xref: /dragonfly/sys/kern/subr_disk.c (revision 07a2f99c)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * and Alex Hornung <ahornung@gmail.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * ----------------------------------------------------------------------------
36  * "THE BEER-WARE LICENSE" (Revision 42):
37  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
38  * can do whatever you want with this stuff. If we meet some day, and you think
39  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
40  * ----------------------------------------------------------------------------
41  *
42  * Copyright (c) 1982, 1986, 1988, 1993
43  *	The Regents of the University of California.  All rights reserved.
44  * (c) UNIX System Laboratories, Inc.
45  * All or some portions of this file are derived from material licensed
46  * to the University of California by American Telephone and Telegraph
47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48  * the permission of UNIX System Laboratories, Inc.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. All advertising materials mentioning features or use of this software
59  *    must display the following acknowledgement:
60  *	This product includes software developed by the University of
61  *	California, Berkeley and its contributors.
62  * 4. Neither the name of the University nor the names of its contributors
63  *    may be used to endorse or promote products derived from this software
64  *    without specific prior written permission.
65  *
66  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
67  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
70  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
74  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
75  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
76  * SUCH DAMAGE.
77  *
78  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
79  * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
80  * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/proc.h>
87 #include <sys/sysctl.h>
88 #include <sys/buf.h>
89 #include <sys/conf.h>
90 #include <sys/disklabel.h>
91 #include <sys/disklabel32.h>
92 #include <sys/disklabel64.h>
93 #include <sys/diskslice.h>
94 #include <sys/diskmbr.h>
95 #include <sys/disk.h>
96 #include <sys/kerneldump.h>
97 #include <sys/malloc.h>
98 #include <machine/md_var.h>
99 #include <sys/ctype.h>
100 #include <sys/syslog.h>
101 #include <sys/device.h>
102 #include <sys/msgport.h>
103 #include <sys/devfs.h>
104 #include <sys/thread.h>
105 #include <sys/dsched.h>
106 #include <sys/queue.h>
107 #include <sys/lock.h>
108 #include <sys/udev.h>
109 #include <sys/uuid.h>
110 
111 #include <sys/buf2.h>
112 #include <sys/mplock2.h>
113 #include <sys/msgport2.h>
114 #include <sys/thread2.h>
115 
116 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
117 static int disk_debug_enable = 0;
118 
119 static void disk_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
120 static void disk_msg_core(void *);
121 static int disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe);
122 static void disk_probe(struct disk *dp, int reprobe);
123 static void _setdiskinfo(struct disk *disk, struct disk_info *info);
124 static void bioqwritereorder(struct bio_queue_head *bioq);
125 static void disk_cleanserial(char *serno);
126 static int disk_debug(int, char *, ...) __printflike(2, 3);
127 static cdev_t _disk_create_named(const char *name, int unit, struct disk *dp,
128     struct dev_ops *raw_ops, int clone);
129 
130 static d_open_t diskopen;
131 static d_close_t diskclose;
132 static d_ioctl_t diskioctl;
133 static d_strategy_t diskstrategy;
134 static d_psize_t diskpsize;
135 static d_dump_t diskdump;
136 
137 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
138 static struct lwkt_token disklist_token;
139 
140 static struct dev_ops disk_ops = {
141 	{ "disk", 0, D_DISK | D_MPSAFE | D_TRACKCLOSE },
142 	.d_open = diskopen,
143 	.d_close = diskclose,
144 	.d_read = physread,
145 	.d_write = physwrite,
146 	.d_ioctl = diskioctl,
147 	.d_strategy = diskstrategy,
148 	.d_dump = diskdump,
149 	.d_psize = diskpsize,
150 };
151 
152 static struct objcache 	*disk_msg_cache;
153 
154 struct objcache_malloc_args disk_msg_malloc_args = {
155 	sizeof(struct disk_msg), M_DISK };
156 
157 static struct lwkt_port disk_dispose_port;
158 static struct lwkt_port disk_msg_port;
159 
160 static int
161 disk_debug(int level, char *fmt, ...)
162 {
163 	__va_list ap;
164 
165 	__va_start(ap, fmt);
166 	if (level <= disk_debug_enable)
167 		kvprintf(fmt, ap);
168 	__va_end(ap);
169 
170 	return 0;
171 }
172 
173 static int
174 disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe)
175 {
176 	struct disk_info *info = &dp->d_info;
177 	struct diskslice *sp = &dp->d_slice->dss_slices[slice];
178 	disklabel_ops_t ops;
179 	struct partinfo part;
180 	const char *msg;
181 	char uuid_buf[128];
182 	cdev_t ndev;
183 	int sno;
184 	u_int i;
185 
186 	disk_debug(2, "disk_probe_slice (begin): %s (%s)\n",
187 		   dev->si_name, dp->d_cdev->si_name);
188 
189 	sno = slice ? slice - 1 : 0;
190 
191 	ops = &disklabel32_ops;
192 	msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
193 	if (msg && !strcmp(msg, "no disk label")) {
194 		ops = &disklabel64_ops;
195 		msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
196 	}
197 
198 	if (msg == NULL) {
199 		if (slice != WHOLE_DISK_SLICE)
200 			ops->op_adjust_label_reserved(dp->d_slice, slice, sp);
201 		else
202 			sp->ds_reserved = 0;
203 
204 		sp->ds_ops = ops;
205 		for (i = 0; i < ops->op_getnumparts(sp->ds_label); i++) {
206 			ops->op_loadpartinfo(sp->ds_label, i, &part);
207 			if (part.fstype) {
208 				if (reprobe &&
209 				    (ndev = devfs_find_device_by_name("%s%c",
210 						dev->si_name, 'a' + i))
211 				) {
212 					/*
213 					 * Device already exists and
214 					 * is still valid.
215 					 */
216 					ndev->si_flags |= SI_REPROBE_TEST;
217 
218 					/*
219 					 * Destroy old UUID alias
220 					 */
221 					destroy_dev_alias(ndev, "part-by-uuid/*");
222 
223 					/* Create UUID alias */
224 					if (!kuuid_is_nil(&part.storage_uuid)) {
225 						snprintf_uuid(uuid_buf,
226 						    sizeof(uuid_buf),
227 						    &part.storage_uuid);
228 						make_dev_alias(ndev,
229 						    "part-by-uuid/%s",
230 						    uuid_buf);
231 						udev_dict_set_cstr(ndev, "uuid", uuid_buf);
232 					}
233 				} else {
234 					ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
235 						dkmakeminor(dkunit(dp->d_cdev),
236 							    slice, i),
237 						UID_ROOT, GID_OPERATOR, 0640,
238 						"%s%c", dev->si_name, 'a'+ i);
239 					ndev->si_parent = dev;
240 					ndev->si_iosize_max = dev->si_iosize_max;
241 					ndev->si_disk = dp;
242 					udev_dict_set_cstr(ndev, "subsystem", "disk");
243 					/* Inherit parent's disk type */
244 					if (dp->d_disktype) {
245 						udev_dict_set_cstr(ndev, "disk-type",
246 						    __DECONST(char *, dp->d_disktype));
247 					}
248 
249 					/* Create serno alias */
250 					if (dp->d_info.d_serialno) {
251 						make_dev_alias(ndev,
252 						    "serno/%s.s%d%c",
253 						    dp->d_info.d_serialno,
254 						    sno, 'a' + i);
255 					}
256 
257 					/* Create UUID alias */
258 					if (!kuuid_is_nil(&part.storage_uuid)) {
259 						snprintf_uuid(uuid_buf,
260 						    sizeof(uuid_buf),
261 						    &part.storage_uuid);
262 						make_dev_alias(ndev,
263 						    "part-by-uuid/%s",
264 						    uuid_buf);
265 						udev_dict_set_cstr(ndev, "uuid", uuid_buf);
266 					}
267 					ndev->si_flags |= SI_REPROBE_TEST;
268 				}
269 			}
270 		}
271 	} else if (info->d_dsflags & DSO_COMPATLABEL) {
272 		msg = NULL;
273 		if (sp->ds_size >= 0x100000000ULL)
274 			ops = &disklabel64_ops;
275 		else
276 			ops = &disklabel32_ops;
277 		sp->ds_label = ops->op_clone_label(info, sp);
278 	} else {
279 		if (sp->ds_type == DOSPTYP_386BSD || /* XXX */
280 		    sp->ds_type == DOSPTYP_NETBSD ||
281 		    sp->ds_type == DOSPTYP_OPENBSD) {
282 			log(LOG_WARNING, "%s: cannot find label (%s)\n",
283 			    dev->si_name, msg);
284 		}
285 
286 		if (sp->ds_label.opaque != NULL && sp->ds_ops != NULL) {
287 			/* Clear out old label - it's not around anymore */
288 			disk_debug(2,
289 			    "disk_probe_slice: clear out old diskabel on %s\n",
290 			    dev->si_name);
291 
292 			sp->ds_ops->op_freedisklabel(&sp->ds_label);
293 			sp->ds_ops = NULL;
294 		}
295 	}
296 
297 	if (msg == NULL) {
298 		sp->ds_wlabel = FALSE;
299 	}
300 
301 	return (msg ? EINVAL : 0);
302 }
303 
304 /*
305  * This routine is only called for newly minted drives or to reprobe
306  * a drive with no open slices.  disk_probe_slice() is called directly
307  * when reprobing partition changes within slices.
308  */
309 static void
310 disk_probe(struct disk *dp, int reprobe)
311 {
312 	struct disk_info *info = &dp->d_info;
313 	cdev_t dev = dp->d_cdev;
314 	cdev_t ndev;
315 	int error, i, sno;
316 	struct diskslices *osp;
317 	struct diskslice *sp;
318 	char uuid_buf[128];
319 
320 	KKASSERT (info->d_media_blksize != 0);
321 
322 	osp = dp->d_slice;
323 	dp->d_slice = dsmakeslicestruct(BASE_SLICE, info);
324 	disk_debug(1, "disk_probe (begin): %s\n", dp->d_cdev->si_name);
325 
326 	error = mbrinit(dev, info, &(dp->d_slice));
327 	if (error) {
328 		dsgone(&osp);
329 		return;
330 	}
331 
332 	for (i = 0; i < dp->d_slice->dss_nslices; i++) {
333 		/*
334 		 * Ignore the whole-disk slice, it has already been created.
335 		 */
336 		if (i == WHOLE_DISK_SLICE)
337 			continue;
338 
339 #if 1
340 		/*
341 		 * Ignore the compatibility slice s0 if it's a device mapper
342 		 * volume.
343 		 */
344 		if ((i == COMPATIBILITY_SLICE) &&
345 		    (info->d_dsflags & DSO_DEVICEMAPPER))
346 			continue;
347 #endif
348 
349 		sp = &dp->d_slice->dss_slices[i];
350 
351 		/*
352 		 * Handle s0.  s0 is a compatibility slice if there are no
353 		 * other slices and it has not otherwise been set up, else
354 		 * we ignore it.
355 		 */
356 		if (i == COMPATIBILITY_SLICE) {
357 			sno = 0;
358 			if (sp->ds_type == 0 &&
359 			    dp->d_slice->dss_nslices == BASE_SLICE) {
360 				sp->ds_size = info->d_media_blocks;
361 				sp->ds_reserved = 0;
362 			}
363 		} else {
364 			sno = i - 1;
365 			sp->ds_reserved = 0;
366 		}
367 
368 		/*
369 		 * Ignore 0-length slices
370 		 */
371 		if (sp->ds_size == 0)
372 			continue;
373 
374 		if (reprobe &&
375 		    (ndev = devfs_find_device_by_name("%ss%d",
376 						      dev->si_name, sno))) {
377 			/*
378 			 * Device already exists and is still valid
379 			 */
380 			ndev->si_flags |= SI_REPROBE_TEST;
381 
382 			/*
383 			 * Destroy old UUID alias
384 			 */
385 			destroy_dev_alias(ndev, "slice-by-uuid/*");
386 
387 			/* Create UUID alias */
388 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
389 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
390 				    &sp->ds_stor_uuid);
391 				make_dev_alias(ndev, "slice-by-uuid/%s",
392 				    uuid_buf);
393 			}
394 		} else {
395 			/*
396 			 * Else create new device
397 			 */
398 			ndev = make_dev_covering(&disk_ops, dp->d_rawdev->si_ops,
399 					dkmakewholeslice(dkunit(dev), i),
400 					UID_ROOT, GID_OPERATOR, 0640,
401 					(info->d_dsflags & DSO_DEVICEMAPPER)?
402 					"%s.s%d" : "%ss%d", dev->si_name, sno);
403 			ndev->si_parent = dev;
404 			ndev->si_iosize_max = dev->si_iosize_max;
405 			udev_dict_set_cstr(ndev, "subsystem", "disk");
406 			/* Inherit parent's disk type */
407 			if (dp->d_disktype) {
408 				udev_dict_set_cstr(ndev, "disk-type",
409 				    __DECONST(char *, dp->d_disktype));
410 			}
411 
412 			/* Create serno alias */
413 			if (dp->d_info.d_serialno) {
414 				make_dev_alias(ndev, "serno/%s.s%d",
415 					       dp->d_info.d_serialno, sno);
416 			}
417 
418 			/* Create UUID alias */
419 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
420 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
421 				    &sp->ds_stor_uuid);
422 				make_dev_alias(ndev, "slice-by-uuid/%s",
423 				    uuid_buf);
424 			}
425 
426 			ndev->si_disk = dp;
427 			ndev->si_flags |= SI_REPROBE_TEST;
428 		}
429 		sp->ds_dev = ndev;
430 
431 		/*
432 		 * Probe appropriate slices for a disklabel
433 		 *
434 		 * XXX slice type 1 used by our gpt probe code.
435 		 * XXX slice type 0 used by mbr compat slice.
436 		 */
437 		if (sp->ds_type == DOSPTYP_386BSD ||
438 		    sp->ds_type == DOSPTYP_NETBSD ||
439 		    sp->ds_type == DOSPTYP_OPENBSD ||
440 		    sp->ds_type == 0 ||
441 		    sp->ds_type == 1) {
442 			if (dp->d_slice->dss_first_bsd_slice == 0)
443 				dp->d_slice->dss_first_bsd_slice = i;
444 			disk_probe_slice(dp, ndev, i, reprobe);
445 		}
446 	}
447 	dsgone(&osp);
448 	disk_debug(1, "disk_probe (end): %s\n", dp->d_cdev->si_name);
449 }
450 
451 
452 static void
453 disk_msg_core(void *arg)
454 {
455 	struct disk	*dp;
456 	struct diskslice *sp;
457 	disk_msg_t msg;
458 	int run;
459 
460 	lwkt_gettoken(&disklist_token);
461 	lwkt_initport_thread(&disk_msg_port, curthread);
462 	wakeup(curthread);	/* synchronous startup */
463 	lwkt_reltoken(&disklist_token);
464 
465 	get_mplock();	/* not mpsafe yet? */
466 	run = 1;
467 
468 	while (run) {
469 		msg = (disk_msg_t)lwkt_waitport(&disk_msg_port, 0);
470 
471 		switch (msg->hdr.u.ms_result) {
472 		case DISK_DISK_PROBE:
473 			dp = (struct disk *)msg->load;
474 			disk_debug(1,
475 				    "DISK_DISK_PROBE: %s\n",
476 					dp->d_cdev->si_name);
477 			disk_iocom_update(dp);
478 			disk_probe(dp, 0);
479 			break;
480 		case DISK_DISK_DESTROY:
481 			dp = (struct disk *)msg->load;
482 			disk_debug(1,
483 				    "DISK_DISK_DESTROY: %s\n",
484 					dp->d_cdev->si_name);
485 			disk_iocom_uninit(dp);
486 
487 			/*
488 			 * Interlock against struct disk enumerations.
489 			 * Wait for enumerations to complete then remove
490 			 * the dp from the list before tearing it down.
491 			 *
492 			 * This avoids races against e.g.
493 			 * dsched_thread_io_alloc().
494 			 */
495 			lwkt_gettoken(&disklist_token);
496 			while (dp->d_refs)
497 				tsleep(&dp->d_refs, 0, "diskdel", hz / 10);
498 			LIST_REMOVE(dp, d_list);
499 
500 			dsched_disk_destroy_callback(dp);
501 			devfs_destroy_related(dp->d_cdev);
502 			destroy_dev(dp->d_cdev);
503 			destroy_only_dev(dp->d_rawdev);
504 
505 			lwkt_reltoken(&disklist_token);
506 
507 			if (dp->d_info.d_serialno) {
508 				kfree(dp->d_info.d_serialno, M_TEMP);
509 				dp->d_info.d_serialno = NULL;
510 			}
511 			break;
512 		case DISK_UNPROBE:
513 			dp = (struct disk *)msg->load;
514 			disk_debug(1,
515 				    "DISK_DISK_UNPROBE: %s\n",
516 					dp->d_cdev->si_name);
517 			devfs_destroy_related(dp->d_cdev);
518 			break;
519 		case DISK_SLICE_REPROBE:
520 			dp = (struct disk *)msg->load;
521 			sp = (struct diskslice *)msg->load2;
522 			devfs_clr_related_flag(sp->ds_dev,
523 						SI_REPROBE_TEST);
524 			disk_debug(1,
525 				    "DISK_SLICE_REPROBE: %s\n",
526 				    sp->ds_dev->si_name);
527 			disk_probe_slice(dp, sp->ds_dev,
528 					 dkslice(sp->ds_dev), 1);
529 			devfs_destroy_related_without_flag(
530 					sp->ds_dev, SI_REPROBE_TEST);
531 			break;
532 		case DISK_DISK_REPROBE:
533 			dp = (struct disk *)msg->load;
534 			devfs_clr_related_flag(dp->d_cdev, SI_REPROBE_TEST);
535 			disk_debug(1,
536 				    "DISK_DISK_REPROBE: %s\n",
537 				    dp->d_cdev->si_name);
538 			disk_probe(dp, 1);
539 			devfs_destroy_related_without_flag(
540 					dp->d_cdev, SI_REPROBE_TEST);
541 			break;
542 		case DISK_SYNC:
543 			disk_debug(1, "DISK_SYNC\n");
544 			break;
545 		default:
546 			devfs_debug(DEVFS_DEBUG_WARNING,
547 				    "disk_msg_core: unknown message "
548 				    "received at core\n");
549 			break;
550 		}
551 		lwkt_replymsg(&msg->hdr, 0);
552 	}
553 	lwkt_exit();
554 }
555 
556 
557 /*
558  * Acts as a message drain. Any message that is replied to here gets
559  * destroyed and the memory freed.
560  */
561 static void
562 disk_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
563 {
564 	objcache_put(disk_msg_cache, msg);
565 }
566 
567 
568 void
569 disk_msg_send(uint32_t cmd, void *load, void *load2)
570 {
571 	disk_msg_t disk_msg;
572 	lwkt_port_t port = &disk_msg_port;
573 
574 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
575 
576 	lwkt_initmsg(&disk_msg->hdr, &disk_dispose_port, 0);
577 
578 	disk_msg->hdr.u.ms_result = cmd;
579 	disk_msg->load = load;
580 	disk_msg->load2 = load2;
581 	KKASSERT(port);
582 	lwkt_sendmsg(port, &disk_msg->hdr);
583 }
584 
585 void
586 disk_msg_send_sync(uint32_t cmd, void *load, void *load2)
587 {
588 	struct lwkt_port rep_port;
589 	disk_msg_t disk_msg;
590 	lwkt_port_t port;
591 
592 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
593 	port = &disk_msg_port;
594 
595 	/* XXX could probably use curthread's built-in msgport */
596 	lwkt_initport_thread(&rep_port, curthread);
597 	lwkt_initmsg(&disk_msg->hdr, &rep_port, 0);
598 
599 	disk_msg->hdr.u.ms_result = cmd;
600 	disk_msg->load = load;
601 	disk_msg->load2 = load2;
602 
603 	lwkt_sendmsg(port, &disk_msg->hdr);
604 	lwkt_waitmsg(&disk_msg->hdr, 0);
605 	objcache_put(disk_msg_cache, disk_msg);
606 }
607 
608 /*
609  * Create a raw device for the dev_ops template (which is returned).  Also
610  * create a slice and unit managed disk and overload the user visible
611  * device space with it.
612  *
613  * NOTE: The returned raw device is NOT a slice and unit managed device.
614  * It is an actual raw device representing the raw disk as specified by
615  * the passed dev_ops.  The disk layer not only returns such a raw device,
616  * it also uses it internally when passing (modified) commands through.
617  */
618 cdev_t
619 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops)
620 {
621 	return _disk_create_named(NULL, unit, dp, raw_ops, 0);
622 }
623 
624 cdev_t
625 disk_create_clone(int unit, struct disk *dp,
626 		  struct dev_ops *raw_ops)
627 {
628 	return _disk_create_named(NULL, unit, dp, raw_ops, 1);
629 }
630 
631 cdev_t
632 disk_create_named(const char *name, int unit, struct disk *dp,
633 		  struct dev_ops *raw_ops)
634 {
635 	return _disk_create_named(name, unit, dp, raw_ops, 0);
636 }
637 
638 cdev_t
639 disk_create_named_clone(const char *name, int unit, struct disk *dp,
640 			struct dev_ops *raw_ops)
641 {
642 	return _disk_create_named(name, unit, dp, raw_ops, 1);
643 }
644 
645 static cdev_t
646 _disk_create_named(const char *name, int unit, struct disk *dp,
647 		   struct dev_ops *raw_ops, int clone)
648 {
649 	cdev_t rawdev;
650 
651 	disk_debug(1, "disk_create (begin): %s%d\n", name, unit);
652 
653 	if (name) {
654 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
655 		    UID_ROOT, GID_OPERATOR, 0640, "%s", name);
656 	} else {
657 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
658 		    UID_ROOT, GID_OPERATOR, 0640,
659 		    "%s%d", raw_ops->head.name, unit);
660 	}
661 
662 	bzero(dp, sizeof(*dp));
663 
664 	dp->d_rawdev = rawdev;
665 	dp->d_raw_ops = raw_ops;
666 	dp->d_dev_ops = &disk_ops;
667 
668 	if (name) {
669 		if (clone) {
670 			dp->d_cdev = make_only_dev_covering(
671 					&disk_ops, dp->d_rawdev->si_ops,
672 					dkmakewholedisk(unit),
673 					UID_ROOT, GID_OPERATOR, 0640,
674 					"%s", name);
675 		} else {
676 			dp->d_cdev = make_dev_covering(
677 					&disk_ops, dp->d_rawdev->si_ops,
678 					dkmakewholedisk(unit),
679 					UID_ROOT, GID_OPERATOR, 0640,
680 					"%s", name);
681 		}
682 	} else {
683 		if (clone) {
684 			dp->d_cdev = make_only_dev_covering(
685 					&disk_ops, dp->d_rawdev->si_ops,
686 					dkmakewholedisk(unit),
687 					UID_ROOT, GID_OPERATOR, 0640,
688 					"%s%d", raw_ops->head.name, unit);
689 		} else {
690 			dp->d_cdev = make_dev_covering(
691 					&disk_ops, dp->d_rawdev->si_ops,
692 					dkmakewholedisk(unit),
693 					UID_ROOT, GID_OPERATOR, 0640,
694 					"%s%d", raw_ops->head.name, unit);
695 		}
696 	}
697 
698 	udev_dict_set_cstr(dp->d_cdev, "subsystem", "disk");
699 	dp->d_cdev->si_disk = dp;
700 
701 	if (name)
702 		dsched_disk_create_callback(dp, name, unit);
703 	else
704 		dsched_disk_create_callback(dp, raw_ops->head.name, unit);
705 
706 	lwkt_gettoken(&disklist_token);
707 	LIST_INSERT_HEAD(&disklist, dp, d_list);
708 	lwkt_reltoken(&disklist_token);
709 
710 	disk_iocom_init(dp);
711 
712 	disk_debug(1, "disk_create (end): %s%d\n",
713 		   (name != NULL)?(name):(raw_ops->head.name), unit);
714 
715 	return (dp->d_rawdev);
716 }
717 
718 int
719 disk_setdisktype(struct disk *disk, const char *type)
720 {
721 	int error;
722 
723 	KKASSERT(disk != NULL);
724 
725 	disk->d_disktype = type;
726 	error = udev_dict_set_cstr(disk->d_cdev, "disk-type",
727 				   __DECONST(char *, type));
728 	return error;
729 }
730 
731 int
732 disk_getopencount(struct disk *disk)
733 {
734 	return disk->d_opencount;
735 }
736 
737 static void
738 _setdiskinfo(struct disk *disk, struct disk_info *info)
739 {
740 	char *oldserialno;
741 
742 	oldserialno = disk->d_info.d_serialno;
743 	bcopy(info, &disk->d_info, sizeof(disk->d_info));
744 	info = &disk->d_info;
745 
746 	disk_debug(1, "_setdiskinfo: %s\n", disk->d_cdev->si_name);
747 
748 	/*
749 	 * The serial number is duplicated so the caller can throw
750 	 * their copy away.
751 	 */
752 	if (info->d_serialno && info->d_serialno[0] &&
753 	    (info->d_serialno[0] != ' ' || strlen(info->d_serialno) > 1)) {
754 		info->d_serialno = kstrdup(info->d_serialno, M_TEMP);
755 		disk_cleanserial(info->d_serialno);
756 		if (disk->d_cdev) {
757 			make_dev_alias(disk->d_cdev, "serno/%s",
758 				       info->d_serialno);
759 		}
760 	} else {
761 		info->d_serialno = NULL;
762 	}
763 	if (oldserialno)
764 		kfree(oldserialno, M_TEMP);
765 
766 	dsched_disk_update_callback(disk, info);
767 
768 	/*
769 	 * The caller may set d_media_size or d_media_blocks and we
770 	 * calculate the other.
771 	 */
772 	KKASSERT(info->d_media_size == 0 || info->d_media_blocks == 0);
773 	if (info->d_media_size == 0 && info->d_media_blocks) {
774 		info->d_media_size = (u_int64_t)info->d_media_blocks *
775 				     info->d_media_blksize;
776 	} else if (info->d_media_size && info->d_media_blocks == 0 &&
777 		   info->d_media_blksize) {
778 		info->d_media_blocks = info->d_media_size /
779 				       info->d_media_blksize;
780 	}
781 
782 	/*
783 	 * The si_* fields for rawdev are not set until after the
784 	 * disk_create() call, so someone using the cooked version
785 	 * of the raw device (i.e. da0s0) will not get the right
786 	 * si_iosize_max unless we fix it up here.
787 	 */
788 	if (disk->d_cdev && disk->d_rawdev &&
789 	    disk->d_cdev->si_iosize_max == 0) {
790 		disk->d_cdev->si_iosize_max = disk->d_rawdev->si_iosize_max;
791 		disk->d_cdev->si_bsize_phys = disk->d_rawdev->si_bsize_phys;
792 		disk->d_cdev->si_bsize_best = disk->d_rawdev->si_bsize_best;
793 	}
794 
795 	/* Add the serial number to the udev_dictionary */
796 	if (info->d_serialno)
797 		udev_dict_set_cstr(disk->d_cdev, "serno", info->d_serialno);
798 }
799 
800 /*
801  * Disk drivers must call this routine when media parameters are available
802  * or have changed.
803  */
804 void
805 disk_setdiskinfo(struct disk *disk, struct disk_info *info)
806 {
807 	_setdiskinfo(disk, info);
808 	disk_msg_send(DISK_DISK_PROBE, disk, NULL);
809 	disk_debug(1, "disk_setdiskinfo: sent probe for %s\n",
810 		   disk->d_cdev->si_name);
811 }
812 
813 void
814 disk_setdiskinfo_sync(struct disk *disk, struct disk_info *info)
815 {
816 	_setdiskinfo(disk, info);
817 	disk_msg_send_sync(DISK_DISK_PROBE, disk, NULL);
818 	disk_debug(1, "disk_setdiskinfo_sync: sent probe for %s\n",
819 		   disk->d_cdev->si_name);
820 }
821 
822 /*
823  * This routine is called when an adapter detaches.  The higher level
824  * managed disk device is destroyed while the lower level raw device is
825  * released.
826  */
827 void
828 disk_destroy(struct disk *disk)
829 {
830 	disk_msg_send_sync(DISK_DISK_DESTROY, disk, NULL);
831 	return;
832 }
833 
834 int
835 disk_dumpcheck(cdev_t dev, u_int64_t *size,
836 	       u_int64_t *blkno, u_int32_t *secsize)
837 {
838 	struct partinfo pinfo;
839 	int error;
840 
841 	bzero(&pinfo, sizeof(pinfo));
842 	error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0,
843 			   proc0.p_ucred, NULL);
844 	if (error)
845 		return (error);
846 
847 	if (pinfo.media_blksize == 0)
848 		return (ENXIO);
849 
850 	if (blkno) /* XXX: make sure this reserved stuff is right */
851 		*blkno = pinfo.reserved_blocks +
852 			pinfo.media_offset / pinfo.media_blksize;
853 	if (secsize)
854 		*secsize = pinfo.media_blksize;
855 	if (size)
856 		*size = (pinfo.media_blocks - pinfo.reserved_blocks);
857 
858 	return (0);
859 }
860 
861 int
862 disk_dumpconf(cdev_t dev, u_int onoff)
863 {
864 	struct dumperinfo di;
865 	u_int64_t	size, blkno;
866 	u_int32_t	secsize;
867 	int error;
868 
869 	if (!onoff)
870 		return set_dumper(NULL);
871 
872 	error = disk_dumpcheck(dev, &size, &blkno, &secsize);
873 
874 	if (error)
875 		return ENXIO;
876 
877 	bzero(&di, sizeof(struct dumperinfo));
878 	di.dumper = diskdump;
879 	di.priv = dev;
880 	di.blocksize = secsize;
881 	di.maxiosize = dev->si_iosize_max;
882 	di.mediaoffset = blkno * DEV_BSIZE;
883 	di.mediasize = size * DEV_BSIZE;
884 
885 	return set_dumper(&di);
886 }
887 
888 void
889 disk_unprobe(struct disk *disk)
890 {
891 	if (disk == NULL)
892 		return;
893 
894 	disk_msg_send_sync(DISK_UNPROBE, disk, NULL);
895 }
896 
897 void
898 disk_invalidate (struct disk *disk)
899 {
900 	dsgone(&disk->d_slice);
901 }
902 
903 /*
904  * Enumerate disks, pass a marker and an initial NULL dp to initialize,
905  * then loop with the previously returned dp.
906  *
907  * The returned dp will be referenced, preventing its destruction.  When
908  * you pass the returned dp back into the loop the ref is dropped.
909  *
910  * WARNING: If terminating your loop early you must call
911  *	    disk_enumerate_stop().
912  */
913 struct disk *
914 disk_enumerate(struct disk *marker, struct disk *dp)
915 {
916 	lwkt_gettoken(&disklist_token);
917 	if (dp) {
918 		--dp->d_refs;
919 		dp = LIST_NEXT(marker, d_list);
920 		LIST_REMOVE(marker, d_list);
921 	} else {
922 		bzero(marker, sizeof(*marker));
923 		marker->d_flags = DISKFLAG_MARKER;
924 		dp = LIST_FIRST(&disklist);
925 	}
926 	while (dp) {
927 		if ((dp->d_flags & DISKFLAG_MARKER) == 0)
928 			break;
929 		dp = LIST_NEXT(dp, d_list);
930 	}
931 	if (dp) {
932 		++dp->d_refs;
933 		LIST_INSERT_AFTER(dp, marker, d_list);
934 	}
935 	lwkt_reltoken(&disklist_token);
936 	return (dp);
937 }
938 
939 /*
940  * Terminate an enumeration early.  Do not call this function if the
941  * enumeration ended normally.  dp can be NULL, indicating that you
942  * wish to retain the ref count on dp.
943  *
944  * This function removes the marker.
945  */
946 void
947 disk_enumerate_stop(struct disk *marker, struct disk *dp)
948 {
949 	lwkt_gettoken(&disklist_token);
950 	LIST_REMOVE(marker, d_list);
951 	if (dp)
952 		--dp->d_refs;
953 	lwkt_reltoken(&disklist_token);
954 }
955 
956 static
957 int
958 sysctl_disks(SYSCTL_HANDLER_ARGS)
959 {
960 	struct disk marker;
961 	struct disk *dp;
962 	int error, first;
963 
964 	first = 1;
965 	error = 0;
966 	dp = NULL;
967 
968 	while ((dp = disk_enumerate(&marker, dp))) {
969 		if (!first) {
970 			error = SYSCTL_OUT(req, " ", 1);
971 			if (error) {
972 				disk_enumerate_stop(&marker, dp);
973 				break;
974 			}
975 		} else {
976 			first = 0;
977 		}
978 		error = SYSCTL_OUT(req, dp->d_rawdev->si_name,
979 				   strlen(dp->d_rawdev->si_name));
980 		if (error) {
981 			disk_enumerate_stop(&marker, dp);
982 			break;
983 		}
984 	}
985 	if (error == 0)
986 		error = SYSCTL_OUT(req, "", 1);
987 	return error;
988 }
989 
990 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
991     sysctl_disks, "A", "names of available disks");
992 
993 /*
994  * Open a disk device or partition.
995  */
996 static
997 int
998 diskopen(struct dev_open_args *ap)
999 {
1000 	cdev_t dev = ap->a_head.a_dev;
1001 	struct disk *dp;
1002 	int error;
1003 
1004 	/*
1005 	 * dp can't be NULL here XXX.
1006 	 *
1007 	 * d_slice will be NULL if setdiskinfo() has not been called yet.
1008 	 * setdiskinfo() is typically called whether the disk is present
1009 	 * or not (e.g. CD), but the base disk device is created first
1010 	 * and there may be a race.
1011 	 */
1012 	dp = dev->si_disk;
1013 	if (dp == NULL || dp->d_slice == NULL)
1014 		return (ENXIO);
1015 	error = 0;
1016 
1017 	/*
1018 	 * Deal with open races
1019 	 */
1020 	get_mplock();
1021 	while (dp->d_flags & DISKFLAG_LOCK) {
1022 		dp->d_flags |= DISKFLAG_WANTED;
1023 		error = tsleep(dp, PCATCH, "diskopen", hz);
1024 		if (error) {
1025 			rel_mplock();
1026 			return (error);
1027 		}
1028 	}
1029 	dp->d_flags |= DISKFLAG_LOCK;
1030 
1031 	/*
1032 	 * Open the underlying raw device.
1033 	 */
1034 	if (!dsisopen(dp->d_slice)) {
1035 #if 0
1036 		if (!pdev->si_iosize_max)
1037 			pdev->si_iosize_max = dev->si_iosize_max;
1038 #endif
1039 		error = dev_dopen(dp->d_rawdev, ap->a_oflags,
1040 				  ap->a_devtype, ap->a_cred);
1041 	}
1042 
1043 	if (error)
1044 		goto out;
1045 	error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags,
1046 		       &dp->d_slice, &dp->d_info);
1047 	if (!dsisopen(dp->d_slice)) {
1048 		dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype);
1049 	}
1050 out:
1051 	dp->d_flags &= ~DISKFLAG_LOCK;
1052 	if (dp->d_flags & DISKFLAG_WANTED) {
1053 		dp->d_flags &= ~DISKFLAG_WANTED;
1054 		wakeup(dp);
1055 	}
1056 	rel_mplock();
1057 
1058 	KKASSERT(dp->d_opencount >= 0);
1059 	/* If the open was successful, bump open count */
1060 	if (error == 0)
1061 		atomic_add_int(&dp->d_opencount, 1);
1062 
1063 	return(error);
1064 }
1065 
1066 /*
1067  * Close a disk device or partition
1068  */
1069 static
1070 int
1071 diskclose(struct dev_close_args *ap)
1072 {
1073 	cdev_t dev = ap->a_head.a_dev;
1074 	struct disk *dp;
1075 	int error;
1076 	int lcount;
1077 
1078 	error = 0;
1079 	dp = dev->si_disk;
1080 
1081 	/*
1082 	 * The cdev_t represents the disk/slice/part.  The shared
1083 	 * dp structure governs all cdevs associated with the disk.
1084 	 *
1085 	 * As a safety only close the underlying raw device on the last
1086 	 * close the disk device if our tracking of the slices/partitions
1087 	 * also indicates nothing is open.
1088 	 */
1089 	KKASSERT(dp->d_opencount >= 1);
1090 	lcount = atomic_fetchadd_int(&dp->d_opencount, -1);
1091 
1092 	get_mplock();
1093 	dsclose(dev, ap->a_devtype, dp->d_slice);
1094 	if (lcount <= 1 && !dsisopen(dp->d_slice)) {
1095 		error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype);
1096 	}
1097 	rel_mplock();
1098 	return (error);
1099 }
1100 
1101 /*
1102  * First execute the ioctl on the disk device, and if it isn't supported
1103  * try running it on the backing device.
1104  */
1105 static
1106 int
1107 diskioctl(struct dev_ioctl_args *ap)
1108 {
1109 	cdev_t dev = ap->a_head.a_dev;
1110 	struct disk *dp;
1111 	int error;
1112 	u_int u;
1113 
1114 	dp = dev->si_disk;
1115 	if (dp == NULL)
1116 		return (ENXIO);
1117 
1118 	devfs_debug(DEVFS_DEBUG_DEBUG,
1119 		    "diskioctl: cmd is: %lx (name: %s)\n",
1120 		    ap->a_cmd, dev->si_name);
1121 	devfs_debug(DEVFS_DEBUG_DEBUG,
1122 		    "diskioctl: &dp->d_slice is: %p, %p\n",
1123 		    &dp->d_slice, dp->d_slice);
1124 
1125 	if (ap->a_cmd == DIOCGKERNELDUMP) {
1126 		u = *(u_int *)ap->a_data;
1127 		return disk_dumpconf(dev, u);
1128 	}
1129 
1130 	if (ap->a_cmd == DIOCRECLUSTER && dev == dp->d_cdev) {
1131 		error = disk_iocom_ioctl(dp, ap->a_cmd, ap->a_data);
1132 		return error;
1133 	}
1134 
1135 	if (&dp->d_slice == NULL || dp->d_slice == NULL ||
1136 	    ((dp->d_info.d_dsflags & DSO_DEVICEMAPPER) &&
1137 	     dkslice(dev) == WHOLE_DISK_SLICE)) {
1138 		error = ENOIOCTL;
1139 	} else {
1140 		get_mplock();
1141 		error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag,
1142 				&dp->d_slice, &dp->d_info);
1143 		rel_mplock();
1144 	}
1145 
1146 	if (error == ENOIOCTL) {
1147 		error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
1148 				   ap->a_fflag, ap->a_cred, NULL);
1149 	}
1150 	return (error);
1151 }
1152 
1153 /*
1154  * Execute strategy routine
1155  */
1156 static
1157 int
1158 diskstrategy(struct dev_strategy_args *ap)
1159 {
1160 	cdev_t dev = ap->a_head.a_dev;
1161 	struct bio *bio = ap->a_bio;
1162 	struct bio *nbio;
1163 	struct disk *dp;
1164 
1165 	dp = dev->si_disk;
1166 
1167 	if (dp == NULL) {
1168 		bio->bio_buf->b_error = ENXIO;
1169 		bio->bio_buf->b_flags |= B_ERROR;
1170 		biodone(bio);
1171 		return(0);
1172 	}
1173 	KKASSERT(dev->si_disk == dp);
1174 
1175 	/*
1176 	 * The dscheck() function will also transform the slice relative
1177 	 * block number i.e. bio->bio_offset into a block number that can be
1178 	 * passed directly to the underlying raw device.  If dscheck()
1179 	 * returns NULL it will have handled the bio for us (e.g. EOF
1180 	 * or error due to being beyond the device size).
1181 	 */
1182 	if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) {
1183 		dsched_queue(dp, nbio);
1184 	} else {
1185 		biodone(bio);
1186 	}
1187 	return(0);
1188 }
1189 
1190 /*
1191  * Return the partition size in ?blocks?
1192  */
1193 static
1194 int
1195 diskpsize(struct dev_psize_args *ap)
1196 {
1197 	cdev_t dev = ap->a_head.a_dev;
1198 	struct disk *dp;
1199 
1200 	dp = dev->si_disk;
1201 	if (dp == NULL)
1202 		return(ENODEV);
1203 
1204 	ap->a_result = dssize(dev, &dp->d_slice);
1205 
1206 	if ((ap->a_result == -1) &&
1207 	   (dp->d_info.d_dsflags & DSO_RAWPSIZE)) {
1208 		ap->a_head.a_dev = dp->d_rawdev;
1209 		return dev_doperate(&ap->a_head);
1210 	}
1211 	return(0);
1212 }
1213 
1214 int
1215 diskdump(struct dev_dump_args *ap)
1216 {
1217 	cdev_t dev = ap->a_head.a_dev;
1218 	struct disk *dp = dev->si_disk;
1219 	u_int64_t size, offset;
1220 	int error;
1221 
1222 	error = disk_dumpcheck(dev, &size, &ap->a_blkno, &ap->a_secsize);
1223 	/* XXX: this should probably go in disk_dumpcheck somehow */
1224 	if (ap->a_length != 0) {
1225 		size *= DEV_BSIZE;
1226 		offset = ap->a_blkno * DEV_BSIZE;
1227 		if ((ap->a_offset < offset) ||
1228 		    (ap->a_offset + ap->a_length - offset > size)) {
1229 			kprintf("Attempt to write outside dump "
1230 				"device boundaries.\n");
1231 			error = ENOSPC;
1232 		}
1233 	}
1234 
1235 	if (error == 0) {
1236 		ap->a_head.a_dev = dp->d_rawdev;
1237 		error = dev_doperate(&ap->a_head);
1238 	}
1239 
1240 	return(error);
1241 }
1242 
1243 
1244 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
1245 	   0, sizeof(struct diskslices), "sizeof(struct diskslices)");
1246 
1247 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
1248 	   0, sizeof(struct disk), "sizeof(struct disk)");
1249 
1250 /*
1251  * Reorder interval for burst write allowance and minor write
1252  * allowance.
1253  *
1254  * We always want to trickle some writes in to make use of the
1255  * disk's zone cache.  Bursting occurs on a longer interval and only
1256  * runningbufspace is well over the hirunningspace limit.
1257  */
1258 int bioq_reorder_burst_interval = 60;	/* should be multiple of minor */
1259 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_interval,
1260 	   CTLFLAG_RW, &bioq_reorder_burst_interval, 0, "");
1261 int bioq_reorder_minor_interval = 5;
1262 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_interval,
1263 	   CTLFLAG_RW, &bioq_reorder_minor_interval, 0, "");
1264 
1265 int bioq_reorder_burst_bytes = 3000000;
1266 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_bytes,
1267 	   CTLFLAG_RW, &bioq_reorder_burst_bytes, 0, "");
1268 int bioq_reorder_minor_bytes = 262144;
1269 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_bytes,
1270 	   CTLFLAG_RW, &bioq_reorder_minor_bytes, 0, "");
1271 
1272 
1273 /*
1274  * Order I/Os.  Generally speaking this code is designed to make better
1275  * use of drive zone caches.  A drive zone cache can typically track linear
1276  * reads or writes for around 16 zones simultaniously.
1277  *
1278  * Read prioritization issues:  It is possible for hundreds of megabytes worth
1279  * of writes to be queued asynchronously.  This creates a huge bottleneck
1280  * for reads which reduce read bandwidth to a trickle.
1281  *
1282  * To solve this problem we generally reorder reads before writes.
1283  *
1284  * However, a large number of random reads can also starve writes and
1285  * make poor use of the drive zone cache so we allow writes to trickle
1286  * in every N reads.
1287  */
1288 void
1289 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
1290 {
1291 	/*
1292 	 * The BIO wants to be ordered.  Adding to the tail also
1293 	 * causes transition to be set to NULL, forcing the ordering
1294 	 * of all prior I/O's.
1295 	 */
1296 	if (bio->bio_buf->b_flags & B_ORDERED) {
1297 		bioq_insert_tail(bioq, bio);
1298 		return;
1299 	}
1300 
1301 	switch(bio->bio_buf->b_cmd) {
1302 	case BUF_CMD_READ:
1303 		if (bioq->transition) {
1304 			/*
1305 			 * Insert before the first write.  Bleedover writes
1306 			 * based on reorder intervals to prevent starvation.
1307 			 */
1308 			TAILQ_INSERT_BEFORE(bioq->transition, bio, bio_act);
1309 			++bioq->reorder;
1310 			if (bioq->reorder % bioq_reorder_minor_interval == 0) {
1311 				bioqwritereorder(bioq);
1312 				if (bioq->reorder >=
1313 				    bioq_reorder_burst_interval) {
1314 					bioq->reorder = 0;
1315 				}
1316 			}
1317 		} else {
1318 			/*
1319 			 * No writes queued (or ordering was forced),
1320 			 * insert at tail.
1321 			 */
1322 			TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1323 		}
1324 		break;
1325 	case BUF_CMD_WRITE:
1326 		/*
1327 		 * Writes are always appended.  If no writes were previously
1328 		 * queued or an ordered tail insertion occured the transition
1329 		 * field will be NULL.
1330 		 */
1331 		TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1332 		if (bioq->transition == NULL)
1333 			bioq->transition = bio;
1334 		break;
1335 	default:
1336 		/*
1337 		 * All other request types are forced to be ordered.
1338 		 */
1339 		bioq_insert_tail(bioq, bio);
1340 		break;
1341 	}
1342 }
1343 
1344 /*
1345  * Move the read-write transition point to prevent reads from
1346  * completely starving our writes.  This brings a number of writes into
1347  * the fold every N reads.
1348  *
1349  * We bring a few linear writes into the fold on a minor interval
1350  * and we bring a non-linear burst of writes into the fold on a major
1351  * interval.  Bursting only occurs if runningbufspace is really high
1352  * (typically from syncs, fsyncs, or HAMMER flushes).
1353  */
1354 static
1355 void
1356 bioqwritereorder(struct bio_queue_head *bioq)
1357 {
1358 	struct bio *bio;
1359 	off_t next_offset;
1360 	size_t left;
1361 	size_t n;
1362 	int check_off;
1363 
1364 	if (bioq->reorder < bioq_reorder_burst_interval ||
1365 	    !buf_runningbufspace_severe()) {
1366 		left = (size_t)bioq_reorder_minor_bytes;
1367 		check_off = 1;
1368 	} else {
1369 		left = (size_t)bioq_reorder_burst_bytes;
1370 		check_off = 0;
1371 	}
1372 
1373 	next_offset = bioq->transition->bio_offset;
1374 	while ((bio = bioq->transition) != NULL &&
1375 	       (check_off == 0 || next_offset == bio->bio_offset)
1376 	) {
1377 		n = bio->bio_buf->b_bcount;
1378 		next_offset = bio->bio_offset + n;
1379 		bioq->transition = TAILQ_NEXT(bio, bio_act);
1380 		if (left < n)
1381 			break;
1382 		left -= n;
1383 	}
1384 }
1385 
1386 /*
1387  * Bounds checking against the media size, used for the raw partition.
1388  * secsize, mediasize and b_blkno must all be the same units.
1389  * Possibly this has to be DEV_BSIZE (512).
1390  */
1391 int
1392 bounds_check_with_mediasize(struct bio *bio, int secsize, uint64_t mediasize)
1393 {
1394 	struct buf *bp = bio->bio_buf;
1395 	int64_t sz;
1396 
1397 	sz = howmany(bp->b_bcount, secsize);
1398 
1399 	if (bio->bio_offset/DEV_BSIZE + sz > mediasize) {
1400 		sz = mediasize - bio->bio_offset/DEV_BSIZE;
1401 		if (sz == 0) {
1402 			/* If exactly at end of disk, return EOF. */
1403 			bp->b_resid = bp->b_bcount;
1404 			return 0;
1405 		}
1406 		if (sz < 0) {
1407 			/* If past end of disk, return EINVAL. */
1408 			bp->b_error = EINVAL;
1409 			return 0;
1410 		}
1411 		/* Otherwise, truncate request. */
1412 		bp->b_bcount = sz * secsize;
1413 	}
1414 
1415 	return 1;
1416 }
1417 
1418 /*
1419  * Disk error is the preface to plaintive error messages
1420  * about failing disk transfers.  It prints messages of the form
1421 
1422 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
1423 
1424  * if the offset of the error in the transfer and a disk label
1425  * are both available.  blkdone should be -1 if the position of the error
1426  * is unknown; the disklabel pointer may be null from drivers that have not
1427  * been converted to use them.  The message is printed with kprintf
1428  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
1429  * The message should be completed (with at least a newline) with kprintf
1430  * or log(-1, ...), respectively.  There is no trailing space.
1431  */
1432 void
1433 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt)
1434 {
1435 	struct buf *bp = bio->bio_buf;
1436 	const char *term;
1437 
1438 	switch(bp->b_cmd) {
1439 	case BUF_CMD_READ:
1440 		term = "read";
1441 		break;
1442 	case BUF_CMD_WRITE:
1443 		term = "write";
1444 		break;
1445 	default:
1446 		term = "access";
1447 		break;
1448 	}
1449 	kprintf("%s: %s %sing ", dev->si_name, what, term);
1450 	kprintf("offset %012llx for %d",
1451 		(long long)bio->bio_offset,
1452 		bp->b_bcount);
1453 
1454 	if (donecnt)
1455 		kprintf(" (%d bytes completed)", donecnt);
1456 }
1457 
1458 /*
1459  * Locate a disk device
1460  */
1461 cdev_t
1462 disk_locate(const char *devname)
1463 {
1464 	return devfs_find_device_by_name("%s", devname);
1465 }
1466 
1467 void
1468 disk_config(void *arg)
1469 {
1470 	disk_msg_send_sync(DISK_SYNC, NULL, NULL);
1471 }
1472 
1473 static void
1474 disk_init(void)
1475 {
1476 	struct thread* td_core;
1477 
1478 	disk_msg_cache = objcache_create("disk-msg-cache", 0, 0,
1479 					 NULL, NULL, NULL,
1480 					 objcache_malloc_alloc,
1481 					 objcache_malloc_free,
1482 					 &disk_msg_malloc_args);
1483 
1484 	lwkt_token_init(&disklist_token, "disks");
1485 
1486 	/*
1487 	 * Initialize the reply-only port which acts as a message drain
1488 	 */
1489 	lwkt_initport_replyonly(&disk_dispose_port, disk_msg_autofree_reply);
1490 
1491 	lwkt_gettoken(&disklist_token);
1492 	lwkt_create(disk_msg_core, /*args*/NULL, &td_core, NULL,
1493 		    0, -1, "disk_msg_core");
1494 	tsleep(td_core, 0, "diskcore", 0);
1495 	lwkt_reltoken(&disklist_token);
1496 }
1497 
1498 static void
1499 disk_uninit(void)
1500 {
1501 	objcache_destroy(disk_msg_cache);
1502 }
1503 
1504 /*
1505  * Clean out illegal characters in serial numbers.
1506  */
1507 static void
1508 disk_cleanserial(char *serno)
1509 {
1510 	char c;
1511 
1512 	while ((c = *serno) != 0) {
1513 		if (c >= 'a' && c <= 'z')
1514 			;
1515 		else if (c >= 'A' && c <= 'Z')
1516 			;
1517 		else if (c >= '0' && c <= '9')
1518 			;
1519 		else if (c == '-' || c == '@' || c == '+' || c == '.')
1520 			;
1521 		else
1522 			c = '_';
1523 		*serno++= c;
1524 	}
1525 }
1526 
1527 TUNABLE_INT("kern.disk_debug", &disk_debug_enable);
1528 SYSCTL_INT(_kern, OID_AUTO, disk_debug, CTLFLAG_RW, &disk_debug_enable,
1529 	   0, "Enable subr_disk debugging");
1530 
1531 SYSINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, disk_init, NULL);
1532 SYSUNINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, disk_uninit, NULL);
1533