xref: /dragonfly/sys/kern/subr_disk.c (revision 0bb9290e)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ----------------------------------------------------------------------------
35  * "THE BEER-WARE LICENSE" (Revision 42):
36  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
37  * can do whatever you want with this stuff. If we meet some day, and you think
38  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
39  * ----------------------------------------------------------------------------
40  *
41  * Copyright (c) 1982, 1986, 1988, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. All advertising materials mentioning features or use of this software
58  *    must display the following acknowledgement:
59  *	This product includes software developed by the University of
60  *	California, Berkeley and its contributors.
61  * 4. Neither the name of the University nor the names of its contributors
62  *    may be used to endorse or promote products derived from this software
63  *    without specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  *
77  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
78  * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
79  * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
80  * $DragonFly: src/sys/kern/subr_disk.c,v 1.25 2006/07/28 02:17:40 dillon Exp $
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/proc.h>
87 #include <sys/sysctl.h>
88 #include <sys/buf.h>
89 #include <sys/conf.h>
90 #include <sys/disklabel.h>
91 #include <sys/diskslice.h>
92 #include <sys/disk.h>
93 #include <sys/malloc.h>
94 #include <sys/sysctl.h>
95 #include <machine/md_var.h>
96 #include <sys/ctype.h>
97 #include <sys/syslog.h>
98 #include <sys/device.h>
99 #include <sys/msgport.h>
100 #include <sys/msgport2.h>
101 #include <sys/buf2.h>
102 
103 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
104 
105 static d_open_t diskopen;
106 static d_close_t diskclose;
107 static d_ioctl_t diskioctl;
108 static d_strategy_t diskstrategy;
109 static d_psize_t diskpsize;
110 static d_clone_t diskclone;
111 static d_dump_t diskdump;
112 
113 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
114 
115 static struct dev_ops disk_ops = {
116 	{ "disk" },
117 	.d_open = diskopen,
118 	.d_close = diskclose,
119 	.d_read = physread,
120 	.d_write = physwrite,
121 	.d_ioctl = diskioctl,
122 	.d_strategy = diskstrategy,
123 	.d_dump = diskdump,
124 	.d_psize = diskpsize,
125 	.d_clone = diskclone
126 };
127 
128 /*
129  * Create a raw device for the dev_ops template (which is returned).  Also
130  * create a slice and unit managed disk and overload the user visible
131  * device space with it.
132  *
133  * NOTE: The returned raw device is NOT a slice and unit managed device.
134  * It is an actual raw device representing the raw disk as specified by
135  * the passed dev_ops.  The disk layer not only returns such a raw device,
136  * it also uses it internally when passing (modified) commands through.
137  */
138 dev_t
139 disk_create(int unit, struct disk *dp, int flags, struct dev_ops *raw_ops)
140 {
141 	dev_t rawdev;
142 	struct dev_ops *dev_ops;
143 
144 	/*
145 	 * Create the raw backing device
146 	 */
147 	compile_dev_ops(raw_ops);
148 	rawdev = make_dev(raw_ops,
149 			    dkmakeminor(unit, WHOLE_DISK_SLICE, RAW_PART),
150 			    UID_ROOT, GID_OPERATOR, 0640,
151 			    "%s%d", raw_ops->head.name, unit);
152 
153 	bzero(dp, sizeof(*dp));
154 
155 	/*
156 	 * We install a custom cdevsw rather then the passed cdevsw,
157 	 * and save our disk structure in d_data so we can get at it easily
158 	 * without any complex cloning code.
159 	 */
160 	dev_ops = dev_ops_add_override(rawdev, &disk_ops,
161 				       dkunitmask(), dkmakeunit(unit));
162 	dev_ops->head.data = dp;
163 
164 	dp->d_rawdev = rawdev;
165 	dp->d_raw_ops = raw_ops;
166 	dp->d_dev_ops = dev_ops;
167 	dp->d_cdev = make_dev(dev_ops,
168 			    dkmakeminor(unit, WHOLE_DISK_SLICE, RAW_PART),
169 			    UID_ROOT, GID_OPERATOR, 0640,
170 			    "%s%d", dev_ops->head.name, unit);
171 
172 	dp->d_dsflags = flags;
173 	LIST_INSERT_HEAD(&disklist, dp, d_list);
174 	return (dp->d_rawdev);
175 }
176 
177 /*
178  * This routine is called when an adapter detaches.  The higher level
179  * managed disk device is destroyed while the lower level raw device is
180  * released.
181  */
182 void
183 disk_destroy(struct disk *disk)
184 {
185 	if (disk->d_dev_ops) {
186 	    dev_ops_remove(disk->d_dev_ops, dkunitmask(),
187 			    dkmakeunit(dkunit(disk->d_cdev)));
188 	    LIST_REMOVE(disk, d_list);
189 	}
190 	if (disk->d_raw_ops) {
191 	    destroy_all_devs(disk->d_raw_ops, dkunitmask(),
192 			    dkmakeunit(dkunit(disk->d_rawdev)));
193 	}
194 	bzero(disk, sizeof(*disk));
195 }
196 
197 int
198 disk_dumpcheck(dev_t dev, u_int *count, u_int *blkno, u_int *secsize)
199 {
200 	struct disk *dp;
201 	struct disklabel *dl;
202 	u_int boff;
203 
204 	dp = dev->si_disk;
205 	if (!dp)
206 		return (ENXIO);
207 	if (!dp->d_slice)
208 		return (ENXIO);
209 	dl = dsgetlabel(dev, dp->d_slice);
210 	if (!dl)
211 		return (ENXIO);
212 	*count = Maxmem * (PAGE_SIZE / dl->d_secsize);
213 	if (dumplo <= LABELSECTOR ||
214 	    (dumplo + *count > dl->d_partitions[dkpart(dev)].p_size))
215 		return (EINVAL);
216 	boff = dl->d_partitions[dkpart(dev)].p_offset +
217 	    dp->d_slice->dss_slices[dkslice(dev)].ds_offset;
218 	*blkno = boff + dumplo;
219 	*secsize = dl->d_secsize;
220 	return (0);
221 
222 }
223 
224 void
225 disk_invalidate (struct disk *disk)
226 {
227 	if (disk->d_slice)
228 		dsgone(&disk->d_slice);
229 }
230 
231 struct disk *
232 disk_enumerate(struct disk *disk)
233 {
234 	if (!disk)
235 		return (LIST_FIRST(&disklist));
236 	else
237 		return (LIST_NEXT(disk, d_list));
238 }
239 
240 static
241 int
242 sysctl_disks(SYSCTL_HANDLER_ARGS)
243 {
244 	struct disk *disk;
245 	int error, first;
246 
247 	disk = NULL;
248 	first = 1;
249 
250 	while ((disk = disk_enumerate(disk))) {
251 		if (!first) {
252 			error = SYSCTL_OUT(req, " ", 1);
253 			if (error)
254 				return error;
255 		} else {
256 			first = 0;
257 		}
258 		error = SYSCTL_OUT(req, disk->d_rawdev->si_name,
259 				   strlen(disk->d_rawdev->si_name));
260 		if (error)
261 			return error;
262 	}
263 	error = SYSCTL_OUT(req, "", 1);
264 	return error;
265 }
266 
267 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, 0, NULL,
268     sysctl_disks, "A", "names of available disks");
269 
270 /*
271  * Open a disk device or partition.
272  */
273 static
274 int
275 diskopen(struct dev_open_args *ap)
276 {
277 	dev_t dev = ap->a_head.a_dev;
278 	struct disk *dp;
279 	int error;
280 
281 	/*
282 	 * dp can't be NULL here XXX.
283 	 */
284 	dp = dev->si_disk;
285 	if (dp == NULL)
286 		return (ENXIO);
287 	error = 0;
288 
289 	/*
290 	 * Deal with open races
291 	 */
292 	while (dp->d_flags & DISKFLAG_LOCK) {
293 		dp->d_flags |= DISKFLAG_WANTED;
294 		error = tsleep(dp, PCATCH, "diskopen", hz);
295 		if (error)
296 			return (error);
297 	}
298 	dp->d_flags |= DISKFLAG_LOCK;
299 
300 	/*
301 	 * Open the underlying raw device.
302 	 */
303 	if (!dsisopen(dp->d_slice)) {
304 #if 0
305 		if (!pdev->si_iosize_max)
306 			pdev->si_iosize_max = dev->si_iosize_max;
307 #endif
308 		error = dev_dopen(dp->d_rawdev, ap->a_oflags,
309 				  ap->a_devtype, ap->a_cred);
310 	}
311 
312 	/*
313 	 * Inherit properties from the underlying device now that it is
314 	 * open.
315 	 */
316 	dev_dclone(dev);
317 
318 	if (error)
319 		goto out;
320 
321 	error = dsopen(dev, ap->a_devtype, dp->d_dsflags,
322 		       &dp->d_slice, &dp->d_label);
323 
324 	if (!dsisopen(dp->d_slice))
325 		dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype);
326 out:
327 	dp->d_flags &= ~DISKFLAG_LOCK;
328 	if (dp->d_flags & DISKFLAG_WANTED) {
329 		dp->d_flags &= ~DISKFLAG_WANTED;
330 		wakeup(dp);
331 	}
332 
333 	return(error);
334 }
335 
336 /*
337  * Close a disk device or partition
338  */
339 static
340 int
341 diskclose(struct dev_close_args *ap)
342 {
343 	dev_t dev = ap->a_head.a_dev;
344 	struct disk *dp;
345 	int error;
346 
347 	error = 0;
348 	dp = dev->si_disk;
349 
350 	dsclose(dev, ap->a_devtype, dp->d_slice);
351 	if (!dsisopen(dp->d_slice))
352 		error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype);
353 	return (error);
354 }
355 
356 /*
357  * First execute the ioctl on the disk device, and if it isn't supported
358  * try running it on the backing device.
359  */
360 static
361 int
362 diskioctl(struct dev_ioctl_args *ap)
363 {
364 	dev_t dev = ap->a_head.a_dev;
365 	struct disk *dp;
366 	int error;
367 
368 	dp = dev->si_disk;
369 	if (dp == NULL)
370 		return (ENXIO);
371 	error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag, &dp->d_slice);
372 	if (error == ENOIOCTL) {
373 		error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
374 				   ap->a_fflag, ap->a_cred);
375 	}
376 	return (error);
377 }
378 
379 /*
380  * Execute strategy routine
381  */
382 static
383 int
384 diskstrategy(struct dev_strategy_args *ap)
385 {
386 	dev_t dev = ap->a_head.a_dev;
387 	struct bio *bio = ap->a_bio;
388 	struct bio *nbio;
389 	struct disk *dp;
390 
391 	dp = dev->si_disk;
392 
393 	if (dp == NULL) {
394 		bio->bio_buf->b_error = ENXIO;
395 		bio->bio_buf->b_flags |= B_ERROR;
396 		biodone(bio);
397 		return(0);
398 	}
399 	KKASSERT(dev->si_disk == dp);
400 
401 	/*
402 	 * The dscheck() function will also transform the slice relative
403 	 * block number i.e. bio->bio_offset into a block number that can be
404 	 * passed directly to the underlying raw device.  If dscheck()
405 	 * returns NULL it will have handled the bio for us (e.g. EOF
406 	 * or error due to being beyond the device size).
407 	 */
408 	if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL)
409 		dev_dstrategy(dp->d_rawdev, nbio);
410 	else
411 		biodone(bio);
412 	return(0);
413 }
414 
415 /*
416  * Return the partition size in ?blocks?
417  */
418 static
419 int
420 diskpsize(struct dev_psize_args *ap)
421 {
422 	dev_t dev = ap->a_head.a_dev;
423 	struct disk *dp;
424 
425 	dp = dev->si_disk;
426 	if (dp == NULL)
427 		return(ENODEV);
428 	ap->a_result = dssize(dev, &dp->d_slice);
429 	return(0);
430 }
431 
432 /*
433  * When new device entries are instantiated, make sure they inherit our
434  * si_disk structure and block and iosize limits from the raw device.
435  *
436  * This routine is always called synchronously in the context of the
437  * client.
438  *
439  * XXX The various io and block size constraints are not always initialized
440  * properly by devices.
441  */
442 static
443 int
444 diskclone(struct dev_clone_args *ap)
445 {
446 	dev_t dev = ap->a_head.a_dev;
447 	struct disk *dp;
448 
449 	dp = dev->si_ops->head.data;
450 	KKASSERT(dp != NULL);
451 	dev->si_disk = dp;
452 	dev->si_iosize_max = dp->d_rawdev->si_iosize_max;
453 	dev->si_bsize_phys = dp->d_rawdev->si_bsize_phys;
454 	dev->si_bsize_best = dp->d_rawdev->si_bsize_best;
455 	return(0);
456 }
457 
458 int
459 diskdump(struct dev_dump_args *ap)
460 {
461 	dev_t dev = ap->a_head.a_dev;
462 	struct disk *dp = dev->si_ops->head.data;
463 	int error;
464 
465 	error = disk_dumpcheck(dev, &ap->a_count, &ap->a_blkno, &ap->a_secsize);
466 	if (error == 0) {
467 		ap->a_head.a_dev = dp->d_rawdev;
468 		error = dev_doperate(&ap->a_head);
469 	}
470 
471 	return(error);
472 }
473 
474 
475 SYSCTL_INT(_debug_sizeof, OID_AUTO, disklabel, CTLFLAG_RD,
476     0, sizeof(struct disklabel), "sizeof(struct disklabel)");
477 
478 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
479     0, sizeof(struct diskslices), "sizeof(struct diskslices)");
480 
481 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
482     0, sizeof(struct disk), "sizeof(struct disk)");
483 
484 
485 /*
486  * Seek sort for disks.
487  *
488  * The bio_queue keep two queues, sorted in ascending block order.  The first
489  * queue holds those requests which are positioned after the current block
490  * (in the first request); the second, which starts at queue->switch_point,
491  * holds requests which came in after their block number was passed.  Thus
492  * we implement a one way scan, retracting after reaching the end of the drive
493  * to the first request on the second queue, at which time it becomes the
494  * first queue.
495  *
496  * A one-way scan is natural because of the way UNIX read-ahead blocks are
497  * allocated.
498  */
499 void
500 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
501 {
502 	struct bio *bq;
503 	struct bio *bn;
504 	struct bio *be;
505 
506 	be = TAILQ_LAST(&bioq->queue, bio_queue);
507 	/*
508 	 * If the queue is empty or we are an
509 	 * ordered transaction, then it's easy.
510 	 */
511 	if ((bq = bioq_first(bioq)) == NULL ||
512 	    (bio->bio_buf->b_flags & B_ORDERED) != 0) {
513 		bioq_insert_tail(bioq, bio);
514 		return;
515 	} else if (bioq->insert_point != NULL) {
516 
517 		/*
518 		 * A certain portion of the list is
519 		 * "locked" to preserve ordering, so
520 		 * we can only insert after the insert
521 		 * point.
522 		 */
523 		bq = bioq->insert_point;
524 	} else {
525 
526 		/*
527 		 * If we lie before the last removed (currently active)
528 		 * request, and are not inserting ourselves into the
529 		 * "locked" portion of the list, then we must add ourselves
530 		 * to the second request list.
531 		 */
532 		if (bio->bio_offset < bioq->last_offset) {
533 			bq = bioq->switch_point;
534 			/*
535 			 * If we are starting a new secondary list,
536 			 * then it's easy.
537 			 */
538 			if (bq == NULL) {
539 				bioq->switch_point = bio;
540 				bioq_insert_tail(bioq, bio);
541 				return;
542 			}
543 			/*
544 			 * If we lie ahead of the current switch point,
545 			 * insert us before the switch point and move
546 			 * the switch point.
547 			 */
548 			if (bio->bio_offset < bq->bio_offset) {
549 				bioq->switch_point = bio;
550 				TAILQ_INSERT_BEFORE(bq, bio, bio_act);
551 				return;
552 			}
553 		} else {
554 			if (bioq->switch_point != NULL)
555 				be = TAILQ_PREV(bioq->switch_point,
556 						bio_queue, bio_act);
557 			/*
558 			 * If we lie between last_offset and bq,
559 			 * insert before bq.
560 			 */
561 			if (bio->bio_offset < bq->bio_offset) {
562 				TAILQ_INSERT_BEFORE(bq, bio, bio_act);
563 				return;
564 			}
565 		}
566 	}
567 
568 	/*
569 	 * Request is at/after our current position in the list.
570 	 * Optimize for sequential I/O by seeing if we go at the tail.
571 	 */
572 	if (bio->bio_offset > be->bio_offset) {
573 		TAILQ_INSERT_AFTER(&bioq->queue, be, bio, bio_act);
574 		return;
575 	}
576 
577 	/* Otherwise, insertion sort */
578 	while ((bn = TAILQ_NEXT(bq, bio_act)) != NULL) {
579 
580 		/*
581 		 * We want to go after the current request if it is the end
582 		 * of the first request list, or if the next request is a
583 		 * larger cylinder than our request.
584 		 */
585 		if (bn == bioq->switch_point
586 		 || bio->bio_offset < bn->bio_offset)
587 			break;
588 		bq = bn;
589 	}
590 	TAILQ_INSERT_AFTER(&bioq->queue, bq, bio, bio_act);
591 }
592 
593 
594 /*
595  * Attempt to read a disk label from a device using the indicated strategy
596  * routine.  The label must be partly set up before this: secpercyl, secsize
597  * and anything required in the strategy routine (e.g., dummy bounds for the
598  * partition containing the label) must be filled in before calling us.
599  * Returns NULL on success and an error string on failure.
600  */
601 char *
602 readdisklabel(dev_t dev, struct disklabel *lp)
603 {
604 	struct buf *bp;
605 	struct disklabel *dlp;
606 	char *msg = NULL;
607 
608 	bp = geteblk((int)lp->d_secsize);
609 	bp->b_bio1.bio_offset = (off_t)LABELSECTOR * lp->d_secsize;
610 	bp->b_bcount = lp->d_secsize;
611 	bp->b_flags &= ~B_INVAL;
612 	bp->b_cmd = BUF_CMD_READ;
613 	dev_dstrategy(dev, &bp->b_bio1);
614 	if (biowait(bp))
615 		msg = "I/O error";
616 	else for (dlp = (struct disklabel *)bp->b_data;
617 	    dlp <= (struct disklabel *)((char *)bp->b_data +
618 	    lp->d_secsize - sizeof(*dlp));
619 	    dlp = (struct disklabel *)((char *)dlp + sizeof(long))) {
620 		if (dlp->d_magic != DISKMAGIC || dlp->d_magic2 != DISKMAGIC) {
621 			if (msg == NULL)
622 				msg = "no disk label";
623 		} else if (dlp->d_npartitions > MAXPARTITIONS ||
624 			   dkcksum(dlp) != 0)
625 			msg = "disk label corrupted";
626 		else {
627 			*lp = *dlp;
628 			msg = NULL;
629 			break;
630 		}
631 	}
632 	bp->b_flags |= B_INVAL | B_AGE;
633 	brelse(bp);
634 	return (msg);
635 }
636 
637 /*
638  * Check new disk label for sensibility before setting it.
639  */
640 int
641 setdisklabel(struct disklabel *olp, struct disklabel *nlp, u_long openmask)
642 {
643 	int i;
644 	struct partition *opp, *npp;
645 
646 	/*
647 	 * Check it is actually a disklabel we are looking at.
648 	 */
649 	if (nlp->d_magic != DISKMAGIC || nlp->d_magic2 != DISKMAGIC ||
650 	    dkcksum(nlp) != 0)
651 		return (EINVAL);
652 	/*
653 	 * For each partition that we think is open,
654 	 */
655 	while ((i = ffs((long)openmask)) != 0) {
656 		i--;
657 		/*
658 	 	 * Check it is not changing....
659 	 	 */
660 		openmask &= ~(1 << i);
661 		if (nlp->d_npartitions <= i)
662 			return (EBUSY);
663 		opp = &olp->d_partitions[i];
664 		npp = &nlp->d_partitions[i];
665 		if (npp->p_offset != opp->p_offset || npp->p_size < opp->p_size)
666 			return (EBUSY);
667 		/*
668 		 * Copy internally-set partition information
669 		 * if new label doesn't include it.		XXX
670 		 * (If we are using it then we had better stay the same type)
671 		 * This is possibly dubious, as someone else noted (XXX)
672 		 */
673 		if (npp->p_fstype == FS_UNUSED && opp->p_fstype != FS_UNUSED) {
674 			npp->p_fstype = opp->p_fstype;
675 			npp->p_fsize = opp->p_fsize;
676 			npp->p_frag = opp->p_frag;
677 			npp->p_cpg = opp->p_cpg;
678 		}
679 	}
680  	nlp->d_checksum = 0;
681  	nlp->d_checksum = dkcksum(nlp);
682 	*olp = *nlp;
683 	return (0);
684 }
685 
686 /*
687  * Write disk label back to device after modification.
688  */
689 int
690 writedisklabel(dev_t dev, struct disklabel *lp)
691 {
692 	struct buf *bp;
693 	struct disklabel *dlp;
694 	int error = 0;
695 
696 	if (lp->d_partitions[RAW_PART].p_offset != 0)
697 		return (EXDEV);			/* not quite right */
698 	bp = geteblk((int)lp->d_secsize);
699 	bp->b_bio1.bio_offset = (off_t)LABELSECTOR * lp->d_secsize;
700 	bp->b_bcount = lp->d_secsize;
701 #if 1
702 	/*
703 	 * We read the label first to see if it's there,
704 	 * in which case we will put ours at the same offset into the block..
705 	 * (I think this is stupid [Julian])
706 	 * Note that you can't write a label out over a corrupted label!
707 	 * (also stupid.. how do you write the first one? by raw writes?)
708 	 */
709 	bp->b_flags &= ~B_INVAL;
710 	bp->b_cmd = BUF_CMD_READ;
711 	dev_dstrategy(dkmodpart(dev, RAW_PART), &bp->b_bio1);
712 	error = biowait(bp);
713 	if (error)
714 		goto done;
715 	for (dlp = (struct disklabel *)bp->b_data;
716 	    dlp <= (struct disklabel *)
717 	      ((char *)bp->b_data + lp->d_secsize - sizeof(*dlp));
718 	    dlp = (struct disklabel *)((char *)dlp + sizeof(long))) {
719 		if (dlp->d_magic == DISKMAGIC && dlp->d_magic2 == DISKMAGIC &&
720 		    dkcksum(dlp) == 0) {
721 			*dlp = *lp;
722 			bp->b_cmd = BUF_CMD_WRITE;
723 			dev_dstrategy(dkmodpart(dev, RAW_PART), &bp->b_bio1);
724 			error = biowait(bp);
725 			goto done;
726 		}
727 	}
728 	error = ESRCH;
729 done:
730 #else
731 	bzero(bp->b_data, lp->d_secsize);
732 	dlp = (struct disklabel *)bp->b_data;
733 	*dlp = *lp;
734 	bp->b_flags &= ~B_INVAL;
735 	bp->b_cmd = BUF_CMD_WRITE;
736 	BUF_STRATEGY(bp, 1);
737 	error = biowait(bp);
738 #endif
739 	bp->b_flags |= B_INVAL | B_AGE;
740 	brelse(bp);
741 	return (error);
742 }
743 
744 /*
745  * Disk error is the preface to plaintive error messages
746  * about failing disk transfers.  It prints messages of the form
747 
748 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
749 
750  * if the offset of the error in the transfer and a disk label
751  * are both available.  blkdone should be -1 if the position of the error
752  * is unknown; the disklabel pointer may be null from drivers that have not
753  * been converted to use them.  The message is printed with printf
754  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
755  * The message should be completed (with at least a newline) with printf
756  * or addlog, respectively.  There is no trailing space.
757  */
758 void
759 diskerr(struct bio *bio, dev_t dev, const char *what, int pri,
760 	int donecnt, struct disklabel *lp)
761 {
762 	struct buf *bp = bio->bio_buf;
763 	int unit = dkunit(dev);
764 	int slice = dkslice(dev);
765 	int part = dkpart(dev);
766 	char partname[2];
767 	char *sname;
768 
769 	sname = dsname(dev, unit, slice, part, partname);
770 	printf("%s%s: %s %sing ", sname, partname, what,
771 	      (bp->b_cmd == BUF_CMD_READ) ? "read" : "writ");
772 	printf("offset %012llx for %d", bio->bio_offset, bp->b_bcount);
773 	if (donecnt)
774 		printf(" (%d bytes completed)", donecnt);
775 }
776 
777