error);
1304 }
1305 
1306 /**
1307  * @brief Find a device given a unit number
1308  *
1309  * This is similar to devclass_get_devices() but only searches for
1310  * devices which have @p dev as a parent.
1311  *
1312  * @param dev		the parent device to search
1313  * @param unit		the unit number to search for.  If the unit is -1,
1314  *			return the first child of @p dev which has name
1315  *			@p classname (that is, the one with the lowest unit.)
1316  *
1317  * @returns		the device with the given unit number or @c
1318  *			NULL if there is no such device
1319  */
1320 device_t
1321 device_find_child(device_t dev, const char *classname, int unit)
1322 {
1323 	devclass_t dc;
1324 	device_t child;
1325 
1326 	dc = devclass_find(classname);
1327 	if (!dc)
1328 		return(NULL);
1329 
1330 	if (unit != -1) {
1331 		child = devclass_get_device(dc, unit);
1332 		if (child && child->parent == dev)
1333 			return (child);
1334 	} else {
1335 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1336 			child = devclass_get_device(dc, unit);
1337 			if (child && child->parent == dev)
1338 				return (child);
1339 		}
1340 	}
1341 	return(NULL);
1342 }
1343 
1344 static driverlink_t
1345 first_matching_driver(devclass_t dc, device_t dev)
1346 {
1347 	if (dev->devclass)
1348 		return(devclass_find_driver_internal(dc, dev->devclass->name));
1349 	else
1350 		return(TAILQ_FIRST(&dc->drivers));
1351 }
1352 
1353 static driverlink_t
1354 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1355 {
1356 	if (dev->devclass) {
1357 		driverlink_t dl;
1358 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1359 			if (!strcmp(dev->devclass->name, dl->driver->name))
1360 				return(dl);
1361 		return(NULL);
1362 	} else
1363 		return(TAILQ_NEXT(last, link));
1364 }
1365 
1366 int
1367 device_probe_child(device_t dev, device_t child)
1368 {
1369 	devclass_t dc;
1370 	driverlink_t best = NULL;
1371 	driverlink_t dl;
1372 	int result, pri = 0;
1373 	int hasclass = (child->devclass != NULL);
1374 
1375 	dc = dev->devclass;
1376 	if (!dc)
1377 		panic("device_probe_child: parent device has no devclass");
1378 
1379 	if (child->state == DS_ALIVE)
1380 		return(0);
1381 
1382 	for (; dc; dc = dc->parent) {
1383     		for (dl = first_matching_driver(dc, child); dl;
1384 		     dl = next_matching_driver(dc, child, dl)) {
1385 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1386 			device_set_driver(child, dl->driver);
1387 			if (!hasclass)
1388 				device_set_devclass(child, dl->driver->name);
1389 			result = DEVICE_PROBE(child);
1390 			if (!hasclass)
1391 				device_set_devclass(child, 0);
1392 
1393 			/*
1394 			 * If the driver returns SUCCESS, there can be
1395 			 * no higher match for this device.
1396 			 */
1397 			if (result == 0) {
1398 				best = dl;
1399 				pri = 0;
1400 				break;
1401 			}
1402 
1403 			/*
1404 			 * The driver returned an error so it
1405 			 * certainly doesn't match.
1406 			 */
1407 			if (result > 0) {
1408 				device_set_driver(child, 0);
1409 				continue;
1410 			}
1411 
1412 			/*
1413 			 * A priority lower than SUCCESS, remember the
1414 			 * best matching driver. Initialise the value
1415 			 * of pri for the first match.
1416 			 */
1417 			if (best == NULL || result > pri) {
1418 				best = dl;
1419 				pri = result;
1420 				continue;
1421 			}
1422 	        }
1423 		/*
1424 	         * If we have unambiguous match in this devclass,
1425 	         * don't look in the parent.
1426 	         */
1427 	        if (best && pri == 0)
1428 	    	        break;
1429 	}
1430 
1431 	/*
1432 	 * If we found a driver, change state and initialise the devclass.
1433 	 */
1434 	if (best) {
1435 		if (!child->devclass)
1436 			device_set_devclass(child, best->driver->name);
1437 		device_set_driver(child, best->driver);
1438 		if (pri < 0) {
1439 			/*
1440 			 * A bit bogus. Call the probe method again to make
1441 			 * sure that we have the right description.
1442 			 */
1443 			DEVICE_PROBE(child);
1444 		}
1445 
1446 		bus_data_generation_update();
1447 		child->state = DS_ALIVE;
1448 		return(0);
1449 	}
1450 
1451 	return(ENXIO);
1452 }
1453 
1454 device_t
1455 device_get_parent(device_t dev)
1456 {
1457 	return dev->parent;
1458 }
1459 
1460 int
1461 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1462 {
1463 	int count;
1464 	device_t child;
1465 	device_t *list;
1466 
1467 	count = 0;
1468 	TAILQ_FOREACH(child, &dev->children, link)
1469 		count++;
1470 
1471 	list = kmalloc(count * sizeof(device_t), M_TEMP, M_INTWAIT | M_ZERO);
1472 
1473 	count = 0;
1474 	TAILQ_FOREACH(child, &dev->children, link) {
1475 		list[count] = child;
1476 		count++;
1477 	}
1478 
1479 	*devlistp = list;
1480 	*devcountp = count;
1481 
1482 	return(0);
1483 }
1484 
1485 driver_t *
1486 device_get_driver(device_t dev)
1487 {
1488 	return(dev->driver);
1489 }
1490 
1491 devclass_t
1492 device_get_devclass(device_t dev)
1493 {
1494 	return(dev->devclass);
1495 }
1496 
1497 const char *
1498 device_get_name(device_t dev)
1499 {
1500 	if (dev->devclass)
1501 		return devclass_get_name(dev->devclass);
1502 	return(NULL);
1503 }
1504 
1505 const char *
1506 device_get_nameunit(device_t dev)
1507 {
1508 	return(dev->nameunit);
1509 }
1510 
1511 int
1512 device_get_unit(device_t dev)
1513 {
1514 	return(dev->unit);
1515 }
1516 
1517 const char *
1518 device_get_desc(device_t dev)
1519 {
1520 	return(dev->desc);
1521 }
1522 
1523 uint32_t
1524 device_get_flags(device_t dev)
1525 {
1526 	return(dev->devflags);
1527 }
1528 
1529 struct sysctl_ctx_list *
1530 device_get_sysctl_ctx(device_t dev)
1531 {
1532 	return (&dev->sysctl_ctx);
1533 }
1534 
1535 struct sysctl_oid *
1536 device_get_sysctl_tree(device_t dev)
1537 {
1538 	return (dev->sysctl_tree);
1539 }
1540 
1541 int
1542 device_print_prettyname(device_t dev)
1543 {
1544 	const char *name = device_get_name(dev);
1545 
1546 	if (name == NULL)
1547 		return kprintf("unknown: ");
1548 	else
1549 		return kprintf("%s%d: ", name, device_get_unit(dev));
1550 }
1551 
1552 int
1553 device_printf(device_t dev, const char * fmt, ...)
1554 {
1555 	__va_list ap;
1556 	int retval;
1557 
1558 	retval = device_print_prettyname(dev);
1559 	__va_start(ap, fmt);
1560 	retval += kvprintf(fmt, ap);
1561 	__va_end(ap);
1562 	return retval;
1563 }
1564 
1565 static void
1566 device_set_desc_internal(device_t dev, const char* desc, int copy)
1567 {
1568 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1569 		kfree(dev->desc, M_BUS);
1570 		dev->flags &= ~DF_DESCMALLOCED;
1571 		dev->desc = NULL;
1572 	}
1573 
1574 	if (copy && desc) {
1575 		dev->desc = kmalloc(strlen(desc) + 1, M_BUS, M_INTWAIT);
1576 		if (dev->desc) {
1577 			strcpy(dev->desc, desc);
1578 			dev->flags |= DF_DESCMALLOCED;
1579 		}
1580 	} else {
1581 		/* Avoid a -Wcast-qual warning */
1582 		dev->desc = (char *)(uintptr_t) desc;
1583 	}
1584 
1585 	bus_data_generation_update();
1586 }
1587 
1588 void
1589 device_set_desc(device_t dev, const char* desc)
1590 {
1591 	device_set_desc_internal(dev, desc, FALSE);
1592 }
1593 
1594 void
1595 device_set_desc_copy(device_t dev, const char* desc)
1596 {
1597 	device_set_desc_internal(dev, desc, TRUE);
1598 }
1599 
1600 void
1601 device_set_flags(device_t dev, uint32_t flags)
1602 {
1603 	dev->devflags = flags;
1604 }
1605 
1606 void *
1607 device_get_softc(device_t dev)
1608 {
1609 	return dev->softc;
1610 }
1611 
1612 void
1613 device_set_softc(device_t dev, void *softc)
1614 {
1615 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1616 		kfree(dev->softc, M_BUS);
1617 	dev->softc = softc;
1618 	if (dev->softc)
1619 		dev->flags |= DF_EXTERNALSOFTC;
1620 	else
1621 		dev->flags &= ~DF_EXTERNALSOFTC;
1622 }
1623 
1624 void
1625 device_set_async_attach(device_t dev, int enable)
1626 {
1627 	if (enable)
1628 		dev->flags |= DF_ASYNCPROBE;
1629 	else
1630 		dev->flags &= ~DF_ASYNCPROBE;
1631 }
1632 
1633 void *
1634 device_get_ivars(device_t dev)
1635 {
1636 	return dev->ivars;
1637 }
1638 
1639 void
1640 device_set_ivars(device_t dev, void * ivars)
1641 {
1642 	if (!dev)
1643 		return;
1644 
1645 	dev->ivars = ivars;
1646 }
1647 
1648 device_state_t
1649 device_get_state(device_t dev)
1650 {
1651 	return(dev->state);
1652 }
1653 
1654 void
1655 device_enable(device_t dev)
1656 {
1657 	dev->flags |= DF_ENABLED;
1658 }
1659 
1660 void
1661 device_disable(device_t dev)
1662 {
1663 	dev->flags &= ~DF_ENABLED;
1664 }
1665 
1666 /*
1667  * YYY cannot block
1668  */
1669 void
1670 device_busy(device_t dev)
1671 {
1672 	if (dev->state < DS_ATTACHED)
1673 		panic("device_busy: called for unattached device");
1674 	if (dev->busy == 0 && dev->parent)
1675 		device_busy(dev->parent);
1676 	dev->busy++;
1677 	dev->state = DS_BUSY;
1678 }
1679 
1680 /*
1681  * YYY cannot block
1682  */
1683 void
1684 device_unbusy(device_t dev)
1685 {
1686 	if (dev->state != DS_BUSY)
1687 		panic("device_unbusy: called for non-busy device");
1688 	dev->busy--;
1689 	if (dev->busy == 0) {
1690 		if (dev->parent)
1691 			device_unbusy(dev->parent);
1692 		dev->state = DS_ATTACHED;
1693 	}
1694 }
1695 
1696 void
1697 device_quiet(device_t dev)
1698 {
1699 	dev->flags |= DF_QUIET;
1700 }
1701 
1702 void
1703 device_verbose(device_t dev)
1704 {
1705 	dev->flags &= ~DF_QUIET;
1706 }
1707 
1708 int
1709 device_is_quiet(device_t dev)
1710 {
1711 	return((dev->flags & DF_QUIET) != 0);
1712 }
1713 
1714 int
1715 device_is_enabled(device_t dev)
1716 {
1717 	return((dev->flags & DF_ENABLED) != 0);
1718 }
1719 
1720 int
1721 device_is_alive(device_t dev)
1722 {
1723 	return(dev->state >= DS_ALIVE);
1724 }
1725 
1726 int
1727 device_is_attached(device_t dev)
1728 {
1729 	return(dev->state >= DS_ATTACHED);
1730 }
1731 
1732 int
1733 device_set_devclass(device_t dev, const char *classname)
1734 {
1735 	devclass_t dc;
1736 	int error;
1737 
1738 	if (!classname) {
1739 		if (dev->devclass)
1740 			devclass_delete_device(dev->devclass, dev);
1741 		return(0);
1742 	}
1743 
1744 	if (dev->devclass) {
1745 		kprintf("device_set_devclass: device class already set\n");
1746 		return(EINVAL);
1747 	}
1748 
1749 	dc = devclass_find_internal(classname, NULL, TRUE);
1750 	if (!dc)
1751 		return(ENOMEM);
1752 
1753 	error = devclass_add_device(dc, dev);
1754 
1755 	bus_data_generation_update();
1756 	return(error);
1757 }
1758 
1759 int
1760 device_set_driver(device_t dev, driver_t *driver)
1761 {
1762 	if (dev->state >= DS_ATTACHED)
1763 		return(EBUSY);
1764 
1765 	if (dev->driver == driver)
1766 		return(0);
1767 
1768 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
1769 		kfree(dev->softc, M_BUS);
1770 		dev->softc = NULL;
1771 	}
1772 	kobj_delete((kobj_t) dev, 0);
1773 	dev->driver = driver;
1774 	if (driver) {
1775 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
1776 		if (!(dev->flags & DF_EXTERNALSOFTC))
1777 			dev->softc = kmalloc(driver->size, M_BUS,
1778 					    M_INTWAIT | M_ZERO);
1779 	} else {
1780 		kobj_init((kobj_t) dev, &null_class);
1781 	}
1782 
1783 	bus_data_generation_update();
1784 	return(0);
1785 }
1786 
1787 int
1788 device_probe_and_attach(device_t dev)
1789 {
1790 	device_t bus = dev->parent;
1791 	int error = 0;
1792 
1793 	if (dev->state >= DS_ALIVE)
1794 		return(0);
1795 
1796 	if ((dev->flags & DF_ENABLED) == 0) {
1797 		if (bootverbose) {
1798 			device_print_prettyname(dev);
1799 			kprintf("not probed (disabled)\n");
1800 		}
1801 		return(0);
1802 	}
1803 
1804 	error = device_probe_child(bus, dev);
1805 	if (error) {
1806 		if (!(dev->flags & DF_DONENOMATCH)) {
1807 			BUS_PROBE_NOMATCH(bus, dev);
1808 			devnomatch(dev);
1809 			dev->flags |= DF_DONENOMATCH;
1810 		}
1811 		return(error);
1812 	}
1813 
1814 	/*
1815 	 * Output the exact device chain prior to the attach in case the
1816 	 * system locks up during attach, and generate the full info after
1817 	 * the attach so correct irq and other information is displayed.
1818 	 */
1819 	if (bootverbose && !device_is_quiet(dev)) {
1820 		device_t tmp;
1821 
1822 		kprintf("%s", device_get_nameunit(dev));
1823 		for (tmp = dev->parent; tmp; tmp = tmp->parent)
1824 			kprintf(".%s", device_get_nameunit(tmp));
1825 		kprintf("\n");
1826 	}
1827 	if (!device_is_quiet(dev))
1828 		device_print_child(bus, dev);
1829 	if ((dev->flags & DF_ASYNCPROBE) && do_async_attach) {
1830 		kprintf("%s: probing asynchronously\n",
1831 			device_get_nameunit(dev));
1832 		dev->state = DS_INPROGRESS;
1833 		device_attach_async(dev);
1834 		error = 0;
1835 	} else {
1836 		error = device_doattach(dev);
1837 	}
1838 	return(error);
1839 }
1840 
1841 /*
1842  * Device is known to be alive, do the attach asynchronously.
1843  * However, serialize the attaches with the mp lock.
1844  */
1845 static void
1846 device_attach_async(device_t dev)
1847 {
1848 	thread_t td;
1849 
1850 	atomic_add_int(&numasyncthreads, 1);
1851 	lwkt_create(device_attach_thread, dev, &td, NULL,
1852 		    0, 0, "%s", (dev->desc ? dev->desc : "devattach"));
1853 }
1854 
1855 static void
1856 device_attach_thread(void *arg)
1857 {
1858 	device_t dev = arg;
1859 
1860 	(void)device_doattach(dev);
1861 	atomic_subtract_int(&numasyncthreads, 1);
1862 	wakeup(&numasyncthreads);
1863 }
1864 
1865 /*
1866  * Device is known to be alive, do the attach (synchronous or asynchronous)
1867  */
1868 static int
1869 device_doattach(device_t dev)
1870 {
1871 	device_t bus = dev->parent;
1872 	int hasclass = (dev->devclass != NULL);
1873 	int error;
1874 
1875 	device_sysctl_init(dev);
1876 	error = DEVICE_ATTACH(dev);
1877 	if (error == 0) {
1878 		dev->state = DS_ATTACHED;
1879 		if (bootverbose && !device_is_quiet(dev))
1880 			device_print_child(bus, dev);
1881 		device_sysctl_update(dev);
1882 		devadded(dev);
1883 	} else {
1884 		kprintf("device_probe_and_attach: %s%d attach returned %d\n",
1885 		       dev->driver->name, dev->unit, error);
1886 		/* Unset the class that was set in device_probe_child */
1887 		if (!hasclass)
1888 			device_set_devclass(dev, 0);
1889 		device_set_driver(dev, NULL);
1890 		dev->state = DS_NOTPRESENT;
1891 		device_sysctl_fini(dev);
1892 	}
1893 	return(error);
1894 }
1895 
1896 int
1897 device_detach(device_t dev)
1898 {
1899 	int error;
1900 
1901 	PDEBUG(("%s", DEVICENAME(dev)));
1902 	if (dev->state == DS_BUSY)
1903 		return(EBUSY);
1904 	if (dev->state != DS_ATTACHED)
1905 		return(0);
1906 
1907 	if ((error = DEVICE_DETACH(dev)) != 0)
1908 		return(error);
1909 	devremoved(dev);
1910 	device_printf(dev, "detached\n");
1911 	if (dev->parent)
1912 		BUS_CHILD_DETACHED(dev->parent, dev);
1913 
1914 	if (!(dev->flags & DF_FIXEDCLASS))
1915 		devclass_delete_device(dev->devclass, dev);
1916 
1917 	dev->state = DS_NOTPRESENT;
1918 	device_set_driver(dev, NULL);
1919 	device_sysctl_fini(dev);
1920 
1921 	return(0);
1922 }
1923 
1924 int
1925 device_shutdown(device_t dev)
1926 {
1927 	if (dev->state < DS_ATTACHED)
1928 		return 0;
1929 	PDEBUG(("%s", DEVICENAME(dev)));
1930 	return DEVICE_SHUTDOWN(dev);
1931 }
1932 
1933 int
1934 device_set_unit(device_t dev, int unit)
1935 {
1936 	devclass_t dc;
1937 	int err;
1938 
1939 	dc = device_get_devclass(dev);
1940 	if (unit < dc->maxunit && dc->devices[unit])
1941 		return(EBUSY);
1942 	err = devclass_delete_device(dc, dev);
1943 	if (err)
1944 		return(err);
1945 	dev->unit = unit;
1946 	err = devclass_add_device(dc, dev);
1947 	if (err)
1948 		return(err);
1949 
1950 	bus_data_generation_update();
1951 	return(0);
1952 }
1953 
1954 /*======================================*/
1955 /*
1956  * Access functions for device resources.
1957  */
1958 
1959 /* Supplied by config(8) in ioconf.c */
1960 extern struct config_device config_devtab[];
1961 extern int devtab_count;
1962 
1963 /* Runtime version */
1964 struct config_device *devtab = config_devtab;
1965 
1966 static int
1967 resource_new_name(const char *name, int unit)
1968 {
1969 	struct config_device *new;
1970 
1971 	new = kmalloc((devtab_count + 1) * sizeof(*new), M_TEMP,
1972 		     M_INTWAIT | M_ZERO);
1973 	if (devtab && devtab_count > 0)
1974 		bcopy(devtab, new, devtab_count * sizeof(*new));
1975 	new[devtab_count].name = kmalloc(strlen(name) + 1, M_TEMP, M_INTWAIT);
1976 	if (new[devtab_count].name == NULL) {
1977 		kfree(new, M_TEMP);
1978 		return(-1);
1979 	}
1980 	strcpy(new[devtab_count].name, name);
1981 	new[devtab_count].unit = unit;
1982 	new[devtab_count].resource_count = 0;
1983 	new[devtab_count].resources = NULL;
1984 	if (devtab && devtab != config_devtab)
1985 		kfree(devtab, M_TEMP);
1986 	devtab = new;
1987 	return devtab_count++;
1988 }
1989 
1990 static int
1991 resource_new_resname(int j, const char *resname, resource_type type)
1992 {
1993 	struct config_resource *new;
1994 	int i;
1995 
1996 	i = devtab[j].resource_count;
1997 	new = kmalloc((i + 1) * sizeof(*new), M_TEMP, M_INTWAIT | M_ZERO);
1998 	if (devtab[j].resources && i > 0)
1999 		bcopy(devtab[j].resources, new, i * sizeof(*new));
2000 	new[i].name = kmalloc(strlen(resname) + 1, M_TEMP, M_INTWAIT);
2001 	if (new[i].name == NULL) {
2002 		kfree(new, M_TEMP);
2003 		return(-1);
2004 	}
2005 	strcpy(new[i].name, resname);
2006 	new[i].type = type;
2007 	if (devtab[j].resources)
2008 		kfree(devtab[j].resources, M_TEMP);
2009 	devtab[j].resources = new;
2010 	devtab[j].resource_count = i + 1;
2011 	return(i);
2012 }
2013 
2014 static int
2015 resource_match_string(int i, const char *resname, const char *value)
2016 {
2017 	int j;
2018 	struct config_resource *res;
2019 
2020 	for (j = 0, res = devtab[i].resources;
2021 	     j < devtab[i].resource_count; j++, res++)
2022 		if (!strcmp(res->name, resname)
2023 		    && res->type == RES_STRING
2024 		    && !strcmp(res->u.stringval, value))
2025 			return(j);
2026 	return(-1);
2027 }
2028 
2029 static int
2030 resource_find(const char *name, int unit, const char *resname,
2031 	      struct config_resource **result)
2032 {
2033 	int i, j;
2034 	struct config_resource *res;
2035 
2036 	/*
2037 	 * First check specific instances, then generic.
2038 	 */
2039 	for (i = 0; i < devtab_count; i++) {
2040 		if (devtab[i].unit < 0)
2041 			continue;
2042 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2043 			res = devtab[i].resources;
2044 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2045 				if (!strcmp(res->name, resname)) {
2046 					*result = res;
2047 					return(0);
2048 				}
2049 		}
2050 	}
2051 	for (i = 0; i < devtab_count; i++) {
2052 		if (devtab[i].unit >= 0)
2053 			continue;
2054 		/* XXX should this `&& devtab[i].unit == unit' be here? */
2055 		/* XXX if so, then the generic match does nothing */
2056 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2057 			res = devtab[i].resources;
2058 			for (j = 0; j < devtab[i].resource_count; j++, res++)
2059 				if (!strcmp(res->name, resname)) {
2060 					*result = res;
2061 					return(0);
2062 				}
2063 		}
2064 	}
2065 	return(ENOENT);
2066 }
2067 
2068 static int
2069 resource_kenv(const char *name, int unit, const char *resname, long *result)
2070 {
2071 	const char *env;
2072 	char buf[64];
2073 
2074 	ksnprintf(buf, sizeof(buf), "%s%d.%s", name, unit, resname);
2075 	if ((env = kgetenv(buf)) != NULL) {
2076 		*result = strtol(env, NULL, 0);
2077 		return(0);
2078 	}
2079 	return (ENOENT);
2080 }
2081 
2082 int
2083 resource_int_value(const char *name, int unit, const char *resname, int *result)
2084 {
2085 	struct config_resource *res;
2086 	long kvalue = 0;
2087 	int error;
2088 
2089 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2090 		*result = (int)kvalue;
2091 		return 0;
2092 	}
2093 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2094 		return(error);
2095 	if (res->type != RES_INT)
2096 		return(EFTYPE);
2097 	*result = res->u.intval;
2098 	return(0);
2099 }
2100 
2101 int
2102 resource_long_value(const char *name, int unit, const char *resname,
2103 		    long *result)
2104 {
2105 	struct config_resource *res;
2106 	long kvalue;
2107 	int error;
2108 
2109 	if (resource_kenv(name, unit, resname, &kvalue) == 0) {
2110 		*result = kvalue;
2111 		return 0;
2112 	}
2113 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2114 		return(error);
2115 	if (res->type != RES_LONG)
2116 		return(EFTYPE);
2117 	*result = res->u.longval;
2118 	return(0);
2119 }
2120 
2121 int
2122 resource_string_value(const char *name, int unit, const char *resname,
2123     const char **result)
2124 {
2125 	int error;
2126 	struct config_resource *res;
2127 
2128 	if ((error = resource_find(name, unit, resname, &res)) != 0)
2129 		return(error);
2130 	if (res->type != RES_STRING)
2131 		return(EFTYPE);
2132 	*result = res->u.stringval;
2133 	return(0);
2134 }
2135 
2136 int
2137 resource_query_string(int i, const char *resname, const char *value)
2138 {
2139 	if (i < 0)
2140 		i = 0;
2141 	else
2142 		i = i + 1;
2143 	for (; i < devtab_count; i++)
2144 		if (resource_match_string(i, resname, value) >= 0)
2145 			return(i);
2146 	return(-1);
2147 }
2148 
2149 int
2150 resource_locate(int i, const char *resname)
2151 {
2152 	if (i < 0)
2153 		i = 0;
2154 	else
2155 		i = i + 1;
2156 	for (; i < devtab_count; i++)
2157 		if (!strcmp(devtab[i].name, resname))
2158 			return(i);
2159 	return(-1);
2160 }
2161 
2162 int
2163 resource_count(void)
2164 {
2165 	return(devtab_count);
2166 }
2167 
2168 char *
2169 resource_query_name(int i)
2170 {
2171 	return(devtab[i].name);
2172 }
2173 
2174 int
2175 resource_query_unit(int i)
2176 {
2177 	return(devtab[i].unit);
2178 }
2179 
2180 static int
2181 resource_create(const char *name, int unit, const char *resname,
2182 		resource_type type, struct config_resource **result)
2183 {
2184 	int i, j;
2185 	struct config_resource *res = NULL;
2186 
2187 	for (i = 0; i < devtab_count; i++)
2188 		if (!strcmp(devtab[i].name, name) && devtab[i].unit == unit) {
2189 			res = devtab[i].resources;
2190 			break;
2191 		}
2192 	if (res == NULL) {
2193 		i = resource_new_name(name, unit);
2194 		if (i < 0)
2195 			return(ENOMEM);
2196 		res = devtab[i].resources;
2197 	}
2198 	for (j = 0; j < devtab[i].resource_count; j++, res++)
2199 		if (!strcmp(res->name, resname)) {
2200 			*result = res;
2201 			return(0);
2202 		}
2203 	j = resource_new_resname(i, resname, type);
2204 	if (j < 0)
2205 		return(ENOMEM);
2206 	res = &devtab[i].resources[j];
2207 	*result = res;
2208 	return(0);
2209 }
2210 
2211 int
2212 resource_set_int(const char *name, int unit, const char *resname, int value)
2213 {
2214 	int error;
2215 	struct config_resource *res;
2216 
2217 	error = resource_create(name, unit, resname, RES_INT, &res);
2218 	if (error)
2219 		return(error);
2220 	if (res->type != RES_INT)
2221 		return(EFTYPE);
2222 	res->u.intval = value;
2223 	return(0);
2224 }
2225 
2226 int
2227 resource_set_long(const char *name, int unit, const char *resname, long value)
2228 {
2229 	int error;
2230 	struct config_resource *res;
2231 
2232 	error = resource_create(name, unit, resname, RES_LONG, &res);
2233 	if (error)
2234 		return(error);
2235 	if (res->type != RES_LONG)
2236 		return(EFTYPE);
2237 	res->u.longval = value;
2238 	return(0);
2239 }
2240 
2241 int
2242 resource_set_string(const char *name, int unit, const char *resname,
2243 		    const char *value)
2244 {
2245 	int error;
2246 	struct config_resource *res;
2247 
2248 	error = resource_create(name, unit, resname, RES_STRING, &res);
2249 	if (error)
2250 		return(error);
2251 	if (res->type != RES_STRING)
2252 		return(EFTYPE);
2253 	if (res->u.stringval)
2254 		kfree(res->u.stringval, M_TEMP);
2255 	res->u.stringval = kmalloc(strlen(value) + 1, M_TEMP, M_INTWAIT);
2256 	if (res->u.stringval == NULL)
2257 		return(ENOMEM);
2258 	strcpy(res->u.stringval, value);
2259 	return(0);
2260 }
2261 
2262 static void
2263 resource_cfgload(void *dummy __unused)
2264 {
2265 	struct config_resource *res, *cfgres;
2266 	int i, j;
2267 	int error;
2268 	char *name, *resname;
2269 	int unit;
2270 	resource_type type;
2271 	char *stringval;
2272 	int config_devtab_count;
2273 
2274 	config_devtab_count = devtab_count;
2275 	devtab = NULL;
2276 	devtab_count = 0;
2277 
2278 	for (i = 0; i < config_devtab_count; i++) {
2279 		name = config_devtab[i].name;
2280 		unit = config_devtab[i].unit;
2281 
2282 		for (j = 0; j < config_devtab[i].resource_count; j++) {
2283 			cfgres = config_devtab[i].resources;
2284 			resname = cfgres[j].name;
2285 			type = cfgres[j].type;
2286 			error = resource_create(name, unit, resname, type,
2287 						&res);
2288 			if (error) {
2289 				kprintf("create resource %s%d: error %d\n",
2290 					name, unit, error);
2291 				continue;
2292 			}
2293 			if (res->type != type) {
2294 				kprintf("type mismatch %s%d: %d != %d\n",
2295 					name, unit, res->type, type);
2296 				continue;
2297 			}
2298 			switch (type) {
2299 			case RES_INT:
2300 				res->u.intval = cfgres[j].u.intval;
2301 				break;
2302 			case RES_LONG:
2303 				res->u.longval = cfgres[j].u.longval;
2304 				break;
2305 			case RES_STRING:
2306 				if (res->u.stringval)
2307 					kfree(res->u.stringval, M_TEMP);
2308 				stringval = cfgres[j].u.stringval;
2309 				res->u.stringval = kmalloc(strlen(stringval) + 1,
2310 							  M_TEMP, M_INTWAIT);
2311 				if (res->u.stringval == NULL)
2312 					break;
2313 				strcpy(res->u.stringval, stringval);
2314 				break;
2315 			default:
2316 				panic("unknown resource type %d", type);
2317 			}
2318 		}
2319 	}
2320 }
2321 SYSINIT(cfgload, SI_BOOT1_POST, SI_ORDER_ANY + 50, resource_cfgload, 0)
2322 
2323 
2324 /*======================================*/
2325 /*
2326  * Some useful method implementations to make life easier for bus drivers.
2327  */
2328 
2329 void
2330 resource_list_init(struct resource_list *rl)
2331 {
2332 	SLIST_INIT(rl);
2333 }
2334 
2335 void
2336 resource_list_free(struct resource_list *rl)
2337 {
2338 	struct resource_list_entry *rle;
2339 
2340 	while ((rle = SLIST_FIRST(rl)) != NULL) {
2341 		if (rle->res)
2342 			panic("resource_list_free: resource entry is busy");
2343 		SLIST_REMOVE_HEAD(rl, link);
2344 		kfree(rle, M_BUS);
2345 	}
2346 }
2347 
2348 void
2349 resource_list_add(struct resource_list *rl, int type, int rid,
2350     u_long start, u_long end, u_long count, int cpuid)
2351 {
2352 	struct resource_list_entry *rle;
2353 
2354 	rle = resource_list_find(rl, type, rid);
2355 	if (rle == NULL) {
2356 		rle = kmalloc(sizeof(struct resource_list_entry), M_BUS,
2357 			     M_INTWAIT);
2358 		SLIST_INSERT_HEAD(rl, rle, link);
2359 		rle->type = type;
2360 		rle->rid = rid;
2361 		rle->res = NULL;
2362 		rle->cpuid = -1;
2363 	}
2364 
2365 	if (rle->res)
2366 		panic("resource_list_add: resource entry is busy");
2367 
2368 	rle->start = start;
2369 	rle->end = end;
2370 	rle->count = count;
2371 
2372 	if (cpuid != -1) {
2373 		if (rle->cpuid != -1 && rle->cpuid != cpuid) {
2374 			panic("resource_list_add: moving from cpu%d -> cpu%d",
2375 			    rle->cpuid, cpuid);
2376 		}
2377 		rle->cpuid = cpuid;
2378 	}
2379 }
2380 
2381 struct resource_list_entry*
2382 resource_list_find(struct resource_list *rl,
2383 		   int type, int rid)
2384 {
2385 	struct resource_list_entry *rle;
2386 
2387 	SLIST_FOREACH(rle, rl, link)
2388 		if (rle->type == type && rle->rid == rid)
2389 			return(rle);
2390 	return(NULL);
2391 }
2392 
2393 void
2394 resource_list_delete(struct resource_list *rl,
2395 		     int type, int rid)
2396 {
2397 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2398 
2399 	if (rle) {
2400 		if (rle->res != NULL)
2401 			panic("resource_list_delete: resource has not been released");
2402 		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2403 		kfree(rle, M_BUS);
2404 	}
2405 }
2406 
2407 struct resource *
2408 resource_list_alloc(struct resource_list *rl,
2409 		    device_t bus, device_t child,
2410 		    int type, int *rid,
2411 		    u_long start, u_long end,
2412 		    u_long count, u_int flags, int cpuid)
2413 {
2414 	struct resource_list_entry *rle = NULL;
2415 	int passthrough = (device_get_parent(child) != bus);
2416 	int isdefault = (start == 0UL && end == ~0UL);
2417 
2418 	if (passthrough) {
2419 		return(BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2420 					  type, rid,
2421 					  start, end, count, flags, cpuid));
2422 	}
2423 
2424 	rle = resource_list_find(rl, type, *rid);
2425 
2426 	if (!rle)
2427 		return(0);		/* no resource of that type/rid */
2428 
2429 	if (rle->res)
2430 		panic("resource_list_alloc: resource entry is busy");
2431 
2432 	if (isdefault) {
2433 		start = rle->start;
2434 		count = max(count, rle->count);
2435 		end = max(rle->end, start + count - 1);
2436 	}
2437 	cpuid = rle->cpuid;
2438 
2439 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2440 				      type, rid, start, end, count,
2441 				      flags, cpuid);
2442 
2443 	/*
2444 	 * Record the new range.
2445 	 */
2446 	if (rle->res) {
2447 		rle->start = rman_get_start(rle->res);
2448 		rle->end = rman_get_end(rle->res);
2449 		rle->count = count;
2450 	}
2451 
2452 	return(rle->res);
2453 }
2454 
2455 int
2456 resource_list_release(struct resource_list *rl,
2457 		      device_t bus, device_t child,
2458 		      int type, int rid, struct resource *res)
2459 {
2460 	struct resource_list_entry *rle = NULL;
2461 	int passthrough = (device_get_parent(child) != bus);
2462 	int error;
2463 
2464 	if (passthrough) {
2465 		return(BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2466 					    type, rid, res));
2467 	}
2468 
2469 	rle = resource_list_find(rl, type, rid);
2470 
2471 	if (!rle)
2472 		panic("resource_list_release: can't find resource");
2473 	if (!rle->res)
2474 		panic("resource_list_release: resource entry is not busy");
2475 
2476 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2477 				     type, rid, res);
2478 	if (error)
2479 		return(error);
2480 
2481 	rle->res = NULL;
2482 	return(0);
2483 }
2484 
2485 int
2486 resource_list_print_type(struct resource_list *rl, const char *name, int type,
2487 			 const char *format)
2488 {
2489 	struct resource_list_entry *rle;
2490 	int printed, retval;
2491 
2492 	printed = 0;
2493 	retval = 0;
2494 	/* Yes, this is kinda cheating */
2495 	SLIST_FOREACH(rle, rl, link) {
2496 		if (rle->type == type) {
2497 			if (printed == 0)
2498 				retval += kprintf(" %s ", name);
2499 			else
2500 				retval += kprintf(",");
2501 			printed++;
2502 			retval += kprintf(format, rle->start);
2503 			if (rle->count > 1) {
2504 				retval += kprintf("-");
2505 				retval += kprintf(format, rle->start +
2506 						 rle->count - 1);
2507 			}
2508 		}
2509 	}
2510 	return(retval);
2511 }
2512 
2513 /*
2514  * Generic driver/device identify functions.  These will install a device
2515  * rendezvous point under the parent using the same name as the driver
2516  * name, which will at a later time be probed and attached.
2517  *
2518  * These functions are used when the parent does not 'scan' its bus for
2519  * matching devices, or for the particular devices using these functions,
2520  * or when the device is a pseudo or synthesized device (such as can be
2521  * found under firewire and ppbus).
2522  */
2523 int
2524 bus_generic_identify(driver_t *driver, device_t parent)
2525 {
2526 	if (parent->state == DS_ATTACHED)
2527 		return (0);
2528 	BUS_ADD_CHILD(parent, parent, 0, driver->name, -1);
2529 	return (0);
2530 }
2531 
2532 int
2533 bus_generic_identify_sameunit(driver_t *driver, device_t parent)
2534 {
2535 	if (parent->state == DS_ATTACHED)
2536 		return (0);
2537 	BUS_ADD_CHILD(parent, parent, 0, driver->name, device_get_unit(parent));
2538 	return (0);
2539 }
2540 
2541 /*
2542  * Call DEVICE_IDENTIFY for each driver.
2543  */
2544 int
2545 bus_generic_probe(device_t dev)
2546 {
2547 	devclass_t dc = dev->devclass;
2548 	driverlink_t dl;
2549 
2550 	TAILQ_FOREACH(dl, &dc->drivers, link) {
2551 		DEVICE_IDENTIFY(dl->driver, dev);
2552 	}
2553 
2554 	return(0);
2555 }
2556 
2557 /*
2558  * This is an aweful hack due to the isa bus and autoconf code not
2559  * probing the ISA devices until after everything else has configured.
2560  * The ISA bus did a dummy attach long ago so we have to set it back
2561  * to an earlier state so the probe thinks its the initial probe and
2562  * not a bus rescan.
2563  *
2564  * XXX remove by properly defering the ISA bus scan.
2565  */
2566 int
2567 bus_generic_probe_hack(device_t dev)
2568 {
2569 	if (dev->state == DS_ATTACHED) {
2570 		dev->state = DS_ALIVE;
2571 		bus_generic_probe(dev);
2572 		dev->state = DS_ATTACHED;
2573 	}
2574 	return (0);
2575 }
2576 
2577 int
2578 bus_generic_attach(device_t dev)
2579 {
2580 	device_t child;
2581 
2582 	TAILQ_FOREACH(child, &dev->children, link) {
2583 		device_probe_and_attach(child);
2584 	}
2585 
2586 	return(0);
2587 }
2588 
2589 int
2590 bus_generic_detach(device_t dev)
2591 {
2592 	device_t child;
2593 	int error;
2594 
2595 	if (dev->state != DS_ATTACHED)
2596 		return(EBUSY);
2597 
2598 	TAILQ_FOREACH(child, &dev->children, link)
2599 		if ((error = device_detach(child)) != 0)
2600 			return(error);
2601 
2602 	return 0;
2603 }
2604 
2605 int
2606 bus_generic_shutdown(device_t dev)
2607 {
2608 	device_t child;
2609 
2610 	TAILQ_FOREACH(child, &dev->children, link)
2611 		device_shutdown(child);
2612 
2613 	return(0);
2614 }
2615 
2616 int
2617 bus_generic_suspend(device_t dev)
2618 {
2619 	int error;
2620 	device_t child, child2;
2621 
2622 	TAILQ_FOREACH(child, &dev->children, link) {
2623 		error = DEVICE_SUSPEND(child);
2624 		if (error) {
2625 			for (child2 = TAILQ_FIRST(&dev->children);
2626 			     child2 && child2 != child;
2627 			     child2 = TAILQ_NEXT(child2, link))
2628 				DEVICE_RESUME(child2);
2629 			return(error);
2630 		}
2631 	}
2632 	return(0);
2633 }
2634 
2635 int
2636 bus_generic_resume(device_t dev)
2637 {
2638 	device_t child;
2639 
2640 	TAILQ_FOREACH(child, &dev->children, link)
2641 		DEVICE_RESUME(child);
2642 		/* if resume fails, there's nothing we can usefully do... */
2643 
2644 	return(0);
2645 }
2646 
2647 int
2648 bus_print_child_header(device_t dev, device_t child)
2649 {
2650 	int retval = 0;
2651 
2652 	if (device_get_desc(child))
2653 		retval += device_printf(child, "<%s>", device_get_desc(child));
2654 	else
2655 		retval += kprintf("%s", device_get_nameunit(child));
2656 	if (bootverbose) {
2657 		if (child->state != DS_ATTACHED)
2658 			kprintf(" [tentative]");
2659 		else
2660 			kprintf(" [attached!]");
2661 	}
2662 	return(retval);
2663 }
2664 
2665 int
2666 bus_print_child_footer(device_t dev, device_t child)
2667 {
2668 	return(kprintf(" on %s\n", device_get_nameunit(dev)));
2669 }
2670 
2671 device_t
2672 bus_generic_add_child(device_t dev, device_t child, int order,
2673 		      const char *name, int unit)
2674 {
2675 	if (dev->parent)
2676 		dev = BUS_ADD_CHILD(dev->parent, child, order, name, unit);
2677 	else
2678 		dev = device_add_child_ordered(child, order, name, unit);
2679 	return(dev);
2680 
2681 }
2682 
2683 int
2684 bus_generic_print_child(device_t dev, device_t child)
2685 {
2686 	int retval = 0;
2687 
2688 	retval += bus_print_child_header(dev, child);
2689 	retval += bus_print_child_footer(dev, child);
2690 
2691 	return(retval);
2692 }
2693 
2694 int
2695 bus_generic_read_ivar(device_t dev, device_t child, int index,
2696 		      uintptr_t * result)
2697 {
2698 	int error;
2699 
2700 	if (dev->parent)
2701 		error = BUS_READ_IVAR(dev->parent, child, index, result);
2702 	else
2703 		error = ENOENT;
2704 	return (error);
2705 }
2706 
2707 int
2708 bus_generic_write_ivar(device_t dev, device_t child, int index,
2709 		       uintptr_t value)
2710 {
2711 	int error;
2712 
2713 	if (dev->parent)
2714 		error = BUS_WRITE_IVAR(dev->parent, child, index, value);
2715 	else
2716 		error = ENOENT;
2717 	return (error);
2718 }
2719 
2720 /*
2721  * Resource list are used for iterations, do not recurse.
2722  */
2723 struct resource_list *
2724 bus_generic_get_resource_list(device_t dev, device_t child)
2725 {
2726 	return (NULL);
2727 }
2728 
2729 void
2730 bus_generic_driver_added(device_t dev, driver_t *driver)
2731 {
2732 	device_t child;
2733 
2734 	DEVICE_IDENTIFY(driver, dev);
2735 	TAILQ_FOREACH(child, &dev->children, link) {
2736 		if (child->state == DS_NOTPRESENT)
2737 			device_probe_and_attach(child);
2738 	}
2739 }
2740 
2741 int
2742 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2743     int flags, driver_intr_t *intr, void *arg, void **cookiep,
2744     lwkt_serialize_t serializer, const char *desc)
2745 {
2746 	/* Propagate up the bus hierarchy until someone handles it. */
2747 	if (dev->parent) {
2748 		return BUS_SETUP_INTR(dev->parent, child, irq, flags,
2749 		    intr, arg, cookiep, serializer, desc);
2750 	} else {
2751 		return EINVAL;
2752 	}
2753 }
2754 
2755 int
2756 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2757 			  void *cookie)
2758 {
2759 	/* Propagate up the bus hierarchy until someone handles it. */
2760 	if (dev->parent)
2761 		return(BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2762 	else
2763 		return(EINVAL);
2764 }
2765 
2766 int
2767 bus_generic_disable_intr(device_t dev, device_t child, void *cookie)
2768 {
2769 	if (dev->parent)
2770 		return(BUS_DISABLE_INTR(dev->parent, child, cookie));
2771 	else
2772 		return(0);
2773 }
2774 
2775 void
2776 bus_generic_enable_intr(device_t dev, device_t child, void *cookie)
2777 {
2778 	if (dev->parent)
2779 		BUS_ENABLE_INTR(dev->parent, child, cookie);
2780 }
2781 
2782 int
2783 bus_generic_config_intr(device_t dev, device_t child, int irq, enum intr_trigger trig,
2784     enum intr_polarity pol)
2785 {
2786 	/* Propagate up the bus hierarchy until someone handles it. */
2787 	if (dev->parent)
2788 		return(BUS_CONFIG_INTR(dev->parent, child, irq, trig, pol));
2789 	else
2790 		return(EINVAL);
2791 }
2792 
2793 struct resource *
2794 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2795     u_long start, u_long end, u_long count, u_int flags, int cpuid)
2796 {
2797 	/* Propagate up the bus hierarchy until someone handles it. */
2798 	if (dev->parent)
2799 		return(BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2800 					   start, end, count, flags, cpuid));
2801 	else
2802 		return(NULL);
2803 }
2804 
2805 int
2806 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2807 			     struct resource *r)
2808 {
2809 	/* Propagate up the bus hierarchy until someone handles it. */
2810 	if (dev->parent)
2811 		return(BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r));
2812 	else
2813 		return(EINVAL);
2814 }
2815 
2816 int
2817 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2818 			      struct resource *r)
2819 {
2820 	/* Propagate up the bus hierarchy until someone handles it. */
2821 	if (dev->parent)
2822 		return(BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r));
2823 	else
2824 		return(EINVAL);
2825 }
2826 
2827 int
2828 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2829 				int rid, struct resource *r)
2830 {
2831 	/* Propagate up the bus hierarchy until someone handles it. */
2832 	if (dev->parent)
2833 		return(BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2834 					       r));
2835 	else
2836 		return(EINVAL);
2837 }
2838 
2839 int
2840 bus_generic_get_resource(device_t dev, device_t child, int type, int rid,
2841 			 u_long *startp, u_long *countp)
2842 {
2843 	int error;
2844 
2845 	error = ENOENT;
2846 	if (dev->parent) {
2847 		error = BUS_GET_RESOURCE(dev->parent, child, type, rid,
2848 					 startp, countp);
2849 	}
2850 	return (error);
2851 }
2852 
2853 int
2854 bus_generic_set_resource(device_t dev, device_t child, int type, int rid,
2855 			u_long start, u_long count, int cpuid)
2856 {
2857 	int error;
2858 
2859 	error = EINVAL;
2860 	if (dev->parent) {
2861 		error = BUS_SET_RESOURCE(dev->parent, child, type, rid,
2862 					 start, count, cpuid);
2863 	}
2864 	return (error);
2865 }
2866 
2867 void
2868 bus_generic_delete_resource(device_t dev, device_t child, int type, int rid)
2869 {
2870 	if (dev->parent)
2871 		BUS_DELETE_RESOURCE(dev, child, type, rid);
2872 }
2873 
2874 /**
2875  * @brief Helper function for implementing BUS_GET_DMA_TAG().
2876  *
2877  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
2878  * BUS_GET_DMA_TAG() method of the parent of @p dev.
2879  */
2880 bus_dma_tag_t
2881 bus_generic_get_dma_tag(device_t dev, device_t child)
2882 {
2883 
2884 	/* Propagate up the bus hierarchy until someone handles it. */
2885 	if (dev->parent != NULL)
2886 		return (BUS_GET_DMA_TAG(dev->parent, child));
2887 	return (NULL);
2888 }
2889 
2890 int
2891 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
2892     u_long *startp, u_long *countp)
2893 {
2894 	struct resource_list *rl = NULL;
2895 	struct resource_list_entry *rle = NULL;
2896 
2897 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2898 	if (!rl)
2899 		return(EINVAL);
2900 
2901 	rle = resource_list_find(rl, type, rid);
2902 	if (!rle)
2903 		return(ENOENT);
2904 
2905 	if (startp)
2906 		*startp = rle->start;
2907 	if (countp)
2908 		*countp = rle->count;
2909 
2910 	return(0);
2911 }
2912 
2913 int
2914 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
2915     u_long start, u_long count, int cpuid)
2916 {
2917 	struct resource_list *rl = NULL;
2918 
2919 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2920 	if (!rl)
2921 		return(EINVAL);
2922 
2923 	resource_list_add(rl, type, rid, start, (start + count - 1), count,
2924 	    cpuid);
2925 
2926 	return(0);
2927 }
2928 
2929 void
2930 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
2931 {
2932 	struct resource_list *rl = NULL;
2933 
2934 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2935 	if (!rl)
2936 		return;
2937 
2938 	resource_list_delete(rl, type, rid);
2939 }
2940 
2941 int
2942 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
2943     int rid, struct resource *r)
2944 {
2945 	struct resource_list *rl = NULL;
2946 
2947 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2948 	if (!rl)
2949 		return(EINVAL);
2950 
2951 	return(resource_list_release(rl, dev, child, type, rid, r));
2952 }
2953 
2954 struct resource *
2955 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
2956     int *rid, u_long start, u_long end, u_long count, u_int flags, int cpuid)
2957 {
2958 	struct resource_list *rl = NULL;
2959 
2960 	rl = BUS_GET_RESOURCE_LIST(dev, child);
2961 	if (!rl)
2962 		return(NULL);
2963 
2964 	return(resource_list_alloc(rl, dev, child, type, rid,
2965 	    start, end, count, flags, cpuid));
2966 }
2967 
2968 int
2969 bus_generic_child_present(device_t bus, device_t child)
2970 {
2971 	return(BUS_CHILD_PRESENT(device_get_parent(bus), bus));
2972 }
2973 
2974 
2975 /*
2976  * Some convenience functions to make it easier for drivers to use the
2977  * resource-management functions.  All these really do is hide the
2978  * indirection through the parent's method table, making for slightly
2979  * less-wordy code.  In the future, it might make sense for this code
2980  * to maintain some sort of a list of resources allocated by each device.
2981  */
2982 int
2983 bus_alloc_resources(device_t dev, struct resource_spec *rs,
2984     struct resource **res)
2985 {
2986 	int i;
2987 
2988 	for (i = 0; rs[i].type != -1; i++)
2989 	        res[i] = NULL;
2990 	for (i = 0; rs[i].type != -1; i++) {
2991 		res[i] = bus_alloc_resource_any(dev,
2992 		    rs[i].type, &rs[i].rid, rs[i].flags);
2993 		if (res[i] == NULL) {
2994 			bus_release_resources(dev, rs, res);
2995 			return (ENXIO);
2996 		}
2997 	}
2998 	return (0);
2999 }
3000 
3001 void
3002 bus_release_resources(device_t dev, const struct resource_spec *rs,
3003     struct resource **res)
3004 {
3005 	int i;
3006 
3007 	for (i = 0; rs[i].type != -1; i++)
3008 		if (res[i] != NULL) {
3009 			bus_release_resource(
3010 			    dev, rs[i].type, rs[i].rid, res[i]);
3011 			res[i] = NULL;
3012 		}
3013 }
3014 
3015 struct resource *
3016 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3017 		   u_long count, u_int flags)
3018 {
3019 	if (dev->parent == NULL)
3020 		return(0);
3021 	return(BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3022 				  count, flags, -1));
3023 }
3024 
3025 struct resource *
3026 bus_alloc_legacy_irq_resource(device_t dev, int *rid, u_long irq, u_int flags)
3027 {
3028 	if (dev->parent == NULL)
3029 		return(0);
3030 	return BUS_ALLOC_RESOURCE(dev->parent, dev, SYS_RES_IRQ, rid,
3031 	    irq, irq, 1, flags, machintr_legacy_intr_cpuid(irq));
3032 }
3033 
3034 int
3035 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3036 {
3037 	if (dev->parent == NULL)
3038 		return(EINVAL);
3039 	return(BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3040 }
3041 
3042 int
3043 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3044 {
3045 	if (dev->parent == NULL)
3046 		return(EINVAL);
3047 	return(BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3048 }
3049 
3050 int
3051 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3052 {
3053 	if (dev->parent == NULL)
3054 		return(EINVAL);
3055 	return(BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3056 }
3057 
3058 int
3059 bus_setup_intr_descr(device_t dev, struct resource *r, int flags,
3060     driver_intr_t handler, void *arg, void **cookiep,
3061     lwkt_serialize_t serializer, const char *desc)
3062 {
3063 	if (dev->parent == NULL)
3064 		return EINVAL;
3065 	return BUS_SETUP_INTR(dev->parent, dev, r, flags, handler, arg,
3066 	    cookiep, serializer, desc);
3067 }
3068 
3069 int
3070 bus_setup_intr(device_t dev, struct resource *r, int flags,
3071     driver_intr_t handler, void *arg, void **cookiep,
3072     lwkt_serialize_t serializer)
3073 {
3074 	return bus_setup_intr_descr(dev, r, flags, handler, arg, cookiep,
3075 	    serializer, NULL);
3076 }
3077 
3078 int
3079 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3080 {
3081 	if (dev->parent == NULL)
3082 		return(EINVAL);
3083 	return(BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3084 }
3085 
3086 void
3087 bus_enable_intr(device_t dev, void *cookie)
3088 {
3089 	if (dev->parent)
3090 		BUS_ENABLE_INTR(dev->parent, dev, cookie);
3091 }
3092 
3093 int
3094 bus_disable_intr(device_t dev, void *cookie)
3095 {
3096 	if (dev->parent)
3097 		return(BUS_DISABLE_INTR(dev->parent, dev, cookie));
3098 	else
3099 		return(0);
3100 }
3101 
3102 int
3103 bus_set_resource(device_t dev, int type, int rid,
3104 		 u_long start, u_long count, int cpuid)
3105 {
3106 	return(BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3107 				start, count, cpuid));
3108 }
3109 
3110 int
3111 bus_get_resource(device_t dev, int type, int rid,
3112 		 u_long *startp, u_long *countp)
3113 {
3114 	return(BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3115 				startp, countp));
3116 }
3117 
3118 u_long
3119 bus_get_resource_start(device_t dev, int type, int rid)
3120 {
3121 	u_long start, count;
3122 	int error;
3123 
3124 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3125 				 &start, &count);
3126 	if (error)
3127 		return(0);
3128 	return(start);
3129 }
3130 
3131 u_long
3132 bus_get_resource_count(device_t dev, int type, int rid)
3133 {
3134 	u_long start, count;
3135 	int error;
3136 
3137 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3138 				 &start, &count);
3139 	if (error)
3140 		return(0);
3141 	return(count);
3142 }
3143 
3144 void
3145 bus_delete_resource(device_t dev, int type, int rid)
3146 {
3147 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3148 }
3149 
3150 int
3151 bus_child_present(device_t child)
3152 {
3153 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3154 }
3155 
3156 int
3157 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3158 {
3159 	device_t parent;
3160 
3161 	parent = device_get_parent(child);
3162 	if (parent == NULL) {
3163 		*buf = '\0';
3164 		return (0);
3165 	}
3166 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3167 }
3168 
3169 int
3170 bus_child_location_str(device_t child, char *buf, size_t buflen)
3171 {
3172 	device_t parent;
3173 
3174 	parent = device_get_parent(child);
3175 	if (parent == NULL) {
3176 		*buf = '\0';
3177 		return (0);
3178 	}
3179 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3180 }
3181 
3182 /**
3183  * @brief Wrapper function for BUS_GET_DMA_TAG().
3184  *
3185  * This function simply calls the BUS_GET_DMA_TAG() method of the
3186  * parent of @p dev.
3187  */
3188 bus_dma_tag_t
3189 bus_get_dma_tag(device_t dev)
3190 {
3191 	device_t parent;
3192 
3193 	parent = device_get_parent(dev);
3194 	if (parent == NULL)
3195 		return (NULL);
3196 	return (BUS_GET_DMA_TAG(parent, dev));
3197 }
3198 
3199 static int
3200 root_print_child(device_t dev, device_t child)
3201 {
3202 	return(0);
3203 }
3204 
3205 static int
3206 root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3207 		void **cookiep, lwkt_serialize_t serializer, const char *desc)
3208 {
3209 	/*
3210 	 * If an interrupt mapping gets to here something bad has happened.
3211 	 */
3212 	panic("root_setup_intr");
3213 }
3214 
3215 /*
3216  * If we get here, assume that the device is permanant and really is
3217  * present in the system.  Removable bus drivers are expected to intercept
3218  * this call long before it gets here.  We return -1 so that drivers that
3219  * really care can check vs -1 or some ERRNO returned higher in the food
3220  * chain.
3221  */
3222 static int
3223 root_child_present(device_t dev, device_t child)
3224 {
3225 	return(-1);
3226 }
3227 
3228 /*
3229  * XXX NOTE! other defaults may be set in bus_if.m
3230  */
3231 static kobj_method_t root_methods[] = {
3232 	/* Device interface */
3233 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3234 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3235 	KOBJMETHOD(device_resume,	bus_generic_resume),
3236 
3237 	/* Bus interface */
3238 	KOBJMETHOD(bus_add_child,	bus_generic_add_child),
3239 	KOBJMETHOD(bus_print_child,	root_print_child),
3240 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3241 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3242 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3243 	KOBJMETHOD(bus_child_present,   root_child_present),
3244 
3245 	KOBJMETHOD_END
3246 };
3247 
3248 static driver_t root_driver = {
3249 	"root",
3250 	root_methods,
3251 	1,			/* no softc */
3252 };
3253 
3254 device_t	root_bus;
3255 devclass_t	root_devclass;
3256 
3257 static int
3258 root_bus_module_handler(module_t mod, int what, void* arg)
3259 {
3260 	switch (what) {
3261 	case MOD_LOAD:
3262 		TAILQ_INIT(&bus_data_devices);
3263 		root_bus = make_device(NULL, "root", 0);
3264 		root_bus->desc = "System root bus";
3265 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3266 		root_bus->driver = &root_driver;
3267 		root_bus->state = DS_ALIVE;
3268 		root_devclass = devclass_find_internal("root", NULL, FALSE);
3269 		devinit();
3270 		return(0);
3271 
3272 	case MOD_SHUTDOWN:
3273 		device_shutdown(root_bus);
3274 		return(0);
3275 	default:
3276 		return(0);
3277 	}
3278 }
3279 
3280 static moduledata_t root_bus_mod = {
3281 	"rootbus",
3282 	root_bus_module_handler,
3283 	0
3284 };
3285 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3286 
3287 void
3288 root_bus_configure(void)
3289 {
3290 	int warncount;
3291 	device_t dev;
3292 
3293 	PDEBUG(("."));
3294 
3295 	/*
3296 	 * handle device_identify based device attachments to the root_bus
3297 	 * (typically nexus).
3298 	 */
3299 	bus_generic_probe(root_bus);
3300 
3301 	/*
3302 	 * Probe and attach the devices under root_bus.
3303 	 */
3304 	TAILQ_FOREACH(dev, &root_bus->children, link) {
3305 		device_probe_and_attach(dev);
3306 	}
3307 
3308 	/*
3309 	 * Wait for all asynchronous attaches to complete.  If we don't
3310 	 * our legacy ISA bus scan could steal device unit numbers or
3311 	 * even I/O ports.
3312 	 */
3313 	warncount = 10;
3314 	if (numasyncthreads)
3315 		kprintf("Waiting for async drivers to attach\n");
3316 	while (numasyncthreads > 0) {
3317 		if (tsleep(&numasyncthreads, 0, "rootbus", hz) == EWOULDBLOCK)
3318 			--warncount;
3319 		if (warncount == 0) {
3320 			kprintf("Warning: Still waiting for %d "
3321 				"drivers to attach\n", numasyncthreads);
3322 		} else if (warncount == -30) {
3323 			kprintf("Giving up on %d drivers\n", numasyncthreads);
3324 			break;
3325 		}
3326 	}
3327 	root_bus->state = DS_ATTACHED;
3328 }
3329 
3330 int
3331 driver_module_handler(module_t mod, int what, void *arg)
3332 {
3333 	int error;
3334 	struct driver_module_data *dmd;
3335 	devclass_t bus_devclass;
3336 	kobj_class_t driver;
3337         const char *parentname;
3338 
3339 	dmd = (struct driver_module_data *)arg;
3340 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3341 	error = 0;
3342 
3343 	switch (what) {
3344 	case MOD_LOAD:
3345 		if (dmd->dmd_chainevh)
3346 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3347 
3348 		driver = dmd->dmd_driver;
3349 		PDEBUG(("Loading module: driver %s on bus %s",
3350 		        DRIVERNAME(driver), dmd->dmd_busname));
3351 
3352 		/*
3353 		 * If the driver has any base classes, make the
3354 		 * devclass inherit from the devclass of the driver's
3355 		 * first base class. This will allow the system to
3356 		 * search for drivers in both devclasses for children
3357 		 * of a device using this driver.
3358 		 */
3359 		if (driver->baseclasses)
3360 			parentname = driver->baseclasses[0]->name;
3361 		else
3362 			parentname = NULL;
3363 		*dmd->dmd_devclass = devclass_find_internal(driver->name,
3364 							    parentname, TRUE);
3365 
3366 		error = devclass_add_driver(bus_devclass, driver);
3367 		if (error)
3368 			break;
3369 		break;
3370 
3371 	case MOD_UNLOAD:
3372 		PDEBUG(("Unloading module: driver %s from bus %s",
3373 			DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname));
3374 		error = devclass_delete_driver(bus_devclass, dmd->dmd_driver);
3375 
3376 		if (!error && dmd->dmd_chainevh)
3377 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3378 		break;
3379 	}
3380 
3381 	return (error);
3382 }
3383 
3384 #ifdef BUS_DEBUG
3385 
3386 /*
3387  * The _short versions avoid iteration by not calling anything that prints
3388  * more than oneliners. I love oneliners.
3389  */
3390 
3391 static void
3392 print_device_short(device_t dev, int indent)
3393 {
3394 	if (!dev)
3395 		return;
3396 
3397 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3398 		      dev->unit, dev->desc,
3399 		      (dev->parent? "":"no "),
3400 		      (TAILQ_EMPTY(&dev->children)? "no ":""),
3401 		      (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3402 		      (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3403 		      (dev->flags&DF_WILDCARD? "wildcard,":""),
3404 		      (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3405 		      (dev->ivars? "":"no "),
3406 		      (dev->softc? "":"no "),
3407 		      dev->busy));
3408 }
3409 
3410 static void
3411 print_device(device_t dev, int indent)
3412 {
3413 	if (!dev)
3414 		return;
3415 
3416 	print_device_short(dev, indent);
3417 
3418 	indentprintf(("Parent:\n"));
3419 	print_device_short(dev->parent, indent+1);
3420 	indentprintf(("Driver:\n"));
3421 	print_driver_short(dev->driver, indent+1);
3422 	indentprintf(("Devclass:\n"));
3423 	print_devclass_short(dev->devclass, indent+1);
3424 }
3425 
3426 /*
3427  * Print the device and all its children (indented).
3428  */
3429 void
3430 print_device_tree_short(device_t dev, int indent)
3431 {
3432 	device_t child;
3433 
3434 	if (!dev)
3435 		return;
3436 
3437 	print_device_short(dev, indent);
3438 
3439 	TAILQ_FOREACH(child, &dev->children, link)
3440 		print_device_tree_short(child, indent+1);
3441 }
3442 
3443 /*
3444  * Print the device and all its children (indented).
3445  */
3446 void
3447 print_device_tree(device_t dev, int indent)
3448 {
3449 	device_t child;
3450 
3451 	if (!dev)
3452 		return;
3453 
3454 	print_device(dev, indent);
3455 
3456 	TAILQ_FOREACH(child, &dev->children, link)
3457 		print_device_tree(child, indent+1);
3458 }
3459 
3460 static void
3461 print_driver_short(driver_t *driver, int indent)
3462 {
3463 	if (!driver)
3464 		return;
3465 
3466 	indentprintf(("driver %s: softc size = %zu\n",
3467 		      driver->name, driver->size));
3468 }
3469 
3470 static void
3471 print_driver(driver_t *driver, int indent)
3472 {
3473 	if (!driver)
3474 		return;
3475 
3476 	print_driver_short(driver, indent);
3477 }
3478 
3479 
3480 static void
3481 print_driver_list(driver_list_t drivers, int indent)
3482 {
3483 	driverlink_t driver;
3484 
3485 	TAILQ_FOREACH(driver, &drivers, link)
3486 		print_driver(driver->driver, indent);
3487 }
3488 
3489 static void
3490 print_devclass_short(devclass_t dc, int indent)
3491 {
3492 	if (!dc)
3493 		return;
3494 
3495 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3496 }
3497 
3498 static void
3499 print_devclass(devclass_t dc, int indent)
3500 {
3501 	int i;
3502 
3503 	if (!dc)
3504 		return;
3505 
3506 	print_devclass_short(dc, indent);
3507 	indentprintf(("Drivers:\n"));
3508 	print_driver_list(dc->drivers, indent+1);
3509 
3510 	indentprintf(("Devices:\n"));
3511 	for (i = 0; i < dc->maxunit; i++)
3512 		if (dc->devices[i])
3513 			print_device(dc->devices[i], indent+1);
3514 }
3515 
3516 void
3517 print_devclass_list_short(void)
3518 {
3519 	devclass_t dc;
3520 
3521 	kprintf("Short listing of devclasses, drivers & devices:\n");
3522 	TAILQ_FOREACH(dc, &devclasses, link) {
3523 		print_devclass_short(dc, 0);
3524 	}
3525 }
3526 
3527 void
3528 print_devclass_list(void)
3529 {
3530 	devclass_t dc;
3531 
3532 	kprintf("Full listing of devclasses, drivers & devices:\n");
3533 	TAILQ_FOREACH(dc, &devclasses, link) {
3534 		print_devclass(dc, 0);
3535 	}
3536 }
3537 
3538 #endif
3539 
3540 /*
3541  * Check to see if a device is disabled via a disabled hint.
3542  */
3543 int
3544 resource_disabled(const char *name, int unit)
3545 {
3546 	int error, value;
3547 
3548 	error = resource_int_value(name, unit, "disabled", &value);
3549 	if (error)
3550 	       return(0);
3551 	return(value);
3552 }
3553 
3554 /*
3555  * User-space access to the device tree.
3556  *
3557  * We implement a small set of nodes:
3558  *
3559  * hw.bus			Single integer read method to obtain the
3560  *				current generation count.
3561  * hw.bus.devices		Reads the entire device tree in flat space.
3562  * hw.bus.rman			Resource manager interface
3563  *
3564  * We might like to add the ability to scan devclasses and/or drivers to
3565  * determine what else is currently loaded/available.
3566  */
3567 
3568 static int
3569 sysctl_bus(SYSCTL_HANDLER_ARGS)
3570 {
3571 	struct u_businfo	ubus;
3572 
3573 	ubus.ub_version = BUS_USER_VERSION;
3574 	ubus.ub_generation = bus_data_generation;
3575 
3576 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3577 }
3578 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3579     "bus-related data");
3580 
3581 static int
3582 sysctl_devices(SYSCTL_HANDLER_ARGS)
3583 {
3584 	int			*name = (int *)arg1;
3585 	u_int			namelen = arg2;
3586 	int			index;
3587 	struct device		*dev;
3588 	struct u_device		udev;	/* XXX this is a bit big */
3589 	int			error;
3590 
3591 	if (namelen != 2)
3592 		return (EINVAL);
3593 
3594 	if (bus_data_generation_check(name[0]))
3595 		return (EINVAL);
3596 
3597 	index = name[1];
3598 
3599 	/*
3600 	 * Scan the list of devices, looking for the requested index.
3601 	 */
3602 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3603 		if (index-- == 0)
3604 			break;
3605 	}
3606 	if (dev == NULL)
3607 		return (ENOENT);
3608 
3609 	/*
3610 	 * Populate the return array.
3611 	 */
3612 	bzero(&udev, sizeof(udev));
3613 	udev.dv_handle = (uintptr_t)dev;
3614 	udev.dv_parent = (uintptr_t)dev->parent;
3615 	if (dev->nameunit != NULL)
3616 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3617 	if (dev->desc != NULL)
3618 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3619 	if (dev->driver != NULL && dev->driver->name != NULL)
3620 		strlcpy(udev.dv_drivername, dev->driver->name,
3621 		    sizeof(udev.dv_drivername));
3622 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3623 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3624 	udev.dv_devflags = dev->devflags;
3625 	udev.dv_flags = dev->flags;
3626 	udev.dv_state = dev->state;
3627 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3628 	return (error);
3629 }
3630 
3631 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3632     "system device tree");
3633 
3634 int
3635 bus_data_generation_check(int generation)
3636 {
3637 	if (generation != bus_data_generation)
3638 		return (1);
3639 
3640 	/* XXX generate optimised lists here? */
3641 	return (0);
3642 }
3643 
3644 void
3645 bus_data_generation_update(void)
3646 {
3647 	bus_data_generation++;
3648 }
3649 
3650 const char *
3651 intr_str_polarity(enum intr_polarity pola)
3652 {
3653 	switch (pola) {
3654 	case INTR_POLARITY_LOW:
3655 		return "low";
3656 
3657 	case INTR_POLARITY_HIGH:
3658 		return "high";
3659 
3660 	case INTR_POLARITY_CONFORM:
3661 		return "conform";
3662 	}
3663 	return "unknown";
3664 }
3665 
3666 const char *
3667 intr_str_trigger(enum intr_trigger trig)
3668 {
3669 	switch (trig) {
3670 	case INTR_TRIGGER_EDGE:
3671 		return "edge";
3672 
3673 	case INTR_TRIGGER_LEVEL:
3674 		return "level";
3675 
3676 	case INTR_TRIGGER_CONFORM:
3677 		return "conform";
3678 	}
3679 	return "unknown";
3680 }
3681 
3682 int
3683 device_getenv_int(device_t dev, const char *knob, int def)
3684 {
3685 	char env[128];
3686 
3687 	ksnprintf(env, sizeof(env), "hw.%s.%s", device_get_nameunit(dev), knob);
3688 	kgetenv_int(env, &def);
3689 	return def;
3690 }
3691