xref: /dragonfly/sys/kern/subr_disk.c (revision 3948dfa0)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * and Alex Hornung <ahornung@gmail.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * ----------------------------------------------------------------------------
36  * "THE BEER-WARE LICENSE" (Revision 42):
37  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
38  * can do whatever you want with this stuff. If we meet some day, and you think
39  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
40  * ----------------------------------------------------------------------------
41  *
42  * Copyright (c) 1982, 1986, 1988, 1993
43  *	The Regents of the University of California.  All rights reserved.
44  * (c) UNIX System Laboratories, Inc.
45  * All or some portions of this file are derived from material licensed
46  * to the University of California by American Telephone and Telegraph
47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48  * the permission of UNIX System Laboratories, Inc.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
75  * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $
76  * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/sysctl.h>
84 #include <sys/buf.h>
85 #include <sys/conf.h>
86 #include <sys/disklabel.h>
87 #include <sys/disklabel32.h>
88 #include <sys/disklabel64.h>
89 #include <sys/diskslice.h>
90 #include <sys/diskmbr.h>
91 #include <sys/disk.h>
92 #include <sys/kerneldump.h>
93 #include <sys/malloc.h>
94 #include <machine/md_var.h>
95 #include <sys/ctype.h>
96 #include <sys/syslog.h>
97 #include <sys/device.h>
98 #include <sys/msgport.h>
99 #include <sys/devfs.h>
100 #include <sys/thread.h>
101 #include <sys/dsched.h>
102 #include <sys/queue.h>
103 #include <sys/lock.h>
104 #include <sys/udev.h>
105 #include <sys/uuid.h>
106 
107 #include <sys/buf2.h>
108 #include <sys/msgport2.h>
109 #include <sys/thread2.h>
110 
111 static MALLOC_DEFINE(M_DISK, "disk", "disk data");
112 static int disk_debug_enable = 0;
113 
114 static void disk_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
115 static void disk_msg_core(void *);
116 static int disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe);
117 static void disk_probe(struct disk *dp, int reprobe);
118 static void _setdiskinfo(struct disk *disk, struct disk_info *info);
119 static void bioqwritereorder(struct bio_queue_head *bioq);
120 static void disk_cleanserial(char *serno);
121 static int disk_debug(int, char *, ...) __printflike(2, 3);
122 static cdev_t _disk_create_named(const char *name, int unit, struct disk *dp,
123     struct dev_ops *raw_ops, int clone);
124 
125 static d_open_t diskopen;
126 static d_close_t diskclose;
127 static d_ioctl_t diskioctl;
128 static d_strategy_t diskstrategy;
129 static d_psize_t diskpsize;
130 static d_dump_t diskdump;
131 
132 static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist);
133 static struct lwkt_token disklist_token;
134 static struct lwkt_token ds_token;
135 
136 static struct dev_ops disk1_ops = {
137 	{ "disk", 0, D_DISK | D_MPSAFE | D_TRACKCLOSE | D_KVABIO },
138 	.d_open = diskopen,
139 	.d_close = diskclose,
140 	.d_read = physread,
141 	.d_write = physwrite,
142 	.d_ioctl = diskioctl,
143 	.d_strategy = diskstrategy,
144 	.d_dump = diskdump,
145 	.d_psize = diskpsize,
146 };
147 
148 static struct dev_ops disk2_ops = {
149 	{ "disk", 0, D_DISK | D_MPSAFE | D_TRACKCLOSE | D_KVABIO |
150 		     D_NOEMERGPGR },
151 	.d_open = diskopen,
152 	.d_close = diskclose,
153 	.d_read = physread,
154 	.d_write = physwrite,
155 	.d_ioctl = diskioctl,
156 	.d_strategy = diskstrategy,
157 	.d_dump = diskdump,
158 	.d_psize = diskpsize,
159 };
160 
161 static struct objcache 	*disk_msg_cache;
162 
163 struct objcache_malloc_args disk_msg_malloc_args = {
164 	sizeof(struct disk_msg), M_DISK };
165 
166 static struct lwkt_port disk_dispose_port;
167 static struct lwkt_port disk_msg_port;
168 
169 static int
170 disk_debug(int level, char *fmt, ...)
171 {
172 	__va_list ap;
173 
174 	__va_start(ap, fmt);
175 	if (level <= disk_debug_enable)
176 		kvprintf(fmt, ap);
177 	__va_end(ap);
178 
179 	return 0;
180 }
181 
182 static int
183 disk_probe_slice(struct disk *dp, cdev_t dev, int slice, int reprobe)
184 {
185 	struct disk_info *info = &dp->d_info;
186 	struct diskslice *sp = &dp->d_slice->dss_slices[slice];
187 	disklabel_ops_t ops;
188 	struct dev_ops *dops;
189 	struct partinfo part;
190 	const char *msg;
191 	char uuid_buf[128];
192 	cdev_t ndev;
193 	int sno;
194 	u_int i;
195 
196 	disk_debug(2, "disk_probe_slice (begin): %s (%s)\n",
197 		   dev->si_name, dp->d_cdev->si_name);
198 
199 	sno = slice ? slice - 1 : 0;
200 	dops = (dp->d_rawdev->si_ops->head.flags & D_NOEMERGPGR) ?
201 		&disk2_ops : &disk1_ops;
202 
203 	ops = &disklabel32_ops;
204 	msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
205 	if (msg && !strcmp(msg, "no disk label")) {
206 		ops = &disklabel64_ops;
207 		msg = ops->op_readdisklabel(dev, sp, &sp->ds_label, info);
208 	}
209 
210 	if (msg == NULL) {
211 		if (slice != WHOLE_DISK_SLICE)
212 			ops->op_adjust_label_reserved(dp->d_slice, slice, sp);
213 		else
214 			sp->ds_reserved = 0;
215 
216 		sp->ds_ops = ops;
217 		for (i = 0; i < ops->op_getnumparts(sp->ds_label); i++) {
218 			ops->op_loadpartinfo(sp->ds_label, i, &part);
219 			if (part.fstype) {
220 				if (reprobe &&
221 				    (ndev = devfs_find_device_by_name("%s%c",
222 						dev->si_name, 'a' + i))
223 				) {
224 					/*
225 					 * Device already exists and
226 					 * is still valid.
227 					 */
228 					ndev->si_flags |= SI_REPROBE_TEST;
229 
230 					/*
231 					 * Destroy old UUID alias
232 					 */
233 					destroy_dev_alias(ndev, "part-by-uuid/*");
234 
235 					/* Create UUID alias */
236 					if (!kuuid_is_nil(&part.storage_uuid)) {
237 						snprintf_uuid(uuid_buf,
238 						    sizeof(uuid_buf),
239 						    &part.storage_uuid);
240 						make_dev_alias(ndev,
241 						    "part-by-uuid/%s",
242 						    uuid_buf);
243 						udev_dict_set_cstr(ndev, "uuid", uuid_buf);
244 					}
245 				} else {
246 					ndev = make_dev_covering(dops,
247 						dp->d_rawdev->si_ops,
248 						dkmakeminor(dkunit(dp->d_cdev),
249 							    slice, i),
250 						UID_ROOT, GID_OPERATOR, 0640,
251 						"%s%c", dev->si_name, 'a'+ i);
252 					ndev->si_parent = dev;
253 					ndev->si_iosize_max = dev->si_iosize_max;
254 					ndev->si_disk = dp;
255 					udev_dict_set_cstr(ndev, "subsystem", "disk");
256 					/* Inherit parent's disk type */
257 					if (dp->d_disktype) {
258 						udev_dict_set_cstr(ndev, "disk-type",
259 						    __DECONST(char *, dp->d_disktype));
260 					}
261 
262 					/* Create serno alias */
263 					if (dp->d_info.d_serialno) {
264 						make_dev_alias(ndev,
265 						    "serno/%s.s%d%c",
266 						    dp->d_info.d_serialno,
267 						    sno, 'a' + i);
268 					}
269 
270 					/* Create UUID alias */
271 					if (!kuuid_is_nil(&part.storage_uuid)) {
272 						snprintf_uuid(uuid_buf,
273 						    sizeof(uuid_buf),
274 						    &part.storage_uuid);
275 						make_dev_alias(ndev,
276 						    "part-by-uuid/%s",
277 						    uuid_buf);
278 						udev_dict_set_cstr(ndev, "uuid", uuid_buf);
279 					}
280 					ndev->si_flags |= SI_REPROBE_TEST;
281 				}
282 			}
283 		}
284 	} else if (info->d_dsflags & DSO_COMPATLABEL) {
285 		msg = NULL;
286 		if (sp->ds_size >= 0x100000000ULL)
287 			ops = &disklabel64_ops;
288 		else
289 			ops = &disklabel32_ops;
290 		sp->ds_label = ops->op_clone_label(info, sp);
291 	} else {
292 		if (sp->ds_type == DOSPTYP_386BSD || /* XXX */
293 		    sp->ds_type == DOSPTYP_NETBSD ||
294 		    sp->ds_type == DOSPTYP_OPENBSD ||
295 		    sp->ds_type == DOSPTYP_DFLYBSD) {
296 			log(LOG_WARNING, "%s: cannot find label (%s)\n",
297 			    dev->si_name, msg);
298 		}
299 
300 		if (sp->ds_label.opaque != NULL && sp->ds_ops != NULL) {
301 			/* Clear out old label - it's not around anymore */
302 			disk_debug(2,
303 			    "disk_probe_slice: clear out old diskabel on %s\n",
304 			    dev->si_name);
305 
306 			sp->ds_ops->op_freedisklabel(&sp->ds_label);
307 			sp->ds_ops = NULL;
308 		}
309 	}
310 
311 	if (msg == NULL) {
312 		sp->ds_wlabel = FALSE;
313 	}
314 
315 	return (msg ? EINVAL : 0);
316 }
317 
318 /*
319  * This routine is only called for newly minted drives or to reprobe
320  * a drive with no open slices.  disk_probe_slice() is called directly
321  * when reprobing partition changes within slices.
322  */
323 static void
324 disk_probe(struct disk *dp, int reprobe)
325 {
326 	struct disk_info *info = &dp->d_info;
327 	cdev_t dev = dp->d_cdev;
328 	cdev_t ndev;
329 	int error, i, sno;
330 	struct diskslices *osp;
331 	struct diskslice *sp;
332 	struct dev_ops *dops;
333 	char uuid_buf[128];
334 
335 	KKASSERT (info->d_media_blksize != 0);
336 
337 	osp = dp->d_slice;
338 	dp->d_slice = dsmakeslicestruct(BASE_SLICE, info);
339 	disk_debug(1, "disk_probe (begin): %s\n", dp->d_cdev->si_name);
340 
341 	error = mbrinit(dev, info, &(dp->d_slice));
342 	if (error) {
343 		dsgone(&osp);
344 		return;
345 	}
346 
347 	dops = (dp->d_rawdev->si_ops->head.flags & D_NOEMERGPGR) ?
348 		&disk2_ops : &disk1_ops;
349 
350 	for (i = 0; i < dp->d_slice->dss_nslices; i++) {
351 		/*
352 		 * Ignore the whole-disk slice, it has already been created.
353 		 */
354 		if (i == WHOLE_DISK_SLICE)
355 			continue;
356 
357 #if 1
358 		/*
359 		 * Ignore the compatibility slice s0 if it's a device mapper
360 		 * volume.
361 		 */
362 		if ((i == COMPATIBILITY_SLICE) &&
363 		    (info->d_dsflags & DSO_DEVICEMAPPER))
364 			continue;
365 #endif
366 
367 		sp = &dp->d_slice->dss_slices[i];
368 
369 		/*
370 		 * Handle s0.  s0 is a compatibility slice if there are no
371 		 * other slices and it has not otherwise been set up, else
372 		 * we ignore it.
373 		 */
374 		if (i == COMPATIBILITY_SLICE) {
375 			sno = 0;
376 			if (sp->ds_type == 0 &&
377 			    dp->d_slice->dss_nslices == BASE_SLICE) {
378 				sp->ds_size = info->d_media_blocks;
379 				sp->ds_reserved = 0;
380 			}
381 		} else {
382 			sno = i - 1;
383 			sp->ds_reserved = 0;
384 		}
385 
386 		/*
387 		 * Ignore 0-length slices
388 		 */
389 		if (sp->ds_size == 0)
390 			continue;
391 
392 		if (reprobe &&
393 		    (ndev = devfs_find_device_by_name("%ss%d",
394 						      dev->si_name, sno))) {
395 			/*
396 			 * Device already exists and is still valid
397 			 */
398 			ndev->si_flags |= SI_REPROBE_TEST;
399 
400 			/*
401 			 * Destroy old UUID alias
402 			 */
403 			destroy_dev_alias(ndev, "slice-by-uuid/*");
404 
405 			/* Create UUID alias */
406 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
407 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
408 				    &sp->ds_stor_uuid);
409 				make_dev_alias(ndev, "slice-by-uuid/%s",
410 				    uuid_buf);
411 			}
412 		} else {
413 			/*
414 			 * Else create new device
415 			 */
416 			ndev = make_dev_covering(dops, dp->d_rawdev->si_ops,
417 					dkmakewholeslice(dkunit(dev), i),
418 					UID_ROOT, GID_OPERATOR, 0640,
419 					(info->d_dsflags & DSO_DEVICEMAPPER)?
420 					"%s.s%d" : "%ss%d", dev->si_name, sno);
421 			ndev->si_parent = dev;
422 			ndev->si_iosize_max = dev->si_iosize_max;
423 			udev_dict_set_cstr(ndev, "subsystem", "disk");
424 			/* Inherit parent's disk type */
425 			if (dp->d_disktype) {
426 				udev_dict_set_cstr(ndev, "disk-type",
427 				    __DECONST(char *, dp->d_disktype));
428 			}
429 
430 			/* Create serno alias */
431 			if (dp->d_info.d_serialno) {
432 				make_dev_alias(ndev, "serno/%s.s%d",
433 					       dp->d_info.d_serialno, sno);
434 			}
435 
436 			/* Create UUID alias */
437 			if (!kuuid_is_nil(&sp->ds_stor_uuid)) {
438 				snprintf_uuid(uuid_buf, sizeof(uuid_buf),
439 				    &sp->ds_stor_uuid);
440 				make_dev_alias(ndev, "slice-by-uuid/%s",
441 				    uuid_buf);
442 			}
443 
444 			ndev->si_disk = dp;
445 			ndev->si_flags |= SI_REPROBE_TEST;
446 		}
447 		sp->ds_dev = ndev;
448 
449 		/*
450 		 * Probe appropriate slices for a disklabel
451 		 *
452 		 * XXX slice type 1 used by our gpt probe code.
453 		 * XXX slice type 0 used by mbr compat slice.
454 		 */
455 		if (sp->ds_type == DOSPTYP_386BSD ||
456 		    sp->ds_type == DOSPTYP_NETBSD ||
457 		    sp->ds_type == DOSPTYP_OPENBSD ||
458 		    sp->ds_type == DOSPTYP_DFLYBSD ||
459 		    sp->ds_type == 0 ||
460 		    sp->ds_type == 1) {
461 			if (dp->d_slice->dss_first_bsd_slice == 0)
462 				dp->d_slice->dss_first_bsd_slice = i;
463 			disk_probe_slice(dp, ndev, i, reprobe);
464 		}
465 	}
466 	dsgone(&osp);
467 	disk_debug(1, "disk_probe (end): %s\n", dp->d_cdev->si_name);
468 }
469 
470 
471 static void
472 disk_msg_core(void *arg)
473 {
474 	struct disk	*dp;
475 	struct diskslice *sp;
476 	disk_msg_t msg;
477 	int run;
478 
479 	lwkt_gettoken(&disklist_token);
480 	lwkt_initport_thread(&disk_msg_port, curthread);
481 	wakeup(curthread);	/* synchronous startup */
482 	lwkt_reltoken(&disklist_token);
483 
484 	lwkt_gettoken(&ds_token);
485 	run = 1;
486 
487 	while (run) {
488 		msg = (disk_msg_t)lwkt_waitport(&disk_msg_port, 0);
489 
490 		switch (msg->hdr.u.ms_result) {
491 		case DISK_DISK_PROBE:
492 			dp = (struct disk *)msg->load;
493 			disk_debug(1,
494 				    "DISK_DISK_PROBE: %s\n",
495 					dp->d_cdev->si_name);
496 			disk_iocom_update(dp);
497 			disk_probe(dp, 0);
498 			break;
499 		case DISK_DISK_DESTROY:
500 			dp = (struct disk *)msg->load;
501 			disk_debug(1,
502 				    "DISK_DISK_DESTROY: %s\n",
503 					dp->d_cdev->si_name);
504 			disk_iocom_uninit(dp);
505 
506 			/*
507 			 * Interlock against struct disk enumerations.
508 			 * Wait for enumerations to complete then remove
509 			 * the dp from the list before tearing it down.
510 			 * This avoids numerous races.
511 			 */
512 			lwkt_gettoken(&disklist_token);
513 			while (dp->d_refs)
514 				tsleep(&dp->d_refs, 0, "diskdel", hz / 10);
515 			LIST_REMOVE(dp, d_list);
516 
517 			dsched_disk_destroy(dp);
518 			devfs_destroy_related(dp->d_cdev);
519 			destroy_dev(dp->d_cdev);
520 			destroy_only_dev(dp->d_rawdev);
521 
522 			lwkt_reltoken(&disklist_token);
523 
524 			if (dp->d_info.d_serialno) {
525 				kfree(dp->d_info.d_serialno, M_TEMP);
526 				dp->d_info.d_serialno = NULL;
527 			}
528 			break;
529 		case DISK_UNPROBE:
530 			dp = (struct disk *)msg->load;
531 			disk_debug(1,
532 				    "DISK_DISK_UNPROBE: %s\n",
533 					dp->d_cdev->si_name);
534 			devfs_destroy_related(dp->d_cdev);
535 			break;
536 		case DISK_SLICE_REPROBE:
537 			dp = (struct disk *)msg->load;
538 			sp = (struct diskslice *)msg->load2;
539 			devfs_clr_related_flag(sp->ds_dev,
540 						SI_REPROBE_TEST);
541 			disk_debug(1,
542 				    "DISK_SLICE_REPROBE: %s\n",
543 				    sp->ds_dev->si_name);
544 			disk_probe_slice(dp, sp->ds_dev,
545 					 dkslice(sp->ds_dev), 1);
546 			devfs_destroy_related_without_flag(
547 					sp->ds_dev, SI_REPROBE_TEST);
548 			break;
549 		case DISK_DISK_REPROBE:
550 			dp = (struct disk *)msg->load;
551 			devfs_clr_related_flag(dp->d_cdev, SI_REPROBE_TEST);
552 			disk_debug(1,
553 				    "DISK_DISK_REPROBE: %s\n",
554 				    dp->d_cdev->si_name);
555 			disk_probe(dp, 1);
556 			devfs_destroy_related_without_flag(
557 					dp->d_cdev, SI_REPROBE_TEST);
558 			break;
559 		case DISK_SYNC:
560 			disk_debug(1, "DISK_SYNC\n");
561 			break;
562 		default:
563 			devfs_debug(DEVFS_DEBUG_WARNING,
564 				    "disk_msg_core: unknown message "
565 				    "received at core\n");
566 			break;
567 		}
568 		lwkt_replymsg(&msg->hdr, 0);
569 	}
570 	lwkt_reltoken(&ds_token);
571 	lwkt_exit();
572 }
573 
574 
575 /*
576  * Acts as a message drain. Any message that is replied to here gets
577  * destroyed and the memory freed.
578  */
579 static void
580 disk_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
581 {
582 	objcache_put(disk_msg_cache, msg);
583 }
584 
585 
586 void
587 disk_msg_send(uint32_t cmd, void *load, void *load2)
588 {
589 	disk_msg_t disk_msg;
590 	lwkt_port_t port = &disk_msg_port;
591 
592 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
593 
594 	lwkt_initmsg(&disk_msg->hdr, &disk_dispose_port, 0);
595 
596 	disk_msg->hdr.u.ms_result = cmd;
597 	disk_msg->load = load;
598 	disk_msg->load2 = load2;
599 	KKASSERT(port);
600 	lwkt_sendmsg(port, &disk_msg->hdr);
601 }
602 
603 void
604 disk_msg_send_sync(uint32_t cmd, void *load, void *load2)
605 {
606 	struct lwkt_port rep_port;
607 	disk_msg_t disk_msg;
608 	lwkt_port_t port;
609 
610 	disk_msg = objcache_get(disk_msg_cache, M_WAITOK);
611 	port = &disk_msg_port;
612 
613 	/* XXX could probably use curthread's built-in msgport */
614 	lwkt_initport_thread(&rep_port, curthread);
615 	lwkt_initmsg(&disk_msg->hdr, &rep_port, 0);
616 
617 	disk_msg->hdr.u.ms_result = cmd;
618 	disk_msg->load = load;
619 	disk_msg->load2 = load2;
620 
621 	lwkt_domsg(port, &disk_msg->hdr, 0);
622 	objcache_put(disk_msg_cache, disk_msg);
623 }
624 
625 /*
626  * Create a raw device for the dev_ops template (which is returned).  Also
627  * create a slice and unit managed disk and overload the user visible
628  * device space with it.
629  *
630  * NOTE: The returned raw device is NOT a slice and unit managed device.
631  * It is an actual raw device representing the raw disk as specified by
632  * the passed dev_ops.  The disk layer not only returns such a raw device,
633  * it also uses it internally when passing (modified) commands through.
634  */
635 cdev_t
636 disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops)
637 {
638 	return _disk_create_named(NULL, unit, dp, raw_ops, 0);
639 }
640 
641 cdev_t
642 disk_create_clone(int unit, struct disk *dp,
643 		  struct dev_ops *raw_ops)
644 {
645 	return _disk_create_named(NULL, unit, dp, raw_ops, 1);
646 }
647 
648 cdev_t
649 disk_create_named(const char *name, int unit, struct disk *dp,
650 		  struct dev_ops *raw_ops)
651 {
652 	return _disk_create_named(name, unit, dp, raw_ops, 0);
653 }
654 
655 cdev_t
656 disk_create_named_clone(const char *name, int unit, struct disk *dp,
657 			struct dev_ops *raw_ops)
658 {
659 	return _disk_create_named(name, unit, dp, raw_ops, 1);
660 }
661 
662 static cdev_t
663 _disk_create_named(const char *name, int unit, struct disk *dp,
664 		   struct dev_ops *raw_ops, int clone)
665 {
666 	cdev_t rawdev;
667 	struct dev_ops *dops;
668 
669 	disk_debug(1, "disk_create (begin): %s%d\n", name, unit);
670 
671 	if (name) {
672 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
673 		    UID_ROOT, GID_OPERATOR, 0640, "%s", name);
674 	} else {
675 		rawdev = make_only_dev(raw_ops, dkmakewholedisk(unit),
676 		    UID_ROOT, GID_OPERATOR, 0640,
677 		    "%s%d", raw_ops->head.name, unit);
678 	}
679 
680 	bzero(dp, sizeof(*dp));
681 
682 	dops = (raw_ops->head.flags & D_NOEMERGPGR) ? &disk2_ops : &disk1_ops;
683 
684 	dp->d_rawdev = rawdev;
685 	dp->d_raw_ops = raw_ops;
686 	dp->d_dev_ops = dops;
687 
688 	if (name) {
689 		if (clone) {
690 			dp->d_cdev = make_only_dev_covering(
691 					dops, dp->d_rawdev->si_ops,
692 					dkmakewholedisk(unit),
693 					UID_ROOT, GID_OPERATOR, 0640,
694 					"%s", name);
695 		} else {
696 			dp->d_cdev = make_dev_covering(
697 					dops, dp->d_rawdev->si_ops,
698 					dkmakewholedisk(unit),
699 					UID_ROOT, GID_OPERATOR, 0640,
700 					"%s", name);
701 		}
702 	} else {
703 		if (clone) {
704 			dp->d_cdev = make_only_dev_covering(
705 					dops, dp->d_rawdev->si_ops,
706 					dkmakewholedisk(unit),
707 					UID_ROOT, GID_OPERATOR, 0640,
708 					"%s%d", raw_ops->head.name, unit);
709 		} else {
710 			dp->d_cdev = make_dev_covering(
711 					dops, dp->d_rawdev->si_ops,
712 					dkmakewholedisk(unit),
713 					UID_ROOT, GID_OPERATOR, 0640,
714 					"%s%d", raw_ops->head.name, unit);
715 		}
716 	}
717 
718 	udev_dict_set_cstr(dp->d_cdev, "subsystem", "disk");
719 	dp->d_cdev->si_disk = dp;
720 
721 	if (name)
722 		dsched_disk_create(dp, name, unit);
723 	else
724 		dsched_disk_create(dp, raw_ops->head.name, unit);
725 
726 	lwkt_gettoken(&disklist_token);
727 	LIST_INSERT_HEAD(&disklist, dp, d_list);
728 	lwkt_reltoken(&disklist_token);
729 
730 	disk_iocom_init(dp);
731 
732 	disk_debug(1, "disk_create (end): %s%d\n",
733 		   (name != NULL)?(name):(raw_ops->head.name), unit);
734 
735 	return (dp->d_rawdev);
736 }
737 
738 int
739 disk_setdisktype(struct disk *disk, const char *type)
740 {
741 	int error;
742 
743 	KKASSERT(disk != NULL);
744 
745 	disk->d_disktype = type;
746 	error = udev_dict_set_cstr(disk->d_cdev, "disk-type",
747 				   __DECONST(char *, type));
748 	return error;
749 }
750 
751 int
752 disk_getopencount(struct disk *disk)
753 {
754 	return disk->d_opencount;
755 }
756 
757 static void
758 _setdiskinfo(struct disk *disk, struct disk_info *info)
759 {
760 	char *oldserialno;
761 
762 	oldserialno = disk->d_info.d_serialno;
763 	bcopy(info, &disk->d_info, sizeof(disk->d_info));
764 	info = &disk->d_info;
765 
766 	disk_debug(1, "_setdiskinfo: %s\n", disk->d_cdev->si_name);
767 
768 	/*
769 	 * The serial number is duplicated so the caller can throw
770 	 * their copy away.
771 	 */
772 	if (info->d_serialno && info->d_serialno[0] &&
773 	    (info->d_serialno[0] != ' ' || strlen(info->d_serialno) > 1)) {
774 		info->d_serialno = kstrdup(info->d_serialno, M_TEMP);
775 		disk_cleanserial(info->d_serialno);
776 		if (disk->d_cdev) {
777 			make_dev_alias(disk->d_cdev, "serno/%s",
778 				       info->d_serialno);
779 		}
780 	} else {
781 		info->d_serialno = NULL;
782 	}
783 	if (oldserialno)
784 		kfree(oldserialno, M_TEMP);
785 
786 	dsched_disk_update(disk, info);
787 
788 	/*
789 	 * The caller may set d_media_size or d_media_blocks and we
790 	 * calculate the other.
791 	 */
792 	KKASSERT(info->d_media_size == 0 || info->d_media_blocks == 0);
793 	if (info->d_media_size == 0 && info->d_media_blocks) {
794 		info->d_media_size = (u_int64_t)info->d_media_blocks *
795 				     info->d_media_blksize;
796 	} else if (info->d_media_size && info->d_media_blocks == 0 &&
797 		   info->d_media_blksize) {
798 		info->d_media_blocks = info->d_media_size /
799 				       info->d_media_blksize;
800 	}
801 
802 	/*
803 	 * The si_* fields for rawdev are not set until after the
804 	 * disk_create() call, so someone using the cooked version
805 	 * of the raw device (i.e. da0s0) will not get the right
806 	 * si_iosize_max unless we fix it up here.
807 	 */
808 	if (disk->d_cdev && disk->d_rawdev &&
809 	    disk->d_cdev->si_iosize_max == 0) {
810 		disk->d_cdev->si_iosize_max = disk->d_rawdev->si_iosize_max;
811 		disk->d_cdev->si_bsize_phys = disk->d_rawdev->si_bsize_phys;
812 		disk->d_cdev->si_bsize_best = disk->d_rawdev->si_bsize_best;
813 	}
814 
815 	/* Add the serial number to the udev_dictionary */
816 	if (info->d_serialno)
817 		udev_dict_set_cstr(disk->d_cdev, "serno", info->d_serialno);
818 }
819 
820 /*
821  * Disk drivers must call this routine when media parameters are available
822  * or have changed.
823  */
824 void
825 disk_setdiskinfo(struct disk *disk, struct disk_info *info)
826 {
827 	_setdiskinfo(disk, info);
828 	disk_msg_send(DISK_DISK_PROBE, disk, NULL);
829 	disk_debug(1, "disk_setdiskinfo: sent probe for %s\n",
830 		   disk->d_cdev->si_name);
831 }
832 
833 void
834 disk_setdiskinfo_sync(struct disk *disk, struct disk_info *info)
835 {
836 	_setdiskinfo(disk, info);
837 	disk_msg_send_sync(DISK_DISK_PROBE, disk, NULL);
838 	disk_debug(1, "disk_setdiskinfo_sync: sent probe for %s\n",
839 		   disk->d_cdev->si_name);
840 }
841 
842 /*
843  * This routine is called when an adapter detaches.  The higher level
844  * managed disk device is destroyed while the lower level raw device is
845  * released.
846  */
847 void
848 disk_destroy(struct disk *disk)
849 {
850 	disk_msg_send_sync(DISK_DISK_DESTROY, disk, NULL);
851 	return;
852 }
853 
854 int
855 disk_dumpcheck(cdev_t dev, u_int64_t *size,
856 	       u_int64_t *blkno, u_int32_t *secsize)
857 {
858 	struct partinfo pinfo;
859 	int error;
860 
861 	if (size)
862 		*size = 0;	/* avoid gcc warnings */
863 	if (secsize)
864 		*secsize = 512;	/* avoid gcc warnings */
865 	bzero(&pinfo, sizeof(pinfo));
866 
867 	error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0,
868 			   proc0.p_ucred, NULL, NULL);
869 	if (error)
870 		return (error);
871 
872 	if (pinfo.media_blksize == 0)
873 		return (ENXIO);
874 
875 	if (blkno) /* XXX: make sure this reserved stuff is right */
876 		*blkno = pinfo.reserved_blocks +
877 			pinfo.media_offset / pinfo.media_blksize;
878 	if (secsize)
879 		*secsize = pinfo.media_blksize;
880 	if (size)
881 		*size = (pinfo.media_blocks - pinfo.reserved_blocks);
882 
883 	return (0);
884 }
885 
886 int
887 disk_dumpconf(cdev_t dev, u_int onoff)
888 {
889 	struct dumperinfo di;
890 	u_int64_t	size, blkno;
891 	u_int32_t	secsize;
892 	int error;
893 
894 	if (!onoff)
895 		return set_dumper(NULL);
896 
897 	error = disk_dumpcheck(dev, &size, &blkno, &secsize);
898 
899 	if (error)
900 		return ENXIO;
901 
902 	bzero(&di, sizeof(struct dumperinfo));
903 	di.dumper = diskdump;
904 	di.priv = dev;
905 	di.blocksize = secsize;
906 	di.maxiosize = dev->si_iosize_max;
907 	di.mediaoffset = blkno * DEV_BSIZE;
908 	di.mediasize = size * DEV_BSIZE;
909 
910 	return set_dumper(&di);
911 }
912 
913 void
914 disk_unprobe(struct disk *disk)
915 {
916 	if (disk == NULL)
917 		return;
918 
919 	disk_msg_send_sync(DISK_UNPROBE, disk, NULL);
920 }
921 
922 void
923 disk_invalidate (struct disk *disk)
924 {
925 	dsgone(&disk->d_slice);
926 }
927 
928 /*
929  * Enumerate disks, pass a marker and an initial NULL dp to initialize,
930  * then loop with the previously returned dp.
931  *
932  * The returned dp will be referenced, preventing its destruction.  When
933  * you pass the returned dp back into the loop the ref is dropped.
934  *
935  * WARNING: If terminating your loop early you must call
936  *	    disk_enumerate_stop().
937  */
938 struct disk *
939 disk_enumerate(struct disk *marker, struct disk *dp)
940 {
941 	lwkt_gettoken(&disklist_token);
942 	if (dp) {
943 		--dp->d_refs;
944 		dp = LIST_NEXT(marker, d_list);
945 		LIST_REMOVE(marker, d_list);
946 	} else {
947 		bzero(marker, sizeof(*marker));
948 		marker->d_flags = DISKFLAG_MARKER;
949 		dp = LIST_FIRST(&disklist);
950 	}
951 	while (dp) {
952 		if ((dp->d_flags & DISKFLAG_MARKER) == 0)
953 			break;
954 		dp = LIST_NEXT(dp, d_list);
955 	}
956 	if (dp) {
957 		++dp->d_refs;
958 		LIST_INSERT_AFTER(dp, marker, d_list);
959 	}
960 	lwkt_reltoken(&disklist_token);
961 	return (dp);
962 }
963 
964 /*
965  * Terminate an enumeration early.  Do not call this function if the
966  * enumeration ended normally.  dp can be NULL, indicating that you
967  * wish to retain the ref count on dp.
968  *
969  * This function removes the marker.
970  */
971 void
972 disk_enumerate_stop(struct disk *marker, struct disk *dp)
973 {
974 	lwkt_gettoken(&disklist_token);
975 	LIST_REMOVE(marker, d_list);
976 	if (dp)
977 		--dp->d_refs;
978 	lwkt_reltoken(&disklist_token);
979 }
980 
981 static
982 int
983 sysctl_disks(SYSCTL_HANDLER_ARGS)
984 {
985 	struct disk marker;
986 	struct disk *dp;
987 	int error, first;
988 
989 	first = 1;
990 	error = 0;
991 	dp = NULL;
992 
993 	while ((dp = disk_enumerate(&marker, dp))) {
994 		if (!first) {
995 			error = SYSCTL_OUT(req, " ", 1);
996 			if (error) {
997 				disk_enumerate_stop(&marker, dp);
998 				break;
999 			}
1000 		} else {
1001 			first = 0;
1002 		}
1003 		error = SYSCTL_OUT(req, dp->d_rawdev->si_name,
1004 				   strlen(dp->d_rawdev->si_name));
1005 		if (error) {
1006 			disk_enumerate_stop(&marker, dp);
1007 			break;
1008 		}
1009 	}
1010 	if (error == 0)
1011 		error = SYSCTL_OUT(req, "", 1);
1012 	return error;
1013 }
1014 
1015 SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
1016     sysctl_disks, "A", "names of available disks");
1017 
1018 /*
1019  * Open a disk device or partition.
1020  */
1021 static
1022 int
1023 diskopen(struct dev_open_args *ap)
1024 {
1025 	cdev_t dev = ap->a_head.a_dev;
1026 	struct disk *dp;
1027 	int error;
1028 
1029 	/*
1030 	 * dp can't be NULL here XXX.
1031 	 *
1032 	 * d_slice will be NULL if setdiskinfo() has not been called yet.
1033 	 * setdiskinfo() is typically called whether the disk is present
1034 	 * or not (e.g. CD), but the base disk device is created first
1035 	 * and there may be a race.
1036 	 */
1037 	dp = dev->si_disk;
1038 	if (dp == NULL || dp->d_slice == NULL)
1039 		return (ENXIO);
1040 	error = 0;
1041 
1042 	/*
1043 	 * Deal with open races
1044 	 */
1045 	lwkt_gettoken(&ds_token);
1046 	while (dp->d_flags & DISKFLAG_LOCK) {
1047 		dp->d_flags |= DISKFLAG_WANTED;
1048 		error = tsleep(dp, PCATCH, "diskopen", hz);
1049 		if (error) {
1050 			lwkt_reltoken(&ds_token);
1051 			return (error);
1052 		}
1053 	}
1054 	dp->d_flags |= DISKFLAG_LOCK;
1055 
1056 	/*
1057 	 * Open the underlying raw device.
1058 	 */
1059 	if (!dsisopen(dp->d_slice)) {
1060 #if 0
1061 		if (!pdev->si_iosize_max)
1062 			pdev->si_iosize_max = dev->si_iosize_max;
1063 #endif
1064 		error = dev_dopen(dp->d_rawdev, ap->a_oflags,
1065 				  ap->a_devtype, ap->a_cred, NULL);
1066 	}
1067 
1068 	if (error)
1069 		goto out;
1070 	error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags,
1071 		       &dp->d_slice, &dp->d_info);
1072 	if (!dsisopen(dp->d_slice)) {
1073 		dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype, NULL);
1074 	}
1075 out:
1076 	dp->d_flags &= ~DISKFLAG_LOCK;
1077 	if (dp->d_flags & DISKFLAG_WANTED) {
1078 		dp->d_flags &= ~DISKFLAG_WANTED;
1079 		wakeup(dp);
1080 	}
1081 	lwkt_reltoken(&ds_token);
1082 
1083 	KKASSERT(dp->d_opencount >= 0);
1084 	/* If the open was successful, bump open count */
1085 	if (error == 0)
1086 		atomic_add_int(&dp->d_opencount, 1);
1087 
1088 	return(error);
1089 }
1090 
1091 /*
1092  * Close a disk device or partition
1093  */
1094 static
1095 int
1096 diskclose(struct dev_close_args *ap)
1097 {
1098 	cdev_t dev = ap->a_head.a_dev;
1099 	struct disk *dp;
1100 	int error;
1101 	int lcount;
1102 
1103 	error = 0;
1104 	dp = dev->si_disk;
1105 
1106 	/*
1107 	 * The cdev_t represents the disk/slice/part.  The shared
1108 	 * dp structure governs all cdevs associated with the disk.
1109 	 *
1110 	 * As a safety only close the underlying raw device on the last
1111 	 * close the disk device if our tracking of the slices/partitions
1112 	 * also indicates nothing is open.
1113 	 */
1114 	KKASSERT(dp->d_opencount >= 1);
1115 	lcount = atomic_fetchadd_int(&dp->d_opencount, -1);
1116 
1117 	lwkt_gettoken(&ds_token);
1118 	dsclose(dev, ap->a_devtype, dp->d_slice);
1119 	if (lcount <= 1 && !dsisopen(dp->d_slice)) {
1120 		error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype, NULL);
1121 	}
1122 	lwkt_reltoken(&ds_token);
1123 
1124 	return (error);
1125 }
1126 
1127 /*
1128  * First execute the ioctl on the disk device, and if it isn't supported
1129  * try running it on the backing device.
1130  */
1131 static
1132 int
1133 diskioctl(struct dev_ioctl_args *ap)
1134 {
1135 	cdev_t dev = ap->a_head.a_dev;
1136 	struct disk *dp;
1137 	int error;
1138 	u_int u;
1139 
1140 	dp = dev->si_disk;
1141 	if (dp == NULL)
1142 		return (ENXIO);
1143 
1144 	devfs_debug(DEVFS_DEBUG_DEBUG,
1145 		    "diskioctl: cmd is: %lx (name: %s)\n",
1146 		    ap->a_cmd, dev->si_name);
1147 	devfs_debug(DEVFS_DEBUG_DEBUG,
1148 		    "diskioctl: &dp->d_slice is: %p, %p\n",
1149 		    &dp->d_slice, dp->d_slice);
1150 
1151 	if (ap->a_cmd == DIOCGKERNELDUMP) {
1152 		u = *(u_int *)ap->a_data;
1153 		return disk_dumpconf(dev, u);
1154 	}
1155 
1156 	if (ap->a_cmd == DIOCRECLUSTER && dev == dp->d_cdev) {
1157 		error = disk_iocom_ioctl(dp, ap->a_cmd, ap->a_data);
1158 		return error;
1159 	}
1160 
1161 	if (&dp->d_slice == NULL || dp->d_slice == NULL ||
1162 	    ((dp->d_info.d_dsflags & DSO_DEVICEMAPPER) &&
1163 	     dkslice(dev) == WHOLE_DISK_SLICE)) {
1164 		error = ENOIOCTL;
1165 	} else {
1166 		lwkt_gettoken(&ds_token);
1167 		error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag,
1168 				&dp->d_slice, &dp->d_info);
1169 		lwkt_reltoken(&ds_token);
1170 	}
1171 
1172 	if (error == ENOIOCTL) {
1173 		error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data,
1174 				   ap->a_fflag, ap->a_cred, NULL, NULL);
1175 	}
1176 	return (error);
1177 }
1178 
1179 /*
1180  * Execute strategy routine
1181  *
1182  * WARNING! We are using the KVABIO API and must not access memory
1183  *         through bp->b_data without first calling bkvasync(bp).
1184  */
1185 static
1186 int
1187 diskstrategy(struct dev_strategy_args *ap)
1188 {
1189 	cdev_t dev = ap->a_head.a_dev;
1190 	struct bio *bio = ap->a_bio;
1191 	struct bio *nbio;
1192 	struct disk *dp;
1193 
1194 	dp = dev->si_disk;
1195 
1196 	if (dp == NULL) {
1197 		bio->bio_buf->b_error = ENXIO;
1198 		bio->bio_buf->b_flags |= B_ERROR;
1199 		biodone(bio);
1200 		return(0);
1201 	}
1202 	KKASSERT(dev->si_disk == dp);
1203 
1204 	/*
1205 	 * The dscheck() function will also transform the slice relative
1206 	 * block number i.e. bio->bio_offset into a block number that can be
1207 	 * passed directly to the underlying raw device.  If dscheck()
1208 	 * returns NULL it will have handled the bio for us (e.g. EOF
1209 	 * or error due to being beyond the device size).
1210 	 */
1211 	if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) {
1212 		dev_dstrategy(dp->d_rawdev, nbio);
1213 	} else {
1214 		biodone(bio);
1215 	}
1216 	return(0);
1217 }
1218 
1219 /*
1220  * Return the partition size in ?blocks?
1221  */
1222 static
1223 int
1224 diskpsize(struct dev_psize_args *ap)
1225 {
1226 	cdev_t dev = ap->a_head.a_dev;
1227 	struct disk *dp;
1228 
1229 	dp = dev->si_disk;
1230 	if (dp == NULL)
1231 		return(ENODEV);
1232 
1233 	ap->a_result = dssize(dev, &dp->d_slice);
1234 
1235 	if ((ap->a_result == -1) &&
1236 	   (dp->d_info.d_dsflags & DSO_RAWPSIZE)) {
1237 		ap->a_head.a_dev = dp->d_rawdev;
1238 		return dev_doperate(&ap->a_head);
1239 	}
1240 	return(0);
1241 }
1242 
1243 static int
1244 diskdump(struct dev_dump_args *ap)
1245 {
1246 	cdev_t dev = ap->a_head.a_dev;
1247 	struct disk *dp = dev->si_disk;
1248 	u_int64_t size, offset;
1249 	int error;
1250 
1251 	error = disk_dumpcheck(dev, &size, &ap->a_blkno, &ap->a_secsize);
1252 	/* XXX: this should probably go in disk_dumpcheck somehow */
1253 	if (ap->a_length != 0) {
1254 		size *= DEV_BSIZE;
1255 		offset = ap->a_blkno * DEV_BSIZE;
1256 		if ((ap->a_offset < offset) ||
1257 		    (ap->a_offset + ap->a_length - offset > size)) {
1258 			kprintf("Attempt to write outside dump "
1259 				"device boundaries.\n");
1260 			error = ENOSPC;
1261 		}
1262 	}
1263 
1264 	if (error == 0) {
1265 		ap->a_head.a_dev = dp->d_rawdev;
1266 		error = dev_doperate(&ap->a_head);
1267 	}
1268 
1269 	return(error);
1270 }
1271 
1272 
1273 SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD,
1274 	   0, sizeof(struct diskslices), "sizeof(struct diskslices)");
1275 
1276 SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD,
1277 	   0, sizeof(struct disk), "sizeof(struct disk)");
1278 
1279 /*
1280  * Reorder interval for burst write allowance and minor write
1281  * allowance.
1282  *
1283  * We always want to trickle some writes in to make use of the
1284  * disk's zone cache.  Bursting occurs on a longer interval and only
1285  * runningbufspace is well over the hirunningspace limit.
1286  */
1287 int bioq_reorder_burst_interval = 60;	/* should be multiple of minor */
1288 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_interval,
1289 	   CTLFLAG_RW, &bioq_reorder_burst_interval, 0, "");
1290 int bioq_reorder_minor_interval = 5;
1291 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_interval,
1292 	   CTLFLAG_RW, &bioq_reorder_minor_interval, 0, "");
1293 
1294 int bioq_reorder_burst_bytes = 3000000;
1295 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_burst_bytes,
1296 	   CTLFLAG_RW, &bioq_reorder_burst_bytes, 0, "");
1297 int bioq_reorder_minor_bytes = 262144;
1298 SYSCTL_INT(_kern, OID_AUTO, bioq_reorder_minor_bytes,
1299 	   CTLFLAG_RW, &bioq_reorder_minor_bytes, 0, "");
1300 
1301 
1302 /*
1303  * Order I/Os.  Generally speaking this code is designed to make better
1304  * use of drive zone caches.  A drive zone cache can typically track linear
1305  * reads or writes for around 16 zones simultaniously.
1306  *
1307  * Read prioritization issues:  It is possible for hundreds of megabytes worth
1308  * of writes to be queued asynchronously.  This creates a huge bottleneck
1309  * for reads which reduce read bandwidth to a trickle.
1310  *
1311  * To solve this problem we generally reorder reads before writes.
1312  *
1313  * However, a large number of random reads can also starve writes and
1314  * make poor use of the drive zone cache so we allow writes to trickle
1315  * in every N reads.
1316  */
1317 void
1318 bioqdisksort(struct bio_queue_head *bioq, struct bio *bio)
1319 {
1320 #if 0
1321 	/*
1322 	 * The BIO wants to be ordered.  Adding to the tail also
1323 	 * causes transition to be set to NULL, forcing the ordering
1324 	 * of all prior I/O's.
1325 	 */
1326 	if (bio->bio_buf->b_flags & B_ORDERED) {
1327 		bioq_insert_tail(bioq, bio);
1328 		return;
1329 	}
1330 #endif
1331 
1332 	switch(bio->bio_buf->b_cmd) {
1333 	case BUF_CMD_READ:
1334 		if (bioq->transition) {
1335 			/*
1336 			 * Insert before the first write.  Bleedover writes
1337 			 * based on reorder intervals to prevent starvation.
1338 			 */
1339 			TAILQ_INSERT_BEFORE(bioq->transition, bio, bio_act);
1340 			++bioq->reorder;
1341 			if (bioq->reorder % bioq_reorder_minor_interval == 0) {
1342 				bioqwritereorder(bioq);
1343 				if (bioq->reorder >=
1344 				    bioq_reorder_burst_interval) {
1345 					bioq->reorder = 0;
1346 				}
1347 			}
1348 		} else {
1349 			/*
1350 			 * No writes queued (or ordering was forced),
1351 			 * insert at tail.
1352 			 */
1353 			TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1354 		}
1355 		break;
1356 	case BUF_CMD_WRITE:
1357 		/*
1358 		 * Writes are always appended.  If no writes were previously
1359 		 * queued or an ordered tail insertion occured the transition
1360 		 * field will be NULL.
1361 		 */
1362 		TAILQ_INSERT_TAIL(&bioq->queue, bio, bio_act);
1363 		if (bioq->transition == NULL)
1364 			bioq->transition = bio;
1365 		break;
1366 	default:
1367 		/*
1368 		 * All other request types are forced to be ordered.
1369 		 */
1370 		bioq_insert_tail(bioq, bio);
1371 		break;
1372 	}
1373 }
1374 
1375 /*
1376  * Move the read-write transition point to prevent reads from
1377  * completely starving our writes.  This brings a number of writes into
1378  * the fold every N reads.
1379  *
1380  * We bring a few linear writes into the fold on a minor interval
1381  * and we bring a non-linear burst of writes into the fold on a major
1382  * interval.  Bursting only occurs if runningbufspace is really high
1383  * (typically from syncs, fsyncs, or HAMMER flushes).
1384  */
1385 static
1386 void
1387 bioqwritereorder(struct bio_queue_head *bioq)
1388 {
1389 	struct bio *bio;
1390 	off_t next_offset;
1391 	size_t left;
1392 	size_t n;
1393 	int check_off;
1394 
1395 	if (bioq->reorder < bioq_reorder_burst_interval ||
1396 	    !buf_runningbufspace_severe()) {
1397 		left = (size_t)bioq_reorder_minor_bytes;
1398 		check_off = 1;
1399 	} else {
1400 		left = (size_t)bioq_reorder_burst_bytes;
1401 		check_off = 0;
1402 	}
1403 
1404 	next_offset = bioq->transition->bio_offset;
1405 	while ((bio = bioq->transition) != NULL &&
1406 	       (check_off == 0 || next_offset == bio->bio_offset)
1407 	) {
1408 		n = bio->bio_buf->b_bcount;
1409 		next_offset = bio->bio_offset + n;
1410 		bioq->transition = TAILQ_NEXT(bio, bio_act);
1411 		if (left < n)
1412 			break;
1413 		left -= n;
1414 	}
1415 }
1416 
1417 /*
1418  * Bounds checking against the media size, used for the raw partition.
1419  * secsize, mediasize and b_blkno must all be the same units.
1420  * Possibly this has to be DEV_BSIZE (512).
1421  */
1422 int
1423 bounds_check_with_mediasize(struct bio *bio, int secsize, uint64_t mediasize)
1424 {
1425 	struct buf *bp = bio->bio_buf;
1426 	int64_t sz;
1427 
1428 	sz = howmany(bp->b_bcount, secsize);
1429 
1430 	if (bio->bio_offset/DEV_BSIZE + sz > mediasize) {
1431 		sz = mediasize - bio->bio_offset/DEV_BSIZE;
1432 		if (sz == 0) {
1433 			/* If exactly at end of disk, return EOF. */
1434 			bp->b_resid = bp->b_bcount;
1435 			return 0;
1436 		}
1437 		if (sz < 0) {
1438 			/* If past end of disk, return EINVAL. */
1439 			bp->b_error = EINVAL;
1440 			return 0;
1441 		}
1442 		/* Otherwise, truncate request. */
1443 		bp->b_bcount = sz * secsize;
1444 	}
1445 
1446 	return 1;
1447 }
1448 
1449 /*
1450  * Disk error is the preface to plaintive error messages
1451  * about failing disk transfers.  It prints messages of the form
1452 
1453 hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
1454 
1455  * if the offset of the error in the transfer and a disk label
1456  * are both available.  blkdone should be -1 if the position of the error
1457  * is unknown; the disklabel pointer may be null from drivers that have not
1458  * been converted to use them.  The message is printed with kprintf
1459  * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
1460  * The message should be completed (with at least a newline) with kprintf
1461  * or log(-1, ...), respectively.  There is no trailing space.
1462  */
1463 void
1464 diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt)
1465 {
1466 	struct buf *bp = bio->bio_buf;
1467 	const char *term;
1468 
1469 	switch(bp->b_cmd) {
1470 	case BUF_CMD_READ:
1471 		term = "read";
1472 		break;
1473 	case BUF_CMD_WRITE:
1474 		term = "write";
1475 		break;
1476 	default:
1477 		term = "access";
1478 		break;
1479 	}
1480 	kprintf("%s: %s %sing ", dev->si_name, what, term);
1481 	kprintf("offset %012llx for %d",
1482 		(long long)bio->bio_offset,
1483 		bp->b_bcount);
1484 
1485 	if (donecnt)
1486 		kprintf(" (%d bytes completed)", donecnt);
1487 }
1488 
1489 /*
1490  * Locate a disk device
1491  */
1492 cdev_t
1493 disk_locate(const char *devname)
1494 {
1495 	return devfs_find_device_by_name("%s", devname);
1496 }
1497 
1498 void
1499 disk_config(void *arg)
1500 {
1501 	disk_msg_send_sync(DISK_SYNC, NULL, NULL);
1502 }
1503 
1504 static void
1505 disk_init(void)
1506 {
1507 	struct thread* td_core;
1508 
1509 	disk_msg_cache = objcache_create("disk-msg-cache", 0, 0,
1510 					 NULL, NULL, NULL,
1511 					 objcache_malloc_alloc,
1512 					 objcache_malloc_free,
1513 					 &disk_msg_malloc_args);
1514 
1515 	lwkt_token_init(&disklist_token, "disks");
1516 	lwkt_token_init(&ds_token, "ds");
1517 
1518 	/*
1519 	 * Initialize the reply-only port which acts as a message drain
1520 	 */
1521 	lwkt_initport_replyonly(&disk_dispose_port, disk_msg_autofree_reply);
1522 
1523 	lwkt_gettoken(&disklist_token);
1524 	lwkt_create(disk_msg_core, /*args*/NULL, &td_core, NULL,
1525 		    0, -1, "disk_msg_core");
1526 	tsleep(td_core, 0, "diskcore", 0);
1527 	lwkt_reltoken(&disklist_token);
1528 }
1529 
1530 static void
1531 disk_uninit(void)
1532 {
1533 	objcache_destroy(disk_msg_cache);
1534 }
1535 
1536 /*
1537  * Clean out illegal characters in serial numbers.
1538  */
1539 static void
1540 disk_cleanserial(char *serno)
1541 {
1542 	char c;
1543 
1544 	while ((c = *serno) != 0) {
1545 		if (c >= 'a' && c <= 'z')
1546 			;
1547 		else if (c >= 'A' && c <= 'Z')
1548 			;
1549 		else if (c >= '0' && c <= '9')
1550 			;
1551 		else if (c == '-' || c == '@' || c == '+' || c == '.')
1552 			;
1553 		else
1554 			c = '_';
1555 		*serno++= c;
1556 	}
1557 }
1558 
1559 TUNABLE_INT("kern.disk_debug", &disk_debug_enable);
1560 SYSCTL_INT(_kern, OID_AUTO, disk_debug, CTLFLAG_RW, &disk_debug_enable,
1561 	   0, "Enable subr_disk debugging");
1562 
1563 SYSINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, disk_init, NULL);
1564 SYSUNINIT(disk_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, disk_uninit, NULL);
1565